WO1996001902A1 - Adenovirus comportant un gene codant pour une no synthase - Google Patents

Adenovirus comportant un gene codant pour une no synthase Download PDF

Info

Publication number
WO1996001902A1
WO1996001902A1 PCT/FR1995/000913 FR9500913W WO9601902A1 WO 1996001902 A1 WO1996001902 A1 WO 1996001902A1 FR 9500913 W FR9500913 W FR 9500913W WO 9601902 A1 WO9601902 A1 WO 9601902A1
Authority
WO
WIPO (PCT)
Prior art keywords
adenovirus
synthase
gene
cell
cells
Prior art date
Application number
PCT/FR1995/000913
Other languages
English (en)
Inventor
Andrees Bohme
Didier Branellec
Patrice Denefle
Original Assignee
Rhone-Poulenc Rorer S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone-Poulenc Rorer S.A. filed Critical Rhone-Poulenc Rorer S.A.
Priority to MX9700298A priority Critical patent/MX9700298A/es
Priority to EP95925025A priority patent/EP0770133A1/fr
Priority to JP8504161A priority patent/JPH10502533A/ja
Priority to AU29306/95A priority patent/AU691008B2/en
Publication of WO1996001902A1 publication Critical patent/WO1996001902A1/fr
Priority to NO970048A priority patent/NO970048L/no
Priority to FI970114A priority patent/FI970114A/fi

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0073Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
    • C12N9/0075Nitric-oxide synthase (1.14.13.39)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/13Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen (1.14.13)
    • C12Y114/13039Nitric-oxide synthase (NADPH dependent) (1.14.13.39)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10341Use of virus, viral particle or viral elements as a vector
    • C12N2710/10343Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Definitions

