WO1995035643A1 - Four electrique de cuisson - Google Patents

Four electrique de cuisson Download PDF

Info

Publication number
WO1995035643A1
WO1995035643A1 PCT/FR1995/000793 FR9500793W WO9535643A1 WO 1995035643 A1 WO1995035643 A1 WO 1995035643A1 FR 9500793 W FR9500793 W FR 9500793W WO 9535643 A1 WO9535643 A1 WO 9535643A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
sensor
oven according
electric cooking
support
Prior art date
Application number
PCT/FR1995/000793
Other languages
English (en)
Inventor
Mustapha Arroubi
Michel Bernard Maxim Leforgais
Original Assignee
Moulinex S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moulinex S.A. filed Critical Moulinex S.A.
Priority to EP95923394A priority Critical patent/EP0945048A1/fr
Priority to JP8501745A priority patent/JPH10505661A/ja
Priority to KR1019960707351A priority patent/KR970704323A/ko
Publication of WO1995035643A1 publication Critical patent/WO1995035643A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0044Furnaces, ovens, kilns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0215Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • G01J5/045Sealings; Vacuum enclosures; Encapsulated packages; Wafer bonding structures; Getter arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/046Materials; Selection of thermal materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors

Definitions

  • the invention relates to electric cooking ovens comprising, in an envelope, a heating enclosure, the vault of which has a sighting opening behind which is mounted a device for measuring infrared radiation intended to determine the temperature of a body. introduced into the enclosure and comprising an infrared sensor mounted on a support and having a housing containing an element sensitive to infrared radiation located opposite a capture window.
  • the infrared radiation sensor makes it possible to measure without contact the temperature of the body, food or other, which is introduced into the enclosure.
  • the infrared radiation measurement device is disturbed in particular by the thermal drift due to significant variations in the ambient temperature of the enclosure and that prevailing between the envelope and the enclosure, but also by the radius.
  • parasitic infrared noise due to the heating of the various neighboring parts constituting the oven and in particular by the heating of the measuring device itself.
  • electronic circuits which include a temperature sensor intended to measure by contact the temperature of the housing of the radiation sensor in order to deliver a correction signal proportional to the thermal drift of the radiation sensor .
  • the temperature sensor is enclosed in the housing of the infrared sensor and is capable of delivering a correction signal which will be analyzed by an external processing circuit.
  • these additional temperature sensors only perform a point measurement which is not identical at all points of the housing, the housing itself creating a shadow of parasitic heat radiation.
  • the invention therefore aims to overcome this incon ⁇ venient.
  • said device for measuring infrared radiation comprises means for homogenizing the temperature of the sensor housing and of the support.
  • the homogenization means are formed by a thermal part secured to the support and surrounding the housing while providing the collection window.
  • the thermal part takes into account in particular the temperature of the support and standardizes the temperature of the housing, which makes it possible to obtain at all times an identical temperature, at all points. Thanks to these homogenization means, the compensation for thermal drift is obtained in a global manner and takes account of the main components of the device for measuring the infrared ray.
  • the support and the sensor are offset laterally with respect to the sighting opening and the support comprises a frame for receiving a reflection mirror of the infrared ray coming from the enclosure to the sensor.
