WO1995034951A1 - Oscillator - Google Patents

Oscillator Download PDF

Info

Publication number
WO1995034951A1
WO1995034951A1 PCT/JP1995/001179 JP9501179W WO9534951A1 WO 1995034951 A1 WO1995034951 A1 WO 1995034951A1 JP 9501179 W JP9501179 W JP 9501179W WO 9534951 A1 WO9534951 A1 WO 9534951A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase shift
circuit
resistor
phase
series circuit
Prior art date
Application number
PCT/JP1995/001179
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Ikeda
Tadataka Ohe
Original Assignee
Takeshi Ikeda
Tadataka Ohe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeshi Ikeda, Tadataka Ohe filed Critical Takeshi Ikeda
Priority to AU26312/95A priority Critical patent/AU2631295A/en
Publication of WO1995034951A1 publication Critical patent/WO1995034951A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/20Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising resistance and either capacitance or inductance, e.g. phase-shift oscillator
    • H03B5/24Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising resistance and either capacitance or inductance, e.g. phase-shift oscillator active element in amplifier being semiconductor device

Definitions

  • the present invention relates to an oscillator which can be easily formed as an integrated circuit and whose oscillation frequency can be largely adjusted.
  • Various oscillation circuits using an active element and a reactance element as a sine wave oscillator have been proposed and put into practical use.
  • a sine wave oscillator a Wien-bridge oscillator shown in FIG. 41 and a bridge T-type oscillator shown in FIG. 42 are conventionally known.
  • the resistance of the variable resistor Rs which forms a series circuit with the capacitor C
  • the variable resistance Rp which forms a parallel circuit with the capacitor C
  • the resistance value must be changed in conjunction with the resistance value.However, if an error occurs between the resistance values of the variable resistance Rs and the variable resistance Rp, the voltage input to the amplifier A will increase or decrease. Output fluctuates. When the oscillation output decreases, oscillation stops, and when the oscillation output increases, significant distortion occurs in the oscillation output.
  • the stabilization means adds nonlinearity to the amplitude characteristics of the amplifier, that is, the amplification varies depending on the magnitude of the output. That is, such a characteristic is added.
  • variable resistor Rs and variable resistor Rp it is particularly difficult to change the variable resistor Rs and variable resistor Rp while keeping the resistance ratio constant, when the circuit is integrated and the variable resistor is externally changed by a voltage control method. .
  • variable frequency oscillator that can greatly adjust the oscillation frequency using an integrated circuit.
  • an input AC signal is applied to both ends, a first series circuit including first and second resistors having substantially equal resistance values, and the AC signal is applied to both ends.
  • a second series circuit comprising a third resistor and a capacitor; a potential at a connection point of the first and second resistors constituting the first series circuit; and a second series circuit constituting the second series circuit.
  • a differential amplifier that amplifies a difference between a third resistor and a potential at a connection point between the cano and the °- ⁇ with a predetermined amplification degree and outputs the amplified signal, and the two cascade-connected two
  • the output of the subsequent stage of the phase shift circuit is fed back to the input side of the previous stage, and the sine wave oscillation output is extracted from one of the two phase shift circuits.
  • an input AC signal is applied to both ends, a first series circuit including first and second resistors having substantially equal resistance values, and the AC signal is applied to both ends.
  • a second series circuit comprising a third resistor and a capacitor; a potential at a connection point of the first and second resistors constituting the first series circuit; and a third series circuit constituting the second series circuit.
  • a differential amplifier that amplifies the difference between the resistance of the resistor and the potential of the connection point of the capacitor with a predetermined amplification degree and outputs the amplified signal, and outputs the input AC signal without changing the phase.
  • a non-inverting circuit cascade-connecting each of the two phase-shifting circuits and the non-inverting circuit, and feeding back the output of the last stage among the plurality of cascaded circuits to the input side of the first stage. From any of these circuits A sinusoidal oscillation output is obtained.
  • an input AC signal is applied to both ends, a first series circuit including first and second resistors having substantially equal resistance values, and the AC signal is applied to both ends.
  • a second series circuit including a third resistor and an intagter, and a potential at a connection point of the first and second resistors forming the first series circuit and the second series circuit.
  • a differential amplifier that amplifies a difference between a potential of a connection point of the inductor and the third resistor forming a circuit with a predetermined amplification degree and outputs the amplified signal, and that is connected in cascade.
  • the output of the subsequent stage of the two phase shift circuits is fed back to the input side of the previous stage, and the sine wave oscillation output is extracted from one of the two phase shift circuits.
  • an input AC signal is applied to both ends, a first series circuit including first and second resistors having substantially equal resistance values, and the AC signal is applied to both ends.
  • a second series circuit composed of a third resistor and an intagter; a potential at a connection point of the first and second resistors constituting the first series circuit; and a third series circuit constituting the second series circuit.
  • a differential amplifier that amplifies the difference between the resistance of the above-mentioned resistor and the potential at the connection point of the above-mentioned inqta at a predetermined amplification degree, and outputs the same without changing the phase of the input AC signal.
  • a non-inverting circuit cascade-connecting each of the two phase-shifting circuits and the non-inverting circuit, and feeding back the output of the last stage among the plurality of cascaded circuits to the input side of the first stage. From any of these circuits A sinusoidal oscillation output is obtained.
  • an input AC signal is applied to both ends, a first series circuit including first and second resistors having substantially equal resistance values, and the AC signal is applied to both ends.
  • a second series circuit comprising a third resistor and a capacitor; a potential at a connection point of the first and second resistors constituting the first series circuit; and a third series circuit constituting the second series circuit.
  • a first phase shift circuit comprising a differential amplifier for amplifying and outputting a difference between the resistance of the capacitor and the potential of the connection point of the capacitor at a predetermined amplification factor, and an input AC signal applied to both ends,
  • a first series circuit consisting of first and second resistors having substantially equal values
  • a second series circuit consisting of a third resistor and an intagter, to which the AC signal is applied to both ends, and a first series circuit
  • a differential amplifier configured to amplify a difference between a potential of a connection point of the inductor and the third resistor constituting the second series circuit with a predetermined amplification degree and output the amplified result.
  • the first and second phase-shift circuits connected in cascade are fed back to the input side of the previous-stage to the input side of the previous stage, and a sine wave oscillation is performed from one of the first and second phase-shift circuits. The output is retrieved.
  • the input AC signal is applied to both ends, and the resistance value is A first series circuit comprising substantially equal first and second resistors; a second series circuit comprising a third resistor and a capacitor to which the AC signal is applied to both ends; and a first series circuit comprising: The difference between the potential of the connection point of the first and second resistors that constitutes and the potential of the connection point of the third resistor and the capacitor that make up the second series circuit is amplified at a predetermined amplification degree.
  • a first phase shift circuit including a differential amplifier for outputting, a first series circuit including first and second resistors to which an input AC signal is applied to both ends and having substantially equal resistance values; An AC signal is applied to both ends, a second series circuit including a third resistor and an intagter, and a potential at a connection point of the first and second resistors forming the first series circuit and the second series circuit.
  • the voltage at the connection point between the third resistor and the inductor forming a series circuit And a non-inverting circuit that outputs the same without changing the phase of the input AC signal.
  • Each of the first and second phase shift circuits and the non-inverting circuit are cascaded, and the output of the last stage among the plurality of cascade-connected circuits is fed back to the input side of the first stage.
  • the sine wave oscillation output is extracted from either of the above. .
  • the total amount of phase shift is 0 ° by the entire two phase shift circuits or the entire two phase shift circuits and the non-inverting circuit, and the amplification of each circuit is adjusted.
  • Sine wave oscillation is performed by setting the loop gain to 1 or more.
  • an input AC signal is applied to both ends, a first series circuit including first and second resistors having substantially equal resistance values, and the AC signal is applied to both ends.
  • a second series circuit comprising a third resistor and a capacitor; a potential at a connection point of the first and second resistors constituting the first series circuit; and a third series circuit constituting the second series circuit.
  • a differential amplifier that amplifies the difference between the potential of the resistor and the potential of the connection point of the capacitor with a predetermined amplification degree and outputs the result, and inverts the phase of the input AC signal and outputs the inverted signal.
  • a phase inversion circuit cascade-connecting each of the two phase-shift circuits and the phase-inversion circuit, and feeding back the output of the last stage of the plurality of cascade-connected circuits to the input side of the first stage. Any of these multiple circuits A sine wave oscillation output is extracted from the output.
  • an input AC signal is applied to both ends, a first series circuit including first and second resistors having substantially equal resistance values, and the AC signal is applied to both ends.
  • a second series circuit composed of a third resistor and an intagter; a potential at a connection point of the first and second resistors constituting the first series circuit; and a third series circuit constituting the second series circuit.
  • a differential amplifier that amplifies the difference between the resistance of the resistor and the potential of the connection point of the inductor with a predetermined amplification factor and outputs the amplified signal, and inverts and outputs the phase of the input AC signal.
  • a phase inversion circuit cascade-connecting each of the two phase-shift circuits and the phase-inversion circuit, and feeding back the output of the last stage of the plurality of cascade-connected circuits to the input side of the first stage. Any of these multiple circuits A sine wave oscillation output is extracted from the output.
  • an input AC signal is applied to both ends, a first series circuit including first and second resistors having substantially equal resistance values, and the AC signal is applied to both ends.
  • a second series circuit comprising a third resistor and a capacitor; a potential at a connection point of the first and second resistors constituting the first series circuit; and a third series circuit constituting the second series circuit.
  • a first phase shift circuit comprising a differential amplifier for amplifying and outputting a difference between the resistance of the capacitor and the potential of the connection point of the capacitor at a predetermined amplification factor, and an input AC signal applied to both ends,
  • a first series circuit consisting of first and second resistors having substantially equal values
  • a second series circuit consisting of a third resistor and an intagter, to which the AC signal is applied to both ends, and a first series circuit The potential at the connection point of the first and second resistors constituting the circuit
  • a differential amplifier configured to amplify a difference between a potential of a connection point of the inductor and the third resistor constituting the second series circuit with a predetermined amplification degree and output the amplified result.
  • phase inversion circuit that inverts the phase of the input AC signal and outputs the inverted signal, and cascade-connects each of the first and second phase-shift circuits and the phase-inversion circuit.
  • the output of the last stage in the plurality of circuits is fed back to the input side of the first stage, and the sine wave oscillation output is extracted from any of the plurality of circuits.
  • the sum of the phase shift amounts is 0 ° due to the entire two phase shift circuits and the phase inversion circuit, and the sine is adjusted by adjusting the amplification of each circuit to make the loop gain 1 or more. Wave oscillation is performed.
  • FIG. 1 is a circuit diagram showing a first embodiment of the oscillator of the present invention
  • FIG. 2 is a circuit diagram showing the configuration of the phase shift circuit of the preceding stage shown in FIG. 1,
  • Fig. 3 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit shown in Fig. 2 and the voltage appearing on capacitors and the like.
  • FIG. 4 is an equivalent circuit diagram of the phase shift circuit shown in FIG. 2,
  • FIG. 5 is a circuit diagram showing the configuration of the subsequent phase shift circuit shown in FIG. 1,
  • FIG. 6 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit shown in FIG.
  • FIG. 7 is an equivalent circuit diagram of the phase shift circuit shown in FIG. 5,
  • FIG. 8 is a circuit diagram showing the oscillator of the present invention using a transfer function K1
  • FIG. 9 is a circuit diagram obtained by converting the circuit shown in FIG. 8 by Miller's theorem
  • FIG. The figure is a circuit diagram showing a second embodiment of the oscillator of the present invention
  • FIG. 11 is a circuit diagram showing the configuration of the phase shift circuit of the preceding stage shown in FIG. 10;
  • Fig. 12 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit shown in Fig. 11 and the voltage appearing in inductors, etc.
  • FIG. 13 is an equivalent circuit diagram of the phase shift circuit shown in FIG. 11,
  • FIG. 14 is a circuit diagram showing the configuration of the subsequent phase shift circuit shown in FIG. 10;
  • FIG. 15 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit shown in FIG.
  • FIG. 16 is an equivalent circuit diagram of the phase shift circuit shown in FIG.
  • FIG. 17 is a circuit diagram showing a third embodiment of the oscillator of the present invention.
  • FIG. 18 is a circuit diagram showing a fourth embodiment of the oscillator of the present invention.
  • FIG. 19 is a circuit diagram showing a fifth embodiment of the oscillator of the present invention.
  • FIG. 20 is a circuit diagram showing a sixth embodiment of the oscillator of the present invention.
  • FIG. 21 is a circuit diagram showing a seventh embodiment of the oscillator of the present invention.
  • FIG. 22 is a circuit diagram showing an eighth embodiment of the oscillator of the present invention.
  • FIG. 23 is a circuit diagram showing a ninth embodiment of the oscillator of the present invention
  • FIG. 24 is a circuit diagram showing a tenth embodiment of the oscillator according to the present invention
  • FIG. 25 is a circuit diagram showing specific examples of a non-inverting circuit and a phase inverting circuit.
  • FIG. 26 is a block diagram showing the connection between the phase shift circuit and the non-inverting circuit.
  • Fig. 27 is a block diagram showing the connection between the phase shift circuit and the phase inversion circuit
  • Fig. 28 shows the configuration of the phase shift circuit in which the variable resistor of the CR circuit in the phase shift circuit is replaced with an FET. circuit diagram
  • FIG. 29 is a circuit diagram showing a configuration of a phase shift circuit in which the variable resistor of the LR circuit in the phase shift circuit is replaced with FET.
  • FIG. 30 is a circuit diagram showing a configuration of a phase shift circuit in which a capacitor of a CR circuit in the phase shift circuit is replaced with a variable capacitance diode;
  • FIG. 31 is a circuit diagram showing a configuration of a capacitance conversion circuit used in the oscillator of the present invention.
  • FIG. 32 is a diagram showing the capacitance conversion circuit shown in FIG. 31 using a transfer function K4. circuit diagram,
  • FIG. 33 is a circuit diagram obtained by converting the circuit shown in FIG. 32 by Miller's theorem
  • FIG. 34 is a simplified circuit diagram of the capacitance conversion circuit shown in FIG. 31,
  • FIG. The figure is a circuit diagram showing the configuration of a capacitance conversion circuit using an emitter emitter follower circuit in the first stage
  • FIG. 36 is a circuit diagram showing a configuration of a capacitance conversion circuit using a source follower circuit in the first stage
  • FIG. 37 is a circuit diagram showing a configuration of an inductance conversion circuit used in the oscillator of the present invention.
  • FIG. 38 is a circuit diagram showing a configuration of an inductance conversion circuit in which the entire amplifier including the two operational amplifiers included in FIG. 37 is replaced with an emitter follower circuit;
  • FIG. 39 is a circuit diagram showing a configuration in which the inductance conversion circuit of FIG. 38 is realized by a source follower circuit;
  • FIG. 40 is a circuit diagram showing another example of the inductance conversion circuit
  • Fig. 41 is a circuit diagram showing a conventional sine wave oscillator
  • FIG. 42 is a circuit diagram showing a conventional sine wave oscillator. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a circuit diagram showing a configuration of an oscillator according to a first embodiment.
  • This oscillator 1 includes a non-inverting circuit 50 that outputs an input signal without changing its phase, and each of the oscillators 1 determines the phase of an input signal.
  • Two phase shift circuits 10 C and 30 C that perform a total of 0 ° phase shift at a predetermined frequency by performing a quantitative shift, and the output of the phase shift circuit 30 C is fed back to the input side of the non-inverting circuit 50.
  • a feedback resistor 70 is provided. This feedback resistor 70 has a finite resistance value from 0 ⁇ .
  • the non-inverting circuit 50 operates as a buffer circuit, but may be omitted if attention is paid only to the basic operation of the oscillator.
  • FIG. 2 is a circuit diagram extracted from the configuration of the preceding phase shift circuit 10C shown in FIG. 1.
  • the phase shift circuit 10C converts the two-input differential voltage into a predetermined amplification factor (for example, And a differential amplifier 12 that amplifies the signal and outputs the amplified signal, and a capacitor 14 that shifts the phase of the signal input to the input terminal 22 by a predetermined amount and inputs the signal to the non-inverting input terminal of the differential amplifier 12.
  • the variable resistor 16 and the resistors 18 and 20 which divide the voltage level to about 1/2 without changing the phase of the signal input to the input terminal 22 and input to the inverting input terminal of the differential amplifier 12 It is configured. The following description will be made on the assumption that the connection point between the variable resistors 16 and 20 is grounded.
  • phase shift circuit 10 C having such a configuration, when a predetermined AC signal is input to the input terminal 22, the voltage applied to the input terminal 22 (the input voltage A voltage obtained by dividing E i) by the resistors 18 and 20 is applied.
  • the resistance values of the resistor 18 and the resistor 20 are set substantially equal, and the voltage E i Z 2 divided by about 12 by the voltage dividing circuit constituted by the series circuit of the two resistors 18 and 20 is obtained.
  • the signal appearing at the connection point between the capacitor 14 and the variable resistor 16 is input to the non-inverting input terminal of the differential amplifier 12. Since an input signal is input to one end of a CR circuit (series circuit) composed of the capacitor 14 and the variable resistor 16, the voltage of the signal obtained by shifting the phase of the input signal by a predetermined amount by the CR circuit is obtained. It is applied to the non-inverting input terminal of the differential amplifier 12.
  • a CR circuit series circuit
  • the differential amplifier 12 determines the difference between the voltages applied to the two input terminals in this manner. Outputs a signal that has been amplified to a fixed amplification factor, for example, about twice.
  • FIG. 3 is a vector diagram showing a relationship between an input / output voltage of the phase shift circuit 10C and a voltage appearing on a capacitor or the like.
  • the voltage VR1 appearing at both ends of the variable resistor 16 and the voltage VC1 appearing at both ends of the capacitor 14 are 90 ° out of phase with each other, and these are vectorically combined (added). Is the input voltage E i. Therefore, when the amplitude of the human input signal is constant and only the frequency changes, the voltage VR1 across the variable resistor 16 and the voltage VC1 across the capacitor 14 change along the circumference of the semicircle shown in FIG. .
  • the voltage applied to the non-inverting input terminal of the differential amplifier 12 (voltage VR1 across the variable resistor 16) to the voltage applied to the inverting input terminal (voltage E i / 2 across the resistor 20) is vector-wise.
  • the difference voltage Eo ' can be represented by a vector having the center point as the starting point and the end point at a point on the circumference where the voltage VR1 and the voltage VC1 intersect in the semicircle shown in FIG. Its size is equal to the radius E i / 2 of the semicircle.
  • the phase difference between the input voltage Ei and the voltage VR1 is such that the frequency ⁇ changes from 0 to ⁇ . Varies from 90 ° to 0 ° according to Then, the phase shift amount 01 of the entire phase shift circuit 10C is twice that, and varies from 180 ° to 0 ° according to the frequency. Next, the relationship between the input and output voltages described above is quantitatively verified.
  • FIG. 4 is a diagram equivalently showing the preceding phase shift circuit 10C, and shows a configuration corresponding to two series circuits provided on the input side of the differential amplifier 12.
  • Equation (6) indicates that the phase shift circuit 10C of this embodiment has a phase between input and output. Regardless of the rotation, the amplitude of the output signal is equal to the amplitude of the input signal and is constant.
  • the frequency ⁇ at which the phase shift amount 01 becomes approximately 90 ° can be changed.
  • FIG. 5 is a circuit diagram extracted from the configuration of the subsequent phase shift circuit 30C shown in FIG. 1.
  • the phase shift circuit 30C converts the two-input differential voltage into a predetermined amplification degree (for example, Differential amplifier 32, which amplifies and outputs the amplified signal by about 2 times, and a variable resistor 36, which shifts the phase of the signal input to the input terminal 42 by a predetermined amount and inputs the same to the non-inverting input terminal of the differential amplifier 32.
  • a capacitor 34 and a resistor 38 and a resistor 40 which divide the voltage level to about 12 without changing the phase of the signal input to the input terminal 42 and input the voltage level to the inverting input terminal of the differential amplifier 32. It is configured.
  • phase shift circuit 30C having such a configuration, when a predetermined AC signal is input to the input terminal 42, the voltage applied to the input terminal 42 (input voltage E i) A voltage obtained by dividing the voltage by the resistors 38 and 40 is applied.
  • the resistance values of the resistors 38 and 40 are set to be substantially equal, and the voltage E i / 2 divided by about 1 Z 2 by a voltage dividing circuit composed of a series circuit of these two resistors 38 and 40 is used. Is applied to the inverting input terminal of the differential amplifier 32.
  • the signal appearing at the connection point between the variable resistor 36 and the capacitor 34 is input to the non-inverting input terminal of the differential amplifier 32. Since an input signal is input to one end of a CR circuit (series circuit) composed of a variable resistor 36 and a capacitor 34, the voltage of the signal whose input signal is shifted by a predetermined amount by this CR circuit is differential. Applied to the non-inverting input terminal of amplifier 32.
  • the differential amplifier 32 outputs a signal obtained by amplifying the difference between the voltages applied to the two input terminals to a predetermined width, for example, about twice.
  • FIG. 6 is a vector diagram showing a relationship between an input / output voltage of the phase shift circuit 30C and a voltage appearing on a capacitor or the like.
  • the voltage VC2 appearing at both ends of the capacitor 34 and the voltage VR2 appearing at both ends of the variable resistor 36 are 90 ° out of phase with each other, and these are vectorically combined (added). Is the input voltage E i. Therefore, if the amplitude of the input signal is constant and only the frequency changes, the voltage VC2 across the capacitor 34 and the voltage VR2 across the variable resistor 36 change along the circumference of the semicircle shown in Fig. 6. I do.
  • the voltage applied to the inverting input terminal (the voltage E i 2 across the resistor 40) is vectorically subtracted from the voltage applied to the non-inverting input terminal of the differential amplifier 32 (the voltage VC2 across the capacitor 34).
  • the result is the difference voltage Eo '.
  • This differential voltage Eo ' can be represented by a vector having the semicircle shown in Fig. 6 as the starting point at the center point and the ending point at a point on the circumference where voltage VC2 and voltage VR2 intersect.
  • the size is equal to the radius of the semicircle E iZ 2.
  • the phase difference between the input voltage Ei and the voltage VC2 is such that the frequency ⁇ changes from 0 to ⁇ . Varies from 0 ° to 90 ° according to Then, the phase shift amount 02 of the entire phase shift circuit 30C is twice that, and changes from 0 ° to 180 ° according to the frequency. Next, the relationship between the input and output voltages described above is quantitatively verified.
  • FIG. 7 is a diagram equivalently showing the phase shift circuit 30C at the subsequent stage, and shows the components corresponding to two series circuits provided on the input side of the differential amplifier 32.
  • each of the resistors 38 and 40 Since the input voltage E i is applied to both ends of the series circuit composed of the resistors 38 and 40, each of the resistors 38 and 40 generates the voltage E iZ 2 as in the case of the preceding phase shift circuit 10C. You can think of it as replacing two voltage sources 27 and 28. At this time, the current I flowing through the closed loop of the equivalent circuit shown in FIG. Where R is the capacitance of the capacitor 34 and C is the capacitance of the capacitor 34, which can be expressed by the above equation (1).
  • Equations (10) and (11) described above differ from Equations (4) and (5) shown for the preceding phase shift circuit 10C only in sign. Therefore, the absolute value of the output voltage Eo can be directly applied to the equation (6), and the phase shift circuit 30C in the subsequent stage can output the amplitude of the output signal no matter how the phase between the input and output rotates. It can be seen that the amplitude is constant.
  • phase shift amount 02 of the output voltage Eo with respect to the input voltage Ei is obtained from the equation (11).
  • phase shift circuits 10C and 30C are shifted by a predetermined amount in each of the two phase shift circuits 10C and 30C.
  • the relative phase relationship between the input and output voltages in each of the phase shift circuits 10 C and 30 C is in the opposite direction.
  • a signal having a phase shift amount of 0 ° is output by the entire phase shift circuits 10C and 30C.
  • the output of the subsequent phase shift circuit 30C is fed back to the input side of the non-inverting circuit 50 provided in the preceding stage of the phase shift circuit 10C via the feedback resistor 70, and the signal thus fed back is output.
  • the signal is input to the input terminal (input terminal 22 shown in FIG. 2) of the preceding phase shift circuit 10C via the non-inverting circuit 50 functioning as a buffer circuit.
  • such a feedback loop is formed, and by setting the loop gain to 1 or more, a sine wave oscillation is performed at a frequency at which the phase shift amount becomes 0 ° when the loop goes through the closed loop. Done.
  • a method of setting the loop gain to 1 or more a method of adjusting the amplification degree of each of the differential amplifiers 12 and 32 in the two phase shift circuits 10C and 30C and adjusting the amplification degree of the non-inverting circuit 50 There is.
  • FIG. 8 is a circuit diagram in which the whole of the two phase shift circuits 10C and 30C and the non-inverting circuit 50 having the above-described configuration are replaced with a circuit having a transfer function K1, and a circuit having a transfer function K1 and a resistance value R0 are shown.
  • a closed loop is formed by the feedback resistor 70 of FIG.
  • FIG. 9 is a circuit diagram obtained by converting the circuit shown in FIG. 8 by Miller's theorem.When the feedback resistor 70 having a resistance value R0 is converted into an input shunt resistor, the resistance value Rs becomes
  • the phase shift amount of a signal that makes a round of the closed loop can be set to 0 ° at a certain frequency, and the loop gain at this time is set to 1 or more. By doing so, the sine wave oscillation is maintained.
  • the frequency at which the phase shift amount becomes 0 ° can be changed by changing the resistance value of the variable resistor 16 or the variable resistor 36 in each of the phase shift circuits 10C and 30C. Can be realized.
  • the oscillator 1 of this embodiment is configured by combining a differential amplifier, a capacitor or a resistor, and any of the constituent elements can be formed on a semiconductor substrate, so that the oscillation frequency and the maximum attenuation can be reduced. It is easy to form the entire adjustable oscillator 1 on a semiconductor substrate to form an integrated circuit.
  • the phase shift circuit 10C is arranged in the preceding stage and the phase shift circuit 30C is arranged in the subsequent stage. Since it is sufficient that the phase shift amount is 0 °, the oscillator may be configured such that the phase shift circuit 30C is arranged at the preceding stage and the phase shift circuit 10C is arranged at the subsequent stage by exchanging the order.
  • FIG. 10 is a circuit diagram showing a configuration of an oscillator according to a second embodiment to which the present invention is applied.
  • the oscillator 2 includes a non-inverting circuit 50 that outputs an input signal without changing its phase, and A phase shift of a total of 0 ° at a predetermined frequency by shifting the phase of the input signal by a predetermined amount.Two phase shift circuits 10 L and 30 L, and the output of the phase shift circuit 30 L to the input side of the non-inverting circuit 50 And a feedback resistor 70 that feeds back the current.
  • This feedback resistor 70 has a finite resistance value from 0 ⁇ .
  • the non-inverting circuit 50 operates as a buffer circuit, but may be omitted if attention is paid only to the basic operation of the oscillator.
  • FIG. 11 is a circuit diagram extracting and showing the configuration of the preceding phase shift circuit 10L shown in FIG. 10.
  • the phase shift circuit 10L converts the two-input differential voltage to a predetermined amplification degree (for example, And a variable resistor 16 that amplifies the output of the differential amplifier 12 by a predetermined amount and shifts the phase of the signal input to the input terminal 22 by a predetermined amount to input to the non-inverting input terminal of the differential amplifier 12.
  • a resistor 18 and a resistor 20 which divide the voltage level into about 1 Z2 without changing the phase of the signal input to the input terminal 22 and input the voltage to the inverting input terminal of the differential amplifier 12. It consists of.
  • the capacitor 19 inserted between the inductor 17 and the variable resistor 16 is a DC blocking capacitor, and its impedance is extremely small at the operating frequency, that is, has a large capacitance. The following description will be made on the assumption that the connection point between the inductor 17 and the resistor 20 is grounded.
  • the inverting input terminal of the differential amplifier 12 receives the voltage (input voltage) applied to the input terminal 22.
  • a voltage obtained by dividing E i) by the resistors 18 and 20 is applied.
  • the resistances of the resistors 18 and 20 are set substantially equal, and the resistances of these two resistors 18 and 20 are set.
  • the voltage E 2 divided into about 12 by the voltage dividing circuit constituted by the series circuit is applied to the inverting input terminal of the differential amplifier 12.
  • the non-inverting input terminal of the differential amplifier 12 is connected to the connection point of the variable resistor 16 and the inqector 17 (more precisely, the capacitor 19 connected in series with the inductor 17). And the connection point of the variable resistor 16, but as described above, this capacitor 19 is for blocking direct current and does not affect the operation, so it can be omitted when explaining the basic operation.)
  • a signal is input. Since an input signal is input to one end of an LR circuit (series circuit) composed of the variable resistor 16 and the inductor 17, the voltage of the signal obtained by shifting the phase of the input signal by a predetermined amount by the LR circuit is different. It is applied to the non-inverting input terminal of the operational amplifier 12.
  • the differential amplifier 12 outputs a signal obtained by amplifying the difference between the voltages applied to the two input terminals to a predetermined amplification factor, for example, about twice.
  • FIG. 12 is a vector diagram showing a relationship between an input / output voltage of the phase shift circuit 10L and a voltage appearing in an inductor or the like.
  • the voltage VL1 appearing at both ends of the inductor 17 and the voltage VR3 appearing at both ends of the variable resistor 16 are 90 ° out of phase with each other, and these are vectorically combined (added). Is the input voltage E i. Therefore, when the amplitude of the input signal is constant and only the frequency changes, the voltage VL1 across inductor ⁇ and the voltage VR3 across variable resistor 16 change along the circumference of the semicircle shown in Fig. 12. I do.
  • the voltage (the voltage Ei 2 across the resistor 20) applied to the inverting input terminal is vector-wise subtracted from the voltage (the voltage VL1 across the inductor 17) applied to the non-inverting input terminal of the differential amplifier 12.
  • This differential voltage Eo ' can be represented by a vector whose center point is the starting point and whose end point is a point on the circumference where voltage VL1 and voltage VR3 intersect in the semicircle shown in Fig. 12. , Whose size is equal to the radius E iZ 2 of the semicircle.
  • the voltage VL1 and the voltage VR3 are perpendicular to each other on the circumference. Therefore, the phase difference between the input voltage Ei and the voltage VL1 changes from 90 ° to 0 ° as the frequency ⁇ changes from 0 to ⁇ . And the phase shift amount 03 of the entire phase shift circuit 10L is twice that, and changes from 180 ° to 0 ° according to the frequency. Next, the relationship between the input and output voltages described above is quantitatively verified.
  • FIG. 13 is a diagram equivalently showing the preceding-stage phase shift circuit 10L, and shows a configuration corresponding to two series circuits provided on the input side of the differential amplifier 12.
  • This equation (22) is the same as the calculation result of equation (4) shown in the first embodiment, and the phase shift circuit 10L of this embodiment has the phase shift circuit 10C shown in FIG. It can be seen that the relationship between the input and output voltages is the same. Therefore, no matter how the phase between the input and output signals rotates, the amplitude of the output signal of the phase shift circuit 10L is constant.
  • the phase shift amount at the frequency is about 90 °.
  • the frequency ⁇ at which the phase shift amount becomes approximately 90 ° can be changed.
  • FIG. 14 shows a configuration extracted from the phase shift circuit 30L at the subsequent stage shown in FIG. 10.
  • the phase shift circuit 30L converts the two-input differential voltage into a predetermined amplification factor (for example, Differential amplifier 32, which amplifies and outputs the amplified signal by about 2 times, and an inductor 37, which shifts the phase of the signal input to the input terminal 42 by a predetermined amount and inputs it to the non-inverting input terminal of the differential amplifier 32, and a variable. Consisting of a resistor 36, a resistor 38 and a resistor 40, which divide the voltage level to about 1/2 without changing the phase of the signal input to the input terminal 42 and input it to the inverting input terminal of the differential amplifier 32. Have been.
  • a predetermined amplification factor for example, Differential amplifier 32, which amplifies and outputs the amplified signal by about 2 times
  • an inductor 37 which shifts the phase of the signal input to the input terminal 42 by a predetermined amount and input
  • the capacitor 39 inserted in series with the inductor 37 is a DC blocking capacitor, and its impedance is extremely small at the operating frequency, that is, has a large capacitance.
  • phase shift circuit 30L having such a configuration, when a predetermined AC signal is input to the input terminal 42, a voltage applied to the input terminal 42 (input voltage E i) is divided by resistors 38 and 40.
  • the resistance values of the resistor 38 and the resistor 40 are set substantially equal, and the voltage E iZ 2 divided by about 12 by the voltage dividing circuit constituted by the series circuit of the two resistors 38 and 40 is obtained.
  • the signal appearing at the connection point between the inductor 37 and the variable resistor 36 is input to the non-inverting input terminal of the differential amplifier 32.
  • One end of an LR circuit (series circuit) composed of an inductor 37 and a variable resistor 36 has an input signal , The voltage of the signal obtained by shifting the phase of the input signal by a predetermined amount by the LR circuit is applied to the non-inverting input terminal of the differential amplifier 32.
  • the differential amplifier 32 outputs a signal obtained by amplifying the difference between the voltages applied to the two input terminals to a predetermined width, for example, about twice.
  • FIG. 15 is a vector diagram showing a relationship between an input / output voltage of the phase shift circuit 30L and a voltage appearing in an inductor or the like.
  • the voltage VR4 appearing at both ends of the variable resistor 36 and the voltage VL2 appearing at both ends of the inductor 37 are 90 ° out of phase with each other, and these are vectorically combined (added). Is the input voltage E i. Therefore, when the amplitude of the input signal is constant and only the frequency changes, the voltage VR4 across the variable resistor 36 and the voltage V L2 across the inductor 37 along the circumference of the semicircle shown in FIG. Change.
  • the voltage applied to the non-inverting input terminal of the differential amplifier 32 (the voltage VE4 across the variable resistor 36) and the voltage applied to the inverting input terminal (the voltage E iZ 2 across the resistor 40) are vector-wise.
  • the difference is the difference voltage Eo '.
  • This differential voltage Eo ' can be expressed as a vector with the center point as the starting point and the point on the circumference where voltage VR4 and voltage VL2 intersect as the end point in the semicircle shown in Fig. 15. The size of which is equal to the radius of the semicircle E i / 2.
  • the phase difference between the input voltage Ei and the voltage VR4 varies from a frequency ⁇ of 0 to ⁇ .
  • the angle changes from 0 ° to 90 ° as required.
  • the phase shift amount 04 of the entire phase shift circuit 30L is twice that, and changes from 0 ° to 180 ° according to the frequency.
  • FIG. 16 is a diagram equivalently showing the subsequent phase shift circuit 30L, and shows a configuration corresponding to two series circuits provided on the input side of the differential amplifier 32.
  • each of the resistors 38 and 40 has the voltage E i as in the case of the preceding phase shift circuit 10L. It can be considered by replacing two voltage sources 27 and 28 that generate 2.
  • the current I ′ flowing through the closed loop of the equivalent circuit shown in FIG. 16 can be expressed by the above equation (19), where R is the resistance of the variable resistor 36 and L is the inductance of the inductor 37.
  • This equation (25) is the same as equation (10) shown in the first embodiment, and the phase shift circuit 30L of this embodiment has the same input-output voltage as the phase shift circuit 30C of the first embodiment. It can be seen that the following relationship is satisfied. Therefore, no matter how the phase of the input / output signal is rotated, the amplitude of the output signal of the phase shift circuit 30L is constant.
  • phase shift amount 04 of the output voltage Eo with respect to the input voltage 02 expressed by the above equation (12) is applied as it is.
  • the angle is almost 90 °.
  • the frequency ⁇ at which the phase shift amount becomes almost 90 ° is changed. Can be done.
  • phase shift circuits 10L and 30L are shifted by a predetermined amount in each of the two phase shift circuits 10L and 30L.
  • the relative phase relationship between the input and output voltages in each of the phase shift circuits 10L and 30L is opposite, and two phase shifts at a certain frequency.
  • a signal having a phase shift amount of 0 ° is output by the entire circuits 10L and 30L.
  • the output of the subsequent phase shift circuit 30L is fed back via a feedback resistor 70 to the input side of a non-inverting circuit 50 provided in the preceding stage of the phase shift circuit 10L.
  • the signal is input to the input terminal (input terminal 22 shown in FIG. 11) of the preceding phase shift circuit 10 L via the non-inverting circuit 50 functioning as a circuit.
  • such a feedback loop is formed, and by setting the loop gain to 1 or more, the sine wave is generated at a frequency such that the phase shift amount becomes 0 ° when the loop goes through the closed loop. Oscillation is performed.
  • the method for setting the loop gain to 1 or more is to adjust the amplification of the differential amplifiers 12 and 32 in the two phase shift circuits 10L and 30L, or to adjust the amplification of the non-inverting circuit 50. There is.
  • the oscillator 2 of the second embodiment including the non-inverting circuit 50 and the two phase shift circuits 10L and 30L described above can be replaced by a circuit having a transfer function K1 in the first embodiment.
  • it can be represented by the circuit diagram shown in FIG. Therefore, by performing the conversion according to Mira's theorem, it can be represented by the circuit diagram shown in FIG. 9, and the input shunt resistance Rs of the circuit after the conversion can be represented by equation (13).
  • the transfer functions of the two phase shift circuits 10L and 30L of this embodiment are represented by the two phase shift circuits 10C of the first embodiment.