  • the present invention relates to a recombinant adenovirus comprising a gene coding for NO synthase. It also relates to pharmaceutical compositions allowing the local and effective administration of these recombinant viruses and more particularly their use for the treatment of restenosis.
  • Dyslipoproteinemias are disorders of the metabolism of lipoproteins responsible for the transport, in the blood and peripheral fluids, of lipids such as cholesterol and triglycerides. They lead to significant pathologies, respectively linked to hypercholesterolemia or hypertriglyceridemia, such as in particular atherosclerosis.
  • Atherosclerosis is the main cause of myocardial infarction and is responsible for almost half the death rate in developed countries. Physiologically, it mainly results in the formation, at the level of the wall of the large arteries, of plaques made up of cholesterol, lipoproteins, foam cells and or fibrous tissues. Presumably, these arteriosclerotic plaques are the consequence of an excessive inflammatory response to a chronic lesion in the endothelium of the arterial walls. This type of atheromatous plaque is very clearly in relief on the wall, which gives it a stenosing character responsible for vascular occlusions by atheroma, thrombosis or embolism which occur in the most affected patients.
  • the angioplasty technique is the most commonly used therapy to restore blood circulation through the obstructed artery. However, in approximately 40% of cases, this technique fails due to restenosis, following the mechanical injury of the arterial wall.
  • This second pathology is mainly linked to the migration and proliferation of vascular smooth muscle cells (LVMC) which take place in the absence of the protection and / or of the retro-control exerted by the endothelial cells of the intima.
  • LVMC vascular smooth muscle cells
  • CMLV cells A treatment proposed to counter this proliferation of CMLV cells consists in suppressing them by administration of suitable chemical or protein substances. This is how psolarenes derivatives are incorporated into proliferative cells so as to sensitize them to the action of light [March et al, Circulation, £ 7, 184-191, (1993)]. Likewise, certain cytotoxins, consisting of a fusion protein between a fragment of plant or bacterial toxin and a growth factor, have also been used for these purposes [Pickering et al, J. Clin. Invest, 21, 724-729 (1993); Biro et al, Wax.
  • the object of the present invention is precisely to propose a new method, by gene therapy, which is particularly effective and selective for the treatment of post-angioplastic restenosis.
  • the approach adopted in the context of the present invention is totally different from the above and consists in intervening at the level of the expression of one of the factors involved in the proliferation of CMLV.
  • it aims to increase the content of a factor playing a role of blocking agent with regard to this proliferation.
  • the present invention aims to increase the concentration of nitric oxide, NO, at the level of the vascular wall, subjected to angioplasty, via the expression of NO synthase, an enzyme catalyzing the synthesis of NO from 'arginine. It can be assumed that the quantities of NO produced in the physiological state by endothelial cells correspond to the concentrations necessary for integrity, ie for the proper functioning of the vascular wall. The mechanical destruction of the endothelium, following angioplasty, therefore leads to a reduction in the production of NO. Conversely, it has been established that the pharmacological modulation of NO levels is capable of interfering with the proliferation of LVMC observed during restenosis [McNamara et al., Biochem.
  • the present invention relates mainly to a recombinant adenovirus comprising at least one gene coding, in whole or not, for all or an active part of an enzyme catalyzing the synthesis of nitrogen oxide.
  • the advantages of the present invention reside in particular in the high capacity of the adenoviruses of the invention to infect the proliferating vascular smooth muscle cells.
  • This makes it possible to use relatively small amounts of active principle (recombinant adenovirus), and also allows very rapid effective action on the sites to be treated.
  • the adenoviruses of the invention are also capable of expressing the introduced genes at very high levels, which gives them a very effective therapeutic action. Because of their episomal nature, the adenoviruses of the invention have a limited persistence in proliferative cells and therefore a transient effect perfectly suited to the desired therapeutic effect.
  • Nitric oxide is known to intervene in the biological activity of EDRF (endothelium-derived relaxing factor).
  • EDRF plays an important role in regulating blood flow in particular by inhibiting soft muscle contractions and platelet aggregation [Radomski et al., Lancet 2, 1057-1058 (1987)].
  • NO is also present in the plasma in the form of S-mtrosothiol groups linked to proteins such as albumin.
  • S-nitrosoproteins thus generated, more stable than NO, are responsible, at least partially, for EDRF activity.
  • S-nitrosoproteins are also powerful anti-platelet aggregating agents [Simon et al. Arteriosclerosis and Thrombosis, __, 791-799 (1993)].
  • Nitric oxide is also recognized as functioning, at the level of the nervous system, as a neurotransmitter and as participating, at the level of the immune system, in the cytotoxic activity of macrophages. More recently, nitric oxide has been described as an agent capable of acting directly on the proliferation of CMLV since a vitro, various compounds, NO donors, inhibit the mitogenesis of CMLV in culture [Garg et al., J. Clin.Invest, __, 1774-1777, (1989)].
  • NO synthases The enzymes responsible for the production of nitric oxide in each of these systems, hereinafter designated NO synthases are conventionally divided into three categories called isoform I, isoform ⁇ and isoform ni.
  • isoform I is expressed continuously and dependent on calcium, at the level of brain cells. This neuronal NO synthase is constitutive. It has recently been cloned in humans [Nakane M., Schmidt H.H, Pollock J.S., Fôrstmann U., and Murad F; Lett. ___ (2) 175-180 (1993)].
  • Isoform II is expressed in murine macrophages and induced by TNF or IL-1.
  • the particularity of inducible type NOS is mainly their capacity to produce high concentrations of NO in response to certain cytokines.
  • the control of the production of nitrogen monoxide is carried out by a promoter present in the adenovirus.
  • Two inducible human NO synthases have in particular been cloned [Geller et al. Proc. Natl. Acad. Sci. USA, 9JL 3491-3495 (1993) and Charles et al. Proc. Natl. Acad. Sci. USA, __, 11419-11423 (1993)].
  • D3 isoform it is expressed in endothelial cells and is calcium-calmudoline dependent. This so-called constitutive or endothelial isoform is normally expressed in the vascular wall and associated with EDRF activity.
  • Human endothelial NO synthase has been cloned [Janssens et al. J Bio. Chem. 267. 14519-14522 (1992) and Marsden et al. FEBS Lett. 3JZ, 287-293 (1992)]. Due to its EDRF properties, the nitric oxide produced by this NO synthase plays an essential role in the relaxation of CMLV.
  • any gene coding for all or only an active part of a NO synthase or one of its derivatives and preferably coding for one of these three isoforms of NO synthases can be incorporated into an adenovirus for the purpose of its expression in vivo.
  • NO synthase derivative is intended to denote any polypeptide obtained by modification and retaining an activity organic. Modification means any mutation, substitution, deletion, addition or modification of a genetic and / or chemical nature.
  • the NO synthase, or its derivative, produced within the framework of the present invention can be a human NO synthase or an AI NO synthase.
  • can in particular be a bovine NO synthase.
  • the DNA sequence coding for NO synthase or a derivative thereof, used in the context of the present invention may be a cDNA, a genomic DNA
  • GDNA or a hybrid construct consisting for example of a cDNA into which one or more introns would be inserted. They can also be synthetic or semi-synthetic sequences.
  • a cDNA or a gDNA is used.
  • it is a cDNA sequence coding for a human NO synthase.
  • adenoviruses for the construction of the adenoviruses according to the invention, different serotypes can be used. There are indeed many serotypes of adenovirus, the structure and properties of which vary somewhat. Among these serotypes, however, it is preferred to use, within the framework of the present invention, human adenoviruses of type 2 or 5 (Ad 2 or Ad 5) or adenoviruses of animal origin (see application FR 93 05954). Among the adenoviruses of animal origin which can be used in the context of the present invention, mention may be made of adenoviruses of canine, bovine, murine origin [example: Mavl, Beard et al., Virology Z.
  • the adenovirus of animal origin is a canine adenovirus, more preferably a CAV2 adenovirus [Manhattan strain or A26 / 61 (ATCC VR-800) for example].
  • adenoviruses of human or canine or mixed origin are used.
  • the adenoviruses according to the invention are defective, that is to say that they are unable to replicate autonomously in the target cell.
  • the genome of the defective adenoviruses used in the context of the present invention is therefore devoid of at least the sequences necessary for the replication of said virus in the infected cell. These regions can be either eliminated (in whole or in part), or made non-functional, or substituted by other sequences and in particular by the suicide gene.
  • the defective adenovirus nevertheless retains the sequences of its genome which are necessary for the packaging of the viral particles.
  • the defective adenoviruses of the invention include ⁇ TRs, a sequence allowing the packaging and the gene coding for an enzyme NO synthase.
  • the El gene and at least one of the E2, E4, L1-L5 genes are non-functional.
  • the viral gene considered can be made non-functional by any technique known to those skilled in the art, and in particular by total suppression, substitution, partial deletion, or addition of one or more bases in the gene or genes considered. Such modifications can be obtained in vitro (on isolated DNA) or in situ, for example, by means of genetic engineering techniques, or by treatment with mutagenic agents.
  • the defective recombinant adenoviruses according to the invention can be prepared by any technique known to a person skilled in the art [Levrero et al., Gene, 101. 195, (1991), EP 185 573; Graham, EMBO J. 3_, 2917, (1984)]. In particular, they can be prepared by homologous recombination between an adenovirus and a plasmid carrying, inter alia, the gene coding for NO synthase. Homologous recombination occurs after co-transfection of said adenovirus and plasmid in an appropriate cell line.
  • the cell line used must preferably (i) be transformable by said elements, and (ii), contain the sequences capable of complementing the part of the genome of the defective adenovirus, preferably in integrated form to avoid the risks of recombination.
  • a line mention may be made of the human embryonic kidney line 293 [Graham et al., J. Gen. Virol. __, 59, (1977)] which contains in particular, integrated into its genome, the left part of the genome of an Ad5 adenovirus (12%).
  • Strategies for the construction of vectors derived from adenoviruses have also been described in applications No. FR 93 05954 and FR 93 08596.
  • the adenoviruses which have multiplied are recovered and purified according to conventional molecular biology techniques, as illustrated in the examples.
  • the gene coding for an enzyme NO synthase is placed under the control of a promoter allowing its expression in the infected cells.
  • a promoter can be the gene's own promoter, a heterologous promoter or a synthetic promoter.
  • they may be promoters derived from eukaryotic or viral genes.
  • it could be promoter sequences from the genome of the cell to be infected.
  • they may be promoter sequences originating from the genome of a virus, including the virus used.
  • these expression sequences can be modified by adding activation, regulation sequences or allowing tissue-specific expression. It may indeed be particularly advantageous to use expression signals which are active specifically or predominantly in vascular smooth muscle cells, preferably in division, so that the therapeutic gene is only expressed and produces its effect when the virus actually infected a vascular smooth muscle cell.
  • a defective recombinant adenovirus comprising a gene coding for NO synthase under the control of a viral promoter, preferably chosen from LTR-RSV or the early promoter of CMV.