  • the support makes it possible to position the sensor specifically with respect to the mirror at a distance from the sighting opening, therefore in a location which is not directly subjected to hot air and to dirt which passes through the sighting opening.
  • the frame integral with the support also contributes to the homogenization of the temperature at the level of the housing, because it takes into account the temperature of the mirror subjected to infrared radiation.
  • FIG. 1 is a schematic vertical section of an oven comprising a device for measuring infrared radiation according to a first embodiment of the invention and also illustrated in section;
  • FIG. 2 is a view similar to Figure 1 but illustrating a second embodiment of the measuring device according to the invention
  • FIG. 3 is an enlarged sectional view of the measuring device illustrated in FIG. 2.
  • the electric cooking oven comprises an envelope 1 surrounding a heating enclosure 2 heated for example by an armored electrical resistance R arranged on the roof 3 of the enclosure.
  • the enclosure can also be heated by microwave and comprise, as is known per se, a magnetron M illustrated in broken lines in these same Figures 1 and 2.
  • This electric oven is equipped with a device 5 for measuring infrared radiation with a view to determining the temperature of a body 6 introduced into the enclosure, this body possibly being a food or a liquid such as a soup.
  • the vault 3 of the enclosure has a sighting opening 4 behind which is mounted the device 5 and in particular an infrared sensor 7 mounted on a support 8 and arranged between said envelope 1 and said enclosure 2.
  • the viewing opening 4 is preferably arranged in the central region of the vault 3 and thus allows precise measurement of the body 6 which generally extends to the center of the enclosure. This is all the more true in a microwave oven where the body 6 is generally placed on a rotary plate P arranged in the central region of the enclosure.
  • FIGS. 1 and 2 we have diagrammed in FIGS. 1 and 2 the infrared radiation by a conical envelope rising from the body 6 towards the sensor 7.
  • the infrared sensor 7 is of the thermopile type, for example, and comprises, in a manner known per se, a housing 9 enclosing a sensitive element (not shown) which is situated opposite a collection window 11 formed in the housing 9 and which is connected to the internal wall of the housing by a series of connections (not shown) having so-called hot welds (integral with the sensitive element) and so-called cold welds (integral with the internal wall of the housing).
  • This type of sensor provides an output signal proportional to the intensity of the radiation and therefore proportional to the temperature difference between hot and cold welds.
  • this type of sensor also comprises in the housing 9 one or more temperature sensors (NTC diode or other) (not shown) which are intended to measure the temperature by contact with the housing.
  • NTC diode or other temperature sensors
  • the device 5 for measuring the infrared radiation comprises means for homogenizing the temperature of the housing 9 of the sensor 7 and of the support 8.
  • the homogenization means are formed by a thermal part 13 secured to the support 8 and by turning the housing 9 while providing the collection window 11.
  • this thermal part 13 can advantageously be formed in one piece with the support 8 and be made of a material whose emissivity and resistance are very low.
  • a material can for example be: aluminum, polished or anodized; gold; money; iron, polished or oxidized; steel; the bronze.
  • the thermal part 13 is molded with the support 8 and forms a chamber, the in ⁇ ferior wall 8 ′ of which is thermally coupled to the vault 3 and has an opening 12 coaxial with the opening 4, and the upper wall of which contains the housing 9 of the sensor 7 located to the right of the viewing opening 4.