  • the phase shift amount of a signal that goes around the closed loop is set to 0 ° at a certain frequency.
  • the loop gain By setting the loop gain to 1 or more, sine wave oscillation is maintained.
  • the frequency at which the phase shift amount becomes 0 ° can be changed by changing the resistance value of the variable resistor 16 or 36 in each of the phase shift circuits 10 L and 30 L.
  • An oscillator can be realized.
  • intagta 17, 37 it is possible to form the intagta 17, 37 on a semiconductor substrate by forming a spiral conductor by photolithography or the like, but by using such inductors 17, 37, It is also easy to form the entire oscillator 2 together with other components (differential amplifiers, resistors, etc.) on a semiconductor substrate to form an integrated circuit.
  • the phase shift circuit 10L is arranged in the preceding stage and the phase shift circuit 30L is arranged in the subsequent stage, respectively. Since the amount only needs to be 0 °, the oscillator may be configured such that the phase shift circuit 30L is arranged at the front stage and the phase shift circuit 10L is arranged at the rear stage, with the order before and after these being interchanged.
  • FIG. 17 is a circuit diagram showing the configuration of the oscillator according to the third embodiment.
  • the oscillator 3 includes a non-inverting circuit 50 that outputs the input signal without changing the phase, and FIG.
  • the phase shift circuits 10 C and 30 L whose configuration is shown in the figure are provided, and a feedback resistor 70 for feeding back the output of the subsequent phase shift circuit 30 L to the input side of the non-inverting circuit 50.
  • This feedback resistor 70 has a finite resistance value from 0 ⁇ .
  • the phase is shifted by a predetermined amount by each of the two phase shift circuits 10C and 30L of the oscillator 3 in the third embodiment.
  • each phase shift circuit 10C The relative phase relationship between the input and output voltages at 30 L is opposite, and a signal having a phase shift amount of 0 ° is output by the whole of the two phase shift circuits 10 C and 30 L at a certain frequency.
  • the output of the subsequent phase shift circuit 30L is fed back to the input side of the non-inverting circuit 50 provided before the phase shift circuit 10C via a feedback resistor 70.
  • the signal is input to the input terminal (input terminal 22 shown in FIG. 2) of the preceding phase shift circuit 10C via the non-inverting circuit 50 functioning as a buffer circuit.
  • Oscillator 3 has such a feedback loop formed, and by setting the loop gain to 1 or more, sine wave oscillation is performed at a frequency where the phase shift amount becomes 0 ° when the oscillator 3 makes a round of the closed loop. .
  • the loop gain As a method of setting the loop gain to 1 or more, the amplification of the differential amplifiers 12 and 32 in the two phase shift circuits 10C and 30L is adjusted, and the amplification of the non-inverting circuit 50 is adjusted. There is a way to adjust.
  • the oscillator 3 of the third embodiment including the non-inverting circuit 50 and the two phase shift circuits 10C and 30L described above can be replaced by a circuit having a transfer function K1 in the first embodiment.
  • the circuit diagram shown in FIG. Therefore, the circuit can be represented by the circuit diagram shown in Fig. 9 by performing conversion according to Miller's theorem, and the input shunt resistance Rs of the circuit after conversion can be represented by equation (13).
  • the transfer function of the subsequent phase shift circuit 30L of this embodiment is the same as each transfer function of the subsequent phase shift circuit 30C of the first embodiment.
  • the phase shift amount of a signal that goes around the closed loop can be set to 0 ° at a certain frequency, and the loop gain at this time is set to 1 or more. By doing so, the sine wave oscillation is maintained.
  • the frequency at which the phase shift amount is 0 ° is determined by the variable resistance in each of the phase shift circuits 10C and 30L. Since it can be changed by changing the resistance value of 16 or 36, a variable frequency oscillator can be easily realized.
  • the inductor 37 can be formed on the semiconductor substrate by forming a spiral conductor by a photolithography method or the like. By using such an ingkta 37, it is easy to form an integrated circuit by forming the entire oscillator 3 together with other components (differential amplifier, resistor, etc.) on a semiconductor substrate.
  • the time constant T of the CR circuit of the preceding phase shift circuit 10C is CR
  • the time constant T of the LR circuit of the subsequent phase shift circuit 30L is LZR. Because the denominator is divided, for example, when the entire oscillator 3 is formed on a semiconductor substrate and the variable resistors 16 and 36 are formed by FETs, the fluctuation of the oscillation frequency due to the temperature change of the resistance value is suppressed. So-called temperature compensation becomes possible.
  • the phase shift circuit 10C is arranged at the preceding stage, and the phase shift circuit 30L is arranged at the subsequent stage.
  • the oscillator may be configured such that the phase shift circuit 30L is arranged in the front stage and the phase shift circuit 10C is arranged in the subsequent stage by exchanging the order.
  • FIG. 18 is a circuit diagram showing the configuration of the oscillator according to the fourth embodiment.
  • This oscillator 4 includes a non-inverting circuit 50 that outputs the input signal without changing the phase, and FIG. 11 or FIG.
  • the phase shift circuits 10 L and 30 C whose configuration is shown in the figure are configured by a feedback resistor 70 that feeds back the output of the subsequent phase shift circuit 30 C to the input side of the non-inverting circuit 50.
  • This feedback resistor 70 has a finite resistance value from 0 ⁇ .
  • the phase is shifted by a predetermined amount by each of the two phase shift circuits 10L and 30C of the oscillator 4 in the fourth embodiment.
  • the relative phase relationship between the input and output voltages in each of the phase shift circuits 10L and 30C is opposite, and at a certain frequency, the two phase shift circuits 10L and 10L A signal with a phase shift amount of 0 ° is output by the entire 30C.
  • the output of the subsequent phase shift circuit 30C is fed back via a feedback resistor 70 to the input side of a non-inverting circuit 50 provided before the phase shift circuit 10L.
  • the signal is input to the input terminal (input terminal 22 shown in FIG. 11) of the preceding phase shift circuit 10 L via the non-inverting circuit 50 functioning as a buffer circuit.
  • Oscillator 4 has such a feedback loop formed, and by setting the loop gain to 1 or more, sine wave oscillation is performed at a frequency at which the phase shift amount becomes 0 ° when making a round of the closed loop. .
  • the amplification degree of each of the differential amplifiers 12 and 32 in the two phase shift circuits 10 L and 30 C is adjusted, and the amplification degree of the non-inverting circuit 50 is adjusted. There is a way to adjust.
  • the oscillator 4 of the fourth embodiment including the non-inverting circuit 50 and the two phase shift circuits 10 L and 30 C described above is replaced with a circuit having a transfer function K1 as a whole.
  • it can be represented by the circuit diagram shown in FIG. Therefore, by performing the conversion according to Mira's theorem, it can be represented by the circuit diagram shown in FIG. 9, and the input shunt resistance Rs of the circuit after the conversion can be represented by equation (13).
  • the transfer function of the preceding phase shift circuit 10 L of this embodiment is the same as each transfer function of the preceding phase shift circuit 10 C of the first embodiment.
  • the phase shift amount of the signal that goes through the closed loop can be set to 0 ° at a certain frequency, and the loop gain at this time is reduced.
  • Sine wave oscillation is maintained by setting it to 1 or more.
  • the frequency at which the phase shift amount becomes 0 ° can be changed by changing the resistance value of the variable resistor 16 or 36 in each of the phase shift circuits 10L and 30C. Oscillator can be realized.
  • the inctor 17 can be formed on a semiconductor substrate by forming a spiral-shaped conductor by photolithography or the like.
  • the inductor 17 it is easy to form an integrated circuit by forming the entire oscillator 4 on a semiconductor substrate together with other components (differential amplifier, resistor, etc.).
  • the time constant T of the LR circuit of the preceding phase shift circuit 10L is L / R
  • the time constant T of the CR circuit of the succeeding phase shift circuit 30C is CR.
  • the oscillator 4 is formed entirely on a semiconductor substrate and the variable resistors 16 and 36 are formed by FETs, the fluctuation of the oscillation frequency with respect to the temperature change of the resistance value is suppressed. So-called temperature compensation becomes possible.
  • the phase shift circuit 10 L is arranged at the preceding stage, and the phase shift circuit 30 C is arranged at the subsequent stage.
  • the oscillator may be configured by exchanging the order before and after, by arranging the phase shift circuit 30C in the preceding stage and the phase shifting circuit 10L in the subsequent stage.
  • the oscillator of each of the above-described embodiments is configured by combining two phase shift circuits in which the relative phase relationship between the input and output signals is opposite, as shown in FIGS. 3 and 6.
  • An oscillator may be configured by combining two phase shift circuits having the same phase relationship.
  • FIG. 19 is a diagram showing a configuration of an oscillator according to a fifth embodiment.
  • This oscillator 5 has a phase inversion circuit 80 that inverts the phase of an input signal and outputs the inverted signal, and FIG.
  • the phase shift circuit 10C includes a phase shift circuit 10C and a feedback resistor 70 that feeds back the output of the subsequent phase shift circuit 10C to the input side of the phase inversion circuit 80.
  • the phase inversion circuit 80 inverts the phase of the input signal, and outputs a signal obtained by amplifying the input signal with a predetermined amplification at the same time as the phase inversion. Therefore, by adjusting the amplification of each differential amplifier 12 in the phase inversion circuit 80 or the two phase shift circuits 10C, the loop gain can be easily set to 1 or more.
  • each of the two phase shift circuits 10C changes the phase shift amount from 180 ° to 0 as the frequency ⁇ of the input signal changes from 0 to ⁇ . Up to °.
  • the phase shift amount in each of the two phase shift circuits 10C is 90 ° at the frequency of. Therefore, the phase is shifted by 180 ° by the entire two phase shift circuits 10 C, and the phase is inverted by the phase inverting circuit 80 provided at the preceding stage.
  • a signal having a phase shift amount of 0 ° is output from the subsequent phase shift circuit 10C.
  • sine wave oscillation having the frequency ⁇ is performed.
  • the transfer function K21 of each of the two phase shift circuits 10C is expressed by the following equation, where ⁇ is the time constant of the CR circuit in each phase shift circuit 10C.
  • Equation (27) is equal to the entire transfer function when the non-inverting circuit 50 and the two phase shift circuits 10 C and 30 C shown in the first embodiment are connected. It can be seen that the configuration in which the inversion circuit 80 and the two phase shift circuits 10C are connected is equivalent to the configuration of the oscillator 1 shown in FIG. 1 in the first embodiment.
  • the oscillator 5 of the fifth embodiment by setting the amplification of the phase inversion circuit 80 or the amplification of the two phase shift circuits 10 C to an appropriate value and setting the loop gain to 1 or more, The sine wave oscillation is sustained at the frequency where the phase shift amount becomes 0 ° after one round.
  • variable frequency oscillator 5 By changing the resistance value R of the variable resistor 16 in each phase shift circuit 10C, Since the phase shift amount in the phase circuit IOC can be changed, the frequency at which the total phase shift amount becomes 0 ° can be changed by the entire phase inverting circuit 80 and the two phase shift circuits 10 C, which can be easily performed.
  • the variable frequency oscillator 5 can be realized.
  • the oscillator 5 of this embodiment is configured by combining a differential amplifier, a capacitor or a resistor, and any component can be formed on a semiconductor substrate, so that the oscillation frequency and the maximum attenuation are adjusted. It is also easy to form the integrated circuit by forming the entire obtained oscillator 5 on a semiconductor substrate.
  • FIG. 20 is a diagram showing a configuration of an oscillator according to a sixth embodiment.
  • This oscillator 6 has a phase inversion circuit 80 for inverting the phase of an input signal and outputting the inverted signal, and FIG.
  • the phase shift circuit 30C includes a phase shift circuit 30C and a feedback resistor 70 that feeds back the output of the subsequent phase shift circuit 30C to the input side of the phase inversion circuit 80.
  • the phase inversion circuit 80 inverts the phase of the input signal, and outputs a signal obtained by amplifying the input signal with a predetermined amplification at the same time as the phase inversion. Therefore, by adjusting the amplification of each differential amplifier 32 in the phase inversion circuit 80 or the two phase shift circuits 30C, the loop gain can be easily set to 1 or more.
  • each of the two phase shift circuits 30C changes the phase shift amount from 0 ° to 180 ° as the frequency of the input signal changes from 0 to ⁇ . Up to °.
  • the phase at each of the two phase shift circuits 30 C at a frequency of ⁇ 1 1
  • the shift amount is 90 °. Therefore, the phase is shifted by 180 ° by the entire two phase shift circuits 30C, and the phase is inverted by the phase inverting circuit 80 provided in the preceding stage.
  • a signal in which the phase shift amount becomes 0 ° in one cycle is output from the subsequent phase shift circuit 30C.
  • a sine wave oscillation having a frequency ⁇ is performed.
  • K12 (-l) xK3lxK31
  • the configuration in which the phase inversion circuit 80 and the two phase shift circuits 30C are connected in this embodiment is different from the configuration in which the non-inversion circuit 50 and the two phase shift circuits 10C and 30C are connected in the first embodiment, This can be said to be equivalent to the configuration in which the phase inversion circuit 80 and the two phase shift circuits 10C are connected in the fifth embodiment.
  • the oscillator 6 of the sixth embodiment by setting the amplification of the phase inversion circuit 80 or the amplification of the two phase shift circuits 30C to an appropriate value and setting the loop gain to 1 or more, The sine wave oscillation is maintained at the frequency where the phase shift becomes 0 ° when the circuit makes one round.
  • each phase shift circuit 30C by varying the resistance value R of the variable resistor 36 in each phase shift circuit 30C, the amount of phase shift in each phase shift circuit 30C can be changed, so that the phase inversion circuit 80 and the two phase shift circuits 30C are used.
  • the frequency at which the phase shift amount becomes 0 ° in total can be changed by the entire C, and the variable frequency oscillator 6 can be easily realized.
  • the oscillator 6 of this embodiment is configured by combining a differential amplifier, a capacitor or a resistor, and any of the constituent elements can be formed on a semiconductor substrate. Therefore, the oscillation frequency and the maximum attenuation are adjusted. It is easy to form the integrated circuit by forming the whole of the obtained oscillator 6 on a semiconductor substrate.
  • FIG. 21 is a diagram showing a configuration of an oscillator according to a seventh embodiment.
  • This oscillator 7 has a phase inversion circuit 80 that inverts the phase of an input signal and outputs the inverted signal, and FIG. 11 shows a configuration thereof. It comprises two phase shift circuits 10L and a feedback resistor 70 for returning the output of the subsequent phase shift circuit 10L to the input side of the phase inversion circuit 80.
  • the phase inversion circuit 80 inverts the phase of the input signal, and outputs a signal obtained by amplifying the input signal with a predetermined amplification at the same time as the phase inversion. Therefore, by adjusting the amplification of each differential amplifier 12 in the phase inversion circuit 80 or the two phase shift circuits 10L, the loop gain can be easily set to 1 or more.
  • each of the two phase shift circuits 10L changes the phase shift amount from 180 ° to 0 ° as the frequency ⁇ of the input signal changes from 0 to ⁇ . Up to °.
  • a signal having a phase shift amount of 0 ° is output from the subsequent phase shift circuit 10L.
  • a sine wave oscillation having the frequency ⁇ is performed.
  • each of the two phase shift circuits 10L has the same input-output voltage relationship as the phase shift circuit 10C whose configuration is shown in FIG.
  • the function can be represented by K21 shown in equation (26). Therefore, the entire transfer function when the phase inversion circuit 80 and the two phase shift circuits 10 L are connected can also be expressed by ⁇ 11 expressed by the equation (27).
  • the calculation result of the transfer function K11 shown in the equation (27) is obtained by replacing ⁇ 2 with ⁇ ⁇ 2 in the transfer function K1 shown in the equation (16) in the first embodiment. be equivalent to.
  • the configuration in which the phase inversion circuit 80 and the two phase shift circuits 10L are connected in this embodiment is equivalent to the configuration in which the non-inversion circuit 50 and the two phase shift circuits 10C and 30C are connected in the first embodiment. You can say that.
  • the amplification degree of the phase inversion circuit 80 Alternatively, by setting the gain of the two phase shifters 10 L to an appropriate value and setting the loop gain to 1 or more, the sine wave oscillation is sustained at a frequency where the phase shift amount becomes 0 ° during one round. Is done.
  • the resistance value R of the variable resistor 16 in each phase shift circuit 10L can be changed, so that the phase inversion circuit 80 and the two phase shift circuits 10 L
  • the frequency at which the phase shift amount becomes 0 ° in total can be changed, and the variable frequency oscillator 7 can be easily realized.
  • the inductor 17 can be formed on a semiconductor substrate by forming a spiral conductor by a photolithography method or the like.
  • the inductor 17 it is easy to form an integrated circuit by forming the entire oscillator 7 together with other components (differential amplifier, resistor, etc.) on a semiconductor substrate.
  • FIG. 22 is a diagram showing a configuration of an oscillator according to an eighth embodiment.
  • This oscillator 8 has a phase inversion circuit 80 that inverts the phase of an input signal and outputs the inverted signal, and FIG. 14 shows a configuration thereof. It is composed of two phase shift circuits 30 L and a feedback resistor 70 for returning the output of the subsequent phase shift circuit 30 L to the input side of the phase inversion circuit 80.
  • the phase inversion circuit 80 inverts the phase of the input signal, and outputs a signal obtained by amplifying the input signal with a predetermined amplification at the same time as the phase inversion. Therefore, the loop gain can be easily set to 1 or more by adjusting the amplification of each differential amplifier 32 in the phase inversion circuit 80 or the two phase shift circuits 30L.
  • each of the two phase shift circuits 30L changes the phase shift amount from 0 ° to 180 ° as the frequency ⁇ of the input signal changes from 0 to ⁇ . Up to °.
  • the phase shift amount in each of the two phase shift circuits 30L at the frequency of ⁇ 1 ⁇ Is 90 °. According to Therefore, the phase is shifted by 180 ° by the entire two phase shift circuits 30L, and the phase is inverted by the phase inverting circuit 80 provided at the preceding stage.
  • a signal having a phase shift amount of 0 ° is output from the subsequent phase shift circuit 30L.
  • a sine wave oscillation having the frequency ⁇ is performed.
  • each of the two phase shift circuits 30L has the same input-output voltage relationship as the phase shift circuit 30C whose configuration is shown in FIG.
  • the number can be represented by K31 shown in equation (28). Therefore, the entire transfer function when the phase inversion circuit 80 and the two phase shift circuits 30 L are connected can also be expressed by K12 expressed by the equation (29).
  • the calculation result of the transfer function K12 shown in the equation (29) is obtained by replacing ⁇ 2 with ⁇ ⁇ 2 of the transfer function K1 shown in the equation (16) in the first embodiment. be equivalent to.
  • the configuration in which the phase inversion circuit 80 and the two phase shift circuits 30L are connected in this embodiment is equivalent to the configuration in which the non-inversion circuit 50 and the two phase shift circuits 10C and 30C are connected in the first embodiment. You can say that.
  • the oscillator 8 of the eighth embodiment by setting the amplification of the phase inversion circuit 80 or the amplification of the two phase shift circuits 30 L to an appropriate value and setting the loop gain to 1 or more, The sine wave oscillation is sustained at the frequency where the phase shift becomes 0 ° when the circuit makes one round.
  • the amount of phase shift in each phase shift circuit 30L can be changed, so that the phase inversion circuit 80 and the two phase shift circuits 30L
  • the frequency at which the phase shift amount becomes 0 ° in total can be changed by the entirety of L, and the variable frequency oscillator 8 can be easily realized.
  • the inctor 37 can be formed on a semiconductor substrate by forming a spiral-shaped conductor by photolithography or the like.
  • a spiral-shaped conductor by photolithography or the like.
  • FIG. 23 is a circuit diagram showing the configuration of the oscillator according to the ninth embodiment.
  • This oscillator 9A includes a phase inverting circuit 80 that inverts the phase of an input signal and outputs the inverted signal, and FIG. It is composed of phase shift circuits 10 C and 10 L whose configuration is shown in FIG. 1, and a feedback resistor 70 that feeds back the output of the subsequent phase shift circuit 10 L to the input side of the phase inversion circuit 80.
  • the phase inversion circuit 80 inverts the phase of the input signal, and outputs a signal obtained by amplifying the input signal with a predetermined amplification at the same time as the phase inversion. Therefore, by adjusting the amplification of each differential amplifier 12 in the phase inversion circuit 80 or the two phase shift circuits 10C and 10L, the loop gain can be easily set to 1 or more. As described in the first embodiment or the second embodiment, each of the phase shift circuits 10C and 10L has a phase shift amount of 1 as the frequency ⁇ of the input signal changes from 0 to 0. It varies from 80 ° to 0 °.
  • the shift at the frequency of ⁇ 1 ⁇
  • the phase shift amount in each of the phase circuits 10C and 10L is 90 °. Therefore, the phase is shifted by 180 ° by the entire two phase shift circuits 10C and 10L, and the phase is inverted by the phase inverting circuit 80 provided at the preceding stage.
  • a signal in which the phase shift amount becomes 0 ° in one cycle is output from the subsequent phase shift circuit 10L.
  • each phase shift circuit 10C, 10L by changing the resistance value R of the variable resistor 16 in each phase shift circuit 10C, 10L, the amount of phase shift in each phase shift circuit 10C, 10L can be changed.
  • the frequency at which the phase shift amount becomes 0 ° in total can be changed by the entirety of the two phase shift circuits 10C and 10L, and the variable frequency oscillator 9A can be easily realized.
  • the inctor 17 can be formed on a semiconductor substrate by forming a spiral-shaped conductor by photolithography or the like.
  • the integrator 17 it is easy to form the entire oscillator 9A together with the other components (differential amplifiers, resistors, etc.) on a semiconductor substrate to form an integrated circuit. It is.
  • the time constant T of the CR circuit of the preceding phase shift circuit 10 C is CR
  • the time constant T of the LR circuit of the subsequent phase shift circuit 10 L is L / R. Since it is divided into a molecule and a denominator, for example, when the entire oscillator 9A is formed on a semiconductor substrate and two variable resistors 16 are formed by FETs, the oscillation frequency of the resistance value with respect to a temperature change of the resistance value is changed. It is possible to suppress fluctuations, so-called temperature compensation.
  • the phase shift circuit 10C is arranged in the preceding stage and the phase shift circuit 10L is arranged in the subsequent stage, respectively. Since the amount only needs to be 180 °, the oscillator may be configured by exchanging these before and after, and disposing the phase shift circuit 10 L at the front stage and the phase shift circuit 10 C at the rear stage, respectively. .
  • FIG. 24 is a circuit diagram showing the configuration of the oscillator according to the tenth embodiment.
  • the oscillator 9 B includes a phase inversion circuit 80 that inverts the phase of an input signal and outputs the inverted signal. Alternatively, it is composed of a phase shift circuit 30 L and 30 C whose configuration is shown in FIG. 5, and a feedback resistor 70 that feeds back the output of the subsequent phase shift circuit 30 C to the input side of the phase inversion circuit 80.
  • the phase inversion circuit 80 inverts the phase of the input signal, and outputs a signal obtained by amplifying the input signal with a predetermined amplification at the same time as the phase inversion.
  • phase shift circuits 30L The phase is shifted by 180 ° by the entire 30C, and the phase is inverted by the phase inverting circuit 80 provided in the preceding stage.As a whole, the phase completes and the phase shift amount becomes 0 °. Is output from the subsequent phase shift circuit 30C. By feeding back the output of the subsequent phase shift circuit 30C to the input side of the phase inversion circuit 80 via the feedback resistor 70, a sine wave oscillation having a frequency ⁇ is performed.
  • the amount of phase shift in each of the phase shift circuits 30L and 30C can be changed.
  • the frequency at which the phase shift amount becomes 0 ° in total can be changed by the entire phase shift circuits 30L and 30C, and the variable frequency oscillator 9B can be easily realized.
  • the inductor 37 has a force that can be formed on a semiconductor substrate by forming a spiral conductor by photolithography or the like. By using this, it is easy to form the entire oscillator 9B together with other components (differential amplifiers, resistors, etc.) on a semiconductor substrate to form an integrated circuit.
  • the time constant T of the LR circuit of the preceding phase shift circuit 30L is LZR
  • the time constant T of the CR circuit of the subsequent phase shift circuit 30C is CR
  • the resistance value R is the denominator and the denominator, respectively.
  • the oscillator 9B of the tenth embodiment the phase shift circuit 30L is arranged in the preceding stage and the phase shift circuit 30C is arranged in the subsequent stage, respectively. Since it is only necessary that the phase shifter be 180 °, the oscillator may be configured by exchanging the front and rear sides, and disposing the phase shift circuit 30C in the preceding stage and the phase shift circuit 30L in the subsequent stage.
  • FIG. 25 is a diagram showing a specific example of a non-inverting circuit and a phase inverting circuit formed by using an operational amplifier.
  • the non-inverting circuit 50 shown in FIG. And an operational amplifier 52 having a resistor 56 connected between the inverting input terminal and the output terminal, and operates as a buffer having a predetermined amplification determined by the resistance ratio of the two resistors 54 and 56. .
  • the phase inversion circuit 80 shown in FIG. 25 (B) includes an operational amplifier 82 in which an input signal is input to an inverting input terminal via a resistor 84 and a non-inverting input terminal is grounded. It comprises a resistor 86 connected between the inverting input terminal and the output terminal.
  • the phase inverting circuit 80 has a predetermined amplification degree determined by the resistance ratio of the two resistors 84 and 86, and when an AC signal is input to the inverting input terminal of the operational amplifier 82 via the resistor 84.
  • the output terminal of the operational amplifier 82 outputs an inverted-phase signal with an inverted phase.
  • the oscillator of each of the above-described embodiments is configured by two phase shift circuits and a non-inverting circuit or two phase shift circuits and a phase inverting circuit, and is configured by three connected circuits as a whole.
  • a predetermined oscillation operation is performed by setting the total phase shift amount to 0 ° at a predetermined frequency. Therefore, focusing only on the amount of phase shift, there is a certain degree of freedom in the order in which the three circuits are connected, and the connection order can be determined as necessary.
  • FIG. 26 is a block diagram showing a connection state when an oscillator is configured by combining two phase shift circuits and a non-inverting circuit.
  • the feedback impedance element 70a most commonly uses a feedback resistor 70 as shown in FIG.
  • the feedback impedance element 70a may be formed by a capacitor or an integrator, or may be formed by combining a resistance and a capacitor or an inductor.
  • FIG. 26 (A) shows a configuration in which a non-inverting circuit 50 is arranged at a stage subsequent to two phase shift circuits. As described above, when the non-inverting circuit 50 is arranged at the subsequent stage, a large output current can be taken out by providing the non-inverting circuit 50 with an output buffer function.
  • FIG. 26 (B) shows a configuration in which a non-inverting circuit 50 is arranged between two phase shift circuits. In this way, in the case where the non-inverting circuit 50 is arranged in the middle, mutual interference between the preceding phase shift circuit and the subsequent phase shift circuit can be completely prevented.
  • FIG. 26 (C) shows a configuration in which a non-inverting circuit 50 is arranged in front of the two phase shift circuits.
  • This configuration is shown in FIG. This corresponds to the oscillator 2 shown in FIG. 17, the oscillator 3 shown in FIG. 17, and the oscillator 4 shown in FIG.
  • the influence of the feedback impedance element 70a on the preceding-stage phase shifting circuit can be minimized.
  • FIG. 27 is a block diagram showing a connection state when an oscillator is configured by combining two phase shift circuits and a phase inversion circuit.
  • the feedback impedance element 70a most commonly uses the feedback resistor 70.
  • the feedback impedance element 70a may be formed by a capacitor or an inductor, or may be formed by combining a resistor, a capacitor, or an inductor.
  • FIG. 27 (A) shows a configuration in which a phase inversion circuit 80 is arranged at a stage subsequent to the two phase shift circuits. As described above, when the phase inversion circuit 80 is disposed at the subsequent stage, a large output current can be obtained by providing the phase inversion circuit 80 with an output buffer function.
  • FIG. 27 (B) shows a configuration in which a phase inversion circuit 80 is arranged between two phase shift circuits. As described above, when the phase inversion circuit 80 is arranged in the middle, mutual interference between the two phase shift circuits can be completely prevented.
  • FIG. 27 (C) shows a configuration in which a phase inverting circuit 80 is arranged in front of two phase shifting circuits.
  • This configuration consists of the oscillator 5 shown in Fig. 19, the oscillator 6 shown in Fig. 20, the oscillator 7 shown in Fig. 21, the oscillator 8 shown in Fig. 22, and the oscillator shown in Fig. 23. It corresponds to each of the oscillator 9A and the oscillator 9B shown in FIG.
  • the influence of the feedback impedance element 70a on the preceding phase shifting circuit can be minimized.
  • phase shift circuit shown in each of the above embodiments includes the variable resistor 16 or 36.
  • variable resistors 16 and 36 are, specifically, junction type or MOS It can be realized by using a type FET.
  • FIG. 28 is a circuit diagram showing a configuration of a phase shift circuit in which the variable resistor 16 or 36 in two types of phase shift circuits 10 C or 30 C having a CR circuit is replaced by an FET.
  • FIG. 1 shows a configuration in which the variable resistor 16 is replaced with an FET in the phase shift circuit 10C.
  • FIG. 28 (B) shows a configuration in which the variable resistor 36 is replaced by an FET in the phase shift circuit 30C.
  • Fig. 29 is a circuit diagram showing the configuration of a phase shift circuit in which the variable resistor 16 or 36 in the two types of phase shift circuits 10L or 30L having an LR circuit is replaced by an FET.
  • Fig. 2 shows a configuration in which the variable resistor 16 is replaced with an FET in the phase shift circuit 10L.
  • FIG. 29 (B) shows a configuration in which the variable resistor 36 is replaced with an FET in the phase shift circuit 30L.
  • the gate voltage is controlled and the channel resistance is changed arbitrarily within a certain range.
  • the amount of phase shift in each phase shift circuit can be changed. Therefore, since the frequency at which the phase shift amount of the looping signal becomes 0 ° in each oscillator can be changed, the oscillation frequency of the oscillator can be arbitrarily changed.
  • variable resistor is configured by one FET, that is, a p-channel or n-channel FET, but the p-channel FET and the n-channel FET are connected.
  • One variable resistor may be configured by connecting in parallel, and a gate voltage of the same magnitude and different polarity may be applied between the gate and the substrate of each FET. When changing the resistance value, the magnitude of the gate voltage may be changed. In this way, by combining two FETs to form a variable resistor, the non-linear region of the FET can be improved, so that distortion of the oscillation output can be reduced.
  • phase shift circuit 10C or 30C shown in each of the above-described embodiments is obtained by changing the resistance value of the variable resistor 16 or 36 connected in series with the capacitor 14 or 34 to change the phase shift amount.
  • the capacitors 14, 34 were formed by variable capacitance elements, and the capacitance was changed. In this case, the overall oscillation frequency may be changed.
  • FIG. 30 is a circuit diagram showing a configuration of the phase shift circuit in the case where the capacity 14 in the phase shift circuit 10C or 30C shown in each embodiment is replaced with a variable capacitance diode.
  • 1A shows a configuration in which the variable resistor 16 is replaced with a fixed resistor and the capacitor 14 is replaced with a variable capacitance diode in one of the phase shift circuits 10C shown in FIG. 1 and the like.
  • FIG. 30 (B) shows a configuration in which, in the other phase shift circuit 30C shown in FIG. 1, etc., the variable resistor 36 is replaced with a fixed resistor and the capacitor 34 is replaced with a variable capacitance diode. .
  • the capacitor connected in series with the variable capacitance diode blocks direct current when a reverse bias voltage is applied between the anode and cathode of the variable capacitance diode.
  • the impedance of the capacitor is extremely small at the operating frequency, that is, it has a large capacitance.
  • a reverse bias voltage larger than the amplitude of the AC component is applied to the anode force source.
  • the capacitor 14 or 34 is composed of a variable capacitance diode, and the reverse bias voltage applied between the node and the cathode is controlled to arbitrarily change the capacitance of the variable capacitance diode within a certain range.
  • the amount of phase shift in each phase shift circuit can be changed. Therefore, it is possible to change the frequency at which the phase shift amount of the signal that goes round in each oscillator becomes 0 °, and it is possible to arbitrarily change the oscillation frequency of the oscillator.
  • variable capacitance diode is used as the variable capacitance element, but the source and the drain are connected to a fixed potential in a DC manner, and the variable voltage is applied to the gate. It may be configured to use the FET to which is applied. As described above, since the potentials at both ends of the variable capacitance diodes shown in FIGS. 30 (A) and (B) are fixed in a DC manner, these variable capacitance diodes need only be replaced with the FETs described above. By varying the voltage applied to the gate, the gate capacitance, that is, the capacitance of the FET can be changed. Further, in FIGS.
  • FIG. 30 (C) shows a configuration in which a variable resistor 16 is used and the capacitor 14 is replaced with a variable capacitance diode in one of the phase shift circuits 10C shown in FIG. 1 and the like.
  • FIG. 30 (D) shows a configuration in which the variable resistor 36 is used and the capacitor 34 is replaced by a variable capacitance diode in the other phase shift circuit 30 C shown in FIG. 1 and the like. . In these, it is natural that the variable capacitance diode may be replaced by a variable gate capacitance FET.
  • variable resistors shown in FIGS. 30 (C) and (D) can be formed by utilizing the channel resistance of FET as shown in FIG.
  • a p-channel FET and an n-channel FET are connected in parallel to form one variable resistor and gate voltages of the same magnitude and polarities are applied between the base and substrate of each FET Can improve the non-linear region of the FET, so that the distortion of the oscillation signal can be reduced.
  • each of the phase shift circuits is changed by arbitrarily changing the resistance value of the variable resistance and the capacitance of the variable capacitance element within a certain range.
  • the amount of phase shift in the phase circuit can be changed. Therefore, it is possible to change the frequency at which the phase shift amount of the looping signal is 0 ° in each oscillator, and arbitrarily change the oscillation frequency of the oscillator.
  • the oscillator of each of the above embodiments is formed on a semiconductor substrate, it is not possible to set a very large capacitance as the capacitor 14 or 34 in the phase shift circuits 10C and 30C. Therefore, if the small capacitance of the capacitor actually formed on the semiconductor substrate can be apparently increased by devising the circuit, the time constant T is set to a large value to reduce the oscillation frequency. This is convenient.
  • FIG. 31 is a circuit diagram showing a modification in which the capacitors 14 or 34 used in the phase shift circuits 10C and 30C shown in FIG. It operates as a capacitance conversion circuit that makes the capacitance of a capacitor formed on a semiconductor substrate appear large.
  • the entire circuit shown in FIG. 31 corresponds to the capacitor 14 or 34 included in the phase shift circuit 10 C or 30 C.
  • the capacitance conversion circuit 14a shown in FIG. 31 is composed of a capacitor 210 having a predetermined capacitance CO, two operational amplifiers 212 and 214, and four resistors 216, 218, 220 and 222. Have been.
  • the operational amplifier 212 in the first stage has a resistor 218 (this resistance is R18) connected between the output terminal and the inverting input terminal, and furthermore, this inverting input terminal is connected to the resistor 216 (this resistance is represented by R18). R 16).
  • the first-stage operational amplifier 212 mainly operates as a buffer that performs impedance conversion, and may have a gain of 1.
  • a gain of 1 means R 18ZR 16-0, that is, R 16 is set to infinity (the resistor 216 may be removed), or R 18 may be set to ⁇ (directly connected).
  • a resistor 222 (the resistance value of is represented by R22) is connected between the output terminal and the inverting input terminal, and the inverting input terminal and the output terminal of the above-described operational amplifier 212 are connected to each other.
  • the resistor 220 (this resistance is R20) is connected between the two, and the non-inverting input terminal is grounded.
  • E 3 -If E2...
  • the second-stage operational amplifier 214 operates as an inverting amplifier, and the first-stage operational amplifier 212 is used to set its input side to high impedance.
  • the capacitor 210 having a predetermined capacitance is provided between the non-inverting input terminal of the first-stage operational amplifier 212 and the output terminal of the second-stage operational amplifier 214. It is connected.
  • FIG. 31 Circuit of the capacitance conversion circuit 14a shown in FIG. 31 except for the capacitor 210 Assuming that the entire transfer function is K4, the capacitance conversion circuit 14a can be represented by a block diagram shown in FIG. Figure 33 is a block diagram converted from this by Miller's theorem.
  • Equation (34) indicates that the capacitance CO of the capacitor 210 in the capacitance conversion circuit 14a has apparently increased by (1 ⁇ K4) times.
  • the gain of the amplifier in the capacitance conversion circuit 14a shown in FIG. 31, that is, the gain K4 of the amplifier composed of the entirety of the operational amplifiers 212 and 214 is given by the following equations (30) and (31).
  • FIG. 34 is a circuit diagram showing a configuration of the capacitance conversion circuit 14b in which the resistor 216 connected to the inverting input terminal of the first operational amplifier 212 shown in FIG. 31 is removed.
  • the capacitance C appearing between the terminals 224 and 226 is represented by the equation (37), it is possible to change C O to a larger value only by changing the ratio of R22 and R20.
  • the capacitance conversion circuit 14a or 14b described above has a resistance ratio R22Z R20 between the resistor 220 and the resistor 222, and a resistance ratio R18 between the resistors 216 and 218.
  • R22Z R20 between the resistor 220 and the resistor 222
  • R18 between the resistors 216 and 218.