  • the present invention relates to the use of adenoviruses according to the invention for therapeutic purposes and more particularly their application for the treatment of restenosis. This application can in particular be extended to pathological ischemia situations where the properties of NO as an angiogenic relay can be favorably exploited. Their use is also possible for the treatment of pathologies linked to the central nervous system.
  • Another subject of the present invention therefore relates to a pharmaceutical composition
  • a pharmaceutical composition comprising at least one defective recombinant adenovirus according to the invention associated, where appropriate, with a suitable excipient.
  • the doses of defective recombinant adenovirus used can be adapted according to different parameters, and in particular according to the mode of administration used, the pathology concerned or the duration of the treatment sought.
  • the recombinant adenoviruses according to the invention are formulated and administered in the form of doses between 10 * 4 and 10 ⁇ pfu / ml, and preferably 10 ⁇ to 10 * 0 pfu / ml.
  • the term pfu (“plaque fc> rming unit”) corresponds to the infectious power of a virus solution, and is determined by infection of an appropriate cell culture, then measurement, generally after 48 hours, of the number of plaques of infected cells .
  • Another subject of the invention relates to any mammalian cell infected with one or more defective recombinant adenoviruses as described above. More particularly, the invention relates to any population of human cells infected with these adenoviruses. It can in particular be endothelial cells, smooth muscle cells, neuronal cells, tumor cells, etc.
  • the cells according to the invention can come from primary cultures. These can be removed by any technique known to those skilled in the art, then cultured under conditions allowing their proliferation. As regards more particularly fibroblasts, these can be easily obtained from biopsies, for example according to the technique described by Ham [Methods Cell.Biol. 21a (1980) 255]. These cells can be used directly for infection by adenoviruses, or stored, for example by freezing, for the establishment of autologous libraries, for later use. The cells according to the invention can also be secondary cultures, obtained for example from pre-established banks.
  • the cultured cells are then infected with recombinant adenoviruses, to give them the capacity to produce NO synthase.
  • the infection is carried out in vitro according to techniques known to those skilled in the art. In particular, according to the type of cells used and the number of copies of virus per cell desired, a person skilled in the art can adapt the multiplicity of infection. It is understood that these steps must be carried out under conditions of appropriate sterility when the cells are intended for administration in vivo.
  • the doses of recombinant adenovirus used for the infection of the cells can be adapted by a person skilled in the art according to the aim sought.
  • the conditions described above for administration in vivo can be applied to infection in vitro.
  • Another subject of the invention relates to an implant comprising mammalian cells infected with one or more defective recombinant adenoviruses as described above, and an extracellular matrix.
  • the implants according to the invention comprise 10 * ⁇ to 10- ⁇ O cells. More preferably, they include 10 ° ⁇ to 10 * 3.
  • the extracellular matrix comprises a gelling compound and optionally a support allowing the anchoring of the cells.
  • gelling agents can be used for the preparation of the implants according to the invention.
  • the gelling agents are used for the inclusion of cells in a matrix having the constitution of a gel, and to promote the anchoring of the cells on the support, if necessary.
  • Different cell adhesion agents can therefore be used as gelling agents, such as in particular collagen, gelatin, glycosaminoglycans, fibronectin, lectins, agarose, etc.
  • compositions according to the invention advantageously comprise a support allowing the anchoring of the cells.
  • anchoring designates any form of biological and / or chemical and / or physical interaction resulting in the adhesion and / or fixing of the cells on the support.
  • the cells can either cover the support used, or penetrate inside this support, or both. It is preferred to use within the framework of the invention a solid, non-toxic and / or biocompatible support. In particular, it is possible to use polytetrafluoroethylene (PTFE) fibers or a support of biological origin such as for example a venous graft.
  • PTFE polytetrafluoroethylene
  • the implants according to the invention can be implanted at different sites in the body.
  • the implantation can be carried out in the peritoneal cavity, in the subcutaneous tissue (suprapubic region, iliac or inguinal fossa, etc.), in an organ, a muscle, a tumor, the central nervous system , or under a mucous membrane.
  • the implants according to the invention are particularly advantageous in that they make it possible to control the release of the therapeutic product in the organism: This is first of all determined by the multiplicity of infection and by the number of cells implanted . Then, the release can be controlled either by the withdrawal of the implant, which definitively stops the treatment, or by the use of regulable expression systems, making it possible to induce or repress the expression of the therapeutic genes.
  • an adenovirus according to the invention with at least one second adenovirus comprising a gene coding for a superoxide dismutase or alternatively to implement an adenovirus according to the invention comprising in addition the gene coding for NO synthase, a gene encoding a superoxide dismutase.
  • the adenovirus and the pharmaceutical composition according to the present invention constitute particularly advantageous means for the treatment of post-angioplastic restenosis.
  • Figure 1 Representation of the pXLCMV-hum NOS vector
  • Figure 3 Immunodetection of human neuronal NOS on CMLV transfected with the vector pXLRSV-humNOSn.
  • Figure 4 Validation of the vector pXLRSV-humNOSn on CMLV (demonstration of NOS activity by measuring the conversion of arginine to citrulline).
  • the pBR322, pUC and phage plasmids of the M13 series are of commercial origin (Bethesda Research Laboratories).
  • the DNA fragments can be separated according to their size by electrophoresis in agarose or acrylamide gels, extracted with phenol or with a phenol / chloroform mixture, precipitated with ethanol and then incubated in the presence of the DNA ligase from phage T4 (Biolabs) according to the supplier's recommendations.
  • the filling of the protruding 5 ′ ends can be carried out by the Klenow fragment of DNA Polymerase I of E. coli (Biolabs) according to the supplier's specifications.
  • the destruction of the protruding 3 ′ ends is carried out in the presence of the DNA polymerase of phage T4 (Biolabs) used according to the manufacturer's recommendations.
  • the destruction of the protruding 5 ′ ends is carried out by gentle treatment with nuclease SI.
  • Verification of the nucleotide sequences can be carried out by the method developed by Sanger et al. [Proc. Natl. Acad. Sci. USA, 74 (1977) 5463-5477] using the kit distributed by Amersham.
  • Example 1 Construction of the PXLCMV-humNOS vector carrying the gene coding for NO synthase under the control of the cytomegalovirus early promoter (FIG. 1)
  • This example describes the construction of a vector containing the cDNA encoding human endothelial NO synthase, under the control of a promoter constituted by the early cytomegalovirus (CMV) promoter, as well as a region of the adenovirus Ad5 necessary for homologous recombination.
  • CMV early cytomegalovirus
  • the Cla I-Sal I fragment of the resulting plasmid contains the cDNA of human endothelial NO synthase. This fragment was inserted, between the Cla I and Sal I sites, in the plasmid PXL2375 (PCT / FR94 / 00422) which comprises the sequences of the early cytomegalovirus promoter (CMV) and the Ad5 regions allowing homologous recombination.
  • the plasmid obtained was designated PXLCMV-humNOS.
  • Example 2 Construction of the vector pXLRSV-humNOSn carrying the human neuronal NO synthase (type I) under the control of the LTR-RSV promoter (FIG. 2):
  • This example describes the construction of a vector containing the cDNA encoding human neuronal NO synthase, under the control of a promoter constituted by the Rous sarcoma virus LTR (LTR-RSV), as well as a region of Ad5 adenovirus necessary for homologous recombination.
  • a promoter constituted by the Rous sarcoma virus LTR (LTR-RSV)
  • LTR-RSV Rous sarcoma virus LTR
  • the Cla I-Sal I fragment of the resulting plasmid was inserted between the Cla I and Sal I sites of the plasmid pXL-RSV-LPL (FR 94 06758) which comprises the sequences of the LTR-RSV promoter and the Ad5 regions allowing homologous recombination .
  • the plasmid obtained was designated pXLRSV-humNOSn.
  • the activity of the vectors containing the NO synthase cDNA is monitored in in vitro models.
  • the cells are transfected with the vectors containing the different isoforms of NO synthase (cf. example 1,2).
  • the determination of the NO synthase activity of the transfected cells makes it possible to compare the activity of the NO synthases as well as the effectiveness of the promoters used (eg: RSV-LTR, CMV).
  • the amount of N ⁇ 2 "/ N ⁇ 3-, NO oxidation products is determined in the culture supernatant by the Griess method or if necessary by more sensitive fluorometric methods [Misko et al., Analytical Biochemistry 214, 11-16 (1993)] Furthermore, the intracellular NO synthase activity can be directly quantified by measuring the conversion of arginine to citrulline [Nakane et al., FEBS Letters, 3J £, 175-180, (1993 The activity of NO synthases is sensitive to the addition of N-monomethyl-L-arginine Conversely, the increase in intracellular calcium is associated with stimulation of the activity of neuronal and endothelial NO synthase.
  • Stable clones expressing NO synthases are selected from the CHO cell lines.
  • Transient transfections are also performed on other cellular models such as rat and rabbit vascular smooth muscle cells.
  • the construction pXLRSV-humNOSn (cf. example 2) was thus validated in vitro on primary culture of rabbit smooth muscle cells. Briefly, as shown in FIG. 3, the presence of NOS was checked by immunofluorescence using antibodies specific for neuronal NOS (anti-NOS B220-1, Interchim). In parallel, the NO synthase activity was measured by the method of converting arginine to citrulline (cf. supra). Thus, the NOS activity reflected by the presence of tritiated citrulline is demonstrated in the smooth muscle cells of rabbits transfected with the plasmid pXLRSV-humNOSn. This NOS activity is not found in cells transfected with the plasmid pXLRSV-humNOSn.
  • the plasmid described in Example 1 is linearized and cotransfected for homologous recombination with the adenoviral vector deficient in helper cells (line 293) providing in trans the functions encoded by the El (ElA and E11B) regions of adenovirus.
  • the adenovirus Ad-CMV-humNOS was obtained by homologous in vivo recombination between the mutant adenovirus Ad-dll324 [Thimmappaya et al., Cell 21, 543, (1982)] and the plasmid pXL-CMV humNOS, according to the following protocol: the linearized plasmid pXL-CMV humNOS and the adenovirus Ad-dll324, linearized by the enzyme ClaI, were co-transfected in line 293 in the presence of calcium phosphate, to allow homologous recombination.
  • the recombinant adenovirus Ad-RSV-NOSn containing a sequence coding for a human neuronal NO synthase was constructed in a similar manner, the plasmid pXLRSV-humNOSn having been linearized by the enzyme Fsp I.
  • the recombinant adenoviruses thus generated were selected by purification on plate. After isolation, the DNA of the recombinant adenovirus was amplified in the cell line 293, which leads to a culture supernatant containing the unpurified recombinant defective adenovirus having a titer of approximately 10 0 pfu / ml.
  • the viral particles are then purified by centrifugation on a cesium chloride gradient according to known techniques (see in particular Graham et al., Virology 52, 456, 1973).
  • the Ad-CMV-humNOS and Ad-RSV-humNOSn adenoviruses can be stored at -80 ° C in 20% glycerol.
  • Example 5 In vitro validation of the Ad-CMV.NOS recombinant adenovirus containing a sequence containing for NO synthase
  • the vascular smooth muscle cells are previously infected with the adenovirus [Lee et al., Circulation Research 72, 797-807, (1993)].
  • the amount of NO generated is then measured as well as the effect of the production of NO on cell proliferation by the techniques described in Example 3.
  • Cell proliferation is determined by measurement of incorporation of BrdU into DNA (Cell Proliferation Assay RPN210, Amersham).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Virology (AREA)
  • Biophysics (AREA)
  • Cardiology (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