  • the housing 9 of the sensor 7 illustrated in the figures has the general shape of a cap having an edge 9 ′, and the face opposite to the window 11 has lugs 14 for electrical connection on which we just take the sensor output signal.
  • the thermal part 13 has a tubular housing 15 for receiving the housing 9, the end openings 16 and 17 of which are adapted to allow the collection region 11 ′ and the tabs 14 to pass respectively.
  • the opening 17 is closed by a cover 18 having passage holes 19 for the tabs 14 and made of a material identical to the thermal part 13. Consequently, the sensor 7 is enclosed in the housing 15 and its housing is put at a uniform temperature.
  • the support 8 comprises a tubular guide 20 which enters the heating enclosure 2.
  • This guide carries at its protruding end 21 a filter 22 transparent to the infrared ray, for example made of silicon or germanium.
  • the filter 22 has a wide spectral band which extends in a range from 5 ⁇ m to 14 ⁇ m (microns).
  • the filter 22 the sensor 7 and in particular the collection window, they are protected against food projections which may be in gaseous, liquid or solid form.
  • Another function fulfilled by the filter 22 is the thermal insulation of the sensor 7 against the hot air of the enclosure. Indeed, this filter sealingly closing the guide 20, the chamber formed by the support 8 is therefore also sealed, which provides a calm and thermal iso ⁇ atmosphere suitable for promoting the measurement of infrared radiation.
  • the invention provides, so as to avoid the deposition of condensation droplets in the sighting region through the filter 22, to mount this filter according to an inclined plane on the axis of the guide 20 thus constituting a slope and a low zone towards which the condensation droplets flow.
  • the sup ⁇ port 8 comprises a frame 24 for receiving a mirror 25 for reflecting infrared radiation coming from the opening 4 by the guide 20.
  • the mirror 25 is preferably of parabolic shape, the focus of which is substantially at the level of the sensitive element contained in the housing 9 of the sensor 7.
  • the mirror 25 is made of a highly polished metal, aluminum, stainless steel which has a very high reflection coefficient and a low emissivity coefficient.
  • the special embodiment of the support 8 in a single body forming the thermal part 13, the tubular guide 20 and the frame 24, makes it possible to obtain perfect homogenization of the temperature at the level of the housing 9 of the sensor 7 because this single body takes also take into account the temperature of the mirror 25 and of the filter 22 which are closely associated with it. Indeed, the mirror 25 constituting one of the walls of the sealed box thus formed transmits its temperature by conduction to the support 8.
  • the manufacture of such a measuring device is particularly simple and economical since the body can be produced by molding, and the mirror 25, the filter 22 and the sensor 7 are subsequently mounted so as not to damage them.
  • a device for measuring infrared radiation which can be adapted to all ovens whether they are electric resistance, microwave or combined heating, since this device is presented in the form of a watertight box which it suffices to attach to a wall in an appropriate place to take the temperature measurement of the heated food.
  • the invention further provides that the sealed box is itself enclosed in a casing 26 sealed against microwave radiation, the guide tubular 20 and a tube 27 for passing the electrical connection wires with the lugs 14 of the sensor 7 having suitable dimensions • forming a wave trap.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Electric Ovens (AREA)
  • Radiation Pyrometers (AREA)