  • At least one of the resistors 216, 218, 220, and 222 is formed by a variable resistor.
  • a variable resistor By connecting a junction type or MOS type FET or a p-channel FET and an n-channel FET in parallel to form a variable resistor, the capacitance can be easily changed. A conversion circuit can be formed. Therefore, by using this capacitance conversion circuit instead of the variable capacitance diode shown in FIG. 30, the phase shift amount can be arbitrarily changed within a certain range.
  • the first-stage operational amplifier 212 is used as a buffer for increasing the input impedance, this operational amplifier 212 is used as an emitter hollow. ⁇ It may be replaced with a circuit or a source follower circuit.
  • FIG. 35 is a circuit diagram showing a configuration of a capacitance conversion circuit 14c using an emitter follower circuit in the first stage.
  • This capacitance conversion circuit 14c has the structure shown in FIG. It has a configuration in which the operational amplifier 212 and the two resistors 216 and 218 at the stage are replaced with an emitter follower circuit 228 including a bipolar transistor and a resistor.
  • FIG. 36 is a diagram showing the configuration of a capacitance conversion circuit 14 d using a source follower circuit in the first stage.
  • This capacitance conversion circuit 14 d It has a configuration in which the stage operational amplifier 212 and the two resistors 216 and 218 are replaced with a source follower circuit 230 including an FET and a resistor.
  • each of the above-mentioned capacitance conversion circuits 14 c and 14 d changes the apparent capacitance between the terminals 224 and 226 by changing the resistance ratio of the resistors 220 and 222 connected to the operational amplifier 214.
  • the point that C can be changed arbitrarily is the same as the capacitance conversion circuit 14a shown in FIG. 31 and the like. Therefore, by replacing at least one of the resistors 220 and 222 with a junction-type or MOS-type FET or a variable resistor in which a p-channel FET and an n-channel FET are connected in parallel, the capacitance can be changed.
  • a circuit can be configured, and by using this capacitance conversion circuit instead of the variable capacitance diode shown in FIG.
  • the phase shift amount can be arbitrarily changed within a certain range. For this reason, the frequency at which the phase shift amount of the signal that goes around in each oscillator becomes 0 ° can be changed, and the oscillation frequency of the oscillator of each embodiment can be arbitrarily changed.
  • the inductor can be used in place of the capacitor, and the inductance of the inductor can be increased in appearance.
  • FIG. 37 is a circuit diagram showing a modified example in which the ingktor 17 or 37 used for the phase shift circuits 10L and 30L shown in FIG. Then, it operates as an inductance conversion circuit that apparently increases the inductance of the inductor element formed on the semiconductor substrate.
  • the entire circuit shown in FIG. 37 corresponds to the ingktor 17 or 37 included in the phase shift circuits 10L and 30L.
  • the inductance conversion circuit 17a shown in FIG. 37 includes an inductor 260 having a predetermined inductance L0, two operational amplifiers 262 and 264, and two resistors 266 and 268.
  • the first-stage operational amplifier 262 is a non-inverting amplifier with a gain of 1 whose output terminal is connected to the inverting input terminal, and mainly operates as a buffer for performing impedance conversion.
  • the output terminal of the second-stage operational amplifier 264 is connected to the inverting input terminal, and operates as a non-inverting amplifier having a gain of 1.
  • a voltage dividing circuit composed of resistors 266 and 268 is inserted between these two non-inverting amplifiers.
  • the gain of the whole amplifier including the two non-inverting amplifiers can be freely set between 0 and 1.
  • the apparent inductance L between the two terminals 254 and 256 can be increased.
  • R68 R66
  • the inductance L can be made twice as large as L0 from the equation (41).
  • the above-described inductance conversion circuit 17a changes the voltage dividing ratio of the voltage dividing circuit inserted between the two non-inverting amplifiers, thereby changing the inductance L 0 of the actually connected inductor 260. Can be apparently enlarged. Therefore, when forming the entire oscillator 2 shown in FIG. 10 etc. on a semiconductor substrate, an inductor 260 having a small inductance L0 is formed on the semiconductor substrate by a spiral conductor or the like. In this case, the inductance can be converted to a large inductance L by the inductance conversion circuit shown in FIG. 37, which is convenient for integration.
  • At least one of the two resistors 266 and 268 is formed by a variable resistor, specifically, a junction type or MOS type.
  • This voltage division ratio may be continuously changed by forming a variable resistor by connecting the other FETs or the p-channel FET and the n-channel FET in parallel.
  • the gain of the entire amplifier including the operational amplifiers 262 and 264 shown in FIG. 37 changes, and the inductance L between the terminals 254 and 256 also changes continuously.
  • the phase shift amount of the looping signal in the oscillator becomes 0 °
  • the frequency can be changed, and the oscillation frequency of the above-described oscillator can be arbitrarily changed.
  • the inductance conversion circuit 17a shown in Fig. 37 since the gain of the whole amplifier including the two operational amplifiers 262 and 264 is set to 1 or less, the whole is replaced with an emitter follower circuit or a source follower circuit. You may.
  • FIG. 38 is a diagram showing a configuration of an inductance conversion circuit in which the entire amplifier including the operational amplifiers 262 and 264 is replaced by an emitter follower circuit.
  • the impedance of the capacitor 280 inserted at one end of the inccuter 260 is extremely small at the operating frequency so as not to affect the frequency characteristics, that is, set to a large capacitance.
  • the gain of the emitter follower circuit described above is mainly determined by the resistance ratio of the two resistors 274 and 276, and the gain is always less than 1. Therefore, as can be seen from equation (39), the inductor 260 is actually The apparent inductance L0 can be increased. In addition, since one emitter hollow circuit is used, the circuit configuration can be simplified, and the maximum operating frequency can be set high.
  • FIG. 38 (B) is a diagram showing a modified example thereof, and differs in that the two resistors 274 and 276 shown in FIG. 38 (A) are replaced with variable resistors 282.
  • the gain can be arbitrarily and continuously changed, so that the apparent inductance L can also be arbitrarily and continuously changed.
  • the circuit 17c as a variable inductor, the amount of phase shift in each phase shift circuit can be arbitrarily changed within a certain range. For this reason, the frequency at which the phase shift amount of the looping signal in the oscillator becomes 0 ° can be changed, and the oscillation frequency of the oscillator can be arbitrarily changed.
  • the inductance conversion circuit 17c shown in FIG. 38 (B) replaces the two resistors 274 and 276 in FIG. 38 (A) with one variable resistor 282. At least one of 274 and 276 may be constituted by a variable resistor.
  • FIG. 39 is a diagram in which each of the inductance conversion circuits 17b and 17C shown in FIGS. 38 (A) and (B) is realized by a source follower circuit, and a bipolar transistor 278 is connected to the FET284.
  • FIG. 39 (A) corresponds to FIG. 38 (A)
  • FIG. 39 (B) corresponds to FIG. 38 (B).
  • FIG. 40 is a circuit diagram showing a modification of the inductance conversion circuit 17a shown in FIG.
  • the inductance conversion circuit 17d shown in FIG. 40 includes an npn-type bipolar transistor 286 and a resistor 290 connected to its emitter, a pnp-type bipolar transistor 288 and a resistor 292 connected to its emitter. , And an inductor 260 having an inductance L 0.
  • the transistor 286 and the resistor 290 form a first emitter follower circuit, and the other transistor 288 and the resistor 292 form a second emitter follower circuit, which are cascaded. Moreover, since the npn-type transistor 286 and the pnp-type transistor 288 are used, the base potential of the transistor 286, which is one end of the inductor 260, and the emitter potential of the transistor 288 can be set to be almost the same. This eliminates the need for a DC blocking capacitor.
  • the difference between the two inputs is doubled by the differential amplifiers 12 and 32 in the phase shift circuits 10 C and 10 L or the phase shift circuits 30 C and 30 L, respectively.
  • the loop gain of the oscillator is set to approximately 1 by using the output of the phase shift circuit, the amplification of the differential amplifiers 12 and 32 may be set to other values.
  • the difference between the two inputs is not amplified or amplified with an amplification other than twice and output, and the amplification of the non-inverting circuit 50 or the phase inverting circuit 80 is adjusted.
  • the loop gain of the oscillator may be set to 1 or more.
  • the oscillator of each of the above-described embodiments includes two phase shift circuits.
  • the resistor constituting the CR circuit or the LR circuit included in both phase shift circuits is used.
  • changing the resistance and at least one element constant of the capacitor and the intagta that constitute the CR circuit or the LR circuit included in one phase shift circuit May be considered.
  • an oscillator having a fixed oscillation frequency may be configured by replacing the variable resistors 16 and 36 in each phase shift circuit shown in FIG. 1 and the like with a resistor having a fixed resistance value.
  • the oscillator of each of the above-described embodiments is obtained from one of the two phase shift circuits constituting the oscillator, or two of the phase shift circuits and the non-inverting circuit 50.
  • a sine wave signal is extracted from one circuit
  • a sine wave signal may be extracted from two or three circuits constituting an oscillator.
  • the phase shift amount in each phase shift circuit is 90 °, and the phases are shifted 90 ° from each other.
  • Phase output can be obtained.
  • two-phase outputs whose phases are inverted with each other can be obtained.
  • the constituent elements can be formed by an integrated circuit manufacturing method.
  • the channel between the source and drain of the FET is used as a variable resistor that constitutes the CR circuit or LR circuit of each phase shift circuit, and the control voltage applied to the gate of this FET is changed to change the channel resistance.
  • the capacitance and inductance will be reduced. Since the size can be easily increased, the oscillation frequency can be reduced and the mounting area of the entire oscillator can be reduced.
  • the oscillation frequency ⁇ is 1 STL C, so if the capacitance C or the inductance L is changed to adjust the oscillation frequency, the oscillation frequency will be the square root of the change. Changes in proportion to According to this oscillator, it is also possible to change the resistance in proportion to the resistance value of the resistors included in the two phase shift circuits, and it is possible to greatly adjust the oscillation frequency.

Landscapes

  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

An oscillator the oscillation of which can be adjusted over a wide range and which can stably operate and can be easily formed in an integrated circuit, comprises two phase shifting circuits (10C and 30C) each having a first serial circuit which divides the voltage of an inputted AC signal into about halves and which comprises two resistors, a second serial circuit which shifts the phase of the inputted AC signal by prescribed angle and which comprises a capacitor and a variable resistor, and a differential amplifier which performs prescribed amplification of the difference between the outputs of the first and second serial circuits, a noninverting circuit (50) connected to the input of the phase shifting circuit (10C), and a feedback resistor (70) which feeds back the signal outputted from the phase shifting circuit (30C) to the input of the noninverting circuit (50).

Description

発振器 技術分野 Oscillator technology
この発明は、 集積回路として形成することが容易で、 発振周波数を大幅に調整 することが可能な発振器に関する。  The present invention relates to an oscillator which can be easily formed as an integrated circuit and whose oscillation frequency can be largely adjusted.
背景技術 Background art
 Light
正弦波発振器として能動素子およびリァクタンス素子を使用した各種の発振回 路が、 従来より提案され実用化されてい田る。 例えば、 正弦波発振器として、 第 4 1図に示すウィーン ·プリッジ型発振器や、 第 4 2図に示すプリッジ T型発振器 が従来より知られている。  Various oscillation circuits using an active element and a reactance element as a sine wave oscillator have been proposed and put into practical use. For example, as a sine wave oscillator, a Wien-bridge oscillator shown in FIG. 41 and a bridge T-type oscillator shown in FIG. 42 are conventionally known.
第 4 1図に示すウィーン ·プリッジ型発振器においては、 周波数を変化させる ために、 キャパシタ Cとともに直列回路を構成する可変抵抗 Rsの抵抗値と、 キ ャパシタ Cとともに並列回路を構成する可変抵抗 Rpの抵抗値とを連動して変化 させなければならないが、 可変抵抗 Rsと可変抵抗 Rpの各抵抗値に連動誤差が生 じると、 増幅器 Aに入力される電圧が増減するので、 その結果、 発振出力が変動 する。 そして、 発振出力が小さくなれば発振が停止し、 大きくなれば発振出力に 著しい歪みを生じることになる。  In the Wien-Pridge oscillator shown in Fig. 41, in order to change the frequency, the resistance of the variable resistor Rs, which forms a series circuit with the capacitor C, and the variable resistance Rp, which forms a parallel circuit with the capacitor C, change the frequency. The resistance value must be changed in conjunction with the resistance value.However, if an error occurs between the resistance values of the variable resistance Rs and the variable resistance Rp, the voltage input to the amplifier A will increase or decrease. Output fluctuates. When the oscillation output decreases, oscillation stops, and when the oscillation output increases, significant distortion occurs in the oscillation output.
通常、 正弦波発振器の出力変動を少なくするように安定化することは難しく、 その安定化手段は増幅器の振幅特性に非線形を付加すること、 すなわち、 出力の 大きさによつてその増幅度が変化するような特性を付加することになる。  Normally, it is difficult to stabilize the output fluctuation of a sine wave oscillator so as to reduce it, and the stabilization means adds nonlinearity to the amplitude characteristics of the amplifier, that is, the amplification varies depending on the magnitude of the output. That is, such a characteristic is added.
このような特性を付加することは、 増幅器の直線性を悪化させることになり、 出力波形の歪率を悪化させることになるため好ましくない。  Adding such characteristics is not preferable because it deteriorates the linearity of the amplifier and the distortion of the output waveform.
また、 可変抵抗 R sと可変抵抗 R pの抵抗比を一定に保って変化させることは、 回路を集積回路化して、 外部から電圧制御の手法で可変抵抗を変化させる場合に は特に困難である。  In addition, it is particularly difficult to change the variable resistor Rs and variable resistor Rp while keeping the resistance ratio constant, when the circuit is integrated and the variable resistor is externally changed by a voltage control method. .
ウィーン,ブリツジ型発振器に限らず、 第 4 2図に示すプリッジ T型発振器や 移相型発振器でも同様のことがいえる。 Not only Wien and Bridge type oscillators, but also the T-type oscillator shown in Fig. 42 The same can be said for a phase shift type oscillator.
さらに、 発振周波数を大幅に調整し得る可変周波数発振器を集積回路によって 形成することも困難である。  Furthermore, it is difficult to form a variable frequency oscillator that can greatly adjust the oscillation frequency using an integrated circuit.
そこで、 この発明は、 このような問題点を解決するために考えられたものであ る。 発明の開示  Therefore, the present invention has been conceived to solve such a problem. Disclosure of the invention
この発明の発振器は、 入力される交流信号が両端に印加されており、 抵抗値が ほぼ等しい第 1および第 2の抵抗よりなる第 1の直列回路と、 前記交流信号が両 端に印加されており、 第 3の抵抗とキャパシタよりなる第 2の直列回路と、 前記 第 1の直列回路を構成する前記第 1および第 2の抵抗の接続点の電位と前記第 2 の直列回路を構成する前記第 3の抵抗と前記キヤノ、°シタの接続点の電位との差分 を所定の増幅度で増幅して出力する差動増幅器とよりなる 2つの移相回路を備え、 縦続接続された前記 2つの移相回路の後段の出力を前段の入力側に帰還させると ともに、 前記 2つの移相回路のいずれか一方から正弦波発振出力が取り出される。 また、 この発明の発振器は、 入力される交流信号が両端に印加され、 抵抗値が ほぼ等しい第 1および第 2の抵抗よりなる第 1の直列回路と、 前記交流信号が両 端に印加され、 第 3の抵抗とキャパシタよりなる第 2の直列回路と、 前記第 1の 直列回路を構成する前記第 1および第 2の抵抗の接続点の電位と前記第 2の直列 回路を構成する前記第 3の抵抗と前記キャパシタの接続点の電位との差分を所定 の増幅度で増幅して出力する差動増幅器とよりなる 2つの移相回路と、 入力され る交流信号の位相を変えずに出力する非反転回路とを備え、 前記 2つの移相回路 および前記非反転回路のそれぞれを縦続接続し、 これら縦続接続された複数の回 路の中の最終段の出力を初段の入力側に帰還させるとともに、 これら複数の回路 のいずれかから正弦波発振出力が取り出される。  In the oscillator according to the present invention, an input AC signal is applied to both ends, a first series circuit including first and second resistors having substantially equal resistance values, and the AC signal is applied to both ends. A second series circuit comprising a third resistor and a capacitor; a potential at a connection point of the first and second resistors constituting the first series circuit; and a second series circuit constituting the second series circuit. A differential amplifier that amplifies a difference between a third resistor and a potential at a connection point between the cano and the °-タ with a predetermined amplification degree and outputs the amplified signal, and the two cascade-connected two The output of the subsequent stage of the phase shift circuit is fed back to the input side of the previous stage, and the sine wave oscillation output is extracted from one of the two phase shift circuits. In the oscillator according to the present invention, an input AC signal is applied to both ends, a first series circuit including first and second resistors having substantially equal resistance values, and the AC signal is applied to both ends. A second series circuit comprising a third resistor and a capacitor; a potential at a connection point of the first and second resistors constituting the first series circuit; and a third series circuit constituting the second series circuit. And a differential amplifier that amplifies the difference between the resistance of the resistor and the potential of the connection point of the capacitor with a predetermined amplification degree and outputs the amplified signal, and outputs the input AC signal without changing the phase. A non-inverting circuit, cascade-connecting each of the two phase-shifting circuits and the non-inverting circuit, and feeding back the output of the last stage among the plurality of cascaded circuits to the input side of the first stage. From any of these circuits A sinusoidal oscillation output is obtained.
また、 この発明の発振器は、 入力される交流信号が両端に印加され、 抵抗値が ほぼ等しい第 1および第 2の抵抗よりなる第 1の直列回路と、 前記交流信号が両 端に印加され、 第 3の抵抗とイングクタよりなる第 2の直列回路と、 前記第 1の 直列回路を構成する前記第 1および第 2の抵抗の接続点の電位と前記第 2の直列 回路を構成する前記第 3の抵抗と前記インダクタの接続点の電位との差分を所定 の増幅度で増幅して出力する差動増幅器とよりなる 2つの移相回路を備え、 縦続 接続された前記 2つの移相回路の後段の出力を前段の入力側に帰還させるととも に、 前記 2つの移相回路のいずれか一方から正弦波発振出力が取り出される。 また、 この発明の発振器は、 入力される交流信号が両端に印加され、 抵抗値が ほぼ等しい第 1および第 2の抵抗よりなる第 1の直列回路と、 前記交流信号が両 端に印加され、 第 3の抵抗とイングクタよりなる第 2の直列回路と、 前記第 1の 直列回路を構成する前記第 1および第 2の抵抗の接続点の電位と前記第 2の直列 回路を構成する前記第 3の抵抗と前記イングクタの接続点の電位との差分を所定 の増幅度で増幅して出力する差動増幅器とよりなる 2つの移相回路と、 入力され る交流信号の位相を変えずに出力する非反転回路とを備え、 前記 2つの移相回路 および前記非反転回路のそれぞれを縦続接続し、 これら縦続接続された複数の回 路の中の最終段の出力を初段の入力側に帰還させるとともに、 これら複数の回路 のいずれかから正弦波発振出力が取り出される。 In the oscillator according to the present invention, an input AC signal is applied to both ends, a first series circuit including first and second resistors having substantially equal resistance values, and the AC signal is applied to both ends. A second series circuit including a third resistor and an intagter, and a potential at a connection point of the first and second resistors forming the first series circuit and the second series circuit. A differential amplifier that amplifies a difference between a potential of a connection point of the inductor and the third resistor forming a circuit with a predetermined amplification degree and outputs the amplified signal, and that is connected in cascade. The output of the subsequent stage of the two phase shift circuits is fed back to the input side of the previous stage, and the sine wave oscillation output is extracted from one of the two phase shift circuits. In the oscillator according to the present invention, an input AC signal is applied to both ends, a first series circuit including first and second resistors having substantially equal resistance values, and the AC signal is applied to both ends. A second series circuit composed of a third resistor and an intagter; a potential at a connection point of the first and second resistors constituting the first series circuit; and a third series circuit constituting the second series circuit. And a differential amplifier that amplifies the difference between the resistance of the above-mentioned resistor and the potential at the connection point of the above-mentioned inqta at a predetermined amplification degree, and outputs the same without changing the phase of the input AC signal. A non-inverting circuit, cascade-connecting each of the two phase-shifting circuits and the non-inverting circuit, and feeding back the output of the last stage among the plurality of cascaded circuits to the input side of the first stage. From any of these circuits A sinusoidal oscillation output is obtained.
また、 この発明の発振器は、 入力される交流信号が両端に印加され、 抵抗値が ほぼ等しい第 1および第 2の抵抗よりなる第 1の直列回路と、 前記交流信号が両 端に印加され、 第 3の抵抗とキャパシタよりなる第 2の直列回路と、 前記第 1の 直列回路を構成する前記第 1および第 2の抵抗の接続点の電位と前記第 2の直列 回路を構成する前記第 3の抵抗と前記キャパシタの接続点の電位との差分を所定 の増幅度で増幅して出力する差動増幅器とよりなる第 1の移相回路と、 入力され る交流信号が両端に印加され、 抵抗値がほぼ等しい第 1および第 2の抵抗よりな る第 1の直列回路と、 前記交流信号が両端に印加され、 第 3の抵抗とイングクタ よりなる第 2の直列回路と、 前記第 1の直列回路を構成する前記第 1および第 2 の抵抗の接続点の電位と前記第 2の直列回路を構成する前記第 3の抵抗と前記ィ ンダクタの接続点の電位との差分を所定の増幅度で増幅して出力する差動増幅器 とよりなる第 2の移相回路とを備え、 縦続接続された前記第 1および第 2の移相 回路の後段の出力を前段の入力側に帰還させるとともに、 前記第 1および第 2の 移相回路のいずれか一方から正弦波発振出力が取り出される。  In the oscillator according to the present invention, an input AC signal is applied to both ends, a first series circuit including first and second resistors having substantially equal resistance values, and the AC signal is applied to both ends. A second series circuit comprising a third resistor and a capacitor; a potential at a connection point of the first and second resistors constituting the first series circuit; and a third series circuit constituting the second series circuit. A first phase shift circuit comprising a differential amplifier for amplifying and outputting a difference between the resistance of the capacitor and the potential of the connection point of the capacitor at a predetermined amplification factor, and an input AC signal applied to both ends, A first series circuit consisting of first and second resistors having substantially equal values, a second series circuit consisting of a third resistor and an intagter, to which the AC signal is applied to both ends, and a first series circuit The potential at the connection point of the first and second resistors constituting the circuit And a differential amplifier configured to amplify a difference between a potential of a connection point of the inductor and the third resistor constituting the second series circuit with a predetermined amplification degree and output the amplified result. The first and second phase-shift circuits connected in cascade are fed back to the input side of the previous-stage to the input side of the previous stage, and a sine wave oscillation is performed from one of the first and second phase-shift circuits. The output is retrieved.
また、 この発明の発振器は、 入力される交流信号が両端に印加され、 抵抗値が ほぼ等しい第 1および第 2の抵抗よりなる第 1の直列回路と、 前記交流信号が両 端に印加され、 第 3の抵抗とキャパシタよりなる第 2の直列回路と、 前記第 1の 直列回路を構成する前記第 1および第 2の抵抗の接続点の電位と前記第 2の直列 回路を構成する前記第 3の抵抗と前記キャパシタの接続点の電位との差分を所定 の増幅度で増幅して出力する差動増幅器とよりなる第 1の移相回路と、 入力され る交流信号が両端に印加され、 抵抗値がほぼ等しい第 1および第 2の抵抗よりな る第 1の直列回路と、 前記交流信号が両端に印加され、 第 3の抵抗とイングクタ よりなる第 2の直列回路と、 前記第 1の直列回路を構成する前記第 1および第 2 の抵抗の接続点の電位と前記第 2の直列回路を構成する前記第 3の抵抗と前記ィ ンダクタの接続点の電位との差分を所定の増幅度で増幅して出力する差動増幅器 とよりなる第 2の移相回路と、 入力される交流信号の位相を変えずに出力する非 反転回路とを備え、 前記第 1および第 2の移相回路と前記非反転回路のそれぞれ を縦続接続し、 これら縦続接続された複数の回路の中の最終段の出力を初段の入 力側に帰還させるとともに、 これら複数の回路のいずれかから正弦波発振出力が 取り出される。 . In the oscillator according to the present invention, the input AC signal is applied to both ends, and the resistance value is A first series circuit comprising substantially equal first and second resistors; a second series circuit comprising a third resistor and a capacitor to which the AC signal is applied to both ends; and a first series circuit comprising: The difference between the potential of the connection point of the first and second resistors that constitutes and the potential of the connection point of the third resistor and the capacitor that make up the second series circuit is amplified at a predetermined amplification degree. A first phase shift circuit including a differential amplifier for outputting, a first series circuit including first and second resistors to which an input AC signal is applied to both ends and having substantially equal resistance values; An AC signal is applied to both ends, a second series circuit including a third resistor and an intagter, and a potential at a connection point of the first and second resistors forming the first series circuit and the second series circuit. The voltage at the connection point between the third resistor and the inductor forming a series circuit And a non-inverting circuit that outputs the same without changing the phase of the input AC signal. Each of the first and second phase shift circuits and the non-inverting circuit are cascaded, and the output of the last stage among the plurality of cascade-connected circuits is fed back to the input side of the first stage. The sine wave oscillation output is extracted from either of the above. .
上述した各発振器は、 2つの移相回路の全体により、 あるいは 2つの移相回路 と非反転回路の全体により位相シフト量の合計が 0° となるとともに、 それぞれ の回路の増幅度を調整してループゲインを 1以上にすることにより正弦波発振が 行なわれる。  In each of the oscillators described above, the total amount of phase shift is 0 ° by the entire two phase shift circuits or the entire two phase shift circuits and the non-inverting circuit, and the amplification of each circuit is adjusted. Sine wave oscillation is performed by setting the loop gain to 1 or more.
また、 この発明の発振器は、 入力される交流信号が両端に印加され、 抵抗値が ほぼ等しい第 1および第 2の抵抗よりなる第 1の直列回路と、 前記交流信号が両 端に印加され、 第 3の抵抗とキャパシタよりなる第 2の直列回路と、 前記第 1の 直列回路を構成する前記第 1および第 2の抵抗の接続点の電位と前記第 2の直列 回路を構成する前記第 3の抵抗と前記キャパシタの接続点の電位との差分を所定 の増幅度で増幅して出力する差動増幅器とよりなる 2つの移相回路と、 入力され る交流信号の位相を反転して出力する位相反転回路とを備え、 前記 2つの移相回 路および前記位相反転回路のそれぞれを縦続接続し、 これら縦続接続された複数 の回路の中の最終段の出力を初段の入力側に帰還させるとともに、 これら複数の 回路のいずれかから正弦波発振出力が取り出される。 また、 この発明の発振器は、 入力される交流信号が両端に印加され、 抵抗値が ほぼ等しい第 1および第 2の抵抗よりなる第 1の直列回路と、 前記交流信号が両 端に印加され、 第 3の抵抗とイングクタよりなる第 2の直列回路と、 前記第 1の 直列回路を構成する前記第 1および第 2の抵抗の接続点の電位と前記第 2の直列 回路を構成する前記第 3の抵抗と前記インダクタの接続点の電位との差分を所定 の増幅度で増幅して出力する差動増幅器とよりなる 2つの移相回路と、 入力され る交流信号の位相を反転して出力する位相反転回路とを備え、 前記 2つの移相回 路および前記位相反転回路のそれぞれを縦続接続し、 これら縦続接続された複数 の回路の中の最終段の出力を初段の入力側に帰還させるとともに、 これら複数の 回路のいずれかから正弦波発振出力が取り出される。 In the oscillator according to the present invention, an input AC signal is applied to both ends, a first series circuit including first and second resistors having substantially equal resistance values, and the AC signal is applied to both ends. A second series circuit comprising a third resistor and a capacitor; a potential at a connection point of the first and second resistors constituting the first series circuit; and a third series circuit constituting the second series circuit. And a differential amplifier that amplifies the difference between the potential of the resistor and the potential of the connection point of the capacitor with a predetermined amplification degree and outputs the result, and inverts the phase of the input AC signal and outputs the inverted signal. A phase inversion circuit, cascade-connecting each of the two phase-shift circuits and the phase-inversion circuit, and feeding back the output of the last stage of the plurality of cascade-connected circuits to the input side of the first stage. Any of these multiple circuits A sine wave oscillation output is extracted from the output. In the oscillator according to the present invention, an input AC signal is applied to both ends, a first series circuit including first and second resistors having substantially equal resistance values, and the AC signal is applied to both ends. A second series circuit composed of a third resistor and an intagter; a potential at a connection point of the first and second resistors constituting the first series circuit; and a third series circuit constituting the second series circuit. And a differential amplifier that amplifies the difference between the resistance of the resistor and the potential of the connection point of the inductor with a predetermined amplification factor and outputs the amplified signal, and inverts and outputs the phase of the input AC signal. A phase inversion circuit, cascade-connecting each of the two phase-shift circuits and the phase-inversion circuit, and feeding back the output of the last stage of the plurality of cascade-connected circuits to the input side of the first stage. Any of these multiple circuits A sine wave oscillation output is extracted from the output.
また、 この発明の発振器は、 入力される交流信号が両端に印加され、 抵抗値が ほぼ等しい第 1および第 2の抵抗よりなる第 1の直列回路と、 前記交流信号が両 端に印加され、 第 3の抵抗とキャパシタよりなる第 2の直列回路と、 前記第 1の 直列回路を構成する前記第 1および第 2の抵抗の接続点の電位と前記第 2の直列 回路を構成する前記第 3の抵抗と前記キャパシタの接続点の電位との差分を所定 の増幅度で増幅して出力する差動増幅器とよりなる第 1の移相回路と、 入力され る交流信号が両端に印加され、 抵抗値がほぼ等しい第 1および第 2の抵抗よりな る第 1の直列回路と、 前記交流信号が両端に印加され、 第 3の抵抗とイングクタ よりなる第 2の直列回路と、 前記第 1の直列回路を構成する前記第 1および第 2 の抵抗の接続点の電位と前記第 2の直列回路を構成する前記第 3の抵抗と前記ィ ンダクタの接続点の電位との差分を所定の増幅度で増幅して出力する差動増幅器 とよりなる第 2の移相回路と、 入力される交流信号の位相を反転して出力する位 相反転回路とを備え、 前記第 1および第 2の移相回路と前記位相反転回路のそれ ぞれを縦続接続し、 これら縦続接続された複数の回路の中の最終段の出力を初段 の入力側に帰還させるとともに、 これら複数の回路のいずれかから正弦波発振出 力が取り出される。  In the oscillator according to the present invention, an input AC signal is applied to both ends, a first series circuit including first and second resistors having substantially equal resistance values, and the AC signal is applied to both ends. A second series circuit comprising a third resistor and a capacitor; a potential at a connection point of the first and second resistors constituting the first series circuit; and a third series circuit constituting the second series circuit. A first phase shift circuit comprising a differential amplifier for amplifying and outputting a difference between the resistance of the capacitor and the potential of the connection point of the capacitor at a predetermined amplification factor, and an input AC signal applied to both ends, A first series circuit consisting of first and second resistors having substantially equal values, a second series circuit consisting of a third resistor and an intagter, to which the AC signal is applied to both ends, and a first series circuit The potential at the connection point of the first and second resistors constituting the circuit And a differential amplifier configured to amplify a difference between a potential of a connection point of the inductor and the third resistor constituting the second series circuit with a predetermined amplification degree and output the amplified result. And a phase inversion circuit that inverts the phase of the input AC signal and outputs the inverted signal, and cascade-connects each of the first and second phase-shift circuits and the phase-inversion circuit. The output of the last stage in the plurality of circuits is fed back to the input side of the first stage, and the sine wave oscillation output is extracted from any of the plurality of circuits.
上述した各発振器は、 2つの移相回路と位相反転回路の全体により位相シフト 量の合計が 0° となるとともに、 各回路の増幅度を調整してループゲインを 1以 上にすることにより正弦波発振が行なわれる。 図面の簡単な説明 In each of the oscillators described above, the sum of the phase shift amounts is 0 ° due to the entire two phase shift circuits and the phase inversion circuit, and the sine is adjusted by adjusting the amplification of each circuit to make the loop gain 1 or more. Wave oscillation is performed. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 この発明の発振器の第 1の形態を示す回路図、  FIG. 1 is a circuit diagram showing a first embodiment of the oscillator of the present invention,
第 2図は、 第 1図に示す前段の移相回路の構成を示す回路図、  FIG. 2 is a circuit diagram showing the configuration of the phase shift circuit of the preceding stage shown in FIG. 1,
第 3図は、 第 2図に示す移相回路の入出力電圧とキャパシタ等に現れる電圧と の関係を示すべクトル図  Fig. 3 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit shown in Fig. 2 and the voltage appearing on capacitors and the like.
第 4図は、 第 2図に示す移相回路の等価回路図、  FIG. 4 is an equivalent circuit diagram of the phase shift circuit shown in FIG. 2,
第 5図は、 第 1図に示す後段の移相回路の構成を示す回路図、  FIG. 5 is a circuit diagram showing the configuration of the subsequent phase shift circuit shown in FIG. 1,
第 6図は、 第 5図に示す移相回路の入出力電圧とキャパシタ等に現れる電圧と の関係を示すべクトル図、  FIG. 6 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit shown in FIG.
第 7図は、 第 5図に示す移相回路の等価回路図、  FIG. 7 is an equivalent circuit diagram of the phase shift circuit shown in FIG. 5,
第 8図は、 この発明の発振器を伝達関数 K 1を用 ί、て表した回路図、 第 9図は、 第 8図に示す回路をミラーの定理によつて変換した回路図、 第 1 0図は、 この発明の発振器の第 2の形態を示す回路図、  FIG. 8 is a circuit diagram showing the oscillator of the present invention using a transfer function K1, FIG. 9 is a circuit diagram obtained by converting the circuit shown in FIG. 8 by Miller's theorem, and FIG. The figure is a circuit diagram showing a second embodiment of the oscillator of the present invention,
第 1 1図は、 第 1 0図に示す前段の移相回路の構成を示す回路図、  FIG. 11 is a circuit diagram showing the configuration of the phase shift circuit of the preceding stage shown in FIG. 10;
第 1 2図は、 第 1 1図に示す移相回路の入出力電圧とインダクタ等に現れる電 圧との関係を示すべクトル図  Fig. 12 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit shown in Fig. 11 and the voltage appearing in inductors, etc.
第 1 3図は、 第 1 1図に示す移相回路の等価回路図、  FIG. 13 is an equivalent circuit diagram of the phase shift circuit shown in FIG. 11,
第 1 4図は、 第 1 0図に示す後段の移相回路の構成を示す回路図、  FIG. 14 is a circuit diagram showing the configuration of the subsequent phase shift circuit shown in FIG. 10;
第 1 5図は、 第 1 4図に示す移相回路の入出力電圧とイングクタ等に現れる電 圧との関係を示すべクトル図、  FIG. 15 is a vector diagram showing the relationship between the input / output voltage of the phase shift circuit shown in FIG.
第 1 6図は、 第 1 4図に示す移相回路の等価回路図、  FIG. 16 is an equivalent circuit diagram of the phase shift circuit shown in FIG.
第 1 7図は、 この発明の発振器の第 3の形態を示す回路図、  FIG. 17 is a circuit diagram showing a third embodiment of the oscillator of the present invention,
第 1 8図は、 この発明の発振器の第 4の形態を示す回路図、  FIG. 18 is a circuit diagram showing a fourth embodiment of the oscillator of the present invention,
第 1 9図は、 この発明の発振器の第 5の形態を示す回路図、  FIG. 19 is a circuit diagram showing a fifth embodiment of the oscillator of the present invention,
第 2 0図は、 この発明の発振器の第 6の形態を示す回路図、  FIG. 20 is a circuit diagram showing a sixth embodiment of the oscillator of the present invention,
第 2 1図は、 この発明の発振器の第 7の形態を示す回路図、  FIG. 21 is a circuit diagram showing a seventh embodiment of the oscillator of the present invention,
第 2 2図は、 この発明の発振器の第 8の形態を示す回路図、  FIG. 22 is a circuit diagram showing an eighth embodiment of the oscillator of the present invention,
第 2 3図は、 この発明の発振器の第 9の形態を示す回路図、 第 2 4図は、 この発明の発振器の第 1 0の形態を示す回路図、 FIG. 23 is a circuit diagram showing a ninth embodiment of the oscillator of the present invention, FIG. 24 is a circuit diagram showing a tenth embodiment of the oscillator according to the present invention;
第 2 5図は、 非反転回路および位相反転回路の具体例を示す回路図、  FIG. 25 is a circuit diagram showing specific examples of a non-inverting circuit and a phase inverting circuit.
第 2 6図は、 移相回路と非反転回路との接続形態を示すプロック図、  FIG. 26 is a block diagram showing the connection between the phase shift circuit and the non-inverting circuit.
第 2 7図は、 移相回路と位相反転回路との接続形態を示すプロック図、 第 2 8図は、 移相回路内の C R回路の可変抵抗を F E Tに置き換えた移相回路 の構成を示す回路図、  Fig. 27 is a block diagram showing the connection between the phase shift circuit and the phase inversion circuit, and Fig. 28 shows the configuration of the phase shift circuit in which the variable resistor of the CR circuit in the phase shift circuit is replaced with an FET. circuit diagram,
第 2 9図は、 移相回路内の L R回路の可変抵抗を F E Tに置き換えた移相回路 の構成を示す回路図、  FIG. 29 is a circuit diagram showing a configuration of a phase shift circuit in which the variable resistor of the LR circuit in the phase shift circuit is replaced with FET.