La présente invention concerne un adénovirus recombinant comportant un gène codant pour une NO synthase, son utilisation pour le traitement de la resténose et les compositions pharmaceutiques correspondantes.

Description

ADENOVIRUS COMPORTANT UN GENE CODANT POUR UNE NO
SYNTHASE La présente invention concerne un adénovirus recombinant comportant un gène codant pour une NO synthase. Elle concerne également des compositions pharmaceutiques permettant l'administration locale et efficace de ces virus recombinants et plus particulièrement leur utilisation pour le traitement de la resténose.
Les dyslipoprotéinémies sont des désordres du métabolisme des lipoprotéines responsables du transport, dans le sang et les fluides périphériques, de lipides comme le cholestérol et les triglycérides. Elles conduisent à des pathologies importantes, liées respectivement à l'hypercholestérolémie ou l'hypertriglycéridémie, telles que notamment l'athérosclérose.
L'athérosclérose est la cause principale des infarctus du myocarde et est responsable de près de la moitié du taux de mortalité dans les pays développés. Physiologiquement, elle se traduit principalement par la formation, au niveau de la paroi des grosses artères, de plaques constituées de cholestérol, lipoprotéines, cellules spumeuses et ou tissus fibreux. Vraisemblablement, ces plaques arthérosclérotiques sont la conséquence d'une réponse inflammatoire excessive à une lésion chronique au niveau de l'endothélium des parois artérielles. Ce type de plaque athéromateuse est très nettement en relief sur la paroi, ce qui lui confère un caractère sténosant responsable des occlusions vasculaires par athérome, thrombose ou embolie qui surviennent chez les patients les plus atteints.
La technique d'angioplastie est la thérapie la plus couramment mise en oeuvre pour rétablir la circulation sanguine à travers l'artère ainsi obstruée. Toutefois, dans environ 40% des cas, cette technique échoue du fait de resténose, consécutive à la blessure mécanique de la paroi artérielle. Cette seconde pathologie est liée principalement à la migration et la prolifération de cellules musculaires lisses vasculaires (CMLV) qui prennent place en l'absence de la protection et/ou du rétrocontrôle exercés par les cellules endothéliales de l'intima.
Un traitement proposé pour contrer cette prolifération des cellules CMLV, consiste à les supprimer par administration de substances chimiques ou protéiques adéquates. C'est ainsi que des dérivés de psolarènes sont incorporés dans les cellules prolifératives de manière à les sensibiliser à l'action de la lumière [March et al, Circulation, £7, 184-191, (1993)]. De même, certaines cytotoxines, constituées d'une protéine de fusion entre un fragment de toxine de plante ou bactérienne et un facteur de croissance, ont également été utilisées à ces fins [Pickering et al, J. Clin. Invest, 21, 724-729 (1993) ; Biro et al, Cire. Res., __, 640-645, (1992) ; Casscells et al, Proc.Natl.Acad.Sci.USA, ≤9_, 7159-7163, (1992)]. Toutefois, ces traitements ne donnent pas entière satisfaction en raison notamment de leur faible spécificité, leur efficacité moyenne et un délai d'action important.
La présente invention a précisément pour objet de proposer une nouvelle méthode, par thérapie génique, particulièrement efficace et sélective pour le traitement de la resténose post-angioplastique.
L'approche retenue dans le cadre de la présente invention, se distingue totalement de ce qui précède et consiste à intervenir au niveau de l'expression d'un des facteurs impliqués dans la prolifération des CMLV. Préférentiellement, elle vise à augmenter la teneur d'un facteur jouant un rôle d'agent bloquant à l'égard de cette prolifération.
Plus précisément, la présente invention vise à accroître la concentration en monoxyde d'azote, NO, au niveau de la paroi vasculaire, soumise à l'angioplastie, via l'expression de la NO synthase, enzyme catalysant la synthèse de NO à partir d'arginine. On peut admettre que les quantités de NO, produites à l'état physiologique par les cellules endothéliales, correspondent aux concentrations nécessaires à l'intégrité, i.e. au bon fonctionnement de la paroi vasculaire. La destruction mécanique de l'endothélium, consécutive à l'angioplastie, conduit donc à une baisse de la production de NO. Inversement, il est établi que la modulation pharmacologique des taux de NO est capable d'interférer avec la prolifération des CMLV observée lors de la resténose [McNamara et al., Biochem. Biophys. Res. Com., 19.2(1) , 291-296, (1993)] ont notamment montré que l'administration de L-arginine, précurseur de NO, réduit l'hyperplasie intimale dans un modèle de sténose post-angioplastie chez le lapin. L'expression de NO synthase, selon la présente invention, directement au niveau de la paroi endommagée, permet avantageusement de rétablir rapidement des concentrations suffisantes en NO, d'améliorer ainsi le remodelage vasculaire via la vasolidatation EDRF dépendante et de bénéficier en outre des effets associés intéressants comme une inhibition de la prolifération des CMLV et une réduction de l'agrégation plaquettaire. Par ailleurs, NO est également impliqué dans les mécanismes d'angiogénèse (Ziche et al., J.Clin.Invest. 94, 2036-2044 (1994). Cette activité angiogénique est reflétée in vitro par la capacité de donneurs de NO tels que le SNP (sodium nitroprusside) à stimuler la croissance et la migration des cellules endothéliales (Ziche et al., J.Chin. Invest. 94, 2036-2044 (1994). NO pourrait donc agir comme un facteur autocrine de la néovascularisation particulièrement important dans les situations d'ischémie notamment myocardique.
La présente invention se rapporte principalement à un adénovirus recombinant comportant au moins un gène codant, en totalité ou non, pour l'intégralité ou une partie active d'une enzyme catalysant la synthèse de l'oxyde d'azote.
Les avantages de la présente invention résident notamment dans la forte capacité des adénovirus de l'invention à infecter les cellules musculaires lisses vasculaires en prolifération. Ceci permet d'utiliser des quantités relativement faibles de principe actif (adénovirus recombinant), et permet également une action efficace très rapide sur les sites à traiter. Les adénovirus de l'invention sont également capables d'exprimer à très hauts niveaux les gènes introduits, ce qui leur confère une action thérapeutique très efficace. En raison de leur caractère épisomal, les adénovirus de l'invention ont une persistance limitée dans les cellules prolifératives et donc un effet transitoire parfaitement adapté à l'effet thérapeutique recherché. Le monoxyde d'azote est connu pour intervenir au niveau de l'activité biologique de EDRF (endothelium-derived relaxing factor). EDRF joue un rôle important au niveau de la régulation notamment du flux sanguin en inhibant les contractions des muscles mous et l'agrégation plaquettaire [Radomski et al., Lancet 2, 1057-1058 (1987)]. Il faut noter que NO est également présent dans le plasma sous la forme de groupements S-mtrosothiols liés à des protéines telles que l'albumine. Les S-nitroso-protéines ainsi générées, plus stables que NO, sont responsables, du moins partiellement, de l'activité EDRF. Outre leurs propriétés vasodilatatrices, les S-nitroso-protéines sont également de puissants agents antiagrégants plaquettaires [Simon et al. Arteriosclerosis and Thrombosis, __, 791-799 (1993)]. Dans le cas des maladies cardiovasculaires, une production altérée de EDRF est associée à la pathogénicité de l'arthérOSclérose et de l'hypertension pulmonaire et systémique. Le monoxyde d'azote est également reconnu comme fonctionnant, au niveau du système nerveux, à titre de neurotransmetteur et comme participant, au niveau du système immunitaire, à l'activité cytotoxique des macrophages. Plus récemment, le monoxyde d'azote a été décrit comme un agent capable d'agir directement sur la prolifération des CMLV puisqu'un vitro, différents composés, donneurs de NO, inhibent la mitogénèse des CMLV en culture [Garg et al., J. Clin.Invest, __, 1774-1777, (1989)].
Les enzymes responsables de la production en monoxyde d'azote dans chacun de ces systèmes, désignées ci-après NO synthases sont classiquement réparties en trois catégories dites isoforme I, isoforme π et isoforme ni.
- La NO synthase dite isoforme I, est exprimée de manière continue et dépendante du calcium, au niveau des cellules du cerveau. Cette NO synthase neuronale est constitutive. Elle a récemment été clonée chez l'homme [Nakane M., Schmidt H.H, Pollock J.S., Fôrstmann U., et Murad F ; Lett. ___ (2) 175-180 (1993)].
L'isoforme II est exprimée dans les macrophages murins et induite par le TNF ou l'IL-1. La particularité des NOS de type inductible est principalement leur capacité à produire de fortes concentrations de NO en réponse à certaines cytokines. Dans le cadre de la présente invention, on peut parfaitement envisager leur expression sous contrôle d'un promoteur exogène, viral ou non, ne contenant pas d'élément de réponse aux cytokines. Le contrôle de la production en monoxyde d'azote est, dans ce cas, assuré par un promoteur présent dans l'adénovirus. Deux NO synthases humaines inductibles ont notamment été clonées [Geller et al. Proc. Natl. Acad. Sci. USA, 9JL 3491-3495 (1993) et Charles et al. Proc. Natl. Acad. Sci. USA, __, 11419-11423 (1993)].
- En ce qui concerne l'isoforme D3, elle est exprimée dans les cellules endothéliales et est calcium-calmudoline dépendante. Cette isoforme dite constitutive ou endothéliale, est normalement exprimée dans la paroi vasculaire et associée à l'activité EDRF. La NO synthase endothéliale humaine a été clonée [Janssens et al. J Bio. Chem. 267. 14519-14522 (1992) et Marsden et al. FEBS Lett. 3JZ, 287-293 (1992)]. De part ses propriétés d'EDRF, le monoxyde d'azote produit par cette NO synthase joue un rôle essentiel dans la relaxation des CMLV.
Selon la présente invention, tout gène codant pour l'intégralité ou seulement une partie active d'une NO synthase ou un de ses dérivés et préférentiellement codant pour l'une de ces trois isoformes de NO synthases peut être incorporé dans un adénovirus en vue de son expression in vivo. Par dérivé de NO synthase, on entend désigner tout polypeptide obtenu par modification et conservant une activité biologique. Par modification, on doit entendre toute mutation, substitution, délétion, addition ou modification de nature génétique et/ou chimique.
La NO synthase, ou son dérivé, produit dans le cadre de la présente invention peut être une NO synthase humaine ou une NO synthase aiiimale. π peut en particulier s'agir d'une NO synthase bovine.
La séquence d'ADN codant pour la NO synthase ou un de ses dérivés, utilisée dans le cadre de la présente invention peut être un ADNc, un ADN génomique
(ADNg), ou une construction hybride consistant par exemple en un ADNc dans lequel seraient insérés un ou plusieurs introns. Il peut également s'agir de séquences synthétiques ou semisynthétiques.
De manière particulièrement avantageuse, on utilise un ADNc ou un ADNg.
Selon un mode préféré de l'invention, il s'agit une séquence d'ADNc codant pour une NO synthase humaine.