Abstract

L'invention concerne un four électrique de cuisson comprenant, dans une enveloppe (1), une enceinte de chauffage (2) dont la voûte (3) présente une ouverture de visée (4) derrière laquelle est monté un dispositif (5) de mesure du rayonnement infrarouge destiné à déterminer la température d'un corps (6) introduit dans l'enceinte et comprenant un capteur infrarouge (7) monté sur un support (8) et possédant un boîtier (9) renfermant un élément sensible au rayonnement infrarouge situé en regard d'une fenêtre de captage (11). Selon l'invention, ledit dispositif (5) de mesure du rayonnement infrarouge comporte des moyens (13) d'homogénéisation de la température du boîtier (9) du capteur (7) et du support (8).

Description

FOUR ELECTRIQUE DE CUISSON
L'invention se rapporte aux fours électriques de cuisson comprenant, dans une enveloppe, une enceinte de chauffage dont la voûte présente une ouverture de visée derrière laquelle est monté un dispositif de mesure du rayonnement infrarouge destiné à déterminer la tempéra¬ ture d'un corps introduit dans l'enceinte et comprenant un capteur infrarouge monté sur un support et possédant un boîtier renfermant un élément sensible au rayonnement infrarouge situé en regard d'une fenêtre de captage.
Dans de tels fours, le capteur de rayonnement infrarouge permet de mesurer sans contact la température du corps, aliment ou autre, qui est introduit dans l'enceinte. Or il s'avère que le dispositif de mesure du rayonnement infrarouge est perturbé notamment par la dérive thermique due aux variations importantes de la température ambiante de l'enceinte et de celle régnant entre l'enveloppe et l'enceinte, mais aussi par le rayon¬ nement infrarouge parasite dû à l'échauffement des diverses pièces avoisinantes constituant le four et en particulier par l'échauffement du dispositif de mesure lui-même.
Pour tenir compte de cette dérive thermique, on a recours à des circuits électroniques qui comportent un capteur de température destiné à mesurer par contact la température du boîtier du capteur de rayonnement afin de délivrer un signal de correction proportionnel à la dérive thermique du capteur de rayonnement. Dans le cas où le fabricant utilise un capteur à infrarouge du type thermopile à compensation, le capteur de température est enfermé dans le boîtier du capteur infrarouge et est apte à délivrer un signal de correction qui sera analysé par un circuit de traitement externe. Malheureusement, ces capteurs de température sup¬ plémentaires n'effectuent qu'une mesure ponctuelle qui n'est pas identique en tout point du boîtier, le boîtier créant lui-même une ombre au rayonnement calorifique parasite.
L'invention a donc pour but de palier cet incon¬ vénient.
Selon l'invention, ledit dispositif de mesure du rayonnement infrarouge comporte des moyens d'homogénéisation de la température du boîtier du capteur et du support.
Selon une caractéristique avantageuse de l'invention, les moyens d'homogénéisation sont formés par une pièce thermique solidaire du support et entourant le boîtier en ménageant la fenêtre de captage.
Ainsi, la pièce thermique prend en compte notamment la température du support et uniformise la température du boîtier, ce qui permet d'obtenir à tout moment une tem¬ pérature identique, en tout point. Grâce à ces moyens d'homogénéisation, la compensation de la dérive thermique est obtenue d'une façon globale et tient compte des constituants principaux du dispositif de mesure du rayon¬ nement infrarouge.
Selon un autre mode de réalisation de l'invention, le support et le capteur sont déportés latéralement par rapport à l'ouverture de visée et le support comporte un cadre de réception d'un miroir de réflexion du rayon¬ nement infrarouge sortant de l'enceinte vers le capteur.
Ainsi, le support permet de positionner le capteur de manière précise par rapport au miroir à distance de l'ouverture de visée, donc en un emplacement non directe¬ ment soumis à l'air chaud et aux salissures qui passent par l'ouverture de visée. En outre, le cadre solidaire du support contribue également à l'homogénéisation de la température au niveau du boîtier, car il prend en compte la température du miroir soumis au rayonnement infrarouge.
Les caractéristiques et avantages de l'invention ressortiront d'ailleurs de la description qui va suivre, à titre d'exemple non limitatif, en référence aux dessins annexés dans lesquels :