第 3 0図は、 移相回路内の C R回路のキャパシタを可変容量ダイォードに置き 換えた移相回路の構成を示す回路図、  FIG. 30 is a circuit diagram showing a configuration of a phase shift circuit in which a capacitor of a CR circuit in the phase shift circuit is replaced with a variable capacitance diode;
第 3 1図は、 この発明の発振器に用いる静電容量変換回路の構成を示す回路図、 第 3 2図は、 第 3 1図に示す静電容量変換回路を伝達関数 K4を用いて表した 回路図、  FIG. 31 is a circuit diagram showing a configuration of a capacitance conversion circuit used in the oscillator of the present invention. FIG. 32 is a diagram showing the capacitance conversion circuit shown in FIG. 31 using a transfer function K4. circuit diagram,
第 3 3図は、 第 3 2図に示す回路をミラーの定理によって変換した回路図、 第 3 4図は、 第 3 1図に示す静電容量変換回路を簡略化した回路図、 第 3 5図は、 1段目にェミッタホロワ回路を用いた静電容量変換回路の構成を 示す回路図、  FIG. 33 is a circuit diagram obtained by converting the circuit shown in FIG. 32 by Miller's theorem, FIG. 34 is a simplified circuit diagram of the capacitance conversion circuit shown in FIG. 31, and FIG. The figure is a circuit diagram showing the configuration of a capacitance conversion circuit using an emitter emitter follower circuit in the first stage,
第 3 6図は、 1段目にソースホロワ回路を用いた静電容量変換回路の構成を示 す回路図、  FIG. 36 is a circuit diagram showing a configuration of a capacitance conversion circuit using a source follower circuit in the first stage,
第 3 7図は、 この発明の発振器に用いるインダクタンス変換回路の構成を示す 回路図、  FIG. 37 is a circuit diagram showing a configuration of an inductance conversion circuit used in the oscillator of the present invention.
第 3 8図は、 第 3 7図に含まれる 2つのオペアンプを含む増幅器全体をエミッ タホロワ回路に置き換えたィンダク夕ンス変換回路の構成を示す回路図、  FIG. 38 is a circuit diagram showing a configuration of an inductance conversion circuit in which the entire amplifier including the two operational amplifiers included in FIG. 37 is replaced with an emitter follower circuit;
第 3 9図は、 第 3 8図のィンダクタンス変換回路をソースホロワ回路によって 実現した構成を示す回路図、  FIG. 39 is a circuit diagram showing a configuration in which the inductance conversion circuit of FIG. 38 is realized by a source follower circuit;
第 4 0図は、 インダクタンス変換回路の他の例を示す回路図、  FIG. 40 is a circuit diagram showing another example of the inductance conversion circuit,
第 4 1図は、 従来の正弦波発振器を示す回路図、  Fig. 41 is a circuit diagram showing a conventional sine wave oscillator,
第 4 2図は、 従来の正弦波発振器を示す回路図である。 発明を実施するための最良の形態 FIG. 42 is a circuit diagram showing a conventional sine wave oscillator. BEST MODE FOR CARRYING OUT THE INVENTION
(第 1の実施形態)  (First Embodiment)
第 1図は、 第 1の実施形態の発振器の構成を示す回路図であり、 この発振器 1 は、 入力信号の位相を変えずに出力する非反転回路 50と、 それぞれが入力信号の 位相を所定量シフ卜させることにより所定の周波数において合計で 0 ° の位相シ フトを行なう 2つの移相回路 10 C、 30 Cと、 移相回路 30 Cの出力を非反転回路 50 の入力側に帰還させる帰還抵抗 70とにより構成されている。 この帰還抵抗 70は 0 Ωから有限の抵抗値を有している。 なお、 非反転回路 50はバッファ回路として動 作するものであるが、 発振器の基本動作のみに着目した場合には省略してもよい。 第 2図は、 第 1図に示した前段の移相回路 10 Cの構成を抜き出して示した回路 図であり、 この移相回路 10 Cは、 2入力の差分電圧を所定の増幅度 (例えば、 約 2倍) で増幅して出力する差動増幅器 12と、 入力端子 22に入力された信号の位相 を所定量シフトさせて差動増幅器 12の非反転入力端子に入力するキャパシ夕 14お よび可変抵抗 16と、 入力端子 22に入力された信号の位相を変えずにその電圧レべ ルを約 1 / 2に分圧して差動増幅器 12の反転入力端子に入力する抵抗 18および 20 とにより構成されている。 なお、 可変抵抗 16と抵抗 20の接続点が接地されている 場合を考えて以下の説明を行なうものとする。  FIG. 1 is a circuit diagram showing a configuration of an oscillator according to a first embodiment. This oscillator 1 includes a non-inverting circuit 50 that outputs an input signal without changing its phase, and each of the oscillators 1 determines the phase of an input signal. Two phase shift circuits 10 C and 30 C that perform a total of 0 ° phase shift at a predetermined frequency by performing a quantitative shift, and the output of the phase shift circuit 30 C is fed back to the input side of the non-inverting circuit 50. A feedback resistor 70 is provided. This feedback resistor 70 has a finite resistance value from 0 Ω. The non-inverting circuit 50 operates as a buffer circuit, but may be omitted if attention is paid only to the basic operation of the oscillator. FIG. 2 is a circuit diagram extracted from the configuration of the preceding phase shift circuit 10C shown in FIG. 1. The phase shift circuit 10C converts the two-input differential voltage into a predetermined amplification factor (for example, And a differential amplifier 12 that amplifies the signal and outputs the amplified signal, and a capacitor 14 that shifts the phase of the signal input to the input terminal 22 by a predetermined amount and inputs the signal to the non-inverting input terminal of the differential amplifier 12. The variable resistor 16 and the resistors 18 and 20 which divide the voltage level to about 1/2 without changing the phase of the signal input to the input terminal 22 and input to the inverting input terminal of the differential amplifier 12 It is configured. The following description will be made on the assumption that the connection point between the variable resistors 16 and 20 is grounded.
このような構成を有する移相回路 10 Cにおいて、 所定の交流信号が入力端子 22 に入力されると、 差動増幅器 12の反転入力端子には、 入力端子 22に印加される電 圧 (入力電圧 E i) を抵抗 18と抵抗 20とによって分圧した電圧が印加される。 抵 抗 18および抵抗 20の各抵抗値はほぼ等しく設定されており、 これら 2つの抵抗 18、 20の直列回路により構成される分圧回路によって約 1 2に分圧された電圧 E i Z 2が差動増幅器 12の反転入力端子に印加される。  In the phase shift circuit 10 C having such a configuration, when a predetermined AC signal is input to the input terminal 22, the voltage applied to the input terminal 22 (the input voltage A voltage obtained by dividing E i) by the resistors 18 and 20 is applied. The resistance values of the resistor 18 and the resistor 20 are set substantially equal, and the voltage E i Z 2 divided by about 12 by the voltage dividing circuit constituted by the series circuit of the two resistors 18 and 20 is obtained. Applied to the inverting input terminal of the differential amplifier 12.
—方、 入力信号が入力端子 22に入力されると、 差動増幅器 12の非反転入力端子 には、 キャパシタ 14と可変抵抗 16の接続点に現れる信号が入力される。 キャパシ タ 14と可変抵抗 16により構成される C R回路 (直列回路) の一方端には入力信号 が入力されているので、 入力信号の位相をこの C R回路によって所定量シフ卜し た信号の電圧が差動増幅器 12の非反転入力端子には印加される。  On the other hand, when the input signal is input to the input terminal 22, the signal appearing at the connection point between the capacitor 14 and the variable resistor 16 is input to the non-inverting input terminal of the differential amplifier 12. Since an input signal is input to one end of a CR circuit (series circuit) composed of the capacitor 14 and the variable resistor 16, the voltage of the signal obtained by shifting the phase of the input signal by a predetermined amount by the CR circuit is obtained. It is applied to the non-inverting input terminal of the differential amplifier 12.
差動増幅器 12は、 このようにして 2つの入力端子に印加される電圧の差分を所 定の増幅度、 例えば約 2倍に増幅した信号を出力する。 The differential amplifier 12 determines the difference between the voltages applied to the two input terminals in this manner. Outputs a signal that has been amplified to a fixed amplification factor, for example, about twice.
第 3図は、 移相回路 10Cの入出力電圧とキャパシタ等に現れる電圧との関係を 示すべクトル図である。  FIG. 3 is a vector diagram showing a relationship between an input / output voltage of the phase shift circuit 10C and a voltage appearing on a capacitor or the like.
第 3図に示すように、 可変抵抗 16の両端に現れる電圧 VR1とキャパシタ 14の両 端に現れる電圧 VC1は、 互いに位相が 9 0 ° ずれており、 これらをべクトル的に 合成 (加算) したものが入力電圧 E iとなる。 したがって、 人力信号の振幅が一 定で周波数のみが変化した場合には、 第 3図に示す半円の円周に沿って可変抵抗 16の両端電圧 VR1とキャパシタ 14の両端電圧 VC1とが変化する。  As shown in FIG. 3, the voltage VR1 appearing at both ends of the variable resistor 16 and the voltage VC1 appearing at both ends of the capacitor 14 are 90 ° out of phase with each other, and these are vectorically combined (added). Is the input voltage E i. Therefore, when the amplitude of the human input signal is constant and only the frequency changes, the voltage VR1 across the variable resistor 16 and the voltage VC1 across the capacitor 14 change along the circumference of the semicircle shown in FIG. .
また、 差動増幅器 12の非反転入力端子に印加される電圧 (可変抵抗 16の両端電 圧 VR1) から反転入力端子に印加される電圧 (抵抗 20の両端電圧 E i/ 2 ) をべ クトル的に減算したものが差分電圧 Eo'となる。 この差分電圧 Eo'は、 第 3図に 示した半円において、 その中心点を始点とし、 電圧 VR1と電圧 VC1とが交差する 円周上の一点を終点とするべクトルで表すことができ、 その大きさは半円の半径 E i/ 2に等しくなる。 実際には、 差動増幅器 12はこの差分電圧 Eo'を 2倍に増 幅しており、 出力電圧 Eo= Eo' X 2 = E iとなる。 したがって、 この実施形態の 移相回路 10Cにおいて、 入力信号の振幅と出力信号の振幅とは等しく、 入出力信 号間で信号の減衰が生じないことが分かる。  Further, the voltage applied to the non-inverting input terminal of the differential amplifier 12 (voltage VR1 across the variable resistor 16) to the voltage applied to the inverting input terminal (voltage E i / 2 across the resistor 20) is vector-wise. Is the difference voltage Eo '. The difference voltage Eo 'can be represented by a vector having the center point as the starting point and the end point at a point on the circumference where the voltage VR1 and the voltage VC1 intersect in the semicircle shown in FIG. Its size is equal to the radius E i / 2 of the semicircle. Actually, the differential amplifier 12 doubles the differential voltage Eo ', and the output voltage Eo = Eo'X2 = Ei. Therefore, in the phase shift circuit 10C of this embodiment, it can be seen that the amplitude of the input signal is equal to the amplitude of the output signal, and no signal attenuation occurs between the input and output signals.
また、 第 3図から明らかなように、 電圧 VR1と電圧 VC1とは円周上で直角に交 わるので、 入力電圧 E iと電圧 VR1との位相差は、 周波数 ωが 0から∞まで変化 するに従って 9 0 ° から 0 ° まで変化する。 そして、 移相回路 10 C全体の位相シ フト量 01はその 2倍であり、 周波数に応じて 1 8 0 ° から 0 ° まで変化する。 次に、 上述した入出力電圧間の関係を定量的に検証する。  In addition, as is apparent from FIG. 3, since the voltage VR1 and the voltage VC1 intersect at right angles on the circumference, the phase difference between the input voltage Ei and the voltage VR1 is such that the frequency ω changes from 0 to ∞. Varies from 90 ° to 0 ° according to Then, the phase shift amount 01 of the entire phase shift circuit 10C is twice that, and varies from 180 ° to 0 ° according to the frequency. Next, the relationship between the input and output voltages described above is quantitatively verified.
第 4図は、 前段の移相回路 10Cを等価的に表した図であり、 差動増幅器 12の入 力側に設けられた 2つの直列回路に対応する構成が示されている。  FIG. 4 is a diagram equivalently showing the preceding phase shift circuit 10C, and shows a configuration corresponding to two series circuits provided on the input side of the differential amplifier 12.
抵抗 18および抵抗 20により構成される直列回路の両端には入力電圧 E iが印加 されるので、 抵抗 18、 20のそれぞれは電圧 E iZ 2を発生する 2つの電圧源 27、 2 8に置き換えて考えることができる。 このとき、 第 4図に示す等価回路の閉ルー プに流れる電流 Iは、 キャパシタ 14の静電容量を C、 可変抵抗 16の抵抗値を尺と すると、 E: C s Since the input voltage E i is applied to both ends of the series circuit composed of the resistors 18 and 20, each of the resistors 18 and 20 is replaced with two voltage sources 27 and 28 that generate the voltage E iZ 2. You can think. At this time, the current I flowing through the closed loop of the equivalent circuit shown in FIG. 4 is expressed as follows, where C is the capacitance of the capacitor 14, and the resistance of the variable resistor 16 is the scale. E: C s
I = '(1)  I = '(1)
1 + CR s  1 + CR s
R +  R +
C s  C s
となる。 ここで、 第 4図に示す 2点間の電位差 (差分) Eo'を求めると、 Becomes Here, when the potential difference (difference) Eo 'between the two points shown in FIG. 4 is obtained,
Eo' = I XR- E: '(2) Eo '= I XR- E:' (2)
2  Two
となる。 上述した(2)式に(1)式を代入して計算すると- o = CR S Ei- Ei Becomes Substituting equation (1) into equation (2) above yields-o = CR S Ei- E i
1 + CR s 2  1 + CR s 2
E  E
-CR s i  -CR s i
E: •(3)  E: • (3)
2(l + CRs) E  2 (l + CRs) E
i  i
となる。 この実施形態の移相回路 IOCの出力電圧 Eoは、 上述した差分 Eo'を 2 倍したものであるから、 Becomes Since the output voltage Eo of the phase shift circuit IOC of this embodiment is twice the difference Eo ′ described above,
Eo=2xEo'  Eo = 2xEo '
-CR s 一 T s  -CR s one T s
Ei =— E: ■(4)  Ei = — E: ■ (4)
1 + CR s 1+Ts  1 + CR s 1 + Ts
となる。 ここで、 キャパシタ 14と可変抵抗 16からなる CR回路の時定数を T (= CR) とした。 Becomes Here, the time constant of the CR circuit including the capacitor 14 and the variable resistor 16 is set to T (= CR).
この(4)式において s = j ωを代入して変形すると、  Substituting s = jω in equation (4) and transforming
- j ωΤ  -j ωΤ
Εο=- Εο =-
1 + J ωΤ 1 + J ωΤ
(1- j ωΤ)2 (1- j ωΤ) 2
1+(ωΤ)ζ 1+ (ωΤ) ζ
Figure imgf000012_0001
Figure imgf000012_0001
=Ei '(6) となる。 すなわち、 (6)式は、 この実施形態の移相回路 10Cは入出力間の位相が どのように回転しても、 その出力信号の振幅は入力信号の振幅に等しく一定であ ることを表している。 = Ei '(6). That is, Equation (6) indicates that the phase shift circuit 10C of this embodiment has a phase between input and output. Regardless of the rotation, the amplitude of the output signal is equal to the amplitude of the input signal and is constant.
また、 (5)式から出力電圧 Eoの入力電圧 E iに対する位相シフト量 01を求める と、  Further, when the phase shift amount 01 of the output voltage Eo with respect to the input voltage E i is obtained from the equation (5),
01= t a n "1 { ( Λ } ·*· (Ό 01 = tan " 1 {( Λ } · * · (Ό
(ω - 1  (ω-1
となる。 この(7)式から、 例えば、 ωがほぼ 1 T (= 1 / ( C R) ) となるよ うな周波数における位相シフ ト量 01は、 ほぼ 9 0 ° となり、 入力信号の振幅を 減衰させることなく位相のみをほぼ 9 0 ° シフトさせることができる。 しかも、 可変抵抗 16の抵抗値 Rを変化することにより、 位相シフ ト量 01がほぼ 9 0 ° と なる周波数 ωを変化させることができる。 Becomes From this equation (7), for example, the phase shift amount 01 at a frequency where ω is approximately 1 T (= 1 / (CR)) is approximately 90 °, and the amplitude of the input signal is not attenuated. Only the phase can be shifted by almost 90 °. In addition, by changing the resistance value R of the variable resistor 16, the frequency ω at which the phase shift amount 01 becomes approximately 90 ° can be changed.
第 5図は、 第 1図に示した後段の移相回路 30 Cの構成を抜き出して示した回路 図であり、 この移相回路 30Cは、 2入力の差分電圧を所定の増幅度 (例えば、 約 2倍) で増幅して出力する差動増幅器 32と、 入力端子 42に入力された信号の位相 を所定量シフトさせて差動増幅器 32の非反転入力端子に入力する可変抵抗 36およ びキャパシタ 34と、 入力端子 42に入力された信号の位相を変えずにその電圧レべ ルを約 1 2に分圧して差動増幅器 32の反転入力端子に入力する抵抗 38および抵 抗 40とにより構成されている。  FIG. 5 is a circuit diagram extracted from the configuration of the subsequent phase shift circuit 30C shown in FIG. 1. The phase shift circuit 30C converts the two-input differential voltage into a predetermined amplification degree (for example, Differential amplifier 32, which amplifies and outputs the amplified signal by about 2 times, and a variable resistor 36, which shifts the phase of the signal input to the input terminal 42 by a predetermined amount and inputs the same to the non-inverting input terminal of the differential amplifier 32. A capacitor 34 and a resistor 38 and a resistor 40 which divide the voltage level to about 12 without changing the phase of the signal input to the input terminal 42 and input the voltage level to the inverting input terminal of the differential amplifier 32. It is configured.
このような構成を有する移相回路 30Cにおいて、 所定の交流信号が入力端子 42 に入力されると、 差動増幅器 32の反転入力端子には、 入力端子 42に印加される電 圧 (入力電圧 E i) を抵抗 38と抵抗 40とによって分圧した電圧が印加される。 抵 抗 38および 40の各抵抗値は、 ほぼ等しく設定されており、 これら 2つの抵抗 38、 40の直列回路により構成される分圧回路によって約 1 Z 2に分圧された電圧 E i / 2が差動増幅器 32の反転入力端子に印加される。  In the phase shift circuit 30C having such a configuration, when a predetermined AC signal is input to the input terminal 42, the voltage applied to the input terminal 42 (input voltage E i) A voltage obtained by dividing the voltage by the resistors 38 and 40 is applied. The resistance values of the resistors 38 and 40 are set to be substantially equal, and the voltage E i / 2 divided by about 1 Z 2 by a voltage dividing circuit composed of a series circuit of these two resistors 38 and 40 is used. Is applied to the inverting input terminal of the differential amplifier 32.
—方、 入力信号が入力端子 42に入力されると、 差動増幅器 32の非反転入力端子 には、 可変抵抗 36とキャパシタ 34の接続点に現れる信号が入力される。 可変抵抗 36とキャパシタ 34により構成される C R回路 (直列回路) の一方端には入力信号 が入力されているので、 入力信号の位相をこの C R回路によって所定量シフトし た信号の電圧が差動増幅器 32の非反転入力端子に印加される。 差動増幅器 32は、 このようにして 2つの入力端子に印加される電圧の差分を所 定の增幅度、 例えば、 約 2倍に増幅した信号を出力する。 On the other hand, when the input signal is input to the input terminal 42, the signal appearing at the connection point between the variable resistor 36 and the capacitor 34 is input to the non-inverting input terminal of the differential amplifier 32. Since an input signal is input to one end of a CR circuit (series circuit) composed of a variable resistor 36 and a capacitor 34, the voltage of the signal whose input signal is shifted by a predetermined amount by this CR circuit is differential. Applied to the non-inverting input terminal of amplifier 32. The differential amplifier 32 outputs a signal obtained by amplifying the difference between the voltages applied to the two input terminals to a predetermined width, for example, about twice.
第 6図は、 移相回路 30 Cの入出力電圧とキャパシタ等に現れる電圧との関係を 示すべクトル図である。  FIG. 6 is a vector diagram showing a relationship between an input / output voltage of the phase shift circuit 30C and a voltage appearing on a capacitor or the like.
第 6図に示すように、 キャパシタ 34の両端に現れる電圧 VC2と可変抵抗 36の両 端に現れる電圧 VR2は、 互いに位相が 9 0 ° ずれており、 これらをべクトル的に 合成 (加算) したものが入力電圧 E iとなる。 したがって、 入力信号の振幅が一 定で周波数のみが変化した場合には、 第 6図に示す半円の円周に沿つてキャパシ 夕 34の両端電圧 VC2と可変抵抗 36の両端電圧 VR2とが変化する。  As shown in FIG. 6, the voltage VC2 appearing at both ends of the capacitor 34 and the voltage VR2 appearing at both ends of the variable resistor 36 are 90 ° out of phase with each other, and these are vectorically combined (added). Is the input voltage E i. Therefore, if the amplitude of the input signal is constant and only the frequency changes, the voltage VC2 across the capacitor 34 and the voltage VR2 across the variable resistor 36 change along the circumference of the semicircle shown in Fig. 6. I do.
また、 差動増幅器 32の非反転入力端子に印加される電圧 (キャパシタ 34の両端 電圧 VC2) から反転入力端子に印加される電圧 (抵抗 40の両端電圧 E iノ 2 ) を べクトル的に減算したものが差分電圧 Eo'となる。 この差分電圧 Eo'は、 第 6図 に示した半円において、 その中心点を始点とし、 電圧 VC2と電圧 VR2とが交差す る円周上の一点を終点とするべクトルで表すことができ、 その大きさは半円の半 径 E iZ 2に等しくなる。 実際には、 差動増幅器 32はこの差分電圧 Eo'を 2倍に 増幅しており、 出力電圧 Eo= Eo' X 2 = E iとなる。 したがって、 この実施形態 の移相回路 30 Cにおいて、 入力信号の振幅と出力信号の振幅とは等しく、 入出力 信号間で信号の減衰が生じないことが分かる。  In addition, the voltage applied to the inverting input terminal (the voltage E i 2 across the resistor 40) is vectorically subtracted from the voltage applied to the non-inverting input terminal of the differential amplifier 32 (the voltage VC2 across the capacitor 34). The result is the difference voltage Eo '. This differential voltage Eo 'can be represented by a vector having the semicircle shown in Fig. 6 as the starting point at the center point and the ending point at a point on the circumference where voltage VC2 and voltage VR2 intersect. The size is equal to the radius of the semicircle E iZ 2. Actually, the differential amplifier 32 amplifies the difference voltage Eo 'by two times, and the output voltage Eo = Eo'X2 = Ei. Therefore, in the phase shift circuit 30C of this embodiment, it is understood that the amplitude of the input signal is equal to the amplitude of the output signal, and no signal attenuation occurs between the input and output signals.
また、 第 6図から明らかなように、 電圧 VC2と電圧 VR2とは円周上で直角に交 わるので、 入力電圧 E iと電圧 VC2との位相差は、 周波数 ωが 0から∞まで変化 するに従って 0 ° から 9 0 ° まで変化する。 そして、 移相回路 30C全体の位相シ フト量 02はその 2倍であり、 周波数に応じて 0 ° から 1 8 0 ° まで変化する。 次に、 上述した入出力電圧間の関係を定量的に検証する。  In addition, as is clear from FIG. 6, since the voltage VC2 and the voltage VR2 intersect at right angles on the circumference, the phase difference between the input voltage Ei and the voltage VC2 is such that the frequency ω changes from 0 to ∞. Varies from 0 ° to 90 ° according to Then, the phase shift amount 02 of the entire phase shift circuit 30C is twice that, and changes from 0 ° to 180 ° according to the frequency. Next, the relationship between the input and output voltages described above is quantitatively verified.
第 7図は、 後段の移相回路 30Cを等価的に表した図であり、 差動増幅器 32の入 力側に設けられた 2つの直列回路に対応する構成力示されている。  FIG. 7 is a diagram equivalently showing the phase shift circuit 30C at the subsequent stage, and shows the components corresponding to two series circuits provided on the input side of the differential amplifier 32.
抵抗 38および抵抗 40により構成される直列回路の両端には入力電圧 E iが印加 されるので、 前段の移相回路 10Cの場合と同様に、 抵抗 38、 40のそれぞれは電圧 E iZ 2を発生する 2つの電圧源 27、 28に置き換えて考えることができる。 この とき、 第 7図に示す等価回路の閉ループに流れる電流 Iは、 可変抵抗 36の抵抗値 を R、 キャパシタ 34の静電容量を Cとすると、 上述した(1)式で表すことができ ここで、 第 7図に示す 2点間の電位差 (差分) Eo'を求めると、
Figure imgf000015_0001
Since the input voltage E i is applied to both ends of the series circuit composed of the resistors 38 and 40, each of the resistors 38 and 40 generates the voltage E iZ 2 as in the case of the preceding phase shift circuit 10C. You can think of it as replacing two voltage sources 27 and 28. At this time, the current I flowing through the closed loop of the equivalent circuit shown in FIG. Where R is the capacitance of the capacitor 34 and C is the capacitance of the capacitor 34, which can be expressed by the above equation (1). Here, when the potential difference (difference) Eo ′ between the two points shown in FIG.
Figure imgf000015_0001
となる。 上述した (8)式に(1)式を代入して計算すると、 Becomes Substituting equation (1) into equation (8) above and calculating
Eo'=T cR7 Ei- 2 Ei 1CR S Ei -(9) Eo ' = T cR7 Ei -2 Ei 1 CR S Ei-(9)
2(l + CRs) 2 (l + CRs)
となる。 この実施形態の移相回路 30C Εの出力電圧 Eoは、 上述した差分 Eo'を 2Becomes The output voltage Eo of the phase shift circuit 30C of this embodiment is obtained by subtracting the difference Eo ′ described above by 2
1 •  1 •
倍したものであるから、 Because it is doubled,
Eo= 2 X Eo'
Figure imgf000015_0002
Eo = 2 X Eo '
Figure imgf000015_0002
となる。 ここで、 移相回路 10Cと同様に、 可変抵抗 36とキャパシタ 34からなる C R回路の時定数を T (=CR) とした。 Becomes Here, similarly to the phase shift circuit 10C, the time constant of the CR circuit including the variable resistor 36 and the capacitor 34 is set to T (= CR).
(10)式において s = j ωを代入して変形すると、  Substituting s = jω in Eq. (10) and transforming,
υ 1一 j ωΤ .  υ 11 j ωΤ.
Εο= -―— ~ - Ei  Εο = -―— ~-Ei
1 + j ωΤ  1 + j ωΤ
(1一 j wT)2 (1 j wT) 2
1+(ωΤ)2 1+ (ωΤ) 2
1—(ωΤ)2— j · 2ωΤ 1— (ωΤ) 2 — j · 2ωΤ
•(11) • (11)
1+(ωΤ)2 1+ (ωΤ) 2
となる。  Becomes
上述した(10)式および (11)式は、 前段の移相回路 10Cについて示した (4)式お よび (5)式と符号のみ異なっている。 したがって、 出力電圧 Eoの絶対値は (6)式 をそのまま適用することができ、 後段の移相回路 30Cは入出力間の位相がどのよ うに回転しても、 その出力信号の振幅は入力信号の振幅に等しく一定であること が分かる。  Equations (10) and (11) described above differ from Equations (4) and (5) shown for the preceding phase shift circuit 10C only in sign. Therefore, the absolute value of the output voltage Eo can be directly applied to the equation (6), and the phase shift circuit 30C in the subsequent stage can output the amplitude of the output signal no matter how the phase between the input and output rotates. It can be seen that the amplitude is constant.
また、 (11)式から出力電圧 Eoの入力電圧 Eiに対する位相シフト量 02を求め ると、 Further, the phase shift amount 02 of the output voltage Eo with respect to the input voltage Ei is obtained from the equation (11). Then
02= t a n "1 { ( } 〜(12) 02 = tan " 1 {(} ~ (12)
2Τ) ζ- .1 2 Τ) ζ -.1
となる。 この(12)式から、 例えば、 ωがほぼ 1 /T (= 1 / ( C R) ) となるよ うな周波数における位相シフ ト量 02は、 ほぼ 9 0 ° となり、 入力信号の振幅を 減衰させることなく位相のみをほぼ 9 0 ° シフトさせることができる。 しかも、 可変抵抗 36の抵抗値 Rを変化することにより、 位相シフト量 02がほぼ 9 0 ° と なる周波数 ωを変化させることができる。 Becomes From this equation (12), for example, the phase shift amount 02 at a frequency where ω is approximately 1 / T (= 1 / (CR)) is approximately 90 °, and the amplitude of the input signal must be attenuated. And only the phase can be shifted by almost 90 °. Moreover, by changing the resistance value R of the variable resistor 36, the frequency ω at which the phase shift amount 02 becomes approximately 90 ° can be changed.
このようにして、 2つの移相回路 10 C、 30 Cのそれぞれにおいて位相が所定量 シフトされる。 し力、も、 第 3図および第 6図に示すように、 各移相回路 10 C、 30 Cにおける入出力電圧の相対的な位相関係は反対方向であって、 ある周波数にお いて 2つの移相回路 10C、 30Cの全体により位相シフ ト量が 0 ° の信号が出力さ れる。  Thus, the phase is shifted by a predetermined amount in each of the two phase shift circuits 10C and 30C. As shown in FIGS. 3 and 6, the relative phase relationship between the input and output voltages in each of the phase shift circuits 10 C and 30 C is in the opposite direction. A signal having a phase shift amount of 0 ° is output by the entire phase shift circuits 10C and 30C.
また、 後段の移相回路 30 Cの出力は、 帰還抵抗 70を介して移相回路 10 Cの前段 に設けられた非反転回路 50の入力側に帰還されており、 この帰還された信号がバ ッファ回路として機能する非反転回路 50を介して前段の移相回路 10 Cの入力端子 (第 2図に示した入力端子 22) に入力される。  Further, the output of the subsequent phase shift circuit 30C is fed back to the input side of the non-inverting circuit 50 provided in the preceding stage of the phase shift circuit 10C via the feedback resistor 70, and the signal thus fed back is output. The signal is input to the input terminal (input terminal 22 shown in FIG. 2) of the preceding phase shift circuit 10C via the non-inverting circuit 50 functioning as a buffer circuit.
この実施形態の発振器 1は、 このような帰還ループが形成されており、 ループ ゲインを 1以上に設定することにより、 閉ループを一巡したときに位相シフト量 が 0 ° となる周波数で正弦波発振が行なわれる。 なお、 ループゲインを 1以上に 設定する方法としては、 2つの移相回路 10C、 30C内の各差動増幅器 12、 32の増 幅度を調整したり、 非反転回路 50の増幅度を調整する方法がある。  In the oscillator 1 of this embodiment, such a feedback loop is formed, and by setting the loop gain to 1 or more, a sine wave oscillation is performed at a frequency at which the phase shift amount becomes 0 ° when the loop goes through the closed loop. Done. As a method of setting the loop gain to 1 or more, a method of adjusting the amplification degree of each of the differential amplifiers 12 and 32 in the two phase shift circuits 10C and 30C and adjusting the amplification degree of the non-inverting circuit 50 There is.
第 8図は、 上述した構成を有する 2つの移相回路 10C、 30Cおよび非反転回路 50の全体を伝達関数 K1を有する回路に置き換えた回路図であり、 伝達関数 K1を 有する回路と抵抗値 R0の帰還抵抗 70とによって閉ループが形成されている。 第 9図は、 第 8図に示す回路をミラーの定理によって変換した回路図であって、抵 抗値 R0を有する帰還抵抗 70を入力シャント抵抗に変換すると、 その抵抗値 Rsは、
Figure imgf000017_0001
FIG. 8 is a circuit diagram in which the whole of the two phase shift circuits 10C and 30C and the non-inverting circuit 50 having the above-described configuration are replaced with a circuit having a transfer function K1, and a circuit having a transfer function K1 and a resistance value R0 are shown. A closed loop is formed by the feedback resistor 70 of FIG. FIG. 9 is a circuit diagram obtained by converting the circuit shown in FIG. 8 by Miller's theorem.When the feedback resistor 70 having a resistance value R0 is converted into an input shunt resistor, the resistance value Rs becomes
Figure imgf000017_0001
で表すことができる。 Can be represented by
この式において、 K1が 1より大きい場合を考えると、 入力シャント抵抗 Rsは 負性抵抗となることが分かる。  In this equation, considering that K1 is greater than 1, it can be seen that the input shunt resistance Rs is a negative resistance.
伝達関数 K1を有する理想的な移相回路 (オール ·パス 'ネッ トワーク) で任 意の有限な周波数において位相シフト量が 0° である条件を満たすものとすれば、 この周波数において、 選択的に負性抵抗を実現することになり、 発振が可能とな る。 実際には入力シャント抵抗は、 移相回路の入力インピーダンスと並列接続さ れた形となり、 これらを合成したものが負性抵抗となる必要があるが、 帰還抵抗 70の抵抗値 R0を低く設定したり、 移相回路の入力インピーダンスを高く設定す ることは設計上極めて容易であるので、 理論上は移相回路の入力インピーダンス の影響を無視して考えることができる。  If an ideal phase-shift circuit with transfer function K1 (all-pass' network) satisfies the condition that the phase shift is 0 ° at any finite frequency, then at this frequency, Negative resistance is realized, and oscillation is possible. Actually, the input shunt resistance is in the form of being connected in parallel with the input impedance of the phase shift circuit, and it is necessary that the combination of these becomes the negative resistance.However, by setting the resistance value R0 of the feedback resistor 70 low, In addition, setting the input impedance of the phase shift circuit to a high value is extremely easy from a design standpoint. Therefore, theoretically, the effect of the input impedance of the phase shift circuit can be ignored.
ところで、 (4)式から明らかなように、 前段の移相回路 10Cの伝達関数 K2は、  By the way, as is clear from equation (4), the transfer function K2 of the preceding phase shift circuit 10C is
K2=- { 1 +lTliS s } … ) であり、 (10)式から明らかなように、 後段の移相回路 30 Cの伝達関数 Κ3は、 Κ3= : , lz S 〜(15) K2 = - is {1 + lT l i S s } ...), (10) As is apparent from the equation, the transfer function kappa 3 in the subsequent stage phase shifting circuit 30 C is, Κ3 =:, l z S ~ (15 )
1 + 1 2 S  1 + 1 2 S
である。 ただし、 移相回路 10Cおよび 30C内の各 CR回路の時定数は異なる場合 も想定し、 それぞれを Τ!、 Τ2とした。 It is. However, the time constant of the CR circuit of the phase shifting circuit 10C and the 30C will assume be different, and respectively with T !, T 2.
したがって、 移相回路 10Cと 30Cを接続した場合の全体の伝達関数 K1は、 Therefore, the overall transfer function K1 when connecting the phase shift circuits 10C and 30C is
Kl = K2xK3 Kl = K2xK3
Figure imgf000017_0002
Figure imgf000017_0002
となる。 ここで、 計算を簡単にするために、 s = jo>、 s2=— ω2、 Α = 1+Τι T2s2=l— Τ,Τζω2 B = T! + T2とおくと、 A— B s Becomes Where s = jo>, s 2 = —ω 2 , Α = 1 + Τι T 2 s 2 = l— Τ, Τζω 2 B = T! + T 2 A—B s
Kl=- Kl =-
A + B s A + B s
_ A2- 2 AB s + B2 s 2 _ A 2 - 2 AB s + B 2 s 2
一 A2-Bzs2 One A 2 -B z s 2
_— _—
Figure imgf000018_0001
Figure imgf000018_0001
(1 -Τ,Τ2ω2)2-2 j (1 - Τ,Τ2ω2)(ΤΙ + Τ2)ω-(Τ1 + Τ2)2ω2 (1+Τ,Τ2ω2)2 + (Τ1 + Τ2)2ω2 (1 -Τ, Τ 2 ω 2 ) 2 -2 j (1-Τ, Τ 2 ω 2 ) (Τ Ι + Τ 2 ) ω- (Τ 1 + Τ 2 ) 2 ω 2 (1 + Τ, Τ 2 ω 2 ) 2 + (Τ 1 + Τ 2 ) 2 ω 2
__ (1 -Τ,Τ2ω2)2-(Τ, + Τ2)2ω2- 2 j ( 1 - Τ , Τ 2ω2)(Τ , + Τ 2 __ (1 -Τ, Τ 2 ω 2) 2 - (Τ, + Τ 2) 2 ω 2 - 2 j (1 - Τ, Τ 2 ω 2) (Τ, + Τ 2) ω
— (17) となる。 この(17)式において、 移相回路 10C、 30Cを 2段接続した全体の入出力 間の位相差が 0° となるには、 (17)式の右辺の虚数項が 0にならなければならな いので、 次の式が成立する。 — (17) In this equation (17), the imaginary term on the right side of equation (17) must be 0 in order for the phase difference between the input and output of the entire two-stage phase shifters 10C and 30C to be 0 ° Therefore, the following equation holds.