Pour la construction des adénovirus selon l'invention, différents sérotypes peuvent être utilisés. Il existe en effet de nombreux sérotypes d'adénovirus, dont la structure et les propriétés varient quelque peu. Parmi ces sérotypes, on préfère cependant utiliser dans le cadre de la présente invention les adénovirus humains de type 2 ou 5 (Ad 2 ou Ad 5) ou les adénovirus d'origine animale (voir demande FR 93 05954). Parmi les adénovirus d'origine animale utilisables dans le cadre de la présente invention on peut citer les adénovirus d'origine canine, bovine, murine, [exemple : Mavl, Beard et al., Virology Z. 81» (1990)], ovine, porcine, aviaire ou encore simienne (exemple : SAV). De préférence, l'adénovirus d'origine animale est un adénovirus canin, plus préférentiellement un adénovirus CAV2 [souche manhattan ou A26/61 (ATCC VR-800) par exemple]. De préférence, on utilise dans le cadre de l'invention des adénovirus d'origine humaine ou canine ou mixte.
Comme indiqué ci-avant, les adénovirus selon l'invention sont défectifs, c'est-à-dire qu'ils sont incapables de se répliquer de façon autonome dans la cellule cible. Généralement, le génome des adénovirus défectifs utilisés dans le cadre de la présente invention est donc dépourvu au moins des séquences nécessaires à la réplication dudit virus dans la cellule infectée. Ces régions peuvent être soit éliminées (en tout ou en partie), soit rendues non-fonctionnelles, soit substituées par d'autres séquences et notamment par le gène suicide. Préférentiellement, l'adénovirus défectif conserve néanmoins les séquences de son génome qui sont nécessaires à l'encapsidation des particules virales.
Préférentiellement, les adénovirus défectifs de l'invention comprennent les ΓTR, une séquence permettant l'encapsidation et le gène codant pour une enzyme NO synthase. Encore plus préférentiellement, dans le génome des adénovirus de l'invention, le gène El et au moins l'un des gènes E2, E4, L1-L5 sont non fonctionnels. Le gène viral considéré peut être rendu non fonctionnel par toute technique connue de l'homme du métier, et notamment par suppression totale, substitution, délétion partielle, ou addition d'une ou plusieurs bases dans le ou les gènes considérés. De telles modifications peuvent être obtenues in vitro (sur de l'ADN isolé) ou in situ, par exemple, au moyens des techniques du génie génétique, ou encore par traitement au moyen d'agents mutagènes.
Les adénovirus recombinants défectifs selon l'invention peuvent être préparés par toute technique connue de l'homme du métier [Levrero et al., Gène, 101. 195, (1991), EP 185 573; Graham, EMBO J. 3_, 2917, (1984)]. En particulier, ils peuvent être préparés par recombinaison homologue entre un adénovirus et un plasmide portant entre autre le gène codant pour la NO synthase. La recombinaison homologue se produit après co-transfection desdits adénovirus et plasmide dans une lignée cellulaire appropriée. La lignée cellulaire utilisée doit de préférence (i) être transformable par lesdits éléments, et (ii), comporter les séquences capables de complémenter la partie du génome de l'adénovirus défectif , de préférence sous forme intégrée pour éviter les risques de recombinaison. A titre d'exemple de lignée, on peut mentionner la lignée de rein embryonnaire humain 293 [Graham et al., J. Gen. Virol. __, 59, (1977)] qui contient notamment, intégrée dans son génome, la partie gauche du génome d'un adénovirus Ad5 (12 %). Des stratégies de construction de vecteurs dérivés des adénovirus ont également été décrites dans les demandes n° FR 93 05954 et FR 93 08596. Ensuite, les adénovirus qui se sont multipliés sont récupérés et purifiés selon les techniques classiques de biologie moléculaire, comme illustré dans les exemples.
Avantageusement, dans les adénovirus de l'invention, le gène codant pour une enzyme NO synthase est placé sous le contrôle d'un promoteur permettant son expression dans les cellules infectées. Il peut s'agir du propre promoteur du gène, d'un promoteur hétérologue ou d'un promoteur synthétique. Notamment, il peut s'agir de promoteurs issus de gènes eucaryotes ou viraux. Par exemple, il peut s'agir de séquences promotrices issues du génome de la cellule que l'on désire infecter. De même, il peut s'agir de séquences promotrices issues du génome d'un virus, y compris du virus utilisé. A cet égard, on peut citer par exemple les promoteurs E1A, MLP, CMV, LTR-RSV, etc. En outre, ces séquences d'expression peuvent être modifiées par addition de séquences d'activation, de régulation, ou permettant une expression tissu-spécifique. Il peut en effet être particulièrement intéressant d'utiliser des signaux d'expression actifs spécifiquement ou majoritairement dans les cellules musculaires lisses vasculaires de préférence en division, de manière à ce que le gène thérapeutique ne soit exprimé et ne produise son effet que lorsque le virus a effectivement infecté une cellule musculaire lisse vasculaire.
Dans un mode particulier de réalisation de l'invention, on utilise un adénovirus recombinant défectif comprenant un gène codant pour une NO synthase sous le contrôle d'un promoteur viral, choisi de préférence parmi le LTR-RSV ou le promoteur précoce du CMV. La présente invention vise l'utilisation des adénovirus selon l'invention à des fins thérapeutiques et plus particulièrement leur application pour le traitement de la resténose. Cette application peut notamment être étendue aux situations pathologiques d'ischémie où les propriétés de NO comme relais angiogénique peuvent être favorablement exploitées. Leur utilisation est également envisageable pour le traitement de pathologies liées au système nerveux central.
Un autre objet de la présente invention concerne donc une composition pharmaceutique comprenant au moins un adénovirus recombinant défectif selon l'invention associé le cas échéant à un excipient convenable.
Les doses d'adénovirus recombinant défectif utilisées peuvent être adaptées en fonction de différents paramètres, et notamment en fonction du mode d'administration utilisé, de la pathologie concernée ou encore de la durée du traitement recherchée. D'une manière générale, les adénovirus recombinants selon l'invention sont formulés et administrés sous forme de doses comprises entre 10*4 et 10^ pfu/ml, et de préférence 10^ à 10*0 pfu/ml. Le terme pfu ("plaque fc>rming unit") correspond au pouvoir infectieux d'une solution de virus, et est déterminé par infection d'une culture cellulaire appropriée, puis mesure, généralement après 48 heures, du nombre de plages de cellules infectées. Les techniques de détermination du titre pfu d'une solution virale sont bien documentées dans la littérature. Un autre objet de l'invention concerne toute cellule de mammifère infectée par un ou plusieurs adénovirus recombuiants défectifs tels que décrits ci-dessus. Plus particulièrement, l'invention concerne toute population de cellules humaines infectée par ces adénovirus. Il peut s'agir en particulier de cellules endothéliales, cellules musculaires lisses, cellules neuronales, cellules tumorales, etc.
Les cellules selon l'invention peuvent être issues de cultures primaires. Celles- ci peuvent être prélevées par toute technique connue de l'homme du métier, puis mises en culture dans des conditions permettant leur prolifération. S'agissant plus particulièrement de fibroblastes, ceux-ci peuvent être aisément obtenus à partir de biopsies, par exemple selon la technique décrite par Ham [Methods Cell.Biol. 21a (1980) 255]. Ces cellules peuvent être utilisées directement pour l'infection par les adénovirus, ou conservées, par exemple par congélation, pour l'établissement de banques autologues, en vue d'une utilisation ultérieure. Les cellules selon l'invention peuvent également être des cultures secondaires, obtenues par exemple à partir de banques préétablies.
Les cellules en culture sont ensuite infectées par des adénovirus recombinants, pour leur conférer la capacité de produire de la NO synthase. L'infection est réalisée in vitro selon des techniques connues de l'homme du métier. En particulier, selon le type de cellules utilisé et le nombre de copies de virus par cellule désiré, l'homme du métier peut adapter la multiplicité d'infection. Il est bien entendu que ces étapes doivent être effectuées dans des conditions de stérilité appropriées lorsque les cellules sont destinées à une administration in vivo. Les doses d'adénovirus recombinant utilisées pour l'infection des cellules peuvent être adaptées par l'homme du métier selon le but recherché. Les conditions décrites ci-avant pour l'administration in vivo peuvent être appliquées à l'infection in vitro.
Un autre objet de l'invention concerne un implant comprenant des cellules mammifère infectées par un ou plusieurs adénovirus recombinants défectifs telles que décrites ci-dessus, et une matrice extracellulaire. Préférentiellement, les implants selon l'invention comprennent 10*^ à ÎO-^O cellules. Plus préférentiellement, ils en comprennent 10°^ à 10*3.
Plus particulièrement, dans les implants de l'invention, la matrice extracellulaire comprend un composé gélifiant et éventuellement un support permettant l'ancrage des cellules. Pour la préparation des implants selon l'invention, différents types de gélifiants peuvent être employés. Les gélifiants sont utilisés pour l'inclusion des cellules dans une matrice ayant la constitution d'un gel, et pour favoriser l'ancrage des cellules sur le support, le cas échéant. Différents agents d'adhésion cellulaire peuvent donc être utilisés comme gélifiants, tels que notamment le collagène, la gélatine, les glycosaminoglycans, la fibronectine, les lectines, l'agarose etc.
Comme indiqué ci-avant, les compositions selon l'invention comprennent avantageusement un support permettant l'ancrage des cellules. Le terme ancrage désigne toute forme d'interaction biologique et/ou chimique et/ou physique entraînant l'adhésion et/ou la fixation des cellules sur le support. Par ailleurs, les cellules peuvent soit recouvrir le support utilisé, soit pénétrer à l'intérieur de ce support, soit les deux. On préfère utiliser dans le cadre de l'invention un support solide, non toxique et/ou bio-compatible. En particulier, on peut utiliser des fibres de polytétrafluoroéthylène (PTFE) ou un support d'origine biologique comme par exemple un greffon veineux. Les implants selon l'invention peuvent être implantés en différents sites de l'organisme. En particulier, l'implantation peut être effectuée au niveau de la cavité péritonéale, dans le tissu sous-cutané (région sus-pubienne, fosses iliaques ou inguinales, etc), dans un organe, un muscle, une tumeur, le système nerveux central, ou encore sous une muqueuse. Les implants selon l'invention sont particulièrement avantageux en ce sens qu'ils permettent de contrôler la libération du produit thérapeutique dans l'organisme : Celle-ci est tout d'abord déterminée par la multiplicité d'infection et par le nombre de cellules implantées. Ensuite, la libération peut être contrôlée soit par le retrait de l'implant, ce qui arrête définitivement le traitement, soit par l'utilisation de systèmes d'expression régulable, permettant d'induire ou de réprimer l'expression des gènes thérapeutiques.
Par ailleurs, il a été noté que les propriétés biologiques de NO sont étroitement contrôlées par des réactions d'oxydation. En particulier, la modification de NO" par l'ion superoxyde aboutit à la formation d'ion peroxynitrite ONOO" et par conséquent à la perte de l'activité EDRF. Selon White et al. [Proc.Natl.Acad.Sci.USA, 9_1, 1044-1048, (1994)], ce processus d'oxydation est impliqué dans le développement de l'athérosclérose. Deux mécanismes complémentaires sont en fait mis en jeu: la réduction de l'activité guanylate cyclase des CMLV inhérente à l'inactivation de NO et l'augmentation de l'oxydation des lipoprotéines résultant de l'apparition de peroxynitrite. L'association d'un traitement anti-oxydant à l'augmentation de l'activité NO synthase peut par conséquent être souhaitable afin de conserver le bénéfice thérapeutique lié à la production locale de NO. Dans cette perspective, l'administration conjointe de Superoxyde dismutase SOD [White et al., Proc.Natl.Acad.Sci.USA, 9_1, 1044-1048, (1994)] permet de garantir l'environnement vasculaire de la production d'ion peroxynitrite. On peut parfaitement envisager de procéder à une administration conjointe d'un adénovirus selon l'invention avec au moins un second adénovirus comportant un gène codant pour une superoxyde dismutase ou encore de mettre en oeuvre un adénovirus selon l'invention comportant outre le gène codant pour une NO synthase, un gène codant pour une superoxyde dismutase.