- la figure 1 est une coupe verticale schématique d'un four comportant un dispositif de mesure du rayonnement infrarouge selon un premier mode de réalisation de l'invention et également illustré en coupe ;
- la figure 2 est une vue analogue à la figure 1 mais illustrant un deuxième mode de réalisation du dispositif de mesure selon l'invention ;
- la figure 3 est une vue en coupe agrandie du dispositif de mesure illustré à la figure 2.
Comme représenté aux figures 1 et 2, le four élec- trique de cuisson comprend une enveloppe 1 entourant une enceinte de chauffage 2 chauffée par exemple par une ré¬ sistance électrique blindée R disposée sur la voûte 3 de l'enceinte. L'enceinte peut également être chauffée par micro-ondes et comporter, comme il est connu en soi, un magnetron M illustré en traits interrompus sur ces mêmes figures 1 et 2.
Ce four électrique est équipé d'un dispositif 5 de mesure du rayonnement infrarouge en vue de déterminer la température d'un corps 6 introduit dans l'enceinte, ce corps pouvant être un aliment ou un liquide tel qu'une soupe.
Afin de permettre cette mesure du rayonnement, la voûte 3 de l'enceinte présente une ouverture de visée 4 derrière laquelle est monté le dispositif 5 et notamment un capteur infrarouge 7 monté sur un support 8 et agencé entre ladite enveloppe 1 et ladite enceinte 2. L'ouverture de visée 4 est préférentiellement agencée dans la région centrale de la voûte 3 et autorise ainsi une mesure précise du corps 6 qui s'étend généralement au centre de l'enceinte. Ceci est d'autant plus vrai dans un four à micro-ondes où le corps 6 est généralement posé sur un plateau rotatif P agencé dans la région centrale de l'enceinte. A titre d'illustration, on a schématisé sur les figures 1 et 2 le rayonnement infrarouge par une enveloppe conique s'élevant du corps 6 vers le capteur 7.
Le capteur à infrarouge 7 est du type, par exemple, thermopile et comporte de façon connue en soi un boîtier 9 renfermant un élément sensible (non représenté) qui est situé en regard d'une fenêtre de captage 11 pratiquée dans le boîtier 9 et qui est relié à la paroi interne du boîtier par une série de liaisons (non représentées) présentant des soudures dites chaudes (solidaires de l'élément sensible) et des soudures dites froides (solidaires de la paroi interne du boîtier) . Ce type de capteur fournit un signal de sortie proportionnel à l'intensité du rayonnement et donc proportionnel à la différence de température entre les soudures chaudes et froides. Pour palier la dérive thermique, ce type de cap¬ teur comporte en outre dans le boîtier 9 un ou plusieurs capteurs de température (diode C.T.N. ou autre) (non représentée) qui sont destinés à mesurer la température par contact du boîtier. On trouve actuellement dans le commerce de tels capteurs vendus sous la dénomination "Thermopile à compensation" et fabriqués par exemple par la société H.L. PLANAR TECHNIK sous la référence TP 8060- 1.
Selon l'invention, le dispositif 5 de mesure du rayonnement infrarouge comporte des moyens d'homogénéisation de la température du boîtier 9 du cap¬ teur 7 et du support 8.
Selon une caractéristique avantageuse de l'invention, les moyens d'homogénéisation sont formés par une pièce thermique 13 solidaire du support 8 et en¬ tourant le boîtier 9 en ménageant la fenêtre de captage 11.
Comme représenté sur les figures où l'on a gardé les mêmes références pour désigner les pièces semblables, cette pièce thermique 13 peut avantageusement être formée d'une seule pièce avec le support 8 et être réalisée en un matériau dont l'émissivité et la résistance thermique sont très faibles. Un tel matériau peut être par exeπ- pie : l'aluminium, poli ou anodisé ; l'or ; l'argent ; le fer, poli ou oxydé ; l'acier ; le bronze.
Dans un premier mode de réalisation tel qu'illustré à la figure 1, la pièce thermique 13 est venue de moulage avec le support 8 et forme une chambre dont la paroi in¬ férieure 8' est couplée thermiquement à la voûte 3 et présente une ouverture 12 coaxiale à l'ouverture 4, et dont la paroi supérieure contient le boîtier 9 du capteur 7 situé au droit de l'ouverture de visée 4.
Comme on le voit bien sur la figure 3, le boîtier 9 du capteur 7 illustré sur les figures présente la forme générale d'un chapeau possédant un bord 9', et la face opposée à la fenêtre 11 comporte des pattes 14 de connexion électrique sur lesquelles on vient prélever le signal de sortie du capteur. Ainsi, la pièce thermique 13 présente un logement tubulaire 15 de réception du boîtier 9 dont les ouvertures d'extrémités 16 et 17 sont adaptées à laisser passer respectivement la région de captage 11 ' et les pattes 14. De manière à obtenir une bonne homogénéisation de la température du boîtier 9, l'ouverture 17 est fermée par un couvercle 18 présentant des trous de passage 19 pour les pattes 14 et réalisé en un matériau identique à la pièce thermique 13. Par con¬ séquent, le capteur 7 est enfermé dans le logement 15 et son boîtier est mis à une température uniforme.