(1-Τ,Τ2ω2)(Τ1 + Τ2)ω = 0 〜(18) したがって、 1—
Figure imgf000018_0002
の場合は 入力信号が直流であって位相差が 180° となるので、 結局他方の条件 (1一
Figure imgf000018_0003
(Τ,Τ2) のときに位相差が 0° となる。 この 周波数において入力シャント抵抗 Rsは負性抵抗となって、 発振電圧条件と周波 数条件を同時に満たすことになる。
(1-Τ, Τ 2 ω 2 ) (Τ 1 + Τ 2 ) ω = 0 to (18) Therefore, 1—
Figure imgf000018_0002
In the case of, since the input signal is DC and the phase difference is 180 °, the other condition (1
Figure imgf000018_0003
At (Τ, 0 2 ), the phase difference is 0 °. At this frequency, the input shunt resistor Rs becomes a negative resistance and satisfies the oscillation voltage condition and the frequency condition at the same time.
このように、 2つの移相回路 10 C、 30Cを組み合わせることにより、 閉ループ を一巡する信号の位相シフト量をある周波数において 0° とすることができ、 こ のときのループゲインを 1以上に設定することにより正弦波発振が持続される。 また、 位相シフト量が 0° となる周波数は、 各移相回路 10C、 30C内の可変抵抗 16あるいは可変抵抗 36の抵抗値を変えることにより変化させることができるので、 容易に周波数可変型の発振器を実現することができる。  In this way, by combining the two phase shift circuits 10 C and 30 C, the phase shift amount of a signal that makes a round of the closed loop can be set to 0 ° at a certain frequency, and the loop gain at this time is set to 1 or more. By doing so, the sine wave oscillation is maintained. In addition, the frequency at which the phase shift amount becomes 0 ° can be changed by changing the resistance value of the variable resistor 16 or the variable resistor 36 in each of the phase shift circuits 10C and 30C. Can be realized.
また、 この実施形態の発振器 1は、 差動増幅器やキャパシタあるいは抵抗を組 み合わせて構成しており、 どの構成素子も半導体基板上に形成することができる ことから、 発振周波数および最大減衰量を調整し得る発振器 1の全体を半導体基 板上に形成して集積回路とすることが容易である。 なお、 上述した第 1の実施形態の発振器 1では、 前段に移相回路 10 Cを、 後段 に移相回路 30 Cをそれぞれ配置したが、 これらの全体によつて入出力信号間の位 相シフ ト量が 0 ° となればよいことから、 これらの前後を入れ換えて前段に移相 回路 30 Cを、 後段に移相回路 10 Cを配置して発振器を構成してもよい。 Further, the oscillator 1 of this embodiment is configured by combining a differential amplifier, a capacitor or a resistor, and any of the constituent elements can be formed on a semiconductor substrate, so that the oscillation frequency and the maximum attenuation can be reduced. It is easy to form the entire adjustable oscillator 1 on a semiconductor substrate to form an integrated circuit. In the oscillator 1 of the first embodiment described above, the phase shift circuit 10C is arranged in the preceding stage and the phase shift circuit 30C is arranged in the subsequent stage. Since it is sufficient that the phase shift amount is 0 °, the oscillator may be configured such that the phase shift circuit 30C is arranged at the preceding stage and the phase shift circuit 10C is arranged at the subsequent stage by exchanging the order.
(第 2の実施形態) (Second embodiment)
第 1 0図は、 この発明を適用した第 2の実施形態の発振器の構成を示す回路図 であり、 この発振器 2は、 入力信号の位相を変えずに出力する非反転回路 50と、 それぞれが入力信号の位相を所定量シフトさせることにより所定の周波数におい て合計で 0 ° の位相シフトを行なう 2つの移相回路 10 L、 30Lと、 移相回路 30L の出力を非反転回路 50の入力側に帰還させる帰還抵抗 70とにより構成されている。 この帰還抵抗 70は 0 Ωから有限の抵抗値を有している。 なお、 非反転回路 50はバ ッファ回路として動作するものであるが、 発振器の基本動作のみに着目した場合 には省略してもよい。  FIG. 10 is a circuit diagram showing a configuration of an oscillator according to a second embodiment to which the present invention is applied. The oscillator 2 includes a non-inverting circuit 50 that outputs an input signal without changing its phase, and A phase shift of a total of 0 ° at a predetermined frequency by shifting the phase of the input signal by a predetermined amount.Two phase shift circuits 10 L and 30 L, and the output of the phase shift circuit 30 L to the input side of the non-inverting circuit 50 And a feedback resistor 70 that feeds back the current. This feedback resistor 70 has a finite resistance value from 0 Ω. The non-inverting circuit 50 operates as a buffer circuit, but may be omitted if attention is paid only to the basic operation of the oscillator.
第 1 1図は、 第 1 0図に示した前段の移相回路 10Lの構成を抜き出して示した 回路図であり、 移相回路 10Lは、 2入力の差分電圧を所定の増幅度 (例えば、 約 2倍) で増幅して出力する差動増幅器 12と、 入力端子 22に入力された信号の位相 を所定量シフトさせて差動増幅器 12の非反転入力端子に入力する可変抵抗 16およ びイングクタ 17と、 入力端子 22に入力された信号の位相を変えずにその電圧レべ ルを約 1 Z 2に分圧して差動増幅器 12の反転入力端子に入力する抵抗 18および抵 抗 20とにより構成されている。  FIG. 11 is a circuit diagram extracting and showing the configuration of the preceding phase shift circuit 10L shown in FIG. 10. The phase shift circuit 10L converts the two-input differential voltage to a predetermined amplification degree (for example, And a variable resistor 16 that amplifies the output of the differential amplifier 12 by a predetermined amount and shifts the phase of the signal input to the input terminal 22 by a predetermined amount to input to the non-inverting input terminal of the differential amplifier 12. And a resistor 18 and a resistor 20 which divide the voltage level into about 1 Z2 without changing the phase of the signal input to the input terminal 22 and input the voltage to the inverting input terminal of the differential amplifier 12. It consists of.
なお、 インダクタ 17と可変抵抗 16との間に挿入されているキャパシタ 19は直流 P且止用キャパシタであり、 そのインピーダンスは動作周波数において極めて小さ く、 すなわち大きな静電容量を有している。 また、 インダクタ 17と抵抗 20の接続 点が接地されている場合を考えて以下の説明を行なうものとする。  The capacitor 19 inserted between the inductor 17 and the variable resistor 16 is a DC blocking capacitor, and its impedance is extremely small at the operating frequency, that is, has a large capacitance. The following description will be made on the assumption that the connection point between the inductor 17 and the resistor 20 is grounded.
このような構成を有する移相回路 10 Lにおいて、 所定の交流信号が入力端子 22 に入力されると、 差動増幅器 12の反転入力端子には、 入力端子 22に印加される電 圧 (入力電圧 E i) を抵抗 18と抵抗 20とによって分圧した電圧が印加される。 抵 抗 18、 20の各抵抗値は、 ほぼ等しく設定されており、 これら 2つの抵抗 18、 20の 直列回路により構成される分圧回路によって約 1 2に分圧された電圧 E 2 が差動増幅器 12の反転入力端子に印加される。 In the phase shift circuit 10L having such a configuration, when a predetermined AC signal is input to the input terminal 22, the inverting input terminal of the differential amplifier 12 receives the voltage (input voltage) applied to the input terminal 22. A voltage obtained by dividing E i) by the resistors 18 and 20 is applied. The resistances of the resistors 18 and 20 are set substantially equal, and the resistances of these two resistors 18 and 20 are set. The voltage E 2 divided into about 12 by the voltage dividing circuit constituted by the series circuit is applied to the inverting input terminal of the differential amplifier 12.
—方、 入力信号が入力端子 22に入力されると、 差動増幅器 12の非反転入力端子 には、 可変抵抗 16とイングクタ 17の接続点 (正確にはインダクタ 17に直列に接続 されたキャパシタ 19と可変抵抗 16の接続点であるが、 上述したようにこのキャパ シタ 19は直流阻止用であって動作に影響を与えないので基本動作の説明を行なう 場合には省略することができる) に現れる信号が入力される。 可変抵抗 16とイン ダクタ 17とにより構成される L R回路 (直列回路) の一方端には入力信号が入力 されているので、 入力信号の位相をこの L R回路によって所定量シフトした信号 の電圧が差動増幅器 12の非反転入力端子には印加される。  On the other hand, when an input signal is input to the input terminal 22, the non-inverting input terminal of the differential amplifier 12 is connected to the connection point of the variable resistor 16 and the inqector 17 (more precisely, the capacitor 19 connected in series with the inductor 17). And the connection point of the variable resistor 16, but as described above, this capacitor 19 is for blocking direct current and does not affect the operation, so it can be omitted when explaining the basic operation.) A signal is input. Since an input signal is input to one end of an LR circuit (series circuit) composed of the variable resistor 16 and the inductor 17, the voltage of the signal obtained by shifting the phase of the input signal by a predetermined amount by the LR circuit is different. It is applied to the non-inverting input terminal of the operational amplifier 12.
差動増幅器 12は、 このようにして 2つの入力端子に印加される電圧の差分を所 定の増幅度、 例えば、 約 2倍に増幅した信号を出力する。  The differential amplifier 12 outputs a signal obtained by amplifying the difference between the voltages applied to the two input terminals to a predetermined amplification factor, for example, about twice.
第 1 2図は、 移相回路 10Lの入出力電圧とインダクタ等に現れる電圧との関係 を示すべクトル図である。  FIG. 12 is a vector diagram showing a relationship between an input / output voltage of the phase shift circuit 10L and a voltage appearing in an inductor or the like.
第 1 2図に示すように、 ィンダクタ 17の両端に現れる電圧 VL1と可変抵抗 16の 両端に現れる電圧 VR3は、 互いに位相が 9 0 ° ずれており、 これらをべクトル的 に合成 (加算) したものが入力電圧 E iとなる。 したがって、 入力信号の振幅が 一定で周波数のみが変化した場合には、 第 1 2図に示す半円の円周に沿ってイン ダクタ Πの両端電圧 VL1と可変抵抗 16の両端電圧 VR3とが変化する。  As shown in FIG. 12, the voltage VL1 appearing at both ends of the inductor 17 and the voltage VR3 appearing at both ends of the variable resistor 16 are 90 ° out of phase with each other, and these are vectorically combined (added). Is the input voltage E i. Therefore, when the amplitude of the input signal is constant and only the frequency changes, the voltage VL1 across inductor Π and the voltage VR3 across variable resistor 16 change along the circumference of the semicircle shown in Fig. 12. I do.
また、 差動増幅器 12の非反転入力端子に印加される電圧 (インダクタ 17の両端 電圧 VL1) から反転入力端子に印加される電圧 (抵抗 20の両端電圧 E i 2 ) を ベクトル的に減算したものが差分電圧 Eo'となる。 この差分電圧 Eo'は、 第 1 2 図に示した半円において、 その中心点を始点とし、 電圧 VL1と電圧 VR3とが交差 する円周上の一点を終点とするべクトルで表すことができ、 その大きさは半円の 半径 E iZ 2に等しくなる。 実際には、 差動増幅器 12はこの差分電圧 Eo'を 2倍 に増幅しており、 出力電圧 Eo= Eo' x 2 = E iとなる。 したがって、 この実施形 態の移相回路 10 Lにおいて、 入力信号の振幅と出力信号の振幅とは等しく、 入出 力信号間で信号の減衰が生じないことが分かる。  In addition, the voltage (the voltage Ei 2 across the resistor 20) applied to the inverting input terminal is vector-wise subtracted from the voltage (the voltage VL1 across the inductor 17) applied to the non-inverting input terminal of the differential amplifier 12. Becomes the differential voltage Eo '. This differential voltage Eo 'can be represented by a vector whose center point is the starting point and whose end point is a point on the circumference where voltage VL1 and voltage VR3 intersect in the semicircle shown in Fig. 12. , Whose size is equal to the radius E iZ 2 of the semicircle. Actually, the differential amplifier 12 amplifies the difference voltage Eo 'by twice, and the output voltage Eo = Eo'x2 = Ei. Therefore, it can be seen that in the phase shift circuit 10L of this embodiment, the amplitude of the input signal is equal to the amplitude of the output signal, and no signal attenuation occurs between the input and output signals.
また、 第 1 2図から明らかなように、 電圧 VL1と電圧 VR3とは円周上で直角に 交わるので、 入力電圧 Eiと電圧 VL1との位相差は、 周波数 ωが 0から∞まで変 化するに従って 90° から 0° まで変化する。 そして、 移相回路 10L全体の位相 シフ ト量 03はその 2倍であり、 周波数に応じて 180° から 0° まで変化する。 次に、 上述した入出力電圧間の関係を定量的に検証する。 As is clear from FIG. 12, the voltage VL1 and the voltage VR3 are perpendicular to each other on the circumference. Therefore, the phase difference between the input voltage Ei and the voltage VL1 changes from 90 ° to 0 ° as the frequency ω changes from 0 to ∞. And the phase shift amount 03 of the entire phase shift circuit 10L is twice that, and changes from 180 ° to 0 ° according to the frequency. Next, the relationship between the input and output voltages described above is quantitatively verified.
第 13図は、 前段の移相回路 10Lを等価的に表した図であり、 差動増幅器 12の 入力側に設けられた 2つの直列回路に対応する構成が示されている。  FIG. 13 is a diagram equivalently showing the preceding-stage phase shift circuit 10L, and shows a configuration corresponding to two series circuits provided on the input side of the differential amplifier 12.
抵抗 18と抵抗 20とにより構成される直列回路の両端には入力電圧 Eiが印加さ れるので、 抵抗 18、 20のそれぞれは電圧 Ei/2を発生する 2つの電圧源 27、 28 に置き換えて考えることができる。 このとき、 第 13図に示す等価回路の閉ルー プに流れる電流 I'は、 インダクタ 17のインダクタンスを L、 可変抵抗 16の抵抗 値を Rとすると、  Since the input voltage Ei is applied to both ends of the series circuit composed of the resistors 18 and 20, each of the resistors 18 and 20 should be replaced with two voltage sources 27 and 28 that generate the voltage Ei / 2 be able to. At this time, the current I 'flowing through the closed loop of the equivalent circuit shown in Fig. 13 is as follows, where L is the inductance of the inductor 17, and R is the resistance of the variable resistor 16.
Γ= 〜(19) Γ = ~ (19)
R + L s  R + L s
となる。 ここで、 第 13図に示す 2点間の電位差 (差分) Eo'を求めると、  Becomes Here, when the potential difference (difference) Eo 'between the two points shown in FIG. 13 is obtained,
Εο' = Γ XL s- Ei 〜(20) となる。 上述した (20)式に(19)式を代入して計算すると、 Εο '= Γ XL s- Ei ~ (20). Substituting equation (19) into equation (20) above,
Eo' = -^— ~ Ei—― Ei Eo '=-^ — ~ Ei—— Ei
R + L s 2  R + L s 2
R"L S Ei ...(21) R " LS Ei ... (21)
2(R + L s) 2 (R + L s)
となる。 この実施形態の移相回路 10Lの出力電圧 Eoは、 上述した差分 Eo'を 2 倍したものであるから、  Becomes The output voltage Eo of the phase shift circuit 10L of this embodiment is obtained by doubling the difference Eo ′ described above.
Eo=2xEo'  Eo = 2xEo '
R-L s  R-L s
Ε:  Ε:
R + L s  R + L s
」 L  L
R -T s  R -T s
Ei = - E: •(22) 丄 L 1+Ts  Ei =-E: • (22) 丄 L 1 + Ts
1 + R S 1 + R S
となる。 ここで、 可変抵抗 16とイングクタ 17からなる LR回路の時定数を第 1図 に示す移相回路 IO C内の C R回路の場合と同様に T (= L/R) とした。 Becomes Figure 1 shows the time constant of the LR circuit consisting of the variable resistor 16 and the T (= L / R) as in the case of the CR circuit in the phase-shift circuit IOC shown in (1).
この (22)式は第 1の実施形態で示した(4)式の計算結果と同じであり、 この実 施形態の移相回路 10 Lは、 第 2図に構成を示した移相回路 10Cと同じ入出力電圧 間の関係を有していることが分かる。 したがって、 移相回路 10Lは、 入出力信号 間の位相がどのように回転しても、 その出力信号の振幅は一定となる。  This equation (22) is the same as the calculation result of equation (4) shown in the first embodiment, and the phase shift circuit 10L of this embodiment has the phase shift circuit 10C shown in FIG. It can be seen that the relationship between the input and output voltages is the same. Therefore, no matter how the phase between the input and output signals rotates, the amplitude of the output signal of the phase shift circuit 10L is constant.
また、 出力電圧 Eoの入力電圧に対する位相シフ ト量 03は、 上述した (7)式で 表された 01がそのまま適用され、 例えば、 ωがほぼ 1 /T (= R/ L) となる ような周波数における位相シフ ト量はほぼ 9 0 ° となる。 しかも、 可変抵抗 16の 抵抗値 Rを可変することにより、 位相シフト量がほぼ 9 0 ° となる周波数 ωを変 化させることができる。  In addition, as the phase shift amount 03 of the output voltage Eo with respect to the input voltage, 01 expressed by the above equation (7) is applied as it is, for example, when ω becomes approximately 1 / T (= R / L). The phase shift amount at the frequency is about 90 °. Moreover, by varying the resistance value R of the variable resistor 16, the frequency ω at which the phase shift amount becomes approximately 90 ° can be changed.
第 1 4図は、 第 1 0図に示した後段の移相回路 30Lの構成を抜き出して示した ものであり、 この移相回路 30Lは、 2入力の差分電圧を所定の増幅度 (例えば、 約 2倍) で増幅して出力する差動増幅器 32と、 入力端子 42に入力された信号の位 相を所定量シフ トさせて差動増幅器 32の非反転入力端子に入力するインダクタ 37 および可変抵抗 36と、 入力端子 42に入力された信号の位相を変えずにその電圧レ ベルを約 1 / 2に分圧して差動増幅器 32の反転入力端子に入力する抵抗 38および 抵抗 40とにより構成されている。  FIG. 14 shows a configuration extracted from the phase shift circuit 30L at the subsequent stage shown in FIG. 10. The phase shift circuit 30L converts the two-input differential voltage into a predetermined amplification factor (for example, Differential amplifier 32, which amplifies and outputs the amplified signal by about 2 times, and an inductor 37, which shifts the phase of the signal input to the input terminal 42 by a predetermined amount and inputs it to the non-inverting input terminal of the differential amplifier 32, and a variable. Consisting of a resistor 36, a resistor 38 and a resistor 40, which divide the voltage level to about 1/2 without changing the phase of the signal input to the input terminal 42 and input it to the inverting input terminal of the differential amplifier 32. Have been.
なお、 インダクタ 37に直列に挿入されているキャパシタ 39は、 直流阻止用キヤ パシタであり、 そのインピーダンスは動作周波数において極めて小さく、 すなわ ち大きな静電容量を有している。  The capacitor 39 inserted in series with the inductor 37 is a DC blocking capacitor, and its impedance is extremely small at the operating frequency, that is, has a large capacitance.
このような構成を有する移相回路 30Lにおいて、 所定の交流信号が入力端子 42 に入力されると、 差動増幅器 32の反転入力端子には、 入力端子 42に印加される電 圧 (入力電圧 E i) を抵抗 38、 40によって分圧した電圧が印加される。 抵抗 38お よび抵抗 40の各抵抗値は、 ほぼ等しく設定されており、 これら 2つの抵抗 38、 40 の直列回路により構成される分圧回路によって約 1 2に分圧された電圧 E iZ 2が差動増幅器 32の反転入力端子に印加される。  In the phase shift circuit 30L having such a configuration, when a predetermined AC signal is input to the input terminal 42, a voltage applied to the input terminal 42 (input voltage E i) is divided by resistors 38 and 40. The resistance values of the resistor 38 and the resistor 40 are set substantially equal, and the voltage E iZ 2 divided by about 12 by the voltage dividing circuit constituted by the series circuit of the two resistors 38 and 40 is obtained. Applied to the inverting input terminal of the differential amplifier 32.
—方、 入力信号が入力端子 42に入力されると、 差動増幅器 32の非反転入力端子 には、 インダクタ 37と可変抵抗 36の接続点に現れる信号が入力される。 インダク タ 37と可変抵抗 36により構成される L R回路 (直列回路) の一方端には入力信号 が入力されているので、 入力信号の位相をこの L R回路によって所定量シフ卜し た信号の電圧が差動増幅器 32の非反転入力端子には印加される。 On the other hand, when the input signal is input to the input terminal 42, the signal appearing at the connection point between the inductor 37 and the variable resistor 36 is input to the non-inverting input terminal of the differential amplifier 32. One end of an LR circuit (series circuit) composed of an inductor 37 and a variable resistor 36 has an input signal , The voltage of the signal obtained by shifting the phase of the input signal by a predetermined amount by the LR circuit is applied to the non-inverting input terminal of the differential amplifier 32.
差動増幅器 32は、 このようにして 2つの入力端子に印加される電圧の差分を所 定の增幅度、 例えば、 約 2倍に増幅した信号を出力する。  The differential amplifier 32 outputs a signal obtained by amplifying the difference between the voltages applied to the two input terminals to a predetermined width, for example, about twice.
第 1 5図は、 移相回路 30Lの入出力電圧とインダクタ等に現れる電圧との関係 を示すべクトル図である。  FIG. 15 is a vector diagram showing a relationship between an input / output voltage of the phase shift circuit 30L and a voltage appearing in an inductor or the like.
第 1 5図に示すように、 可変抵抗 36の両端に現れる電圧 VR4とインダクタ 37の 両端に現れる電圧 VL2は、 互いに位相が 9 0 ° ずれており、 これらをべクトル的 に合成 (加算) したものが入力電圧 E iとなる。 したがって、 入力信号の振幅が —定で周波数のみが変化した場合には、 第 1 5図に示す半円の円周に沿って可変 抵抗 36の両端電圧 VR4とインダクタ 37の両端電圧 V L2とが変化する。  As shown in Fig. 15, the voltage VR4 appearing at both ends of the variable resistor 36 and the voltage VL2 appearing at both ends of the inductor 37 are 90 ° out of phase with each other, and these are vectorically combined (added). Is the input voltage E i. Therefore, when the amplitude of the input signal is constant and only the frequency changes, the voltage VR4 across the variable resistor 36 and the voltage V L2 across the inductor 37 along the circumference of the semicircle shown in FIG. Change.
また、 差動増幅器 32の非反転入力端子に印加される電圧 (可変抵抗 36の両端電 圧 VE4) から反転入力端子に印加される電圧 (抵抗 40の両端電圧 E iZ 2 ) をべ クトル的に減算したものが差分電圧 Eo'となる。 この差分電圧 Eo'は、 第 1 5図 に示した半円において、 その中心点を始点とし、 電圧 VR4と電圧 VL2とが交差す る円周上の一点を終点とするべクトルで表すことができ、 その大きさは半円の半 径 E i/ 2に等しくなる。 実際には、 差動増幅器 32はこの差分電圧 Eo'を 2倍に 増幅しており、 出力電圧 Eo= Eo' X 2 = E iとなる。 したがって、 この実施形態 の移相回路 30Lにおいて、 入力信号の振幅と出力信号の振幅とは等しく、 入出力 信号間で信号の減衰が生じないことが分かる。  Further, the voltage applied to the non-inverting input terminal of the differential amplifier 32 (the voltage VE4 across the variable resistor 36) and the voltage applied to the inverting input terminal (the voltage E iZ 2 across the resistor 40) are vector-wise. The difference is the difference voltage Eo '. This differential voltage Eo 'can be expressed as a vector with the center point as the starting point and the point on the circumference where voltage VR4 and voltage VL2 intersect as the end point in the semicircle shown in Fig. 15. The size of which is equal to the radius of the semicircle E i / 2. Actually, the differential amplifier 32 amplifies the difference voltage Eo 'by two times, and the output voltage Eo = Eo'X2 = Ei. Therefore, in the phase shift circuit 30L of this embodiment, it can be seen that the amplitude of the input signal is equal to the amplitude of the output signal, and no signal attenuation occurs between the input and output signals.
また、 第 1 5図から明らかなように、 電圧 VR4と電圧 VL2とは円周上で直角に 交わるので、 入力電圧 E iと電圧 VR4との位相差は、 周波数 ωが 0から∞まで変 化するに従って 0 ° から 9 0 ° まで変化する。 そして、 移相回路 30L全体の位相 シフト量 04はその 2倍であり、 周波数に応じて 0 ° から 1 8 0 ° まで変化する。 次に、 上述した入出力電圧間の関係を定量的に検証する。  Further, as is apparent from FIG. 15, since the voltage VR4 and the voltage VL2 intersect at right angles on the circumference, the phase difference between the input voltage Ei and the voltage VR4 varies from a frequency ω of 0 to ∞. The angle changes from 0 ° to 90 ° as required. Then, the phase shift amount 04 of the entire phase shift circuit 30L is twice that, and changes from 0 ° to 180 ° according to the frequency. Next, the relationship between the input and output voltages described above is quantitatively verified.
第 1 6図は、 後段の移相回路 30Lを等価的に表した図であり、 差動増幅器 32の 入力側に設けられた 2つの直列回路に対応する構成が示されている。  FIG. 16 is a diagram equivalently showing the subsequent phase shift circuit 30L, and shows a configuration corresponding to two series circuits provided on the input side of the differential amplifier 32.
抵抗 38および 40により構成される直列回路の両端には入力電圧 E iが印加され るので、 前段の移相回路 10Lの場合と同様に、 抵抗 38、 40のそれぞれは電圧 E i 2を発生する 2つの電圧源 27、 28に置き換えて考えることができる。 このとき、 第 16図に示す等価回路の閉ループに流れる電流 I 'は、 可変抵抗 36の抵抗値を R、 インダクタ 37のイングクタンスを Lとすると、 上述した(19)式で表すことが できる。 Since the input voltage E i is applied to both ends of the series circuit composed of the resistors 38 and 40, each of the resistors 38 and 40 has the voltage E i as in the case of the preceding phase shift circuit 10L. It can be considered by replacing two voltage sources 27 and 28 that generate 2. At this time, the current I ′ flowing through the closed loop of the equivalent circuit shown in FIG. 16 can be expressed by the above equation (19), where R is the resistance of the variable resistor 36 and L is the inductance of the inductor 37.
ここで、 第 16図に示す 2点間の電位差 (差分) Eo'を求めると、 Eo' = I' XR— ! · Ei 〜(23) となる。 上述した (23)式に(19)式を代入して計算すると、  Here, when the potential difference (difference) Eo 'between the two points shown in Fig. 16 is obtained, Eo' = I 'XR-! · Ei ~ (23) Substituting equation (19) into equation (23) above and calculating
E°'= R^ Ei-| Ei R_Ls Ei 〜(24) E ° '= R ^ Ei - | Ei R_Ls Ei ~ (24)
2(R + Ls) 2 (R + Ls)
となる。 この実施形態の移相回路 30Lの出力電圧 Eoは、 上述した差分 Eo'を 2 倍したものであるから、 Becomes Since the output voltage Eo of the phase shift circuit 30L of this embodiment is twice the difference Eo ′ described above,
Eo=2 xEo'  Eo = 2 xEo '
R-Ls  R-Ls
E:  E:
R + Ls  R + Ls
■(25) 丄 L 1+Ts ■ (25) 丄 L 1 + Ts
1 + R S 1 + R S
となる。 ここで、 移相回路 10Lと同様に、 インダクタ 37と可変抵抗 36からなる L R回路の時定数を T (=L/R) とした。  Becomes Here, similarly to the phase shift circuit 10L, the time constant of the LR circuit including the inductor 37 and the variable resistor 36 is set to T (= L / R).
この (25)式は第 1の実施形態で示した(10)式と同じであり、 この実施形態の移 相回路 30 Lは、 第 1の実施形態の移相回路 30Cと同じ入出力電圧間の関係を有し ていることが分かる。 したがって、 移相回路 30Lは、 入出力信号の位相がどのよ うに回転しても、 その出力信号の振幅は一定となる。  This equation (25) is the same as equation (10) shown in the first embodiment, and the phase shift circuit 30L of this embodiment has the same input-output voltage as the phase shift circuit 30C of the first embodiment. It can be seen that the following relationship is satisfied. Therefore, no matter how the phase of the input / output signal is rotated, the amplitude of the output signal of the phase shift circuit 30L is constant.
また、 出力電圧 Eoの入力電圧に対する位相シフト量 04は上述した(12)式で表 された 02がそのまま適用され、 例えば、 ωがほぼ 1ZT ( = R/L) となるよ うな周波数における位相シフ ト量はほぼ 90° となる。 しかも、 可変抵抗 36の抵 抗値 Rを可変することにより、 位相シフト量がほぼ 90° となる周波数 ωを変化 させることができる。 In addition, as for the phase shift amount 04 of the output voltage Eo with respect to the input voltage, 02 expressed by the above equation (12) is applied as it is. The angle is almost 90 °. Moreover, by varying the resistance value R of the variable resistor 36, the frequency ω at which the phase shift amount becomes almost 90 ° is changed. Can be done.
このようにして、 2つの移相回路 10 L、 30Lのそれぞれにおいて位相が所定量 シフ卜される。 し力、も、 第 1 2図および第 1 5図に示すように、 各移相回路 10L、 30Lにおける入出力電圧の相対的な位相関係は反対であって、 ある周波数におい て 2つの移相回路 10 L、 30Lの全体により位相シフト量が 0 ° の信号が出力され る。  Thus, the phase is shifted by a predetermined amount in each of the two phase shift circuits 10L and 30L. As shown in FIGS. 12 and 15, the relative phase relationship between the input and output voltages in each of the phase shift circuits 10L and 30L is opposite, and two phase shifts at a certain frequency. A signal having a phase shift amount of 0 ° is output by the entire circuits 10L and 30L.
また、 後段の移相回路 30Lの出力は、 帰還抵抗 70を介して移相回路 10 Lの前段 に設けられた非反転回路 50の入力側に帰還されており、 この帰還された信号がバ ッファ回路として機能する非反転回路 50を介して前段の移相回路 10 Lの入力端子 (第 1 1図に示した入力端子 22) に入力される。  The output of the subsequent phase shift circuit 30L is fed back via a feedback resistor 70 to the input side of a non-inverting circuit 50 provided in the preceding stage of the phase shift circuit 10L. The signal is input to the input terminal (input terminal 22 shown in FIG. 11) of the preceding phase shift circuit 10 L via the non-inverting circuit 50 functioning as a circuit.
この実施形態の発振器 2は、 このような帰還ループが形成されており、 ループ ゲインを 1以上に設定することにより、 閉ループを一巡したときに位相シフト量 が 0 ° となるような周波数で正弦波発振が行なわれる。 なお、 ループゲインを 1 以上に設定する方法としては、 2つの移相回路 10L、 30L内の各差動増幅器 12、 32の増幅度を調整したり、 非反転回路 50の増幅度を調整する方法がある。  In the oscillator 2 of this embodiment, such a feedback loop is formed, and by setting the loop gain to 1 or more, the sine wave is generated at a frequency such that the phase shift amount becomes 0 ° when the loop goes through the closed loop. Oscillation is performed. The method for setting the loop gain to 1 or more is to adjust the amplification of the differential amplifiers 12 and 32 in the two phase shift circuits 10L and 30L, or to adjust the amplification of the non-inverting circuit 50. There is.
ところで、 上述した非反転回路 50および 2つの移相回路 10L、 30Lを含む第 2 の実施形態の発振器 2は、 その全体を伝達関数 K 1を有する回路に置き換えると、 第 1の実施形態の場合と同様に、 第 8図に示す回路図で表すことができる。 した がって、 ミラ一の定理によつて変換することにより第 9図に示す回路図で表すこ とができ、 変換後の回路の入力シャント抵抗 Rsは(13)式で表すことができる。 また、 (22)式および (25)式から明らかなように、 この実施形態の 2つの移相回 路 10L、 30 Lの各伝達関数は、 第 1の実施形態の 2つの移相回路 10 C、 30Cの各 伝達関数と同じであり、 非反転回路 50と 2つの移相回路 10L、 30Lを接続した場 合の全体の伝達関数 K1は(17)式に示したものをそのまま適用することができる。 したがって、 非反転回路 50と 2つの移相回路 10 L、 30Lを接続した全体の入出力 間では、 0 = 1 " ( T i T z) のときに位相差が 0 ° となって、 発振電圧条件と 周波数条件を同時に満たすことになる。  By the way, the oscillator 2 of the second embodiment including the non-inverting circuit 50 and the two phase shift circuits 10L and 30L described above can be replaced by a circuit having a transfer function K1 in the first embodiment. Similarly to the above, it can be represented by the circuit diagram shown in FIG. Therefore, by performing the conversion according to Mira's theorem, it can be represented by the circuit diagram shown in FIG. 9, and the input shunt resistance Rs of the circuit after the conversion can be represented by equation (13). Further, as is apparent from the equations (22) and (25), the transfer functions of the two phase shift circuits 10L and 30L of this embodiment are represented by the two phase shift circuits 10C of the first embodiment. , 30C are the same as the transfer functions, and the entire transfer function K1 when the non-inverting circuit 50 and the two phase shift circuits 10L and 30L are connected can be directly applied as shown in the equation (17). it can. Therefore, when 0 = 1 "(TiTz), the phase difference between the non-inverting circuit 50 and the entire input and output of the two phase shift circuits 10L and 30L is 0 °, and the oscillation voltage Condition and frequency condition are satisfied at the same time.
このように、 非反転回路 50と 2つの移相回路 10 L、 30Lを組み合わせることに より、 閉ループを一巡する信号の位相シフト量をある周波数において 0 ° とする ことができ、 このときのループゲインを 1以上に設定することにより正弦波発振 が持続される。 また、 位相シフト量が 0 ° となる周波数は、 各移相回路 10 L、 30 L内の可変抵抗 16あるいは 36の抵抗値を変えることにより変化させることができ るので、 容易に周波数可変型の発振器を実現することができる。 しかも、 この実 施形態の発振器 2の発振周波数 ωは、 例えば、 2つの移相回路 10 L、 30 L内の L R回路の時定数が同じであるとすると、 1 /T = R/ Lとなるので抵抗値 Rを変 えることにより大幅に変化させることができる。 As described above, by combining the non-inverting circuit 50 and the two phase shift circuits 10 L and 30 L, the phase shift amount of a signal that goes around the closed loop is set to 0 ° at a certain frequency. By setting the loop gain to 1 or more, sine wave oscillation is maintained. Further, the frequency at which the phase shift amount becomes 0 ° can be changed by changing the resistance value of the variable resistor 16 or 36 in each of the phase shift circuits 10 L and 30 L. An oscillator can be realized. Moreover, the oscillation frequency ω of the oscillator 2 of this embodiment becomes 1 / T = R / L, for example, assuming that the time constants of the LR circuits in the two phase shift circuits 10 L and 30 L are the same. Therefore, by changing the resistance value R, it can be greatly changed.
また、 イングクタ 17、 37は、 写真触刻法等により渦巻き形状の導体を形成する ことによつて半導体基板上へ形成することが可能となるが、 このようなインダク タ 17、 37を用いることにより、 それ以外の構成部品 (差動増幅器や抵抗等) とと もに発振器 2の全体を半導体基板上に形成して集積回路とすることも容易である。 特に、 集積回路として発振器 2を形成した場合には、 インダクタ 17、 37のインダ クタンスを小さくして周波数 ω (= R/ L ) を高くすることが容易であり、 発振 周波数の高周波化に適している。  In addition, it is possible to form the intagta 17, 37 on a semiconductor substrate by forming a spiral conductor by photolithography or the like, but by using such inductors 17, 37, It is also easy to form the entire oscillator 2 together with other components (differential amplifiers, resistors, etc.) on a semiconductor substrate to form an integrated circuit. In particular, when the oscillator 2 is formed as an integrated circuit, it is easy to increase the frequency ω (= R / L) by reducing the inductance of the inductors 17 and 37, which is suitable for increasing the oscillation frequency. I have.
なお、 上述した第 2の実施形態の発振器 2では、 前段に移相回路 10 Lを、 後段 に移相回路 30 Lをそれぞれ配置したが、 これらの全体によつて入出力信号間の位 相シフト量が 0 ° となればよいことから、 これらの前後を入れ換えて前段に移相 回路 30 Lを、 後段に移相回路 10 Lをそれぞれ配置して発振器を構成するようにし てもよい。  In the oscillator 2 according to the second embodiment described above, the phase shift circuit 10L is arranged in the preceding stage and the phase shift circuit 30L is arranged in the subsequent stage, respectively. Since the amount only needs to be 0 °, the oscillator may be configured such that the phase shift circuit 30L is arranged at the front stage and the phase shift circuit 10L is arranged at the rear stage, with the order before and after these being interchanged.
(第 3の実施形態) (Third embodiment)
第 1 7図は、 第 3の実施形態の発振器の構成を示す回路図であり、 この発振器 3は、 入力信号の位相を変えずに出力する非反転回路 50と、 第 2図あるいは第 1 4図に構成を示す移相回路 10 Cおよび 30 Lと、 後段の移相回路 30 Lの出力を非反 転回路 50の入力側に帰還させる帰還抵抗 70とにより構成されている。 この帰還抵 抗 70は 0 Ωから有限の抵抗値を有している。  FIG. 17 is a circuit diagram showing the configuration of the oscillator according to the third embodiment. The oscillator 3 includes a non-inverting circuit 50 that outputs the input signal without changing the phase, and FIG. The phase shift circuits 10 C and 30 L whose configuration is shown in the figure are provided, and a feedback resistor 70 for feeding back the output of the subsequent phase shift circuit 30 L to the input side of the non-inverting circuit 50. This feedback resistor 70 has a finite resistance value from 0 Ω.