L'adénovirus et la composition pharmaceutique, selon la présente invention, constituent des moyens particulièrement avantageux pour le traitement de la resténose post-angioplastique.
La présente invention sera plus complètement décrite à l'aide des exemples qui suivent, qui doivent être considérés comme illustratifs et non limitatifs.
Légende des figures
Figure 1 : Représentation du vecteur pXLCMV-hum NOS
Figure 2 : Représentation du vecteur pXLRS V-humNOS
Figure 3 : Immunodétection de la NOS neuronale humaine sur CMLV transfectées par le vecteur pXLRSV-humNOSn.
Figure 4 : Validation du vecteur pXLRSV-humNOSn sur CMLV (mise en évidence de l'activité NOS par mesure de la conversion d'arginine en citrulline).
Tβri-mignβs générales de biologie moléculaire
Les méthodes classiquement utilisées en biologie moléculaire telles que les extractions préparatives d'ADN plasmidique, la centrifugation d'ADN plasmidique en gradient de chlorure de césium, rélectrophorèse sur gels d'agarose ou d'acrylamide, la purification de fragments d'ADN par électroélution, les extractions de protéines au phénol ou au phénol-chloroforme, la précipitation d'ADN en milieu salin par de l'éthanol ou de l'isopropanol, la transformation dans Escherichia coli, etc ... sont bien connues de l'homme de métier et sont abondament décrites dans la littérature [Maniatis T. et al., "Molecular Cloning, a Laboratory Manual", Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., (1982); Ausubel F.M. et al. (eds), "Current Protocols in Molecular Biology", John Wiley & Sons, New York, (1987)].
Les plasmides de type pBR322, pUC et les phages de la série M13 sont d'origine commerciale (Bethesda Research Laboratories).
Pour les ligatures, les fragments d'ADN peuvent être séparés selon leur taille par électrophorèse en gels d'agarose ou d'acrylamide, extraits au phénol ou par un mélange phénol/chloroforme, précipités à l'éthanol puis incubés en présence de l'ADN ligase du phage T4 (Biolabs) selon les recommandations du fournisseur.
Le remplissage des extrémités 5' proéminentes peut être effectué par le fragment de Klenow de l'ADN Polymérase I d'E. coli (Biolabs) selon les spécifications du fournisseur. La destruction des extrémités 3' proéminentes est effectuée en présence de l'ADN Polymérase du phage T4 (Biolabs) utilisée selon les recommandations du fabricant. La destruction des extrémités 5' proéminentes est effectuée par un traitement ménagé par la nucléase SI.
La mutagénèse dirigée in vitro par oligodéoxynucléotides. synthétiques peut être effectuée selon la méthode développée par Taylor et al. [Nucleic Acids Res. 12 8749-8764, (1985)] en utilisant le kit distribué par Amersham.
L'amplification enzymatique de fragments d'ADN par la technique dite de
PCR [Eolymérase-catalyzed £hain Êeaction, Saiki R.K. et al., Science 22Û, 1350-
1354 (1985) ; Mullis K.B. et Faloona F.A., Meth. Enzym. I≤≥, 335-350, (1987)] peut être effectuée en utilisant un "DNA thermal cycler" (Perkin Elmer Cetus) selon les spécifications du fabricant.
La vérification des séquences nucléotidiques peut être effectuée par la méthode développée par Sanger et al. [Proc. Natl. Acad. Sci. USA, 74 (1977) 5463- 5467] en utilisant le kit distribué par Amersham. Exemple 1 : Construction du vecteur PXLCMV-humNOS portant le gène codant pour la NO synthase sous le contrôle du promoteur précoce du cytomégalovirus (figure 1)
Cet exemple décrit la construction d'un vecteur contenant l'ADNc codant pour la NO synthase endothéliale humaine, sous le contrôle d'un promoteur constitué par le promoteur précoce du cytomégalovirus (CMV), ainsi qu'une région de l'adénovirusAd5 nécessaire à la recombinaison homologue.
Le fragment EcoRI de l'ADNc de la NO synthase endothéliale humaine, décrit par Janssens et al. [J. Biol. Chem. ___, 14519-14522, (1992)] a été recloné dans pBluescript π SK + (STRATAGENE), dans l'orientation mettant les bases 5' de l'ADNc du côté du site Not I de pBluescript. Un site Sal I est créé par introduction de deux oligonucléotides appariés au niveau du site Not I.
Le fragment Cla I-Sal I du plasmide résultant contient l'ADNc de la NO synthase endothéliale humaine. Ce fragment a été inséré, entre les sites Cla I et Sal I, dans le plasmide PXL2375 (PCT/FR94/00422) qui comprend les séquences du promoteur précoce du cytomégalovirus (CMV) et les régions Ad5 permettant la recombinaison homologue. Le plasmide obtenu a été désigné PXLCMV-humNOS.
Exemple 2 : Construction du vecteur pXLRSV-humNOSn portant la NO synthase neuronale humaine (type I) sous le contrôle du promoteur LTR-RSV (figure 2) :
Cet exemple décrit la construction d'un vecteur contenant l'ADNc codant pour la NO synthase neuronale humaine, sous le contrôle d'un promoteur constitué par le LTR du virus de sarcome de Rous (LTR-RSV), ainsi qu'une région de l'adénovirus Ad5 nécessaire à la recombinaison homologue.
Le fragment EcoRI de l'ADNc de la NO synthase neuronale humaine, clone dans le vecteur pcDNAI (Nakane et al, FEBS 316 : 175-180, 1993), a été recloné dans le vecteur pIC-2OH dans l'orientation mettant l'extrémité 5' de l'ADNc de la NOS neuronale du côté du site Cla I (Marsh et al., Gène 32 : 481-485, 1984). Le fragment Cla I-Sal I du plasmide résultant a été inséré entre les sites Cla I et Sal I du plasmide pXL-RSV-LPL (FR 94 06758) qui comprend les séquences du promoteur LTR-RSV et les régions Ad5 permettant la recombinaison homologue. Le plasmide obtenu a été désigné pXLRSV-humNOSn. Exemple 3 : Contrôle de l'activité des vecteurs portant le gène codant pour une NO synthase sur modèles de culture cellulaire in vitro
L'activité des vecteurs contenant l'ADNc de NO synthase est contrôlée sur des modèles in vitro. Les cellules sont transfectées par les vecteurs contenant les différentes isoformes de NO synthase (cf. exemple 1,2). La détermination de l'activité NO synthase des cellules transfectées permet de comparer l'activité des NO synthases ainsi que l'efficacité des promoteurs utilisés (ex. : RSV-LTR, CMV). La quantité de Nθ2"/Nθ3-, produits d'oxydation de NO, est déterminée dans le surnageant de culture par la méthode de Griess ou si nécessaire par des méthodes fluorométriques plus sensibles [Misko et al., Analytical Biochemistry 214, 11-16, (1993)]. Par ailleurs, l'activité NO synthase intracellulaire peut être quantifiée de manière directe, par mesure de la conversion d'arginine en citrulline [Nakane et al., FEBS Letters, 3J£, 175-180, (1993)]. L'activité des NO synthases est sensible à l'addition de N-monométhyl-L-arginine. Inversement, l'augmentation du calcium intracellulaire est associée à une stimulation de l'activité de la NO synthase neuronale et endothéliale.
Différents modèles cellulaires sont développés. Des clones stables exprimant les NO synthases sont sélectionnés à partir des lignées cellulaires CHO. Des transfections transitoires sont aussi effectuées sur d'autres modèles cellulaires tels que les cellules musculaires lisses vasculaires de rat et de lapin.
La construction pXLRSV-humNOSn (cf .exemple 2) a ainsi été validée in vitro sur culture primaire de cellules musculaires lisses de lapin. Brièvement, ainsi que le montre la figure 3, la présence de la NOS a été contrôlée par immunofluorescence à l'aide d'anticorps spécifiques de la NOS neuronale (anti-NOS B220-1, Interchim). En parallèle, l'activité NO synthase a été mesurée par la méthode de conversion d'arginine en citrulline (cf. supra). Ainsi, l'activité NOS reflétée par la présence de citrulline tritiée est mise en évidence dans les cellules musculaires lisses de lapin transfectées par le plasmide pXLRSV-humNOSn. Cette activité NOS n'est pas retrouvée dans les cellules transfectées par le plasmide pXLRSV-humNOSn. Cette activité NOS n'est pas retrouvée dans les cellules transfectées par un plasmide témoin exprimant le gène de la b-galactosidase de E. Coli sous le contrôle du promoteur LTR-RSV (cf. figure 4). Par ailleurs, afin de vérifier la fonctionalité des vecteurs et compléter les données initiales de Garg et Hassid [J. Clin. Invest, __, 1774-1777, (1989)], l'effet de l'expression de la NO synthase est également mesurée sur la prolifération des cellules musculaires lisses vasculaires de lapin. Nous avons préalablement démontré dans notre modèle cellulaire de CMLV de lapin que les donneurs de NO tels que le SNP ou l'hydroxylamine réduisent la prolifération de CMLV de lapin incubées en présence de concentrations optimales de sérum de veau foetal. A forte concentration, l'effet des donneurs de NO est également associée à une mort cellulaire qui s'apparente à l'apoptose. Nous avons ainsi mis en évidence une fragmentation caractéristique de l'ADN en oligomères de 180 paires de bases.
Exemple 4 : Construction d'un adénovirus recombinant contenant une séquence codant pour une NO synthase
Le plasmide décrit dans l'exemple 1 est linéarisé et cotransfecté pour la recombinaison homologue avec le vecteur adénoviral déficient dans les cellules helper (lignée 293) apportant en trans les fonctions codées par les régions El (ElA et E11B) d'adénovirus.
Plus précisément, l'adénovirus Ad-CMV-humNOS a été obtenu par recombinaison homologue in vivo entre l'adénovirus mutant Ad-dll324 [Thimmappaya et al., Cell 21, 543, (1982)] et le plasmide pXL-CMV humNOS, selon le protocole suivant : le plasmide pXL-CMV humNOS linéarisé et l'adénovirus Ad-dll324, linéarisé par l'enzyme Clal, ont été co-transfectés dans la lignée 293 en présence de phosphate de calcium, pour permettre la recombinaison homologue. L'adénovirus recombinant Ad-RSV-NOSn contenant une séquence codant pour une NO synthase neuronale humaine a été construit de manière similaire, le plasmide pXLRSV-humNOSn ayant été linéarisé par l'enzyme Fsp I. Les adénovirus recombinants ainsi générés ont été sélectionnés par purification sur plaque. Après isolement, l'ADN de l'adénovirus recombinant a été amplifié dans la lignée cellulaire 293, ce qui conduit à un surnageant de culture contenant l'adénovirus défectif recombinant non purifié ayant un titre d'environ 10 0 pfu/ml. Les particules virales sont ensuite purifiées par centrifugation sur gradient de chlorure de césium selon les techniques connues (voir notamment Graham et al., Virology 52, 456, 1973). Les adénovirus Ad-CMV-humNOS et Ad-RSV-humNOSn peuvent être conservés à -80°C dans 20% de glycérol. Exemple 5 : Validation in vitro de l'adénovirus recombinant Ad-CMV.NOS contenant une séquence contenant pour une NO synthase
Les cellules musculaires lisses vasculaires sont préalablement infectées par l'adénovirus [Lee et al., Circulation Research 72, 797-807, (1993)]. La quantité de NO générée est alors mesurée ainsi que l'effet de la production de NO sur la prolifération cellulaire par les techniques décrites dans l'exemple 3. La prolifération cellulaire est déterminée par mesure d'incorporation de BrdU dans l'ADN (Cell Prolifération Assay RPN210, Amersham).