Selon encore une autre caractéristique avantageuse de l'invention, appliquée notamment dans le cas d'un four à micro-ondes combiné ou non avec la résistance R et de façon, d'une part, à soustraire le plus possible le cap¬ teur 7 à la chaleur de l'enceinte 2, et, d'autre part à amortir la propagation des ondes hautes fréquences, le support 8 comporte un guide tubulaire 20 qui pénètre dans l'enceinte de chauffage 2. Ce guide porte en son extrémité saillante 21 un filtre 22 transparent au rayon¬ nement infrarouge par exemple réalisé en silicium ou en germanium. Le filtre 22 possède une large bande spectrale qui s'étend dans une plage de 5 μm à 14 μm (microns).
Grâce au filtre 22, le capteur 7 et notamment la fenêtre de captage il sont protégés contre les projec¬ tions alimentaires qui peuvent se présenter sous forme gazeuse, liquide ou solide. Une autre fonction remplie par le filtre 22 est l'isolation thermique du capteur 7 contre l'air chaud de l'enceinte. En effet, ce filtre fermant de façon étanche le guide 20, la chambre formée par le support 8 est par conséquent également rendue étanche, ce qui procure une atmosphère calme et iso¬ thermique propre à favoriser la mesure du rayonnement infrarouge. Selon une variante illustrée aux figures 2 et 3, l'invention prévoit, de manière à éviter le dépôt de gouttelettes de condensation dans la région de visée à travers le filtre 22, de monter ce filtre selon un plan incliné sur l'axe du guide 20 constituant ainsi une pente et une zone basse vers laquelle s'écoule les gouttelettes de condensation.
Comme représenté aux figures 2 et 3, et selon un mode de réalisation préféré, le capteur 7 est déporté latéralement par rapport à l'ouverture de visée 4, lais- sant libre la région centrale de la voûte 3, et le sup¬ port 8 comporte un cadre 24 de réception d'un miroir 25 de réflexion du rayonnement infrarouge provenant de l'ouverture 4 par le guide 20. Le miroir 25 est de préférence de forme parabolique dont le foyer se trouve sensiblement au niveau de l'élément sensible contenu dans le boîtier 9 du capteur 7. Pour les mêmes raisons expliquées ci-dessus pour le matériau de la pièce ther¬ mique, le miroir 25 est constitué d'un métal très poli, aluminium, acier inoxydable qui présente un très fort coefficient de réflexion et un faible coefficient d'émissivité.
Grâce à ce miroir, on comprendra que le rayonnement est focalisé sur le capteur 7, ce qui permet d'obtenir une mesure plus précise de la température de l'aliment introduit dans l'enceinte de chauffage 2.
La réalisation spéciale du support 8 en un corps unique formant la pièce thermique 13, le guide tubulaire 20 et le cadre 24, permet d'obtenir une homogénéisation parfaite de la température au niveau du boîtier 9 du cap¬ teur 7 car ce corps unique prend également en compte la température du miroir 25 et du filtre 22 qui lui sont étroitement associés. En effet, le miroir 25 constituant une des parois de la boîte étanche ainsi formée transmet par conduction sa température au support 8. En outre, la fabrication d'un tel dispositif de mesure est particulièrement simple et économique puisque le corps peut être réalisé par moulage, et le miroir 25, le filtre 22 et le capteur 7 sont montés ultérieurement de manière à ne pas les endommager.
Ainsi, grâce à l'invention, on réalise un disposi¬ tif de mesure de rayonnement infrarouge qui peut s'adapter à tous les fours qu'ils soient à résistance électrique, à micro-ondes ou à chauffage combiné, puisque ce dispositif se présente sous la forme d'une boîte étanche qu'il suffit de fixer à une paroi en un endroit approprié pour prendre la mesure de température de l'aliment chauffé. Dans le cas plus particulier de l'application d'un tel dispositif à un four à micro¬ ondes, l'invention prévoit en outre que la boîte étanche est elle-même enfermée dans un carter 26 étanche au rayonnement micro-ondes, le guide tubulaire 20 et un tube 27 de passage des fils de connexions électriques avec les pattes 14 du capteur 7 présentant des dimensions appro¬ priées •£ formant piège à ondes.