上述した第 1および第 2の実施形態において説明したように、 第 3の実施形態 における発振器 3の 2つの移相回路 10 C、 30 Lのそれぞれによつて位相が所定量 シフトされる。 しかも、 第 3図および第 1 5図に示すように、 各移相回路 10C、 30 Lにおける入出力電圧の相対的な位相関係は反対であって、 ある周波数におい て 2つの移相回路 10C、 30Lの全体により位相シフ ト量が 0 ° の信号が出力され る。 As described in the first and second embodiments, the phase is shifted by a predetermined amount by each of the two phase shift circuits 10C and 30L of the oscillator 3 in the third embodiment. Moreover, as shown in FIGS. 3 and 15, each phase shift circuit 10C, The relative phase relationship between the input and output voltages at 30 L is opposite, and a signal having a phase shift amount of 0 ° is output by the whole of the two phase shift circuits 10 C and 30 L at a certain frequency.
また、 後段の移相回路 30 Lの出力は、 帰還抵抗 70を介して移相回路 10 Cの前段 に設けられた非反転回路 50の入力側に帰還されており、 この帰還された信号がバ ッファ回路として機能する非反転回路 50を介して前段の移相回路 10 Cの入力端子 (第 2図に示した入力端子 22) に入力される。  Further, the output of the subsequent phase shift circuit 30L is fed back to the input side of the non-inverting circuit 50 provided before the phase shift circuit 10C via a feedback resistor 70. The signal is input to the input terminal (input terminal 22 shown in FIG. 2) of the preceding phase shift circuit 10C via the non-inverting circuit 50 functioning as a buffer circuit.
発振器 3は、 このような帰還ループが形成されており、 ループゲインを 1以上 に設定することにより、 閉ループを一巡したときに位相シフ ト量が 0 ° となる周 波数で正弦波発振が行なわれる。 なお、 ループゲインを 1以上に設定する方法と しては、 2つの移相回路 10C、 30 L内の各差動増幅器 12、 32の増幅度を調整した り、 非反転回路 50の増幅度を調整する方法がある。  Oscillator 3 has such a feedback loop formed, and by setting the loop gain to 1 or more, sine wave oscillation is performed at a frequency where the phase shift amount becomes 0 ° when the oscillator 3 makes a round of the closed loop. . As a method of setting the loop gain to 1 or more, the amplification of the differential amplifiers 12 and 32 in the two phase shift circuits 10C and 30L is adjusted, and the amplification of the non-inverting circuit 50 is adjusted. There is a way to adjust.
ところで、 上述した非反転回路 50および 2つの移相回路 10 C、 30Lよりなる第 3の実施形態の発振器 3は、 その全体を伝達関数 K1を有する回路に置き換える と、 第 1の実施形態の場合と同様に、 第 8図に示す回路図で表すことができる。 したがって、 ミラーの定理によつて変換することにより第 9図に示す回路図で表 すことができ、 変換後の回路の入力シャント抵抗 Rsは(13)式で表すことができ る。  By the way, the oscillator 3 of the third embodiment including the non-inverting circuit 50 and the two phase shift circuits 10C and 30L described above can be replaced by a circuit having a transfer function K1 in the first embodiment. Similarly to the above, it can be represented by the circuit diagram shown in FIG. Therefore, the circuit can be represented by the circuit diagram shown in Fig. 9 by performing conversion according to Miller's theorem, and the input shunt resistance Rs of the circuit after conversion can be represented by equation (13).
また、 (25)式から明らかなように、 この実施形態の後段の移相回路 30 Lの伝達 関数は、 第 1の実施形態の後段の移相回路 30Cの各伝達関数と同じであり、 非反 転回路 50と 2つの移相回路 10 C、 30 Lを接続した場合の全体の伝達関数 K 1は(17) 式に示したものをそのまま適用することができる。 したがって、 非反転回路 50と 2つの移相回路 10C、 30 Lを接続した全体の入出力間では、 ω = 1 /^ (Τ , Τ 2) のときに位相差が 0 ° となって、 発振電圧条件と周波数条件を同時に満たすこと になる。 Further, as is apparent from the equation (25), the transfer function of the subsequent phase shift circuit 30L of this embodiment is the same as each transfer function of the subsequent phase shift circuit 30C of the first embodiment. The whole transfer function K1 in the case where the inversion circuit 50 and the two phase shift circuits 10C and 30L are connected can be directly used as shown in the equation (17). Therefore, when ω = 1 / ^ (入 出力, Τ 2 ), the phase difference is 0 ° between the entire input and output that connects the non-inverting circuit 50 and the two phase shift circuits 10C and 30L, The voltage condition and the frequency condition are satisfied at the same time.
このように、 2つの移相回路 10C、 30Lを組み合わせることにより、 閉ループ を一巡する信号の位相シフ ト量をある周波数において 0 ° とすることができ、 こ のときのループゲインを 1以上に設定することにより正弦波発振が持続される。 また、 位相シフト量が 0 ° となる周波数は、 各移相回路 10C、 30L内の可変抵抗 16あるいは 36の抵抗値を変えることにより変化させることができるので、 容易に 周波数可変型の発振器を実現することができる。 In this way, by combining the two phase shift circuits 10C and 30L, the phase shift amount of a signal that goes around the closed loop can be set to 0 ° at a certain frequency, and the loop gain at this time is set to 1 or more. By doing so, the sine wave oscillation is maintained. The frequency at which the phase shift amount is 0 ° is determined by the variable resistance in each of the phase shift circuits 10C and 30L. Since it can be changed by changing the resistance value of 16 or 36, a variable frequency oscillator can be easily realized.
また、 第 2の実施形態で説明したように、 インダクタ 37は、 写真触刻法等によ り渦巻き形状の導体を形成することによつて半導体基板上へ形成することが可能 となるが、 このようなイングクタ 37を用いることにより、 それ以外の構成部品 (差 動増幅器や抵抗等) とともに発振器 3の全体を半導体基板上に形成して集積回路 とすることも容易である。  Further, as described in the second embodiment, the inductor 37 can be formed on the semiconductor substrate by forming a spiral conductor by a photolithography method or the like. By using such an ingkta 37, it is easy to form an integrated circuit by forming the entire oscillator 3 together with other components (differential amplifier, resistor, etc.) on a semiconductor substrate.
また、 前段の移相回路 10 Cの C R回路の時定数 Tは C Rであり、 後段の移相回 路 30Lの L R回路の時定数 Tは LZRであって、 それぞれにおいて抵抗値 Rが分 子と分母に分かれるので、 例えば、 半導体基板上に発振器 3の全体を形成すると ともに各可変抵抗 16、 36を F E Tで形成したような場合には、 この抵抗値の温度 変化に対する発振周波数の変動を抑制する、 いわゆる温度補償が可能となる。 なお、 この実施形態の発振器 3では、 前段に移相回路 10Cを、 後段に移相回路 30Lをそれぞれ配置したが、 これらの全体によつて入出力信号間の位相シフト量 が 0 ° となればよいことから、 これらの前後を入れ換えて前段に移相回路 30Lを、 後段に移相回路 10Cをそれぞれ配置して発振器を構成するようにしてもよい。  The time constant T of the CR circuit of the preceding phase shift circuit 10C is CR, and the time constant T of the LR circuit of the subsequent phase shift circuit 30L is LZR. Because the denominator is divided, for example, when the entire oscillator 3 is formed on a semiconductor substrate and the variable resistors 16 and 36 are formed by FETs, the fluctuation of the oscillation frequency due to the temperature change of the resistance value is suppressed. So-called temperature compensation becomes possible. In the oscillator 3 of this embodiment, the phase shift circuit 10C is arranged at the preceding stage, and the phase shift circuit 30L is arranged at the subsequent stage. However, if the phase shift amount between the input and output signals becomes 0 ° due to the entirety thereof, For this reason, the oscillator may be configured such that the phase shift circuit 30L is arranged in the front stage and the phase shift circuit 10C is arranged in the subsequent stage by exchanging the order.
(第 4の実施形態) (Fourth embodiment)
第 1 8図は、 第 4の実施形態の発振器の構成を示す回路図であり、 この発振器 4は、 入力信号の位相を変えずに出力する非反転回路 50と、 第 1 1図あるいは第 5図に構成を示す移相回路 10 Lおよび 30 Cと、 後段の移相回路 30 Cの出力を非反 転回路 50の入力側に帰還させる帰還抵抗 70とにより構成されている。 この帰還抵 抗 70は 0 Ωから有限の抵抗値を有している。  FIG. 18 is a circuit diagram showing the configuration of the oscillator according to the fourth embodiment. This oscillator 4 includes a non-inverting circuit 50 that outputs the input signal without changing the phase, and FIG. 11 or FIG. The phase shift circuits 10 L and 30 C whose configuration is shown in the figure are configured by a feedback resistor 70 that feeds back the output of the subsequent phase shift circuit 30 C to the input side of the non-inverting circuit 50. This feedback resistor 70 has a finite resistance value from 0 Ω.
上述した第 1および第 2の実施形態の各発振器において説明したように、 第 4 の実施形態における発振器 4の 2つの移相回路 10L、 30Cのそれぞれによって位 相が所定量シフ トされる。 しかも、 第 1 2図および第 6図に示すように、 各移相 回路 10L、 30 Cにおける入出力電圧の相対的な位相関係は反対であって、 ある周 波数において 2つの移相回路 10L、 30Cの全体により位相シフ ト量が 0 ° の信号 が出力される。 また、後段の移相回路 30 Cの出力は、 帰還抵抗 70を介して移相回路 10 Lの前段 に設けられた非反転回路 50の入力側に帰還されており、 この帰還された信号がバ ッファ回路として機能する非反転回路 50を介して前段の移相回路 10 Lの入力端子 (第 1 1図に示した入力端子 22) に入力される。 As described in the oscillators of the first and second embodiments, the phase is shifted by a predetermined amount by each of the two phase shift circuits 10L and 30C of the oscillator 4 in the fourth embodiment. Moreover, as shown in FIGS. 12 and 6, the relative phase relationship between the input and output voltages in each of the phase shift circuits 10L and 30C is opposite, and at a certain frequency, the two phase shift circuits 10L and 10L A signal with a phase shift amount of 0 ° is output by the entire 30C. The output of the subsequent phase shift circuit 30C is fed back via a feedback resistor 70 to the input side of a non-inverting circuit 50 provided before the phase shift circuit 10L. The signal is input to the input terminal (input terminal 22 shown in FIG. 11) of the preceding phase shift circuit 10 L via the non-inverting circuit 50 functioning as a buffer circuit.
発振器 4は、 このような帰還ループが形成されており、 ループゲインを 1以上 に設定することにより、 閉ループを一巡したときに位相シフ ト量が 0 ° となる周 波数で正弦波発振が行なわれる。 なお、 ループゲインを 1以上に設定する方法と しては、 2つの移相回路 10 L、 30 C内の各差動増幅器 12、 32の増幅度を調整した り、 非反転回路 50の増幅度を調整する方法がある。  Oscillator 4 has such a feedback loop formed, and by setting the loop gain to 1 or more, sine wave oscillation is performed at a frequency at which the phase shift amount becomes 0 ° when making a round of the closed loop. . As a method of setting the loop gain to 1 or more, the amplification degree of each of the differential amplifiers 12 and 32 in the two phase shift circuits 10 L and 30 C is adjusted, and the amplification degree of the non-inverting circuit 50 is adjusted. There is a way to adjust.
ところで、 上述した非反転回路 50および 2つの移相回路 10 L、 30 Cを含む第 4 の実施形態の発振器 4は、 その全体を伝達関数 K1を有する回路に置き換えると、 第 1の実施形態の場合と同様に、 第 8図に示す回路図で表すことができる。 した がって、 ミラ一の定理によつて変換することにより第 9図に示す回路図で表すこ とができ、 変換後の回路の入力シャント抵抗 Rsは(13)式で表すことができる。 また、 (22)式から明らかなように、 この実施形態の前段の移相回路 10 Lの伝達 関数は、 第 1の実施形態の前段の移相回路 10 Cの各伝達関数と同じであり、 非反 転回路 50と 2つの移相回路 10 L、 30 Cを接続した場合の全体の伝達関数 K1は(17) 式に示したものをそのまま適用することができる。 したがって、 非反転回路 50と 2つの移相回路 10 L、 30 Cを接続した全体の入出力間では、 ω = 1 ^ (Τ ί Τ ζ) のときに位相差が 0 ° となって、 発振電圧条件と周波数条件を同時に満たすこと になる。  By the way, the oscillator 4 of the fourth embodiment including the non-inverting circuit 50 and the two phase shift circuits 10 L and 30 C described above is replaced with a circuit having a transfer function K1 as a whole. As in the case, it can be represented by the circuit diagram shown in FIG. Therefore, by performing the conversion according to Mira's theorem, it can be represented by the circuit diagram shown in FIG. 9, and the input shunt resistance Rs of the circuit after the conversion can be represented by equation (13). Further, as is apparent from the equation (22), the transfer function of the preceding phase shift circuit 10 L of this embodiment is the same as each transfer function of the preceding phase shift circuit 10 C of the first embodiment. The whole transfer function K1 when the non-inverting circuit 50 is connected to the two phase shift circuits 10 L and 30 C can be directly applied as shown in the equation (17). Therefore, the phase difference becomes 0 ° between ω = 1 ^ (Τ ί Τ ζ) between the entire input and output connected to the non-inverting circuit 50 and the two phase shift circuits 10 L and 30 C, and the oscillation The voltage condition and the frequency condition are satisfied at the same time.
このように、 2つの移相回路 10 L、 30 Cを組合せることにより、 閉ループを一 巡する信号の位相シフ ト量をある周波数において 0 ° とすることができ、 このと きのループゲインを 1以上に設定することにより正弦波発振が持続される。 また、 位相シフ ト量が 0 ° となる周波数は、 各移相回路 10L、 30 C内の可変抵抗 16ある いは 36の抵抗値を変えることにより変化させることができるので、 容易に周波数 可変型の発振器を実現することができる。  In this way, by combining the two phase shift circuits 10 L and 30 C, the phase shift amount of the signal that goes through the closed loop can be set to 0 ° at a certain frequency, and the loop gain at this time is reduced. Sine wave oscillation is maintained by setting it to 1 or more. The frequency at which the phase shift amount becomes 0 ° can be changed by changing the resistance value of the variable resistor 16 or 36 in each of the phase shift circuits 10L and 30C. Oscillator can be realized.
また、 第 2の実施形態で説明したように、 イングクタ 17は、 写真触刻法等によ り渦巻き形状の導体を形成することによって半導体基板上へ形成することが可能 となるが、 このようなインダクタ 17を用いることにより、 それ以外の構成部品 (差 動増幅器や抵抗等) とともに発振器 4の全体を半導体基板上に形成して集積回路 とすることも容易である。 In addition, as described in the second embodiment, the inctor 17 can be formed on a semiconductor substrate by forming a spiral-shaped conductor by photolithography or the like. However, by using such an inductor 17, it is easy to form an integrated circuit by forming the entire oscillator 4 on a semiconductor substrate together with other components (differential amplifier, resistor, etc.).
また、 前段の移相回路 10Lの L R回路の時定数 Tは L /Rであり、 後段の移相 回路 30Cの C R回路の時定数 Tは C Rであって、 それぞれにおいて抵抗値 Rが分 子と分母に分かれるので、 例えば、 半導体基板上に発振器 4の全体を形成すると ともに各可変抵抗 16、 36を F E Tで形成したような場合には、 この抵抗値の温度 変化に対する発振周波数の変動を抑制する、 いわゆる温度補償が可能となる。 なお、 この実施形態の発振器 4では、 前段に移相回路 10 Lを、 後段に移相回路 30Cをそれぞれ配置したが、 これらの全体によつて入出力信号間の位相シフト量 が 0 ° となればよいことから、 これらの前後を入れ換えて前段に移相回路 30Cを、 後段に移相回路 10 Lをそれぞれ配置して発振器を構成するようにしてもよい。  The time constant T of the LR circuit of the preceding phase shift circuit 10L is L / R, and the time constant T of the CR circuit of the succeeding phase shift circuit 30C is CR. For example, if the oscillator 4 is formed entirely on a semiconductor substrate and the variable resistors 16 and 36 are formed by FETs, the fluctuation of the oscillation frequency with respect to the temperature change of the resistance value is suppressed. So-called temperature compensation becomes possible. In the oscillator 4 of this embodiment, the phase shift circuit 10 L is arranged at the preceding stage, and the phase shift circuit 30 C is arranged at the subsequent stage. For this reason, the oscillator may be configured by exchanging the order before and after, by arranging the phase shift circuit 30C in the preceding stage and the phase shifting circuit 10L in the subsequent stage.
(第 5の実施形態) (Fifth embodiment)
上述した各実施形態の発振器は、 第 3図や第 6図に示すように、 入出力信号間 の相対的な位相関係が反対となる 2つの移相回路を組み合わせて構成したが、 相 対的な位相関係が同じとなる 2つの移相回路を組合せて発振器を構成するように してもよい。  The oscillator of each of the above-described embodiments is configured by combining two phase shift circuits in which the relative phase relationship between the input and output signals is opposite, as shown in FIGS. 3 and 6. An oscillator may be configured by combining two phase shift circuits having the same phase relationship.
第 1 9図は、 第 5の実施形態の発振器の構成を示す図であり、 この発振器 5は、 入力信号の位相を反転して出力する位相反転回路 80と、 第 2図に構成を示す 2つ の移相回路 10Cと、 後段の移相回路 10Cの出力を位相反転回路 80の入力側に帰還 させる帰還抵抗 70とにより構成されている。  FIG. 19 is a diagram showing a configuration of an oscillator according to a fifth embodiment. This oscillator 5 has a phase inversion circuit 80 that inverts the phase of an input signal and outputs the inverted signal, and FIG. The phase shift circuit 10C includes a phase shift circuit 10C and a feedback resistor 70 that feeds back the output of the subsequent phase shift circuit 10C to the input side of the phase inversion circuit 80.
位相反転回路 80は、 入力された信号の位相を反転するものであり、 この位相反 転と同時に入力信号を所定の増幅度で増幅した信号を出力する。 したがって、 こ の位相反転回路 80あるいは 2つの移相回路 10 C内の各差動増幅器 12の増幅度を調 整することにより、 容易にループゲインを 1以上に設定することができる。  The phase inversion circuit 80 inverts the phase of the input signal, and outputs a signal obtained by amplifying the input signal with a predetermined amplification at the same time as the phase inversion. Therefore, by adjusting the amplification of each differential amplifier 12 in the phase inversion circuit 80 or the two phase shift circuits 10C, the loop gain can be easily set to 1 or more.
ところで、 上述した第 1の実施形態で説明したように、 2つの移相回路 10Cの それぞれは、 入力信号の周波数 ωが 0から∞まで変化するにしたがって位相シフ ト量が 1 8 0 ° から 0 ° まで変化する。 例えば、 2つの移相回路 10C内の C R回 路の時定数が同じであると仮定し、 これを Tとおくと、 の周波数では 2つの移相回路 10Cのそれぞれにおける位相シフ ト量が 90° となる。 したがつ て、 2つの移相回路 10 Cの全体によつて位相が 180° シフトされるとともに、 前段に設けられた位相反転回路 80によって位相が反転されるので、 全体として、 位相が一巡して位相シフト量が 0° となる信号が後段の移相回路 10Cから出力さ れる。 この後段の移相回路 10Cの出力を帰還抵抗 70を介して位相反転回路 80の入 力側に帰還させることにより、 周波数 ωを有する正弦波発振が行なわれる。 By the way, as described in the above-described first embodiment, each of the two phase shift circuits 10C changes the phase shift amount from 180 ° to 0 as the frequency ω of the input signal changes from 0 to ∞. Up to °. For example, CR times in two phase shift circuits 10C Assuming that the time constants of the paths are the same, and this is set to T, the phase shift amount in each of the two phase shift circuits 10C is 90 ° at the frequency of. Therefore, the phase is shifted by 180 ° by the entire two phase shift circuits 10 C, and the phase is inverted by the phase inverting circuit 80 provided at the preceding stage. Thus, a signal having a phase shift amount of 0 ° is output from the subsequent phase shift circuit 10C. By feeding back the output of the subsequent phase shift circuit 10C to the input side of the phase inversion circuit 80 via the feedback resistor 70, sine wave oscillation having the frequency ω is performed.
2つの移相回路 10 Cのそれぞれの伝達関数 K21は、 それぞれの移相回路 10 C内 の CR回路の時定数を Τすると、 (14)式中の を Τに置き換えて、  The transfer function K21 of each of the two phase shift circuits 10C is expressed by the following equation, where を is the time constant of the CR circuit in each phase shift circuit 10C.
K21 = - s 〜(26) K21 = - s ~ (26)
1 + 1 s  1 + 1 s
となる。 したがって、 位相反転回路 80と 2つの移相回路 10Cを縦続接続した場合 の全体の伝達関数 K11は、  Becomes Therefore, the overall transfer function K11 when the phase inversion circuit 80 and the two phase shift circuits 10C are connected in cascade is
Kll=(-l)xK2lxK21  Kll = (-l) xK2lxK21
(1一 Ts)2 (1 Ts) 2
― (1+Ts)2 ― (1 + Ts) 2
一 l+(Ts)2-2Ts One l + (Ts) 2 -2Ts
l+(Ts)2+2Ts " リ となる。 この (27)式の右辺は、 第 1の実施形態において(16)式に示した伝達関数l + (Ts) 2 + 2Ts ". The right side of the equation (27) is the transfer function shown in the equation (16) in the first embodiment.
K1の T と T2を Tに置き換えたものに等しい。 すなわち、 (27)式は第 1の実施 形態において示した非反転回路 50と 2つの移相回路 10 C、 30 Cを接続した場合の 全体の伝達関数に等しいものであり、 この実施形態において位相反転回路 80と 2 つの移相回路 10 Cを接続した構成が、 第 1の実施形態において第 1図に示した発 振器 1の構成に等価であることが分かる。 K1 of T and T 2 equal to the replaced T. That is, equation (27) is equal to the entire transfer function when the non-inverting circuit 50 and the two phase shift circuits 10 C and 30 C shown in the first embodiment are connected. It can be seen that the configuration in which the inversion circuit 80 and the two phase shift circuits 10C are connected is equivalent to the configuration of the oscillator 1 shown in FIG. 1 in the first embodiment.
したがって、 第 5の実施形態の発振器 5において、 位相反転回路 80の増幅度あ るいは 2つの移相回路 10 Cの増幅度を適切な値にしてループゲインを 1以上に設 定することにより、 一巡したときに位相シフ卜量が 0° となる周波数で正弦波発 振が持続される。  Therefore, in the oscillator 5 of the fifth embodiment, by setting the amplification of the phase inversion circuit 80 or the amplification of the two phase shift circuits 10 C to an appropriate value and setting the loop gain to 1 or more, The sine wave oscillation is sustained at the frequency where the phase shift amount becomes 0 ° after one round.
また、 各移相回路 10C内の可変抵抗 16の抵抗値 Rを変化することにより、 各移 相回路 IO Cにおける位相シフト量を変えることができるので、 位相反転回路 80と 2つの移相回路 10 Cの全体により合計で位相シフト量が 0 ° となる周波数を変え ることができ、 容易に周波数可変型の発振器 5を実現することができる。 By changing the resistance value R of the variable resistor 16 in each phase shift circuit 10C, Since the phase shift amount in the phase circuit IOC can be changed, the frequency at which the total phase shift amount becomes 0 ° can be changed by the entire phase inverting circuit 80 and the two phase shift circuits 10 C, which can be easily performed. The variable frequency oscillator 5 can be realized.
また、 この実施形態の発振器 5は、 差動増幅器やキャパシタあるいは抵抗を組 合せて構成しており、 どの構成素子も半導体基板上に形成することができるから、 発振周波数および最大減衰量を調整し得る発振器 5の全体を半導体基板上に形成 して集積回路とすることも容易である。  Also, the oscillator 5 of this embodiment is configured by combining a differential amplifier, a capacitor or a resistor, and any component can be formed on a semiconductor substrate, so that the oscillation frequency and the maximum attenuation are adjusted. It is also easy to form the integrated circuit by forming the entire obtained oscillator 5 on a semiconductor substrate.
(第 6の実施形態) (Sixth embodiment)
第 2 0図は、 第 6の実施形態の発振器の構成を示す図であり、 この発振器 6は、 入力信号の位相を反転して出力する位相反転回路 80と、 第 5図に構成を示す 2つ の移相回路 30 Cと、 後段の移相回路 30 Cの出力を位相反転回路 80の入力側に帰還 させる帰還抵抗 70とにより構成されている。  FIG. 20 is a diagram showing a configuration of an oscillator according to a sixth embodiment. This oscillator 6 has a phase inversion circuit 80 for inverting the phase of an input signal and outputting the inverted signal, and FIG. The phase shift circuit 30C includes a phase shift circuit 30C and a feedback resistor 70 that feeds back the output of the subsequent phase shift circuit 30C to the input side of the phase inversion circuit 80.
位相反転回路 80は、 入力された信号の位相を反転するものであり、 この位相反 転と同時に入力信号を所定の増幅度で増幅した信号を出力する。 したがって、 こ の位相反転回路 80あるいは 2つの移相回路 30 C内の各差動増幅器 32の増幅度を調 整することにより、 容易にループゲインを 1以上に設定することができる。  The phase inversion circuit 80 inverts the phase of the input signal, and outputs a signal obtained by amplifying the input signal with a predetermined amplification at the same time as the phase inversion. Therefore, by adjusting the amplification of each differential amplifier 32 in the phase inversion circuit 80 or the two phase shift circuits 30C, the loop gain can be easily set to 1 or more.
ところで、 上述した第 1の実施形態で説明したように、 2つの移相回路 30 Cの それぞれは、 入力信号の周波数 が 0から∞まで変化するにしたがって位相シフ ト量が 0 ° から 1 8 0 ° まで変化する。 例えば、 2つの移相回路 30 C内の C R回 路の時定数が同じであると仮定し、 これを Tとおくと、 ω = 1 ΖΤの周波数では 2つの移相回路 30 Cのそれぞれにおける位相シフ ト量が 9 0 ° となる。 したがつ て、 2つの移相回路 30 Cの全体によつて位相が 1 8 0 ° シフトされるとともに、 前段に設けられた位相反転回路 80によって位相が反転されるので、 全体として、 位相が一巡して位相シフト量が 0 ° となる信号が後段の移相回路 30 Cから出力さ れる。 この後段の移相回路 30 Cの出力を帰還抵抗 70を介して位相反転回路 80の入 力側に帰還させることにより、 周波数 ωを有する正弦波発振が行なわれる。  By the way, as described in the above-described first embodiment, each of the two phase shift circuits 30C changes the phase shift amount from 0 ° to 180 ° as the frequency of the input signal changes from 0 to ∞. Up to °. For example, assuming that the time constants of the CR circuits in the two phase shift circuits 30 C are the same, and that this is T, the phase at each of the two phase shift circuits 30 C at a frequency of ω = 1 1 The shift amount is 90 °. Therefore, the phase is shifted by 180 ° by the entire two phase shift circuits 30C, and the phase is inverted by the phase inverting circuit 80 provided in the preceding stage. A signal in which the phase shift amount becomes 0 ° in one cycle is output from the subsequent phase shift circuit 30C. By feeding back the output of the subsequent phase shift circuit 30C to the input side of the phase inversion circuit 80 via the feedback resistor 70, a sine wave oscillation having a frequency ω is performed.
2つの移相回路 30 Cのそれぞれの伝達関数 K31は、 それぞれの移相回路 30 C内 の C R回路の時定数を Τとすると、 (15)式中の Τ 2を Τに置き換えて、 K31= ^5- ー(28) Two phase shifting circuits 30 each transfer function K31 of C, when the time constant of the CR circuit of each of the phase shifting circuit 30 C T, replaced by a T to T 2 in (15), K31 = ^ 5-ー (28)
1 +T s  1 + T s
となる。 したがって、 位相反転回路 80と 2つの移相回路 30Cを接続した場合の全 体の伝達関数 K12は、 Becomes Therefore, when the phase inversion circuit 80 and the two phase shift circuits 30C are connected, the overall transfer function K12 is
K12=(-l)xK3lxK31  K12 = (-l) xK3lxK31
(1一 Ts)2 (1 Ts) 2
(1+Ts)2 (1 + Ts) 2
l+(Ts)2-2Ts l + (Ts) 2 -2Ts
•(29) l+(Ts)2+2Ts • (29) l + (Ts) 2 + 2Ts
となって、 第 1の実施形態において(16)式に示した伝達関数 Klの と T2を T に置き換えたものに等 、計算結果が得られる。 It becomes, etc. in the first embodiment transfer functions Kl's and T 2 as shown in equation (16) derived by replacing the T, the calculation result is obtained.
すなわち、 この実施形態において位相反転回路 80と 2つの移相回路 30Cを接続 した構成が、 第 1の実施形態において非反転回路 50と 2つの移相回路 10C、 30 C を接続した構成や、 第 5の実施形態において位相反転回路 80と 2つの移相回路 10 Cを接続した構成に等価であるといえる。  That is, the configuration in which the phase inversion circuit 80 and the two phase shift circuits 30C are connected in this embodiment is different from the configuration in which the non-inversion circuit 50 and the two phase shift circuits 10C and 30C are connected in the first embodiment, This can be said to be equivalent to the configuration in which the phase inversion circuit 80 and the two phase shift circuits 10C are connected in the fifth embodiment.
したがって、 第 6の実施形態の発振器 6において、 位相反転回路 80の増幅度あ るいは 2つの移相回路 30 Cの増幅度を適切な値にしてループゲインを 1以上に設 定することにより、 一巡したときに位相シフト量が 0° となる周波数で正弦波発 振が持続される。  Therefore, in the oscillator 6 of the sixth embodiment, by setting the amplification of the phase inversion circuit 80 or the amplification of the two phase shift circuits 30C to an appropriate value and setting the loop gain to 1 or more, The sine wave oscillation is maintained at the frequency where the phase shift becomes 0 ° when the circuit makes one round.
また、 各移相回路 30 C内の可変抵抗 36の抵抗値 Rを可変することにより、 各移 相回路 30Cにおける位相シフト量を変えることができるので、 位相反転回路 80と 2つの移相回路 30 Cの全体により合計で位相シフト量が 0° となる周波数を変え ることができ、 容易に周波数可変型の発振器 6を実現することができる。  Also, by varying the resistance value R of the variable resistor 36 in each phase shift circuit 30C, the amount of phase shift in each phase shift circuit 30C can be changed, so that the phase inversion circuit 80 and the two phase shift circuits 30C are used. The frequency at which the phase shift amount becomes 0 ° in total can be changed by the entire C, and the variable frequency oscillator 6 can be easily realized.
また、 この実施形態の発振器 6は、 差動増幅器やキャパシタあるいは抵抗を組 合せて構成しており、 どの構成素子も半導体基板上に形成することができるから、 発振周波数および最大減衰量を調整し得る発振器 6の全体を半導体基板上に形成 して集積回路とすることも容易である。  Further, the oscillator 6 of this embodiment is configured by combining a differential amplifier, a capacitor or a resistor, and any of the constituent elements can be formed on a semiconductor substrate. Therefore, the oscillation frequency and the maximum attenuation are adjusted. It is easy to form the integrated circuit by forming the whole of the obtained oscillator 6 on a semiconductor substrate.
(第 7の実施形態) 第 2 1図は、 第 7の実施形態の発振器の構成を示す図であり、 この発振器 7は、 入力信号の位相を反転して出力する位相反転回路 80と、 第 1 1図に構成を示す 2 つの移相回路 10Lと、 後段の移相回路 10 Lの出力を位相反転回路 80の入力側に帰 還させる帰還抵抗 70とにより構成されている。 (Seventh embodiment) FIG. 21 is a diagram showing a configuration of an oscillator according to a seventh embodiment. This oscillator 7 has a phase inversion circuit 80 that inverts the phase of an input signal and outputs the inverted signal, and FIG. 11 shows a configuration thereof. It comprises two phase shift circuits 10L and a feedback resistor 70 for returning the output of the subsequent phase shift circuit 10L to the input side of the phase inversion circuit 80.
位相反転回路 80は、 入力された信号の位相を反転するものであり、 この位相反 転と同時に入力信号を所定の増幅度で増幅した信号を出力する。 したがって、 こ の位相反転回路 80あるいは 2つの移相回路 10 L内の各差動増幅器 12の増幅度を調 整することにより、 容易にループゲインを 1以上に設定することができる。  The phase inversion circuit 80 inverts the phase of the input signal, and outputs a signal obtained by amplifying the input signal with a predetermined amplification at the same time as the phase inversion. Therefore, by adjusting the amplification of each differential amplifier 12 in the phase inversion circuit 80 or the two phase shift circuits 10L, the loop gain can be easily set to 1 or more.
ところで、 上述した第 2の実施形態で説明したように、 2つの移相回路 10Lの それぞれは、 入力信号の周波数 ωが 0から∞まで変化するにしたがって位相シフ ト量が 1 8 0 ° から 0 ° まで変化する。 例えば、 2つの移相回路 10L内の L R回 路の時定数が同じであると仮定し、 これを Τとおくと、 ω = 1 ΖΤの周波数では 2つの移相回路 10Lのそれぞれにおける位相シフ ト量が 9 0 ° となる。 したがつ て、 2つの移相回路 10Lの全体によつて位相が 1 8 0 ° シフトされるとともに、 前段に設けられた位相反転回路 80によって位相が反転されるので、 全体として、 位相が一巡して位相シフト量が 0 ° となる信号が後段の移相回路 10Lから出力さ れる。 この後段の移相回路 10Lの出力を帰還抵抗 70を介して位相反転回路 80の入 力側に帰還させることにより、 周波数 ωを有する正弦波発振が行なわれる。  By the way, as described in the above-described second embodiment, each of the two phase shift circuits 10L changes the phase shift amount from 180 ° to 0 ° as the frequency ω of the input signal changes from 0 to ∞. Up to °. For example, assuming that the time constants of the LR circuits in the two phase shift circuits 10L are the same, and let Τ be the phase shift at each of the two phase shift circuits 10L at the frequency of ω = 1 相The amount is 90 °. Accordingly, the phase is shifted by 180 ° by the entire two phase shift circuits 10L, and the phase is inverted by the phase inverting circuit 80 provided in the preceding stage, so that the phase as a whole is completed. Then, a signal having a phase shift amount of 0 ° is output from the subsequent phase shift circuit 10L. By feeding back the output of the subsequent phase shift circuit 10L to the input side of the phase inversion circuit 80 via the feedback resistor 70, a sine wave oscillation having the frequency ω is performed.
第 2の実施形態で説明したように、 2つの移相回路 10Lのそれぞれは、 第 2図 に構成を示した移相回路 10 Cと同じ入出力電圧間の関係を有しており、 その伝達 関数は (26)式に示された K21で表すことができる。 したがって、 位相反転回路 80 と 2つの移相回路 10 Lを接続した場合の全体の伝達関数も(27)式に表された Κ 11 で表すことができる。 上述したように、 (27)式に示された伝達関数 K11の計算結 果は、 第 1の実施形態において(16)式に示した伝達関数 K1の と Τ 2を Τに置 き換えたものに等しい。 As described in the second embodiment, each of the two phase shift circuits 10L has the same input-output voltage relationship as the phase shift circuit 10C whose configuration is shown in FIG. The function can be represented by K21 shown in equation (26). Therefore, the entire transfer function when the phase inversion circuit 80 and the two phase shift circuits 10 L are connected can also be expressed by Κ11 expressed by the equation (27). As described above, the calculation result of the transfer function K11 shown in the equation (27) is obtained by replacing と2 with 伝 達2 in the transfer function K1 shown in the equation (16) in the first embodiment. be equivalent to.
すなわち、 この実施形態において位相反転回路 80と 2つの移相回路 10Lを接続 した構成が、 第 1の実施形態において非反転回路 50と 2つの移相回路 10C、 30 C を接铳した構成に等価であるといえる。  That is, the configuration in which the phase inversion circuit 80 and the two phase shift circuits 10L are connected in this embodiment is equivalent to the configuration in which the non-inversion circuit 50 and the two phase shift circuits 10C and 30C are connected in the first embodiment. You can say that.
したがって、 第 7の実施形態の発振器 7において、 位相反転回路 80の増幅度あ るいは 2つの移相回路 10 Lの増幅度を適切な値にしてループゲインを 1以上に設 定することにより、 一巡したときに位相シフト量が 0 ° となる周波数で正弦波発 振が持続される。 Therefore, in the oscillator 7 of the seventh embodiment, the amplification degree of the phase inversion circuit 80 Alternatively, by setting the gain of the two phase shifters 10 L to an appropriate value and setting the loop gain to 1 or more, the sine wave oscillation is sustained at a frequency where the phase shift amount becomes 0 ° during one round. Is done.
また、 各移相回路 10L内の可変抵抗 16の抵抗値 Rを変化することにより、 各移 相回路 10Lにおける位相シフト量を変えることができるので、 位相反転回路 80と 2つの移相回路 10 Lの全体により合計で位相シフト量が 0 ° となる周波数を変え ることができ、 容易に周波数可変型の発振器 7を実現することができる。  Also, by changing the resistance value R of the variable resistor 16 in each phase shift circuit 10L, the amount of phase shift in each phase shift circuit 10L can be changed, so that the phase inversion circuit 80 and the two phase shift circuits 10 L Thus, the frequency at which the phase shift amount becomes 0 ° in total can be changed, and the variable frequency oscillator 7 can be easily realized.