Claims

REVENDICATIONS
1. Adénovirus recombinant défectif comportant au moins un gène codant, en tout ou partie, pour l'intégralité ou une partie active d'une NO synthase ou l'un de ses dérivés .
2. Adénovirus selon la revendication 1 caractérisé en ce que la NO synthase est une NO synthase endothéliale.
3. Adénovirus selon la revendication 1 caractérisé en ce que la NO synthase est une NO synthase neuronale.
4. Adénovirus selon la revendication 1 caractérisé en ce que la NO synthase est une NO synthase inductible.
5. Adénovirus selon l'une des revendications 1 à 4 caractérisé en ce que le gène est une séquence d'ADNc.
6. Adénovirus selon l'une des revendications 1 à 4 caractérisé en ce que le gène est une séquence d'ADNg.
7. Adénovirus selon l'une des revendications 1 à 6 caractérisé en ce que la séquence d'ADN code pour une NO synthase bovine.
8. Adénovirus selon l'une des revendications 1 à 6 caractérisé en ce que la séquence d'ADN code pour une NO synthase humaine.
9. Adénovirus selon l'une des revendications précédentes caractérisé en ce que le gène est placé sous le contrôle d'un promoteur permettant son expression dans les cellules infectées.
10. Adénovirus selon la revendication 9 caractérisé en ce que le promoteur est choisi parmi les promoteurs viraux, de préférence le promoteur LTR-RSV et CMV.
11. Adénovirus selon l'une des revendications précédentes caractérisé en ce que l'adénovirus comprend outre le gène, les ITR et une séquence permettant l'encapsidation .
12. Adénovirus selon la revendication 11 caractérisé en ce que l'adénovirus comprend outre le gène, les ITR, une séquence permettant l'encapsidation et dans lequel le gène El et au moins l'un des gènes E2, E4, L1-L5 est non fonctionnel.
13. Adénovirus selon l'une des revendications précédentes caractérisé en ce que l'adénovirus est un adénovirus d'origine humaine, choisi de préférence parmi les sérotypes Ad2 et Ad5.
14. Adénovirus selon l'une des revendications 1 à 12 caractérisé en ce que l'adénovirus est un adénovirus d'origine animale, choisi de préférence parmi les adénovirus canins.
15. Utilisation d'un adénovirus selon l'une des revendications précédentes pour la préparation d'une composition pharmaceutique destinée au traitement de la resténose.
16. Composition pharmaceutique caractérisée en ce qu'elle comprend à titre de principe actif au moins un adénovirus tel que défini dans les revendications de 1 à 14 associé à un excipient convenable.
17. Composition pharmaceutique selon la revendication 16 caractérisée en ce qu'elle comprend entre 10 et 1014 pfu/ml, et de préférence 106 à 1010 pfu/ml adénovirus recombinants défectifs.
18. Cellule de mammifère infectée par un ou plusieurs adénovirus recombinants défectifs selon l'une des revendications 1 à 14.
19. Cellule selon la revendication 18 caractérisée en ce qu'il s'agit d'une cellule humaine.
20. Cellule selon la revendication 19 caractérisée en ce qu'il s'agit d'une cellule humaine de type endothéliale, neuronale, de muscles lisses ou tumorale.
21. Implant comprenant des cellules infectées selon les revendications 18 à 20 et une matrice extracellulaire.
22. Implant selon la revendication 21 caractérisé en ce que la matrice extracellulaire comprend un composé gélifiant choisi de préférence parmi le collagène, la gélatine, les glu∞saminoglycans, la fibronectine, l'agarose et les lectines.
23. Implant selon les revendications 21 ou 22 caractérisé en ce que la matrice extracellulaire comprend également un support permettant l'ancrage des cellules infectées.
24. Implant selon la revendication 23 caractérisé en ce que le support est constitué préférentiellement par des fibres de polytétrafluoroéthylène.
PCT/FR1995/000913 1994-07-12 1995-07-07 Adenovirus comportant un gene codant pour une no synthase WO1996001902A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX9700298A MX9700298A (es) 1994-07-12 1995-07-07 Adenovirus que comprende un gen que codifica para una no sintasa.
EP95925025A EP0770133A1 (fr) 1994-07-12 1995-07-07 Adenovirus comportant un gene codant pour une no synthase
JP8504161A JPH10502533A (ja) 1994-07-12 1995-07-07 Noシンターゼをコードする遺伝子を含むアデノウイルス
AU29306/95A AU691008B2 (en) 1994-07-12 1995-07-07 Adenovirus comprising a gene coding for an no synthase
NO970048A NO970048L (no) 1994-07-12 1997-01-07 Adénovirus omfattende et gen som koder for en NO-syntase
FI970114A FI970114A (fi) 1994-07-12 1997-01-10 NO-syntaasia koodaavan geenin käsittävä adenovirus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR94/08657 1994-07-12
FR9408657A FR2722507B1 (fr) 1994-07-12 1994-07-12 Adenovirus comportant un gene codant pour une no synthase

Publications (1)

Publication Number Publication Date
WO1996001902A1 true WO1996001902A1 (fr) 1996-01-25

Family

ID=9465319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1995/000913 WO1996001902A1 (fr) 1994-07-12 1995-07-07 Adenovirus comportant un gene codant pour une no synthase

Country Status (11)

Country Link
EP (1) EP0770133A1 (fr)
JP (1) JPH10502533A (fr)
AU (1) AU691008B2 (fr)
CA (1) CA2193263A1 (fr)
FI (1) FI970114A (fr)
FR (1) FR2722507B1 (fr)
IL (1) IL114565A0 (fr)
MX (1) MX9700298A (fr)
NO (1) NO970048L (fr)
WO (1) WO1996001902A1 (fr)
ZA (1) ZA955797B (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5833651A (en) * 1996-11-08 1998-11-10 Medtronic, Inc. Therapeutic intraluminal stents
WO1999041398A1 (fr) * 1998-02-11 1999-08-19 Genvec, Inc. Vecteurs, cellules et procedes de production de vecteurs de transfert de genes eucaryotes, viraux et deleteres
EP1020520A1 (fr) * 1999-01-15 2000-07-19 Introgene B.V. Prévention d'élimination immunologiques des cellules du corps mammifère, molécules PML mutantes utiles à cet effet
WO2000062605A1 (fr) * 1999-04-16 2000-10-26 Yale University Mutations enos utiles en therapie genique et pour le criblage d'agents therapeutiques
WO2000066725A1 (fr) * 1999-05-04 2000-11-09 Aventis Pharma S.A. Utilisation d'oligonucleotides antisens de no-synthase inductible dans la prevention et le traitement de l'ischemie cerebrale
FR2793142A1 (fr) * 1999-05-04 2000-11-10 Aventis Pharma Sa Utilisation d'oligonucleotides antisens de no-synthase inductible dans la prevention et le traitement de l'ischemie cerebrale
EP1067190A1 (fr) * 1999-07-09 2001-01-10 Introgene B.V. Thérapie génique pour l'amélioration et/ou induction de l'angiogénèse
US6206914B1 (en) 1998-04-30 2001-03-27 Medtronic, Inc. Implantable system with drug-eluting cells for on-demand local drug delivery
EP1586644A2 (fr) * 1999-08-09 2005-10-19 Universite Catholique De Louvain Medicament pour la prévention et/ou la traitement des cardiopathies ischémiques, des acrosyndromes, et le développement des tumeurs, et dans la cicatrisations des plaies

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994011506A1 (fr) * 1992-11-18 1994-05-26 Arch Development Corporation Transfert de genes au moyen d'un adenovirus au muscle lisse cardiaque et vasculaire
WO1994025073A1 (fr) * 1993-04-30 1994-11-10 Rhone-Poulenc Rorer S.A. Virus recombinants et leur utilisation en therapie genique
WO1994026914A1 (fr) * 1993-05-18 1994-11-24 Rhone-Poulenc Rorer S.A. Vecteurs adenoviraux d'origine animale et utilisation en therapie genique
WO1994028721A1 (fr) * 1993-06-11 1994-12-22 The Board Of Trustees Of The Leland Stanford Junior University Traitement des maladies vasculaires degeneratives par modulation de l'activite ou de la production d'oxyde nitrique endogene
WO1995010623A1 (fr) * 1993-10-13 1995-04-20 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Transfert selectif adenoviral de genes vers les cellules neointimales vasculaires

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281627A (en) * 1992-05-28 1994-01-25 Cornell Research Foundation, Inc. Substituted arginines and substituted homoarginines and use thereof
FR2707494B1 (fr) * 1993-07-02 1995-08-25 Roussel Uclaf Nouvelle utilisation de dérivés de la béta-naphtoquinone ainsi que de leurs sels.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994011506A1 (fr) * 1992-11-18 1994-05-26 Arch Development Corporation Transfert de genes au moyen d'un adenovirus au muscle lisse cardiaque et vasculaire
WO1994025073A1 (fr) * 1993-04-30 1994-11-10 Rhone-Poulenc Rorer S.A. Virus recombinants et leur utilisation en therapie genique
WO1994026914A1 (fr) * 1993-05-18 1994-11-24 Rhone-Poulenc Rorer S.A. Vecteurs adenoviraux d'origine animale et utilisation en therapie genique
WO1994028721A1 (fr) * 1993-06-11 1994-12-22 The Board Of Trustees Of The Leland Stanford Junior University Traitement des maladies vasculaires degeneratives par modulation de l'activite ou de la production d'oxyde nitrique endogene
WO1995010623A1 (fr) * 1993-10-13 1995-04-20 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Transfert selectif adenoviral de genes vers les cellules neointimales vasculaires