Claims

REVENDICATIONS
1. Four électrique de cuisson comprenant, dans une enveloppe (1), une enceinte de chauffage (2) dont la voûte (3) présente une ouverture de visée (4) derrière laquelle est monté un dispositif (5) de mesure du rayon¬ nement infrarouge destiné à déterminer la température d'un corps (6) introduit dans l'enceinte et comprenant un capteur infrarouge (7) monté sur un support (8) et possé¬ dant un boîtier (9) renfermant un élément sensible au rayonnement infrarouge situé en regard d'une fenêtre de captage (11) , caractérisé en ce que ledit dispositif (5) de mesure du rayonnement infrarouge comporte des moyens (13) d'homogénéisation de la température du boîtier (9) du capteur (7) et du support (8).
2. Four électrique de cuisson selon la revendication 1, caractérisé ce que les moyens d'homogénéisation sont for- mes par une pièce thermique (13) solidaire du support (8) et entourant le boîtier (9) en ménageant la fenêtre de captage (11) .
3. Four électrique de cuisson selon la revendication 2, caractérisé en ce que le boîtier (9) présentant des pat¬ tes (14) de connexion électrique opposées à la fenêtre de captage (il), la pièce thermique (13) présente un loge¬ ment tubulaire (15) de réception du boîtier (9) dont les ouvertures d'extrémités (16 et 17) sont adaptées à laisser passer respectivement la région de captage et les pattes (14) .
4. Four électrique de cuisson selon la revendication 3, caractérisé en ce que l'ouverture (17) est fermée par un couvercle (18) présentant des trous de passages (19) pour les pattes (14) .
5. Four électrique de cuisson selon l'une quelconque des revendications précédentes, caractérisé en ce que le support (8) comporte un guide tubulaire (20) qui pénètre dans l'enceinte de chauffage (2) et qui porte en son extrémité saillante (21) un filtre (22) transparent au rayonnement infrarouge.
6. Four électrique de cuisson selon la revendication 5, caractérisé en ce que le filtre (22) possède une large bande spectrale qui s'étend dans une plage de 5 μm à 14 μm.
7. Four électrique de cuisson selon la revendication 5 ou 6, caractérisé en ce que le filtre (22) est monté selon un plan incliné sur l'axe du guide (20) de manière à présen¬ ter une zone basse.
8. Four électrique de cuisson selon l'une quelconque des revendications précédentes, caractérisé en ce que le capteur (7) étant déporté latéralement par rapport à l'ouverture de visée (4), ledit support (8) comporte un cadre (24) de réception d'un miroir (25) de réflexion du rayonnement infrarouge sortant de l'enceinte (2) vers le capteur (7).
9. Four électrique de cuisson selon l'une quelconque des revendications 5 à 8, caractérisé en ce que le support (8) , la pièce thermique (13) et le guide tubulaire (20) sont formés en un corps unique réalisé en un matériau dont l'émissivité et la ré¬ sistance thermique sont très faibles et constituent en- semble avec le filtre (22) une boîte étanche.
10. Four électrique de cuisson selon les revendica¬ tions 8 et 9, caractérisé en ce que le support (8) présentant le cadre (24) , le miroir (25) constitue une des parois de la boîte étanche.
11. Four électrique de cuisson selon la revendica- tion 9 ou 10, caractérisé en ce que ledit four étant du type à chauffage par micro-ondes, la boîte étanche est elle-même enfermée dans un carter (26) étanche au rayonnement micro-ondes, ledit guide tubulaire (20) et un tube (27) de passage de fils de connexions électriques avec les pattes (14) du capteur (7) présentant des dimensions appropriées formant piège à ondes.
12. Four électrique de cuisson selon l'une quel- conque des revendications précédentes, caractérisé en ce que le capteur infrarouge (7) est constitué par une thermopile.
PCT/FR1995/000793 1994-06-17 1995-06-16 Four electrique de cuisson WO1995035643A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP95923394A EP0945048A1 (fr) 1994-06-17 1995-06-16 Four electrique de cuisson
JP8501745A JPH10505661A (ja) 1994-06-17 1995-06-16 調理用電気オーブン
KR1019960707351A KR970704323A (ko) 1994-06-17 1995-06-16 전기 베이킹 오븐

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9407492A FR2721380B1 (fr) 1994-06-17 1994-06-17 Four électrique de cuisson.
FR94/07492 1994-06-17

Publications (1)

Publication Number Publication Date
WO1995035643A1 true WO1995035643A1 (fr) 1995-12-28

Family

ID=9464376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1995/000793 WO1995035643A1 (fr) 1994-06-17 1995-06-16 Four electrique de cuisson

Country Status (5)

Country Link
EP (1) EP0945048A1 (fr)
JP (1) JPH10505661A (fr)
KR (1) KR970704323A (fr)
FR (1) FR2721380B1 (fr)
WO (1) WO1995035643A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2779520A1 (fr) * 1998-06-09 1999-12-10 Moulinex Sa Capteur de temperature et appareil electromenager comportant un tel capteur
GB2343246A (en) * 1998-10-31 2000-05-03 Lg Electronics Inc Shielded infrared temperature sensor for an oven