また、 第 2の実施形態で説明したように、 インダクタ 17は、 写真触刻法等によ り渦巻き形状の導体を形成することによって半導体基板上へ形成することが可能 となるが、 このようなインダクタ 17を用いることにより、 それ以外の構成部品 (差 動増幅器や抵抗等) とともに発振器 7の全体を半導体基板上に形成して集積回路 とすることも容易である。 特に、 集積回路として発振器 7を形成した場合には、 インダクタ 17のイングクタンスを小さくして周波数 ω ( = R/ L ) を高くするこ とが容易であり、 発振周波数の高周波化に適している。  As described in the second embodiment, the inductor 17 can be formed on a semiconductor substrate by forming a spiral conductor by a photolithography method or the like. By using the inductor 17, it is easy to form an integrated circuit by forming the entire oscillator 7 together with other components (differential amplifier, resistor, etc.) on a semiconductor substrate. In particular, when the oscillator 7 is formed as an integrated circuit, it is easy to increase the frequency ω (= R / L) by reducing the inductance of the inductor 17 and is suitable for increasing the oscillation frequency. .
(第 8の実施形態) (Eighth embodiment)
第 2 2図は、 第 8の実施形態の発振器の構成を示す図であり、 この発振器 8は、 入力信号の位相を反転して出力する位相反転回路 80と、 第 1 4図に構成を示す 2 つの移相回路 30 Lと、 後段の移相回路 30Lの出力を位相反転回路 80の入力側に帰 還させる帰還抵抗 70とにより構成されている。  FIG. 22 is a diagram showing a configuration of an oscillator according to an eighth embodiment. This oscillator 8 has a phase inversion circuit 80 that inverts the phase of an input signal and outputs the inverted signal, and FIG. 14 shows a configuration thereof. It is composed of two phase shift circuits 30 L and a feedback resistor 70 for returning the output of the subsequent phase shift circuit 30 L to the input side of the phase inversion circuit 80.
位相反転回路 80は、 入力された信号の位相を反転するものであり、 この位相反 転と同時に入力信号を所定の増幅度で増幅した信号を出力する。 したがって、 こ の位相反転回路 80あるいは 2つの移相回路 30 L内の各差動増幅器 32の増幅度を調 整することにより、 容易にループゲインを 1以上に設定することができる。  The phase inversion circuit 80 inverts the phase of the input signal, and outputs a signal obtained by amplifying the input signal with a predetermined amplification at the same time as the phase inversion. Therefore, the loop gain can be easily set to 1 or more by adjusting the amplification of each differential amplifier 32 in the phase inversion circuit 80 or the two phase shift circuits 30L.
ところで、 上述した第 2の実施形態で説明したように、 2つの移相回路 30Lの それぞれは、 入力信号の周波数 ωが 0から∞まで変化するにしたがって位相シフ ト量が 0 ° から 1 8 0 ° まで変化する。 例えば、 2つの移相回路 30L内の L R回 路の時定数が同じであると仮定し、 これを Τとおくと、 ω= 1 ΖΤの周波数では 2つの移相回路 30Lのそれぞれにおける位相シフト量が 9 0 ° となる。 したがつ て、 2つの移相回路 30 Lの全体によつて位相が 1 8 0 ° シフトされるとともに、 前段に設けられた位相反転回路 80によって位相が反転されるので、 全体として、 位相が一巡して位相シフト量が 0 ° となる信号が後段の移相回路 30 Lから出力さ れる。 この後段の移相回路 30 Lの出力を帰還抵抗 70を介して位相反転回路 80の入 力側に帰還させることにより、 周波数 ωを有する正弦波発振が行なわれる。 By the way, as described in the second embodiment, each of the two phase shift circuits 30L changes the phase shift amount from 0 ° to 180 ° as the frequency ω of the input signal changes from 0 to ∞. Up to °. For example, assuming that the time constants of the LR circuits in the two phase shift circuits 30L are the same, and letting this be Τ, the phase shift amount in each of the two phase shift circuits 30L at the frequency of ω = 1 ΖΤ Is 90 °. According to Therefore, the phase is shifted by 180 ° by the entire two phase shift circuits 30L, and the phase is inverted by the phase inverting circuit 80 provided at the preceding stage. A signal having a phase shift amount of 0 ° is output from the subsequent phase shift circuit 30L. By feeding back the output of the subsequent phase shift circuit 30L to the input side of the phase inversion circuit 80 via the feedback resistor 70, a sine wave oscillation having the frequency ω is performed.
第 2の実施形態で説明したように、 2つの移相回路 30Lのそれぞれは第 5図に 構成を示した移相回路 30 Cと同じ入出力電圧間の関係を有しており、 その伝達関 数は(28)式に示された K31で表すことができる。 したがって、 位相反転回路 80と 2つの移相回路 30 Lを接続した場合の全体の伝達関数も(29)式に表された K12で 表すことができる。 上述したように、 (29)式に示された伝達関数 K 12の計算結果 は、 第 1の実施形態において(16)式に示した伝達関数 K 1の と Τ 2を Τに置き 換えたものに等しい。 As described in the second embodiment, each of the two phase shift circuits 30L has the same input-output voltage relationship as the phase shift circuit 30C whose configuration is shown in FIG. The number can be represented by K31 shown in equation (28). Therefore, the entire transfer function when the phase inversion circuit 80 and the two phase shift circuits 30 L are connected can also be expressed by K12 expressed by the equation (29). As described above, the calculation result of the transfer function K12 shown in the equation (29) is obtained by replacing と2 with 伝 達2 of the transfer function K1 shown in the equation (16) in the first embodiment. be equivalent to.
すなわち、 この実施形態において位相反転回路 80と 2つの移相回路 30Lを接続 した構成が、 第 1の実施形態において非反転回路 50と 2つの移相回路 10 C、 30 C を接続した構成に等価であるといえる。  That is, the configuration in which the phase inversion circuit 80 and the two phase shift circuits 30L are connected in this embodiment is equivalent to the configuration in which the non-inversion circuit 50 and the two phase shift circuits 10C and 30C are connected in the first embodiment. You can say that.
したがって、 第 8の実施形態の発振器 8において、 位相反転回路 80の増幅度あ るいは 2つの移相回路 30 Lの増幅度を適切な値にしてループゲインを 1以上に設 定することにより、 一巡したときに位相シフト量が 0 ° となる周波数で正弦波発 振が持続される。  Therefore, in the oscillator 8 of the eighth embodiment, by setting the amplification of the phase inversion circuit 80 or the amplification of the two phase shift circuits 30 L to an appropriate value and setting the loop gain to 1 or more, The sine wave oscillation is sustained at the frequency where the phase shift becomes 0 ° when the circuit makes one round.
また、 各移相回路 30 L内の可変抵抗 36の抵抗値 Rを変化することにより、 各移 相回路 30Lにおける位相シフト量を変えることができるので、 位相反転回路 80と 2つの移相回路 30 Lの全体により合計で位相シフト量が 0 ° となる周波数を変え ることができ、 容易に周波数可変型の発振器 8を実現することができる。  Further, by changing the resistance value R of the variable resistor 36 in each phase shift circuit 30L, the amount of phase shift in each phase shift circuit 30L can be changed, so that the phase inversion circuit 80 and the two phase shift circuits 30L The frequency at which the phase shift amount becomes 0 ° in total can be changed by the entirety of L, and the variable frequency oscillator 8 can be easily realized.
また、 第 2の実施形態で説明したように、 イングクタ 37は、 写真触刻法等によ り渦巻き形状の導体を形成することによつて半導体基板上へ形成することが可能 となるが、 このようなイングクタ 37を用いることにより、 それ以外の構成部品 (差 動増幅器や抵抗等) とともに発振器 8の全体を半導体基板上に形成して集積回路 とすることも容易である。 特に、 集積回路として発振器 8を形成した場合には、 インダクタ 37のインダクタンスを小さくして周波数 ω (= R/ L ) を高くするこ とが容易であり、 発振周波数の高周波化に適している。 In addition, as described in the second embodiment, the inctor 37 can be formed on a semiconductor substrate by forming a spiral-shaped conductor by photolithography or the like. By using such an ingkta 37, it is easy to form the entire oscillator 8 together with the other components (differential amplifier, resistor, etc.) on a semiconductor substrate to form an integrated circuit. In particular, when the oscillator 8 is formed as an integrated circuit, the inductance ω (= R / L) is increased by reducing the inductance of the inductor 37. It is suitable for increasing the oscillation frequency.
(第 9の実施形態) (Ninth embodiment)
第 2 3図は、 第 9の実施形態の発振器の構成を示す回路図であり、 この発振器 9 Aは、 入力信号の位相を反転して出力する位相反転回路 80と、 第 2図あるいは 第 1 1図に構成を示す移相回路 10 Cおよび 10 Lと、 後段の移相回路 10Lの出力を 位相反転回路 80の入力側に帰還させる帰還抵抗 70とにより構成されている。  FIG. 23 is a circuit diagram showing the configuration of the oscillator according to the ninth embodiment. This oscillator 9A includes a phase inverting circuit 80 that inverts the phase of an input signal and outputs the inverted signal, and FIG. It is composed of phase shift circuits 10 C and 10 L whose configuration is shown in FIG. 1, and a feedback resistor 70 that feeds back the output of the subsequent phase shift circuit 10 L to the input side of the phase inversion circuit 80.
位相反転回路 80は、 入力された信号の位相を反転するものであり、 この位相反 転と同時に入力信号を所定の増幅度で増幅した信号を出力する。 したがって、 こ の位相反転回路 80あるいは 2つの移相回路 10 C、 10 L内の各差動増幅器 12の増幅 度を調整することにより、 容易にループゲインを 1以上に設定することができる。 ところで、 上述した第 1の実施形態あるいは第 2の実施形態で説明したように、 移相回路 10C、 10Lのそれぞれは、 入力信号の周波数 ωが 0から∞まで変化する にしたがって位相シフト量が 1 8 0 ° から 0 ° まで変化する。 例えば、 移相回路 10 C内の C R回路の時定数と移相回路 10 L内の L R回路の時定数が同じであると 仮定し、 これを Τとおくと、 ω= 1 ΖΤの周波数では移相回路 10C、 10Lのそれ ぞれにおける位相シフ ト量が 9 0 ° となる。 したがって、 2つの移相回路 10 C、 10Lの全体によつて位相が 1 8 0 ° シフトされるとともに、 前段に設けられた位 相反転回路 80によって位相が反転されるので、 全体として、 位相が一巡して位相 シフ ト量が 0 ° となる信号が後段の移相回路 10Lから出力される。 この後段の移 相回路 10Lの出力を帰還抵抗 70を介して位相反転回路 80の入力側に帰還させるこ とにより、 周波数 ωを有する正弦波発振が行なわれる。  The phase inversion circuit 80 inverts the phase of the input signal, and outputs a signal obtained by amplifying the input signal with a predetermined amplification at the same time as the phase inversion. Therefore, by adjusting the amplification of each differential amplifier 12 in the phase inversion circuit 80 or the two phase shift circuits 10C and 10L, the loop gain can be easily set to 1 or more. As described in the first embodiment or the second embodiment, each of the phase shift circuits 10C and 10L has a phase shift amount of 1 as the frequency ω of the input signal changes from 0 to 0. It varies from 80 ° to 0 °. For example, assuming that the time constant of the CR circuit in the phase shift circuit 10 C is the same as the time constant of the LR circuit in the phase shift circuit 10 L, and this is assumed to be Τ, the shift at the frequency of ω = 1 ΖΤ The phase shift amount in each of the phase circuits 10C and 10L is 90 °. Therefore, the phase is shifted by 180 ° by the entire two phase shift circuits 10C and 10L, and the phase is inverted by the phase inverting circuit 80 provided at the preceding stage. A signal in which the phase shift amount becomes 0 ° in one cycle is output from the subsequent phase shift circuit 10L. By feeding back the output of the subsequent phase shift circuit 10L to the input side of the phase inversion circuit 80 via the feedback resistor 70, a sine wave oscillation having the frequency ω is performed.
また、 各移相回路 10 C、 10L内の可変抵抗 16の抵抗値 Rを変化することにより、 各移相回路 10C、 10Lにおける位相シフト量を変えることができるので、 位相反 転回路 80と 2つの移相回路 10C、 10Lの全体により合計で位相シフト量が 0 ° と なる周波数を変えることができ、 容易に周波数可変型の発振器 9 Aを実現するこ とができる。  Also, by changing the resistance value R of the variable resistor 16 in each phase shift circuit 10C, 10L, the amount of phase shift in each phase shift circuit 10C, 10L can be changed. The frequency at which the phase shift amount becomes 0 ° in total can be changed by the entirety of the two phase shift circuits 10C and 10L, and the variable frequency oscillator 9A can be easily realized.
また、 この実施形態の発振器 9 Aにおいて、 イングクタ 17は、 写真触刻法等に より渦巻き形状の導体を形成することによって半導体基板上へ形成することが可 能となるが、 このようなイングクタ 17を用いることにより、 それ以外の構成部品 (差動増幅器や抵抗等) とともに発振器 9 Aの全体を半導体基板上に形成して集 積回路とすることも容易である。 In addition, in the oscillator 9A of this embodiment, the inctor 17 can be formed on a semiconductor substrate by forming a spiral-shaped conductor by photolithography or the like. However, by using such an integrator 17, it is easy to form the entire oscillator 9A together with the other components (differential amplifiers, resistors, etc.) on a semiconductor substrate to form an integrated circuit. It is.
また、 前段の移相回路 10 Cの C R回路の時定数 Tは C Rであり、 後段の移相回 路 10 Lの L R回路の時定数 Tは L /Rであつて、 それぞれにおいて抵抗値 Rが分 子と分母に分かれるので、 例えば、 半導体基板上に発振器 9 Aの全体を形成する とともに 2つの可変抵抗 16を F E Tで形成したような場合には、 この抵抗値の温 度変化に対する発振周波数の変動を抑制する、 いわゆる温度捕償が可能となる。 なお、 上述した第 9の実施形態の発振器 9 Aでは、 前段に移相回路 10 Cを、 後 段に移相回路 10Lをそれぞれ配置したが、 これらの全体によつて入出力信号間の 位相シフト量が 1 8 0 ° となればよいことから、 これらの前後を入れ換えて前段 に移相回路 10 Lを、 後段に移相回路 10 Cをそれぞれ配置して発振器を構成するよ うにしてもよい。  The time constant T of the CR circuit of the preceding phase shift circuit 10 C is CR, and the time constant T of the LR circuit of the subsequent phase shift circuit 10 L is L / R. Since it is divided into a molecule and a denominator, for example, when the entire oscillator 9A is formed on a semiconductor substrate and two variable resistors 16 are formed by FETs, the oscillation frequency of the resistance value with respect to a temperature change of the resistance value is changed. It is possible to suppress fluctuations, so-called temperature compensation. In the above-described oscillator 9A of the ninth embodiment, the phase shift circuit 10C is arranged in the preceding stage and the phase shift circuit 10L is arranged in the subsequent stage, respectively. Since the amount only needs to be 180 °, the oscillator may be configured by exchanging these before and after, and disposing the phase shift circuit 10 L at the front stage and the phase shift circuit 10 C at the rear stage, respectively. .
(第 1 0の実施形態) (10th embodiment)
第 2 4図は、 第 1 0の実施形態の発振器の構成を示す回路図であり、 この発振 器 9 Bは、 入力信号の位相を反転して出力する位相反転回路 80と、 第 1 4図ある いは第 5図に構成を示す移相回路 30 Lおよび 30 Cと、 後段の移相回路 30 Cの出力 を位相反転回路 80の入力側に帰還させる帰還抵抗 70とにより構成されている。 位相反転回路 80は、 入力された信号の位相を反転するものであり、 この位相反 転と同時に入力信号を所定の増幅度で増幅した信号を出力する。 したがって、 こ の位相反転回路 80あるいは 2つの移相回路 30 L、 30 C内の各差動増幅器 32の増幅 度を調整することにより、 容易にループゲインを 1以上に設定することができる。 ところで、 上述した第 2の実施形態あるいは第 1の実施形態で説明したように、 移相回路 30 L、 30 Cのそれぞれは、 入力信号の周波数 ωが 0から∞まで変化する にしたがって位相シフト量が 0 ° から 1 8 0 ° まで変化する。 例えば、 移相回路 30 L内の L R回路の時定数と移相回路 30 C内の C R回路の時定数が同じであると 仮定し、 これを Τとおくと、 ω = 1 /Τの周波数では移相回路 30L、 30Cのそれ それにおける位相シフ ト量が 9 0 ° となる。 したがって、 2つの移相回路 30L、 30Cの全体によつて位相が 180° シフ卜されるとともに、 前段に設けられた位 相反転回路 80によって位相が反転されるので、 全体として、 位相が一巡して位相 シフ ト量が 0° となる信号が後段の移相回路 30Cから出力される。 この後段の移 相回路 30Cの出力を帰還抵抗 70を介して位相反転回路 80の入力側に帰還させるこ とにより、 周波数 ωを有する正弦波発振が行なわれる。 FIG. 24 is a circuit diagram showing the configuration of the oscillator according to the tenth embodiment. The oscillator 9 B includes a phase inversion circuit 80 that inverts the phase of an input signal and outputs the inverted signal. Alternatively, it is composed of a phase shift circuit 30 L and 30 C whose configuration is shown in FIG. 5, and a feedback resistor 70 that feeds back the output of the subsequent phase shift circuit 30 C to the input side of the phase inversion circuit 80. The phase inversion circuit 80 inverts the phase of the input signal, and outputs a signal obtained by amplifying the input signal with a predetermined amplification at the same time as the phase inversion. Therefore, the loop gain can be easily set to 1 or more by adjusting the amplification degree of each differential amplifier 32 in the phase inversion circuit 80 or the two phase shift circuits 30L and 30C. By the way, as described in the second embodiment or the first embodiment, each of the phase shift circuits 30 L and 30 C has a phase shift amount as the frequency ω of the input signal changes from 0 to ∞. Changes from 0 ° to 180 °. For example, assuming that the time constant of the LR circuit in the phase shift circuit 30 L and the time constant of the CR circuit in the phase shift circuit 30 C are the same, and if this is Τ, then at the frequency of ω = 1 / Τ The phase shift amount in each of the phase shift circuits 30L and 30C is 90 °. Therefore, two phase shift circuits 30L, The phase is shifted by 180 ° by the entire 30C, and the phase is inverted by the phase inverting circuit 80 provided in the preceding stage.As a whole, the phase completes and the phase shift amount becomes 0 °. Is output from the subsequent phase shift circuit 30C. By feeding back the output of the subsequent phase shift circuit 30C to the input side of the phase inversion circuit 80 via the feedback resistor 70, a sine wave oscillation having a frequency ω is performed.
また、 各移相回路 30L、 30C内の可変抵抗 36の抵抗値 Rを変化することにより、 各移相回路 30L、 30Cにおける位相シフト量を変えることができるので、 位相反 転回路 80と 2つの移相回路 30 L、 30Cの全体により合計で位相シフ ト量が 0° と なる周波数を変えることができ、 容易に周波数可変型の発振器 9 Bを実現するこ とができる。  Also, by changing the resistance R of the variable resistor 36 in each of the phase shift circuits 30L and 30C, the amount of phase shift in each of the phase shift circuits 30L and 30C can be changed. The frequency at which the phase shift amount becomes 0 ° in total can be changed by the entire phase shift circuits 30L and 30C, and the variable frequency oscillator 9B can be easily realized.
また、 この実施形態の発振器 9 Bにおいて、 インダクタ 37は、 写真触刻法等に より渦巻き形状の導体を形成することによって半導体基板上へ形成することが可 能となる力、 このようなイングクタ 37を用いることにより、 それ以外の構成部品 (差動増幅器や抵抗等) とともに発振器 9 Bの全体を半導体基板上に形成して集 積回路とすることも容易である。  In the oscillator 9B of this embodiment, the inductor 37 has a force that can be formed on a semiconductor substrate by forming a spiral conductor by photolithography or the like. By using this, it is easy to form the entire oscillator 9B together with other components (differential amplifiers, resistors, etc.) on a semiconductor substrate to form an integrated circuit.
また、 前段の移相回路 30Lの LR回路の時定数 Tは LZRであり、 後段の移相 回路 30Cの CR回路の時定数 Tは CRであって、 それぞれにおいて抵抗値 Rが分 子と分母に分かれるので、 例えば、 半導体基板上に発振器 9 Bの全体を形成する とともに 2つの可変抵抗 36を F E Tで形成したような場合には、 この抵抗値の温 度変化に対する発振周波数の変動を抑制する、 いわゆる温度補償が可能となる。 なお、 上述した第 10の実施形態の発振器 9 Bでは、 前段に移相回路 30Lを、 後段に移相回路 30Cをそれぞれ配置したが、 これらの全体によつて入出力信号間 の位相シフ ト量が 180° となればよいことから、 これらの前後を入れ換えて前 段に移相回路 30Cを、 後段に移相回路 30Lをそれぞれ配置して発振器を構成する ようにしてもよい。  The time constant T of the LR circuit of the preceding phase shift circuit 30L is LZR, and the time constant T of the CR circuit of the subsequent phase shift circuit 30C is CR, and the resistance value R is the denominator and the denominator, respectively. For example, if the entire oscillator 9B is formed on a semiconductor substrate and two variable resistors 36 are formed by FETs, the fluctuation of the oscillation frequency due to the temperature change of the resistance value is suppressed. So-called temperature compensation becomes possible. In the above-described oscillator 9B of the tenth embodiment, the phase shift circuit 30L is arranged in the preceding stage and the phase shift circuit 30C is arranged in the subsequent stage, respectively. Since it is only necessary that the phase shifter be 180 °, the oscillator may be configured by exchanging the front and rear sides, and disposing the phase shift circuit 30C in the preceding stage and the phase shift circuit 30L in the subsequent stage.
(発明を実施するためのその他の形態) (Other modes for carrying out the invention)
上述した各実施形態の発振器を構成する非反転回路 50または位相反転回路 80は、 トランジスタ、 オペアンプ、 抵抗等を組合せて簡単に構成することができる。 第 2 5図は、 オペアンプを用いて構成した非反転回路と位相反転回路の具体例 を示す図であり、 (A)に示す非反転回路 50は、 反転入力端子が抵抗 54を介して接 地されてとともにこの反転入力端子と出力端子との間に抵抗 56が接続されたオペ アンプ 52により構成されており、 2つの抵抗 54、 56の抵抗比によって定まる所定 の増幅度を有するバッファとして動作する。 ォペアンプ 52の非反転入力端子に交 流信号が入力されると、 オペアンプ 52の出力端子からは同相の信号が出力される。 また、 第 2 5図(B )に示す位相反転回路 80は、 入力信号が抵抗 84を介して反転 入力端子に入力されるとともに非反転入力端子が接地されたォペアンプ 82と、 こ のォペアンプ 82の反転入力端子と出力端子との間に接続された抵抗 86とにより構 成されている。 この位相反転回路 80は、 2つの抵抗 84、 86の抵抗比によって定ま る所定の増幅度を有しており、 抵抗 84を介してオペァンプ 82の反転入力端子に交 流信号が入力されると、 オペアンプ 82の出力端子からは位相が反転した逆相の信 号が出力される。 The non-inverting circuit 50 or the phase inverting circuit 80 that constitutes the oscillator according to each of the above-described embodiments can be easily configured by combining transistors, operational amplifiers, resistors, and the like. FIG. 25 is a diagram showing a specific example of a non-inverting circuit and a phase inverting circuit formed by using an operational amplifier. The non-inverting circuit 50 shown in FIG. And an operational amplifier 52 having a resistor 56 connected between the inverting input terminal and the output terminal, and operates as a buffer having a predetermined amplification determined by the resistance ratio of the two resistors 54 and 56. . When an AC signal is input to the non-inverting input terminal of the operational amplifier 52, an in-phase signal is output from the output terminal of the operational amplifier 52. The phase inversion circuit 80 shown in FIG. 25 (B) includes an operational amplifier 82 in which an input signal is input to an inverting input terminal via a resistor 84 and a non-inverting input terminal is grounded. It comprises a resistor 86 connected between the inverting input terminal and the output terminal. The phase inverting circuit 80 has a predetermined amplification degree determined by the resistance ratio of the two resistors 84 and 86, and when an AC signal is input to the inverting input terminal of the operational amplifier 82 via the resistor 84. The output terminal of the operational amplifier 82 outputs an inverted-phase signal with an inverted phase.
ところで、 上述した各実施形態の発振器は、 2つの移相回路と非反転回路ある いは 2つの移相回路と位相反転回路によつて構成されており、 接続された 3つの 回路の全体によつて所定の周波数において合計の位相シフト量を 0 ° にすること により所定の発振動作を行なうように構成されている。 したがって、 位相シフ ト 量だけに着目すると、 3つの回路をどのような順序で接続するかはある程度の自 由度があり、 必要に応じて接続順序を決めることができる。  By the way, the oscillator of each of the above-described embodiments is configured by two phase shift circuits and a non-inverting circuit or two phase shift circuits and a phase inverting circuit, and is configured by three connected circuits as a whole. Thus, a predetermined oscillation operation is performed by setting the total phase shift amount to 0 ° at a predetermined frequency. Therefore, focusing only on the amount of phase shift, there is a certain degree of freedom in the order in which the three circuits are connected, and the connection order can be determined as necessary.
第 2 6図は、 2つの移相回路と非反転回路を組合せて発振器を構成した場合に おいて、 その接続状態を示すブロック図である。 なお、 これらのブロック図にお いて、 帰還インピーダンス素子 70 aは、 最も一般的には第 1図等に示すように帰 還抵抗 70を使用する。 ただし、 帰還インピーダンス素子 70 aをキャパシタあるい はイングクタにより形成したり、 抵抗ゃキャパシタあるいはインダクタを組合せ て形成してもよい。  FIG. 26 is a block diagram showing a connection state when an oscillator is configured by combining two phase shift circuits and a non-inverting circuit. In these block diagrams, the feedback impedance element 70a most commonly uses a feedback resistor 70 as shown in FIG. However, the feedback impedance element 70a may be formed by a capacitor or an integrator, or may be formed by combining a resistance and a capacitor or an inductor.
第 2 6図(A)には、 2つの移相回路の後段に非反転回路 50を配置した構成が示 されている。 このように、 後段に非反転回路 50を配置した場合には、 この非反転 回路 50に出力バッファの機能を持たせることにより、 大きな出力電流を取り出す ことができる。 第 2 6図( B )には 2つの移相回路の間に非反転回路 50を配置した構成が示され ている。 このように、 中間に非反転回路 50を配置した場台には、 前段の移相回路 と後段の移相回路の相互干渉を完全に防止することができる。 FIG. 26 (A) shows a configuration in which a non-inverting circuit 50 is arranged at a stage subsequent to two phase shift circuits. As described above, when the non-inverting circuit 50 is arranged at the subsequent stage, a large output current can be taken out by providing the non-inverting circuit 50 with an output buffer function. FIG. 26 (B) shows a configuration in which a non-inverting circuit 50 is arranged between two phase shift circuits. In this way, in the case where the non-inverting circuit 50 is arranged in the middle, mutual interference between the preceding phase shift circuit and the subsequent phase shift circuit can be completely prevented.
第 2 6図( C )には 2つの移相回路の前段に非反転回路 50を配置した構成が示さ れており、 この構成は、 第 1図に示した発振器 1、 第 1 0図に示した発振器 2、 第 1 7図に示した発振器 3、 第 1 8図に示した発振器 4のそれぞれに対応してい る。 このように、 前段に非反転回路 50を配置した場合には、 前段の移相回路に対 する帰還インピーダンス素子 70 aの影響を最小限に抑えることができる。  FIG. 26 (C) shows a configuration in which a non-inverting circuit 50 is arranged in front of the two phase shift circuits. This configuration is shown in FIG. This corresponds to the oscillator 2 shown in FIG. 17, the oscillator 3 shown in FIG. 17, and the oscillator 4 shown in FIG. As described above, when the non-inverting circuit 50 is disposed in the preceding stage, the influence of the feedback impedance element 70a on the preceding-stage phase shifting circuit can be minimized.
同様に、 第 2 7図は、 2つの移相回路と位相反転回路を組合せて発振器を構成 した場合において、 その接続状態を示すブロック図である。 なお、 第 2 6図につ いて説明したように、 帰還インピーダンス素子 70 aは、 最も一般的には帰還抵抗 70を使用する。 ただし、 帰還インピーダンス素子 70 aをキャパシタあるいはイン ダクタにより形成したり、 抵抗やキャパシタあるいはインダクタを組合せて形成 してもよい。  Similarly, FIG. 27 is a block diagram showing a connection state when an oscillator is configured by combining two phase shift circuits and a phase inversion circuit. As described with reference to FIG. 26, the feedback impedance element 70a most commonly uses the feedback resistor 70. However, the feedback impedance element 70a may be formed by a capacitor or an inductor, or may be formed by combining a resistor, a capacitor, or an inductor.
第 2 7図(A)には 2つの移相回路の後段に位相反転回路 80を配置した構成が示 されている。 このように、 後段に位相反転回路 80を配置した場合には、 この位相 反転回路 80に出カバッファの機能を持たせることにより、 大きな出力電流を取り 出すこともできる。  FIG. 27 (A) shows a configuration in which a phase inversion circuit 80 is arranged at a stage subsequent to the two phase shift circuits. As described above, when the phase inversion circuit 80 is disposed at the subsequent stage, a large output current can be obtained by providing the phase inversion circuit 80 with an output buffer function.
第 2 7図(B)には 2つの移相回路の間に位相反転回路 80を配置した構成が示さ れている。 このように、 中間に位相反転回路 80を配置した場合には、 2つの移相 回路間の相互干渉を完全に防止することができる。  FIG. 27 (B) shows a configuration in which a phase inversion circuit 80 is arranged between two phase shift circuits. As described above, when the phase inversion circuit 80 is arranged in the middle, mutual interference between the two phase shift circuits can be completely prevented.
第 2 7図( C)には 2つの移相回路の前段に位相反転回路 80を配置した構成が示 されている。 この構成は、 第 1 9図に示した発振器 5、 第 2 0図に示した発振器 6、 第 2 1図に示した発振器 7、 第 2 2図に示した発振器 8、 第 2 3図に示した 発振器 9 A、 第 2 4図に示した発振器 9 Bのそれぞれに対応している。 このよう に、 前段に位相反転回路 80を配置した場合には、 前段の移相回路に対する帰還ィ ンピーダンス素子 70 aの影響を最小限に抑えることができる。  FIG. 27 (C) shows a configuration in which a phase inverting circuit 80 is arranged in front of two phase shifting circuits. This configuration consists of the oscillator 5 shown in Fig. 19, the oscillator 6 shown in Fig. 20, the oscillator 7 shown in Fig. 21, the oscillator 8 shown in Fig. 22, and the oscillator shown in Fig. 23. It corresponds to each of the oscillator 9A and the oscillator 9B shown in FIG. As described above, when the phase inverting circuit 80 is arranged in the preceding stage, the influence of the feedback impedance element 70a on the preceding phase shifting circuit can be minimized.
また、 上述した各実施形態において示した移相回路には可変抵抗 16あるいは 36 が含まれている。 これらの可変抵抗 16、 36は、 具体的には接合型あるいは MO S 型の FETを用いて実現することができる。 Further, the phase shift circuit shown in each of the above embodiments includes the variable resistor 16 or 36. These variable resistors 16 and 36 are, specifically, junction type or MOS It can be realized by using a type FET.
第 28図は、 C R回路を有する 2種類の移相回路 10 Cあるいは 30 C内の可変抵 抗 16あるいは 36を F E Tに置き換えた場合の移相回路の構成を示す回路図であり、 (A)には、 移相回路 10Cにおいて可変抵抗 16を FETに置き換えた構成が示され ている。 第 28図(B)には、 移相回路 30Cにおいて可変抵抗 36を FETに置き換 えた構成が示されている。  FIG. 28 is a circuit diagram showing a configuration of a phase shift circuit in which the variable resistor 16 or 36 in two types of phase shift circuits 10 C or 30 C having a CR circuit is replaced by an FET. FIG. 1 shows a configuration in which the variable resistor 16 is replaced with an FET in the phase shift circuit 10C. FIG. 28 (B) shows a configuration in which the variable resistor 36 is replaced by an FET in the phase shift circuit 30C.
同様に、 第 29図は LR回路を有する 2種類の移相回路 10Lあるいは 30L内の 可変抵抗 16あるいは 36を F E Tに置き換えた場合の移相回路の構成を示す回路図 であり、 (A)には、 移相回路 10Lにおいて可変抵抗 16を FETに置き換えた構成 が示されている。 第 29図(B)には、 移相回路 30 Lにおいて可変抵抗 36を FET に置き換えた構成が示されている。  Similarly, Fig. 29 is a circuit diagram showing the configuration of a phase shift circuit in which the variable resistor 16 or 36 in the two types of phase shift circuits 10L or 30L having an LR circuit is replaced by an FET. Fig. 2 shows a configuration in which the variable resistor 16 is replaced with an FET in the phase shift circuit 10L. FIG. 29 (B) shows a configuration in which the variable resistor 36 is replaced with an FET in the phase shift circuit 30L.
このように、 可変抵抗 16あるいは 36の代わりに、 £丁のソース * ドレイン間 に形成されるチャネルを抵抗体として利用すると、 ゲート電圧を制御してこのチ ャネル抵抗をある範囲で任意に変化させて各移相回路における位相シフト量を変 えることができる。 したがって、 各発振器において一巡する信号の位相シフト量 が 0° となる周波数を変えることができるので、 発振器の発振周波数を任意に変 更することができる。  In this way, instead of using the variable resistor 16 or 36, if a channel formed between the source and the drain of a £ is used as a resistor, the gate voltage is controlled and the channel resistance is changed arbitrarily within a certain range. Thus, the amount of phase shift in each phase shift circuit can be changed. Therefore, since the frequency at which the phase shift amount of the looping signal becomes 0 ° in each oscillator can be changed, the oscillation frequency of the oscillator can be arbitrarily changed.
なお、 第 28図あるいは第 29図に示した各移相回路は、 可変抵抗を 1つの F ET、 すなわち pチャネルあるいは nチャネルの FETによって構成したが、 p チャネルの F E Tと nチャネルの F E Tとを並列接続して 1つの可変抵抗を構成 し、 各 FETのゲートとサブストレート間に大きさが等しく極性が異なるゲート 電圧を印加するようにしてもよい。 抵抗値を変化する場合にはこのゲート電圧の 大きさを変えればよい。 このように、 2つの FETを組合せて可変抵抗を構成す ることにより、 FETの非線形領域の改善を行なうことができるので、 発振出力 の歪みを少なくすることができる。  In each of the phase shift circuits shown in FIGS. 28 and 29, the variable resistor is configured by one FET, that is, a p-channel or n-channel FET, but the p-channel FET and the n-channel FET are connected. One variable resistor may be configured by connecting in parallel, and a gate voltage of the same magnitude and different polarity may be applied between the gate and the substrate of each FET. When changing the resistance value, the magnitude of the gate voltage may be changed. In this way, by combining two FETs to form a variable resistor, the non-linear region of the FET can be improved, so that distortion of the oscillation output can be reduced.
また、 上述した各実施形態において示した移相回路 10Cあるいは 30Cは、 キヤ パシタ 14あるいは 34と直列に接続された可変抵抗 16あるいは 36の抵抗値を変化さ せて位相シフト量を変化させることにより全体の発振周波数を変えるようにした が、 キャパシタ 14、 34を可変容量素子によって形成し、 その静電容量を変化させ ることにより全体の発振周波数を変えるように構成してもよい。 Further, the phase shift circuit 10C or 30C shown in each of the above-described embodiments is obtained by changing the resistance value of the variable resistor 16 or 36 connected in series with the capacitor 14 or 34 to change the phase shift amount. Although the overall oscillation frequency was changed, the capacitors 14, 34 were formed by variable capacitance elements, and the capacitance was changed. In this case, the overall oscillation frequency may be changed.
第 3 0図は、 各実施形態において示した移相回路 10Cあるいは 30 C内のキャパ シ夕 14ある t、は 34を可変容量ダイォードに置き換えた場合の移相回路の構成を示 す回路図であり、 (A)には、 第 1図等に示した一方の移相回路 10Cにおいて、 可 変抵抗 16を固定抵抗に置き換えるとともにキャパシタ 14を可変容量ダイォードに 置き換えた構成が示されている。 第 3 0図(B )には、 第 1図等に示した他方の移 相回路 30Cにおいて、 可変抵抗 36を固定抵抗に置き換えるとともにキャパシ夕 34 を可変容量ダイォードに置き換えた構成が示されている。  FIG. 30 is a circuit diagram showing a configuration of the phase shift circuit in the case where the capacity 14 in the phase shift circuit 10C or 30C shown in each embodiment is replaced with a variable capacitance diode. 1A shows a configuration in which the variable resistor 16 is replaced with a fixed resistor and the capacitor 14 is replaced with a variable capacitance diode in one of the phase shift circuits 10C shown in FIG. 1 and the like. FIG. 30 (B) shows a configuration in which, in the other phase shift circuit 30C shown in FIG. 1, etc., the variable resistor 36 is replaced with a fixed resistor and the capacitor 34 is replaced with a variable capacitance diode. .