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
CHARLES, I.G. ET AL.: "Cloning, characterization, and expression of a cDNA encoding an inducible nitric oxide synthase from the human chondrocyte", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA., vol. 90, WASHINGTON US, pages 11419 - 11423 *
DANOS, O. ET AL.: "Réimplantation de cellules génétiquement modifiées dans des néo-organes vascularisés", MEDECINE SCIENCES, vol. 9, no. 2, pages 208 - 210 *
EPSTEIN, S.E. ET AL.: "The basis of molecular strategies for treating coronary restenosis after angioplasty", JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, vol. 23, no. 6, pages 1278 - 1788 *
EXPERIMENTAL BIOLOGY 94, vol. parts I & II, 24 April 1994 (1994-04-24) - 28 April 1994 (1994-04-28), ANAHEIM USA *
FELDMAN, L.J. ET AL.: "Site specificity of adenovirus-mediated gene transfer by hydrogel coated balloon. A histochemical and PCR analysis", JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, vol. 1A, no. 484a, pages 253A *
GELLER, D.A. ET AL.: "Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA., vol. 90, WASHINGTON US, pages 3491 - 3495 *
JANSSENS S.P. ET AL.: "Cloning and expression of a cDNA ancoding human endothelium-derived relaxing factor/Nitric oxide synthase", JOURNAL OF BIOLOGICAL CHEMISTRY. (MICROFILMS), vol. 267, no. 21, 25 July 1992 (1992-07-25), BALTIMORE, MD US, pages 14519 - 14522 *
LEMARCHAND, P. ET AL.: "In vivo gene transfer and expression in normal injured blood vessels using replication-deficient recombinant adenovirus vectors", CIRCULATION RESEARCH, vol. 72, no. 5, pages 1132 - 1138 *
MARSDEN, P. A. ET AL.: "Molecular cloning and characterization of human endothelial nitric oxide synthase", FEBS LETTERS., vol. 307, no. 3, AMSTERDAM NL, pages 287 - 293 *
MASAKI NAKANE, ET AL.: "Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle", FEBS LETTERS., vol. 316, no. 2, AMSTERDAM NL, pages 175 - 180 *
Meeting of the American Federation for Clinical Research, Baltimore ,USA du 29 Avril au 2 Mai 1994 *
MOULLIER, P. ET AL.: "Organoid neovascular structure : effects of various matrix and angiogenic factors", JOURNAL OF CELLULAR BIOCHEMISTRY, vol. suppl., no. 15f *
STEG, P. G. ET AL.: "Local delivery of adenovirus for percutaneous arterial gene transfer", CIRCULATION, vol. 88, no. 4p2, pages I-660 *
VON DER LEYEN H. ET AL.: "In vivo gene transfer to prevent neointima hyperplasia after vascular injury: effect of overexpression of constitutive nitric oxide synthase", FASEB JOURNAL FOR EXPERIMENTAL BIOLOGY, vol. 8, no. 4-5, BETHESDA, MD US, pages A802 *
VON DER LEYEN H. ET AL.: "Overexpression of constitutive, endothelial-type nitric oxide synthase as an in vivo gene transfer approach to prevent neointima formation after vascular injury", CLINICAL RESEARCH, vol. 42, no. 2, pages 180A *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5833651A (en) * 1996-11-08 1998-11-10 Medtronic, Inc. Therapeutic intraluminal stents
WO1999041398A1 (fr) * 1998-02-11 1999-08-19 Genvec, Inc. Vecteurs, cellules et procedes de production de vecteurs de transfert de genes eucaryotes, viraux et deleteres
US6391612B1 (en) 1998-02-11 2002-05-21 Genvec, Inc. Vectors, cells, and methods for the production of deleterious adenoviral, herpes viral and adeno-associated viral vectors
US6206914B1 (en) 1998-04-30 2001-03-27 Medtronic, Inc. Implantable system with drug-eluting cells for on-demand local drug delivery
EP1020520A1 (fr) * 1999-01-15 2000-07-19 Introgene B.V. Prévention d'élimination immunologiques des cellules du corps mammifère, molécules PML mutantes utiles à cet effet
US6900038B2 (en) 1999-04-16 2005-05-31 Yale University eNOS mutations useful for gene therapy and therapeutic screening
AU774010B2 (en) * 1999-04-16 2004-06-10 Yale University eNOS mutations useful for gene therapy and therapeutic screening
WO2000062605A1 (fr) * 1999-04-16 2000-10-26 Yale University Mutations enos utiles en therapie genique et pour le criblage d'agents therapeutiques
CN100357433C (zh) * 1999-04-16 2007-12-26 耶鲁大学 可用于基因治疗和治疗性筛选的eNOS突变
FR2793142A1 (fr) * 1999-05-04 2000-11-10 Aventis Pharma Sa Utilisation d'oligonucleotides antisens de no-synthase inductible dans la prevention et le traitement de l'ischemie cerebrale
WO2000066725A1 (fr) * 1999-05-04 2000-11-09 Aventis Pharma S.A. Utilisation d'oligonucleotides antisens de no-synthase inductible dans la prevention et le traitement de l'ischemie cerebrale
EP1067190A1 (fr) * 1999-07-09 2001-01-10 Introgene B.V. Thérapie génique pour l'amélioration et/ou induction de l'angiogénèse
WO2001003728A2 (fr) * 1999-07-09 2001-01-18 Crucell Holland B.V. Therapie genique destinee au renforcement et/ou a l'induction de l'angiogenese
WO2001003728A3 (fr) * 1999-07-09 2001-05-10 Introgene Bv Therapie genique destinee au renforcement et/ou a l'induction de l'angiogenese
EP1586644A2 (fr) * 1999-08-09 2005-10-19 Universite Catholique De Louvain Medicament pour la prévention et/ou la traitement des cardiopathies ischémiques, des acrosyndromes, et le développement des tumeurs, et dans la cicatrisations des plaies
EP1586644A3 (fr) * 1999-08-09 2008-06-25 Universite Catholique De Louvain Medicament pour la prévention et/ou la traitement des cardiopathies ischémiques, des acrosyndromes, et le développement des tumeurs, et dans la cicatrisations des plaies

Also Published As

Publication number Publication date
NO970048D0 (no) 1997-01-07
IL114565A0 (en) 1995-11-27
FR2722507A1 (fr) 1996-01-19
EP0770133A1 (fr) 1997-05-02
FI970114A0 (fi) 1997-01-10
FR2722507B1 (fr) 1996-08-14
CA2193263A1 (fr) 1996-01-25
AU691008B2 (en) 1998-05-07
FI970114A (fi) 1997-01-10
AU2930695A (en) 1996-02-09
ZA955797B (en) 1996-02-26
NO970048L (no) 1997-01-07
MX9700298A (es) 1997-05-31
JPH10502533A (ja) 1998-03-10

Similar Documents

Publication Publication Date Title
EP0730657B1 (fr) Composition pour la production de produits therapeutiques in vivo
EP0775213B1 (fr) Adenovirus comprenant un gene codant pour la glutathion peroxydase
FR2732357A1 (fr) Vecteurs viraux et utilisation pour le traitement des desordres hyperproliferatifs, notamment de la restenose
CA2184841C (fr) Adenovirus recombinants codant pour le facteur neurotrophique des cellules gliales (gdnf)
WO1995026409A1 (fr) ADENOVIRUS RECOMBINANTS CODANT POUR LES FACTEURS DE CROISSANCE DES FIBROBLASTES BASIQUES (bFGF)
FR2721943A1 (fr) Adenovirus comprenant un gene codant pour une superoxyde dismutase
CA2174232A1 (fr) Therapie genique de la restenose au moyen de vecteur adenoviral
WO1996001902A1 (fr) Adenovirus comportant un gene codant pour une no synthase
CA2154355A1 (fr) Virus recombinants et leur utilisation en therapie genique
FR2724846A1 (fr) Methode de traitement des cancers par regulation de l'activite des proteines ras
FR2731710A1 (fr) Virus recombinants exprimant la lecithine cholesterol acyltransferase et utilisations en therapie genique
EP0752003B1 (fr) Virus recombinants codant pour une activite glutamate decarboxylase (gad)
EP0763116B1 (fr) Virus recombinants, preparation et utilisation en therapie genique
EP1129204A1 (fr) Nouveau systeme de regulation de l'expression d'un transgene
FR2717823A1 (fr) Virus recombinants, préparation et utilisation en thérapie génique.
FR2726575A1 (fr) Virus recombinants, preparation et utilisation en therapie genique
FR2731229A1 (fr) Therapie genique de l'atherosclerose par production de hdl par les lignees monocytaires
FR2793142A1 (fr) Utilisation d'oligonucleotides antisens de no-synthase inductible dans la prevention et le traitement de l'ischemie cerebrale

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AM AU BB BG BR BY CA CN CZ EE FI GE HU IS JP KG KP KR KZ LK LR LT LV MD MG MN MX NO NZ PL RO RU SG SI SK TJ TT UA UG US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE MW SD SZ UG BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2193263

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 1997 765707

Country of ref document: US

Date of ref document: 19970107

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1995925025

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/1997/000298

Country of ref document: MX

Ref document number: 970114

Country of ref document: FI

WWP Wipo information: published in national office

Ref document number: 1995925025

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995925025

Country of ref document: EP