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532318A (ja) * 2004-04-14 2007-11-15 バラルディ、ルブリフィカンティ、エス、アー、エル テクノロジー工程において温度調整を最適化する方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0015710A1 (fr) * 1979-03-02 1980-09-17 Matsushita Electric Industrial Co., Ltd. Appareil de cuisson comportant un dispositif de détection d'infrarouge
US4286134A (en) * 1978-07-13 1981-08-25 Sanyo Electric Co., Ltd. Temperature measuring arrangements for microwave ovens
JPS58140619A (ja) * 1982-02-17 1983-08-20 Chino Works Ltd サ−モパイルの冷接点補償回路
JPS63286729A (ja) * 1987-05-20 1988-11-24 Chino Corp サ−モパイル検出装置
JPH06229556A (ja) * 1993-02-04 1994-08-16 Matsushita Electric Ind Co Ltd 加熱装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4286134A (en) * 1978-07-13 1981-08-25 Sanyo Electric Co., Ltd. Temperature measuring arrangements for microwave ovens
EP0015710A1 (fr) * 1979-03-02 1980-09-17 Matsushita Electric Industrial Co., Ltd. Appareil de cuisson comportant un dispositif de détection d'infrarouge
JPS58140619A (ja) * 1982-02-17 1983-08-20 Chino Works Ltd サ−モパイルの冷接点補償回路
JPS63286729A (ja) * 1987-05-20 1988-11-24 Chino Corp サ−モパイル検出装置
JPH06229556A (ja) * 1993-02-04 1994-08-16 Matsushita Electric Ind Co Ltd 加熱装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 007, no. 256 (P - 236) 15 November 1983 (1983-11-15) *
PATENT ABSTRACTS OF JAPAN vol. 013, no. 108 (P - 843) 15 March 1989 (1989-03-15) *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 611 (M - 1708) 21 November 1994 (1994-11-21) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2779520A1 (fr) * 1998-06-09 1999-12-10 Moulinex Sa Capteur de temperature et appareil electromenager comportant un tel capteur
WO1999064830A1 (fr) * 1998-06-09 1999-12-16 Moulinex S.A. Capteur de temperature et appareil electromenager comportant un tel capteur
US6414284B1 (en) 1998-06-09 2002-07-02 Moulinex S.A. Temperature sensor and electrical household appliance comprising same
GB2343246A (en) * 1998-10-31 2000-05-03 Lg Electronics Inc Shielded infrared temperature sensor for an oven

Also Published As

Publication number Publication date
KR970704323A (ko) 1997-08-09
EP0945048A1 (fr) 1999-09-29
JPH10505661A (ja) 1998-06-02
FR2721380B1 (fr) 1997-04-25
FR2721380A1 (fr) 1995-12-22

Similar Documents

Publication Publication Date Title
US5645349A (en) Noncontact active temperature sensor
Borroni‐Bird et al. An ultrahigh vacuum single crystal adsorption microcalorimeter
FR2962538A1 (fr) Agencement de capteurs pour la detection de grandeurs d'etat
EP0044791B1 (fr) Dispositif détecteur de rayonnement infrarouge
FR2462837A1 (fr) Transducteur ultrasonore
FR2866115A1 (fr) Detecteur a infrarouge comportant un capteur a infrarouge et un boitier
US6375350B1 (en) Range pyrometer
EP0682237B1 (fr) Détecteur de rayonnement
EP0378635B1 (fr) Oscillateur ultrastable fonctionnant a pression atmospherique et sous vide
WO1995035643A1 (fr) Four electrique de cuisson
EP1448964B1 (fr) Comparateur de flux thermiques
JP3316970B2 (ja) 調理装置
JP3287729B2 (ja) 放射検出器
US3660659A (en) Black submillimeter radiation detector
EP0082768A2 (fr) Capteur de température et dispositif l'incorporant
JP3085830B2 (ja) 輻射熱センサ
FR2494038A1 (fr) Tube a rayons cathodiques a porte-fixateur hermetiquement independant
FR2628213A1 (fr) Sonde perfectionnee pour mesures spectrometriques de resonances magnetiques aux tres hautes temperatures
EP0253883A1 (fr) Dispositif detecteur de radiations a refroidissement cryogenique.
EP4066037A1 (fr) Instrument optique spatial comprenant une garde thermique améliorée
FR2685157A1 (fr) Dispositif associe a un miroir pour eviter la formation de buee.
FR2511150A1 (fr) Dispositif pour mesurer une temperature sans contact
FR3079914A1 (fr) Moyen de chauffage et appareil de cuisson
EP0338920A2 (fr) Refroidisseur Joule-Thomson avec échangeur de chaleur formé d'une masse poreuse
CH561416A5 (en) Absolute calorimeter particularly for laser beams - has thermally conductive plate covered by an absorbing film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995923394

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1997 750720

Date of ref document: 19970226

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1995923394

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995923394

Country of ref document: EP