なお、 第 3 0図(A)、 (B )において、 可変容量ダイオードに直列に接続された キャパシタは、 可変容量ダイォードのアノード ·カソード間に逆バイアス電圧を 印加する際にその直流を阻止するためのキャパシタであり、 そのインピーダンス は動作周波数において極めて小さく、 すなわち大きな静電容量を有している。 ま た、 第 3 0図(A:)、 (B)に示したキャパシ夕の両端の電位は直流成分をみると一 定であるので、 交流成分の振幅より大きな逆バイアス電圧をアノード '力ソード 間に印加することにより、 各可変容量ダイォードを容量可変のキャパシタとして 動作させることができる。  In FIGS. 30 (A) and (B), the capacitor connected in series with the variable capacitance diode blocks direct current when a reverse bias voltage is applied between the anode and cathode of the variable capacitance diode. The impedance of the capacitor is extremely small at the operating frequency, that is, it has a large capacitance. In addition, since the potential at both ends of the capacitance shown in FIGS. 30 (A :) and (B) is constant when the DC component is viewed, a reverse bias voltage larger than the amplitude of the AC component is applied to the anode force source. By applying the voltage between them, each variable capacitance diode can be operated as a variable capacitance capacitor.
このように、 キャパシタ 14あるいは 34を可変容量ダイオードで構成し、 その了 ノード ·カソード間に印加する逆バイアス電圧を制御してこの可変容量ダイォー ドの静電容量をある範囲で任意に変化させて各移相回路における位相シフト量を 変えることができる。 したがって、 各発振器において一巡する信号の位相シフト 量が 0 ° となる周波数を変えることができ、 発振器の発振周波数を任意に変更す ることができる。  In this way, the capacitor 14 or 34 is composed of a variable capacitance diode, and the reverse bias voltage applied between the node and the cathode is controlled to arbitrarily change the capacitance of the variable capacitance diode within a certain range. The amount of phase shift in each phase shift circuit can be changed. Therefore, it is possible to change the frequency at which the phase shift amount of the signal that goes round in each oscillator becomes 0 °, and it is possible to arbitrarily change the oscillation frequency of the oscillator.
ところで、 上述した第 3 0図(A:)、 (B )では、 可変容量素子として可変容量ダ ィォードを用いたが、 ソースおよびドレインを直流的に固定電位に接続するとと もにゲートに可変電圧を印加した F E Tを用いるように構成してもよい。 上述し たように、 第 3 0図(A)、 (B )に示した可変容量ダイオードの両端電位は直流的 に固定されているので、 これらの可変容量ダイォードを上述した F E Tに置き換 えるだけでよく、 ゲートに印加する電圧を可変することによりゲート容量、 すな わち F E Tが有する静電容量を変えることができる。 また、 上述した第 3 0図(A)、 (B )では可変容量ダイオードの静電容量のみを 変化させたが、 同時に可変抵抗 16あるいは 36の抵抗値を変化するように構成して もよい。 第 3 0図(C )には、 第 1図等に示した一方の移相回路 10 Cにおいて、 可 変抵抗 16を用いるとともにキャパシタ 14を可変容量ダイォ一ドに置き換えた構成 が示されている。 第 3 0図(D )には、 第 1図等に示した他方の移相回路 30 Cにお いて、 可変抵抗 36を用いるとともにキャパシタ 34を可変容量ダイォードに置き換 えた構成が示されている。 これらにおいて可変容量ダイォードをゲ一ト容量可変 の F E Tに置き換えてもよいことは当然である。 By the way, in FIGS. 30 (A :) and (B) described above, a variable capacitance diode is used as the variable capacitance element, but the source and the drain are connected to a fixed potential in a DC manner, and the variable voltage is applied to the gate. It may be configured to use the FET to which is applied. As described above, since the potentials at both ends of the variable capacitance diodes shown in FIGS. 30 (A) and (B) are fixed in a DC manner, these variable capacitance diodes need only be replaced with the FETs described above. By varying the voltage applied to the gate, the gate capacitance, that is, the capacitance of the FET can be changed. Further, in FIGS. 30 (A) and (B) described above, only the capacitance of the variable capacitance diode is changed, but the resistance of the variable resistor 16 or 36 may be changed at the same time. FIG. 30 (C) shows a configuration in which a variable resistor 16 is used and the capacitor 14 is replaced with a variable capacitance diode in one of the phase shift circuits 10C shown in FIG. 1 and the like. . FIG. 30 (D) shows a configuration in which the variable resistor 36 is used and the capacitor 34 is replaced by a variable capacitance diode in the other phase shift circuit 30 C shown in FIG. 1 and the like. . In these, it is natural that the variable capacitance diode may be replaced by a variable gate capacitance FET.
また、 第 3 0図(C )、 (D)に示した可変抵抗を第 2 8図に示したように F E T のチヤネル抵抗を利用して形成することができることはいうまでもない。 特に、 pチャネルの F E Tと nチャネルの F E Tとを並列接続して 1つの可変抵抗を構 成し、 各 F E Tのベースとサブストレート間に大きさが等しく極性が異なるゲー ト電圧を印加した場合には、 F E Tの非線形領域の改善を行なうことができるの で、 発振信号の歪みを少なくすることができる。  Needless to say, the variable resistors shown in FIGS. 30 (C) and (D) can be formed by utilizing the channel resistance of FET as shown in FIG. In particular, when a p-channel FET and an n-channel FET are connected in parallel to form one variable resistor and gate voltages of the same magnitude and polarities are applied between the base and substrate of each FET Can improve the non-linear region of the FET, so that the distortion of the oscillation signal can be reduced.
このように、 可変抵抗と可変容量素子を組合せて移相回路を構成した場合であ つても、 可変抵抗の抵抗値および可変容量素子の静電容量をある範囲で任意に変 化させて各移相回路における位相シフト量を変えることができる。 したがって、 各発振器において一巡する信号の位相シフト量が 0 ° となる周波数を変えること ができ、 発振器の発振周波数を任意に変更することができる。  As described above, even when a phase shift circuit is configured by combining a variable resistor and a variable capacitance element, each of the phase shift circuits is changed by arbitrarily changing the resistance value of the variable resistance and the capacitance of the variable capacitance element within a certain range. The amount of phase shift in the phase circuit can be changed. Therefore, it is possible to change the frequency at which the phase shift amount of the looping signal is 0 ° in each oscillator, and arbitrarily change the oscillation frequency of the oscillator.
以上の各実施形態の発振器を半導体基板上に形成する場合には、 移相回路 10 C、 30C内のキャパシタ 14あるいは 34としてあまり大きな静電容量を設定することが できない。 したがって、 半導体基板上に実際に形成したキャパシタの小さな静電 容量を、 回路を工夫することにより見かけ上大きくすることができれば、 時定数 Tを大きな値に設定して発振周波数の低周波数化を図る際に都合がよい。  When the oscillator of each of the above embodiments is formed on a semiconductor substrate, it is not possible to set a very large capacitance as the capacitor 14 or 34 in the phase shift circuits 10C and 30C. Therefore, if the small capacitance of the capacitor actually formed on the semiconductor substrate can be apparently increased by devising the circuit, the time constant T is set to a large value to reduce the oscillation frequency. This is convenient.
第 3 1図は、 第 1図等に示した移相回路 10 C、 30Cに用いたキャパシタ 14ある いは 34を素子単体ではなく回路によって構成した変形例を示す回路図であり、 実 際に半導体基板上に形成されるキャパシタの静電容量を見かけ上大きくみせる静 電容量変換回路として動作する。 なお、 第 3 1図に示した回路全体が移相回路 10 Cあるいは 30 Cに含まれるキャパシタ 14あるいは 34に対応している。 第 3 1図に示す静電容量変換回路 14 aは、 所定の静電容量 C Oを有するキャパ シタ 210と、 2つのオペアンプ 212、 214と、 4つの抵抗 216、 218、 220、 222とに より構成されている。 FIG. 31 is a circuit diagram showing a modification in which the capacitors 14 or 34 used in the phase shift circuits 10C and 30C shown in FIG. It operates as a capacitance conversion circuit that makes the capacitance of a capacitor formed on a semiconductor substrate appear large. The entire circuit shown in FIG. 31 corresponds to the capacitor 14 or 34 included in the phase shift circuit 10 C or 30 C. The capacitance conversion circuit 14a shown in FIG. 31 is composed of a capacitor 210 having a predetermined capacitance CO, two operational amplifiers 212 and 214, and four resistors 216, 218, 220 and 222. Have been.
1段目のオペアンプ 212は、 出力端子と反転入力端子との間に抵抗 218 (この抵 抗値を R18とする) が接続されており、 さらにこの反転入力端子が抵抗 216 (こ の抵抗値を R 16とする) を介して接地されている。  The operational amplifier 212 in the first stage has a resistor 218 (this resistance is R18) connected between the output terminal and the inverting input terminal, and furthermore, this inverting input terminal is connected to the resistor 216 (this resistance is represented by R18). R 16).
1段目のオペアンプ 212の非反転入力端子に印加される電圧 E 1と出力端子に現 れる電圧 E 2との間には、  The voltage between the voltage E 1 applied to the non-inverting input terminal of the operational amplifier 212 of the first stage and the voltage E 2 appearing at the output terminal is
E 2= U + } · Ε 1 〜(30)E 2 = U +}
lD  lD
の関係がある。 この 1段目のオペアンプ 212は、 主にインピーダンス変換を行な うバッファとして動作するものであり、 利得は 1であってもよい。 利得 1の場合 とは R 18ZR 16- 0のとき、 すなわち、 R 16を無限大 (抵抗 216を除去すればよ い) 、 または R 18を Ο Ω (直結すればよい) に設定する。 There is a relationship. The first-stage operational amplifier 212 mainly operates as a buffer that performs impedance conversion, and may have a gain of 1. A gain of 1 means R 18ZR 16-0, that is, R 16 is set to infinity (the resistor 216 may be removed), or R 18 may be set to ΟΩ (directly connected).
また、 2段目のオペアンプ 214は、 出力端子と反転入力端子との間に抵抗 222 (; の抵抗値を R22とする) が接続されるとともに反転入力端子と上述したォペアン プ 212の出力端子との間に抵抗 220 (この抵抗値を R20とする) が接続されており、 さらに非反転入力端子が接地されている。  In the second-stage operational amplifier 214, a resistor 222 (the resistance value of is represented by R22) is connected between the output terminal and the inverting input terminal, and the inverting input terminal and the output terminal of the above-described operational amplifier 212 are connected to each other. The resistor 220 (this resistance is R20) is connected between the two, and the non-inverting input terminal is grounded.
2段目のオペアンプ 214の出力端子に現れる電圧を E 3とすると、 この電圧 E 3 と 1段目のオペアンプ 212の出力端子に現れる電圧 E 2との間には、  Assuming that the voltage appearing at the output terminal of the second-stage operational amplifier 214 is E3, the voltage between this voltage E3 and the voltage E2 appearing at the output terminal of the first-stage operational amplifier 212 is
E 3= - If E2 … の関係がある。 このように 2段目のオペァンプ 214は反転増幅器として動作する ものであり、 その入力側を高インピーダンスに設定するために 1段目のオペアン プ 212が使用されている。 E 3 =-If E2… As described above, the second-stage operational amplifier 214 operates as an inverting amplifier, and the first-stage operational amplifier 212 is used to set its input side to high impedance.
また、 このような接続がなされた 1段目のオペァンプ 212の非反転入力端子と 2段目のオペァンプ 214の出力端子との間には、 上述したように所定の静電容量 を有するキャパシタ 210が接続されている。  Further, as described above, the capacitor 210 having a predetermined capacitance is provided between the non-inverting input terminal of the first-stage operational amplifier 212 and the output terminal of the second-stage operational amplifier 214. It is connected.
第 3 1図に示した静電容量変換回路 14 aにおいて、 キャパシタ 210を除く回路 全体の伝達関数を K4とすると、 静電容量変換回路 14 aは第 32図に示すブロッ ク図で表すことができる。 第 33図は、 これをミラーの定理によって変換したブ ロック図である。 Circuit of the capacitance conversion circuit 14a shown in FIG. 31 except for the capacitor 210 Assuming that the entire transfer function is K4, the capacitance conversion circuit 14a can be represented by a block diagram shown in FIG. Figure 33 is a block diagram converted from this by Miller's theorem.
第 32図に示したインピーダンス Z0を用いて第 33図に示したインピーダン ス Z1を表すと、  Using the impedance Z0 shown in FIG. 32 to represent the impedance Z1 shown in FIG. 33,
Z1= T¾4 -(32) となる。 ここで、 第 31図に示した静電容量変換回路 14 aの場合には、 インピー ダンス Z0=1/ ( j ωΟΟ) であり、 これを(32)式に代入して、 j ωΟΟ Z1 = T¾4- (32) . Here, in the case of the capacitance conversion circuit 14a shown in FIG. 31, the impedance Z0 = 1 / (jωΟΟ), and this is substituted into the equation (32) to obtain jωΟΟ
Zl=  Zl =
-Κ4  -Κ4
■(33) j ω{(1 - K4)C0} ■ (33) j ω {(1-K4) C0}
C = (1-K4)C0 〜(34) となる。 この(34)式は、 静電容量変換回路 14aにおいてキャパシタ 210が有する 静電容量 COが見掛け上は (1— K4) 倍になったことを示している。  C = (1-K4) C0-(34) Equation (34) indicates that the capacitance CO of the capacitor 210 in the capacitance conversion circuit 14a has apparently increased by (1−K4) times.
したがって、 利得 K4が負の場合には常に (1一 K4) は 1より大きくなるので、 静電容量 C 0を大きいほうに変化させることができる。  Therefore, when the gain K4 is negative, (1-1 K4) is always larger than 1, so that the capacitance C0 can be changed to the larger one.
ところで、 第 31図に示した静電容量変換回路 14 aにおける増幅器の利得、 す なわちォペアンプ 212と 214の全体により構成される増幅器の利得 K4は、 (30)式 および (31)式から、
Figure imgf000046_0001
By the way, the gain of the amplifier in the capacitance conversion circuit 14a shown in FIG. 31, that is, the gain K4 of the amplifier composed of the entirety of the operational amplifiers 212 and 214 is given by the following equations (30) and (31).
Figure imgf000046_0001
となる。 この(35)式を(34)式に代入すると、 c= {1+(1+ti) -fi} co(36) となる。 したがって、 4つの抵抗 216、 218、 220、 222の抵抗値を所定の値に設定 することにより、 2つの端子 224、 226間の見掛け上の静電容量 Cを大きくするこ とができる。 また、 1段目のオペアンプ 212による増幅器の利得が 1の場合、 すなわち上述 したように R 16を無限大 (抵抗 216を除去) 、 あるいは R18を 0 Ωに設定したと きであって R lSZR ^ Oの場合には、 上述した(36)式は簡略化されて、 Becomes Substituting equation (35) into equation (34) yields c = {1+ (1+ ti) -fi } co " (36) . Therefore, the resistance of the four resistors 216, 218, 220, and 222 By setting the value to a predetermined value, the apparent capacitance C between the two terminals 224 and 226 can be increased. Further, when the gain of the amplifier of the first-stage operational amplifier 212 is 1, that is, when R 16 is set to infinity (the resistor 216 is removed) or R 18 is set to 0 Ω as described above, R lSZR ^ In the case of O, the above equation (36) is simplified,
C = ( 1 + ) C O -(37) となる。 C = (1 +) C O-(37).
第 3 4図は、 第 3 1図に示した第 1のォペアンプ 212の反転入力端子に接続さ れている抵抗 216を除去した静電容量変換回路 14 bの構成を示す回路図である。 この場合には、 端子 224、 226間に現れる静電容量 Cは (37)式により表されるので、 R22と R20の比を変化させるだけで C Oを大きいほうに変化させることができる。  FIG. 34 is a circuit diagram showing a configuration of the capacitance conversion circuit 14b in which the resistor 216 connected to the inverting input terminal of the first operational amplifier 212 shown in FIG. 31 is removed. In this case, since the capacitance C appearing between the terminals 224 and 226 is represented by the equation (37), it is possible to change C O to a larger value only by changing the ratio of R22 and R20.
このように、 上述した静電容量変換回路 14 aあるいは 14 bは、 抵抗 220と抵抗 2 22との抵抗比 R22Z R 20ある L、は抵抗 216と抵抗 218との抵抗比 R 18ノ R 16を変え ることにより、 実際に半導体基板上に形成するキャパシタ 210の静電容量 C 0を見 掛け上大きい方に変換することができる。 そのため、 半導体基板上に第 1図等に 示した発振器 1等の全体を形成するような場合には、 半導体基板上に小さな静電 容量 C Oを有するキャパシタ 210を形成しておいて、 第 3 1図あるいは第 3 4図に 示した回路によって大きな静電容量 Cに変換することができ、 集積化に際して好 都合となる。  As described above, the capacitance conversion circuit 14a or 14b described above has a resistance ratio R22Z R20 between the resistor 220 and the resistor 222, and a resistance ratio R18 between the resistors 216 and 218. By changing the capacitance, the capacitance C 0 of the capacitor 210 actually formed on the semiconductor substrate can be converted to an apparently larger one. Therefore, when forming the entire oscillator 1 shown in FIG. 1 and the like on a semiconductor substrate, the capacitor 210 having a small capacitance CO is formed on the semiconductor substrate and the With the circuit shown in the figure or Fig. 34, it can be converted to a large capacitance C, which is convenient for integration.
また、 抵抗 216、 218、 220、 222の中の少なくとも 1つ (第 3 4図に示した静電 容量変換回路 14 bの場合は抵抗 220、 222の少なくとも 1つ) を可変抵抗により形 成することにより、 具体的には接合型や MO S型の F E Tあるいは pチャネル F E Tと nチャネル F E Tとを並列に接続して可変抵抗を形成することにより、 容 易に静電容量が可変の静電容量変換回路を形成することができる。 したがって、 この静電容量変換回路を第 3 0図に示した可変容量ダイォードの代わりに使用す ることにより、 位相シフト量をある範囲で任意に変化させることができる。 した がって、 発振器において一巡する信号の位相シフト量が 0 ° となる周波数を変え ることができ、 各実施形態の発振器の発振周波数を任意に変更することができる なお、 上述したように第 1段目のオペァンプ 212は入力インピーダンスを高く するためのバッファとして用いているので、 このオペアンプ 212をエミッタホロ ヮ回路あるいはソースホロワ回路に置き換えてもよい。 In addition, at least one of the resistors 216, 218, 220, and 222 (at least one of the resistors 220 and 222 in the case of the capacitance conversion circuit 14b shown in FIG. 34) is formed by a variable resistor. Specifically, by connecting a junction type or MOS type FET or a p-channel FET and an n-channel FET in parallel to form a variable resistor, the capacitance can be easily changed. A conversion circuit can be formed. Therefore, by using this capacitance conversion circuit instead of the variable capacitance diode shown in FIG. 30, the phase shift amount can be arbitrarily changed within a certain range. Therefore, it is possible to change the frequency at which the phase shift amount of the looping signal in the oscillator is 0 °, and to arbitrarily change the oscillation frequency of the oscillator of each embodiment. Since the first-stage operational amplifier 212 is used as a buffer for increasing the input impedance, this operational amplifier 212 is used as an emitter hollow. ヮ It may be replaced with a circuit or a source follower circuit.
第 3 5図は、 1段目にエミッタホロワ回路を用いた静電容量変換回路 14 cの構 成を示す回路図であり、 この静電容量変換回路 14 cは、 第 3 1図に示した 1段目 のオペアンプ 212および 2つの抵抗 216、 218をバイポーラトランジスタと抵抗か らなるエミッタホロワ回路 228に置き換えた構成を有している。  FIG. 35 is a circuit diagram showing a configuration of a capacitance conversion circuit 14c using an emitter follower circuit in the first stage. This capacitance conversion circuit 14c has the structure shown in FIG. It has a configuration in which the operational amplifier 212 and the two resistors 216 and 218 at the stage are replaced with an emitter follower circuit 228 including a bipolar transistor and a resistor.
第 3 6図は、 1段目にソースホロワ回路を用 t、た静電容量変換回路 14 dの構成 を示す図であり、 この静電容量変換回路 14 dは、 第 3 1図に示した 1段目のオペ ァンプ 212および 2つの抵抗 216、 218を F E Tと抵抗からなるソースホロワ回路 2 30に置き換えた構成を有している。  FIG. 36 is a diagram showing the configuration of a capacitance conversion circuit 14 d using a source follower circuit in the first stage. This capacitance conversion circuit 14 d It has a configuration in which the stage operational amplifier 212 and the two resistors 216 and 218 are replaced with a source follower circuit 230 including an FET and a resistor.
また、 上述した静電容量変換回路 14 c、 14 dのそれぞれは、 オペアンプ 214に 接続されている抵抗 220、 222の抵抗比を変えることにより端子 224、 226間の見掛 け上の静電容量 Cを任意に変化させることができる点は、 第 3 1図等に示した静 電容量変換回路 14 a等と同じである。 したがって、 抵抗 220、 222の少なくとも一 方を、 接合型や MO S型の F E Tあるいは pチャネル F E Tと nチャネル F E T とを並列に接続した可変抵抗に置き換えることにより、 静電容量可変の静電容量 変換回路を構成することができ、 この静電容量変換回路を第 3 0図に示した可変 容量ダイォードの代わりに使用することにより、 位相シフト量をある範囲で任意 に変化させることができる。 このため、 各発振器において一巡する信号の位相シ フト量が 0 ° となる周波数を変えることができ、 各実施形態の発振器の発振周波 数を任意に変更することができる。  Further, each of the above-mentioned capacitance conversion circuits 14 c and 14 d changes the apparent capacitance between the terminals 224 and 226 by changing the resistance ratio of the resistors 220 and 222 connected to the operational amplifier 214. The point that C can be changed arbitrarily is the same as the capacitance conversion circuit 14a shown in FIG. 31 and the like. Therefore, by replacing at least one of the resistors 220 and 222 with a junction-type or MOS-type FET or a variable resistor in which a p-channel FET and an n-channel FET are connected in parallel, the capacitance can be changed. A circuit can be configured, and by using this capacitance conversion circuit instead of the variable capacitance diode shown in FIG. 30, the phase shift amount can be arbitrarily changed within a certain range. For this reason, the frequency at which the phase shift amount of the signal that goes around in each oscillator becomes 0 ° can be changed, and the oscillation frequency of the oscillator of each embodiment can be arbitrarily changed.
ところで、 上述した第 3 1図〜第 3 6図では、 所定の利得を有する増幅器とキ ャパシ夕とを組合せることにより、 見かけ上の静電容量を実際にキャパシタ素子 が有する静電容量より大きくする場合を説明したが、 キャパシタの代わりにイン ダクタを用い、 このインダクタが有するイングクタンスを見かけ上大きくするこ ともできる。  By the way, in FIGS. 31 to 36 described above, by combining an amplifier having a predetermined gain and a capacitor, the apparent capacitance becomes larger than the capacitance actually held by the capacitor element. However, the inductor can be used in place of the capacitor, and the inductance of the inductor can be increased in appearance.
すなわち、 上述したように第 3 2図に示したインピーダンス Z 0を用いて第 3 3図に示したインピーダンス Z 1を表すと(32)式のようになる。 ここで、 インダ クタンス L 0を有するイングクタの場合には、 ィンピーダンス Z 0= j w LOであ り、 これを(32)式に代入して、 1 = Τ=1ΰ That is, as described above, when the impedance Z1 shown in FIG. 33 is represented using the impedance Z0 shown in FIG. 32, the equation (32) is obtained. Here, in the case of an inqtor having an inductance L 0, the impedance Z 0 = jw LO, which is substituted into the equation (32) to obtain 1 = Τ = 1ΰ
=】 ω · 1^— K4 -(38) =] Ω · 1 ^ — K4-(38)
L = -^ττ 〜(39) L =-^ ττ ~ (39)
1— 4  14
となる。 この(39)式は、 実際にイングクタ素子が有するイングクタンスが見かけ 上 1 (1一 Κ4) 倍になったことを示しており、 利得 Κ4が 0から 1の間に設定 されているときには見かけ上のィンダクタンスが大きくなることがわかる。 Becomes This equation (39) shows that the inductance actually possessed by the inkuta element has apparently increased by a factor of 1 (1 一 4), and when the gain Κ4 is set between 0 and 1, the apparent It can be seen that the conductance becomes larger.
第 3 7図は、 第 1 1図等に示した移相回路 10L、 30Lに用いたイングクタ 17あ るいは 37を素子単体ではなく回路によつて構成した変形例を示す回路図であり、 実際に半導体基板上に形成されるインダクタ素子のィンダクタンスを見かけ上大 きくみせるインダクタンス変換回路として動作する。 なお、 第 3 7図に示した回 路全体が移相回路 10L、 30Lに含まれるイングクタ 17あるいは 37に対応している。 第 3 7図に示すインダクタンス変換回路 17 aは、 所定のインダクタンス L0を 有するインダクタ 260と、 2つのオペアンプ 262、 264と、 2つの抵抗 266、 268と により構成されている。  FIG. 37 is a circuit diagram showing a modified example in which the ingktor 17 or 37 used for the phase shift circuits 10L and 30L shown in FIG. Then, it operates as an inductance conversion circuit that apparently increases the inductance of the inductor element formed on the semiconductor substrate. The entire circuit shown in FIG. 37 corresponds to the ingktor 17 or 37 included in the phase shift circuits 10L and 30L. The inductance conversion circuit 17a shown in FIG. 37 includes an inductor 260 having a predetermined inductance L0, two operational amplifiers 262 and 264, and two resistors 266 and 268.
1段目のオペァンプ 262は、 出力端子が反転入力端子に接続された利得 1の非 反転増幅器であって、 主にインピーダンス変換を行なうバッファとして動作する。 同様に、 2段目のオペァンプ 264も出力端子が反転入力端子に接続されており、 利得 1の非反転増幅器として動作する。 また、 これら 2つの非反転増幅器の間に は抵抗 266と 268による分圧回路が挿入されている。  The first-stage operational amplifier 262 is a non-inverting amplifier with a gain of 1 whose output terminal is connected to the inverting input terminal, and mainly operates as a buffer for performing impedance conversion. Similarly, the output terminal of the second-stage operational amplifier 264 is connected to the inverting input terminal, and operates as a non-inverting amplifier having a gain of 1. Further, a voltage dividing circuit composed of resistors 266 and 268 is inserted between these two non-inverting amplifiers.
このように、 間に分圧回路を挿入することにより、 2つの非反転増幅器を含む 増幅器全体の利得を 0から 1の間で自由に設定することができる。  Thus, by inserting the voltage dividing circuit between the two, the gain of the whole amplifier including the two non-inverting amplifiers can be freely set between 0 and 1.
第 3 7図に示したィンダクタンス変換回路 17 aにおいて、 ィンダクタ 260を除 く回路 (増幅器) 全体の伝達関数を K4とすると、 この利得 K4は抵抗 266と 268に よって構成される分圧回路の分圧比によって決まり、 それぞれの抵抗値を R66、 R68とすると、  In the inductance conversion circuit 17a shown in FIG. 37, assuming that the transfer function of the entire circuit (amplifier) except for the inductor 260 is K4, this gain K4 is equal to that of the voltage dividing circuit composed of the resistors 266 and 268. It is determined by the voltage division ratio. If the resistance values are R66 and R68,
K4= R68 -(40) K4 = R68- (40)
R66+ R68 となる。 この利得 K4を(39)式に代入して見かけ上のィンダクタンス Lを計算す ると、 R66 + R68 Becomes By substituting this gain K4 into Eq. (39) and calculating the apparent inductance L,
L 0  L 0
L =  L =
1 R68  1 R68
 One
R66+ R68  R66 + R68
= + f| ) .L。 ·· = + f |). L. ···
となる。 したがって、 抵抗 266と 268の抵抗比 R68ZR66を大きくすることにより、 2つの端子 254、 256間の見かけ上のィンダク夕ンス Lを大きくすることができる。 例えば、 R68= R66の場合には、 (41)式からインダクタンス Lを L0の 2倍にす ることができる。 Becomes Therefore, by increasing the resistance ratio R68ZR66 of the resistors 266 and 268, the apparent inductance L between the two terminals 254 and 256 can be increased. For example, when R68 = R66, the inductance L can be made twice as large as L0 from the equation (41).
このように、 上述したイングクタンス変換回路 17 aは、 2つの非反転増幅器の 間に挿入された分圧回路の分圧比を変えることにより、 実際に接続されているィ ンダクタ 260のィンダクタンス L 0を見かけ上大きくすることができる。 そのため、 半導体基板上に第 1 0図等に示した発振器 2等の全体を形成するような場合には、 半導体基板上に小さなインダクタンス L 0を有するインダクタ 260を渦巻き形状の 導体等によって形成しておいて、 第 3 7図に示したインダクタンス変換回路によ つて大きなインダクタンス Lに変換することができ、 集積化に際して好都合とな る。 特に、 このようにして大きなインダクタンスを確保することができれば、 第 1 0図に示した発振器 2等の発振周波数を比較的低 ^、周波数領域まで下げること が容易となる。 また、 集積化を行なうことにより、 発振器全体の実装面積を小型 化して、 材料コスト等の低減も可能となる。  As described above, the above-described inductance conversion circuit 17a changes the voltage dividing ratio of the voltage dividing circuit inserted between the two non-inverting amplifiers, thereby changing the inductance L 0 of the actually connected inductor 260. Can be apparently enlarged. Therefore, when forming the entire oscillator 2 shown in FIG. 10 etc. on a semiconductor substrate, an inductor 260 having a small inductance L0 is formed on the semiconductor substrate by a spiral conductor or the like. In this case, the inductance can be converted to a large inductance L by the inductance conversion circuit shown in FIG. 37, which is convenient for integration. In particular, if a large inductance can be secured in this manner, it becomes easy to lower the oscillation frequency of the oscillator 2 and the like shown in FIG. 10 to a relatively low frequency region. In addition, by performing integration, the mounting area of the entire oscillator can be reduced, and material costs can be reduced.
なお、 抵抗 266、 268による分圧回路の分圧比を固定した場合の他、 これら 2つ の抵抗 266、 268の少なくとも一方を可変抵抗により形成することにより、 具体的 には接合型や MO S型の F E Tあるいは pチャネル F E Tと nチャネル F E Tと を並列に接続して可変抵抗を形成することにより、 この分圧比を連続的に変化さ せてもよい。 この場合には、 第 3 7図に示したオペアンプ 262、 264を含んで構成 される増幅器全体の利得が変わり、 端子 254、 256間のインダクタンス Lも連続的 に変化する。 そして、 発振器において一巡する信号の位相シフ ト量が 0 ° となる 周波数を変えることができ、 上述した発振器の発振周波数を任意に変更すること ができる。 In addition to the case where the voltage dividing ratio of the voltage dividing circuit by the resistors 266 and 268 is fixed, at least one of the two resistors 266 and 268 is formed by a variable resistor, specifically, a junction type or MOS type. This voltage division ratio may be continuously changed by forming a variable resistor by connecting the other FETs or the p-channel FET and the n-channel FET in parallel. In this case, the gain of the entire amplifier including the operational amplifiers 262 and 264 shown in FIG. 37 changes, and the inductance L between the terminals 254 and 256 also changes continuously. Then, the phase shift amount of the looping signal in the oscillator becomes 0 ° The frequency can be changed, and the oscillation frequency of the above-described oscillator can be arbitrarily changed.
また、 第 3 7図に示したイングクタンス変換回路 17 aは、 2つのオペアンプ 26 2、 264を含む増幅器全体の利得が 1以下に設定されているので、 全体をエミッタ ホロワ回路あるいはソースホロワ回路に置き換えてもよい。  In addition, in the inductance conversion circuit 17a shown in Fig. 37, since the gain of the whole amplifier including the two operational amplifiers 262 and 264 is set to 1 or less, the whole is replaced with an emitter follower circuit or a source follower circuit. You may.
第 3 8図は、 オペアンプ 262、 264を含む増幅器全体をェミッタホロワ回路に置 き換えたィンダク夕ンス変換回路の構成を示す図であ ri、 (A)に示すィンダクタ ンス変換回路 17bは、 エミッタに 2つの抵抗 274、 276が接続されたバイポーラト ランジスタ 278と、 この 2つの抵抗 274、 276による分圧点とトランジスタ 278のべ ースとの間に接続されたインダクタ 260と、 直流阻止用キャパシタ 280とにより構 成されている。 イングクタ 260の一方端側に挿入されたキャパシタ 280は、 周波数 特性に影響を与えないようにそのインピーダンスは動作周波数において極めて小 さく、 すなわち大きな静電容量に設定されている。  FIG. 38 is a diagram showing a configuration of an inductance conversion circuit in which the entire amplifier including the operational amplifiers 262 and 264 is replaced by an emitter follower circuit. A bipolar transistor 278 to which two resistors 274 and 276 are connected, an inductor 260 connected between the voltage dividing point by the two resistors 274 and 276 and the base of the transistor 278, and a DC blocking capacitor 280 It is composed of The impedance of the capacitor 280 inserted at one end of the inccuter 260 is extremely small at the operating frequency so as not to affect the frequency characteristics, that is, set to a large capacitance.
上述したエミッタホロワ回路の利得は、 主に 2つの抵抗 274、 276の抵抗比に応 じて決まり、 しかもその利得は常に 1未満であるので、 (39)式から分かるように、 実際にィンダクタ 260が有するインダクタンス L0を見掛け上大きくすることがで きる。 しかも、 1つのェミッタホロヮ回路を用いているので、 回路構成が簡略化 でき、 最高動作周波数も高く設定することができる。  The gain of the emitter follower circuit described above is mainly determined by the resistance ratio of the two resistors 274 and 276, and the gain is always less than 1. Therefore, as can be seen from equation (39), the inductor 260 is actually The apparent inductance L0 can be increased. In addition, since one emitter hollow circuit is used, the circuit configuration can be simplified, and the maximum operating frequency can be set high.
第 3 8図(B)はその変形例を示す図であり、 第 3 8図(A)に示した 2つの抵抗 274、 276を可変抵抗 282に置き換えた点が異なっている。 このように可変抵抗 282 を用いることにより、 利得を任意にしかも連続的に変化させることができるので、 見掛け上のィンダクタンス Lも任意にしかも連続的に変化させることができ、 こ のィンダクタンス変換回路 17 cを可変ィンダクタとして使用することにより、 各 移相回路における位相シフト量をある範囲で任意に変化させることができる。 こ のため、 発振器において一巡する信号の位相シフ ト量が 0° となる周波数を変え ることができ、 発振器の発振周波数を任意に変更することができる。  FIG. 38 (B) is a diagram showing a modified example thereof, and differs in that the two resistors 274 and 276 shown in FIG. 38 (A) are replaced with variable resistors 282. As described above, by using the variable resistor 282, the gain can be arbitrarily and continuously changed, so that the apparent inductance L can also be arbitrarily and continuously changed. By using the circuit 17c as a variable inductor, the amount of phase shift in each phase shift circuit can be arbitrarily changed within a certain range. For this reason, the frequency at which the phase shift amount of the looping signal in the oscillator becomes 0 ° can be changed, and the oscillation frequency of the oscillator can be arbitrarily changed.
なお、 第 3 8図(B)に示したインダクタンス変換回路 17 cは、 第 3 8図(A)の 2つの抵抗 274、 276を 1つの可変抵抗 282に置き換えているが、 これら 2つの抵 抗 274、 276の少なくとも一方を可変抵抗によって構成してもよい。 第 3 9図は、 第 3 8図(A)および(B )に示したインダク夕ンス変換回路 17 b、 17 Cのそれぞれをソースホロワ回路によって実現したものであり、 バイポーラト ランジスタ 278を F E T284に置き換えたものであって、 第 3 9図(A)が第 3 8図 (A)に、 第 3 9図(B )が第 3 8図(B )にそれぞれ対応している。 The inductance conversion circuit 17c shown in FIG. 38 (B) replaces the two resistors 274 and 276 in FIG. 38 (A) with one variable resistor 282. At least one of 274 and 276 may be constituted by a variable resistor. FIG. 39 is a diagram in which each of the inductance conversion circuits 17b and 17C shown in FIGS. 38 (A) and (B) is realized by a source follower circuit, and a bipolar transistor 278 is connected to the FET284. FIG. 39 (A) corresponds to FIG. 38 (A), and FIG. 39 (B) corresponds to FIG. 38 (B).
第 4 0図は、 第 3 7図に示したインダクタンス変換回路 17 aの変形例を示す回 路図である。 第 4 0図に示すインダクタンス変換回路 17 dは、 n p n型のバイポ ーラトランジスタ 286およびそのエミッタに接続された抵抗 290と、 p n p型のバ ィポーラトランジスタ 288とそのエミッタに接続された抵抗 292と、 インダクタン ス L 0を有するインダクタ 260とを含んで構成されている。  FIG. 40 is a circuit diagram showing a modification of the inductance conversion circuit 17a shown in FIG. The inductance conversion circuit 17d shown in FIG. 40 includes an npn-type bipolar transistor 286 and a resistor 290 connected to its emitter, a pnp-type bipolar transistor 288 and a resistor 292 connected to its emitter. , And an inductor 260 having an inductance L 0.
—方のトランジスタ 286と抵抗 290とにより第 1のエミッタホロワ回路が、 他方 のトランジスタ 288と抵抗 292とにより第 2のェミッタホロワ回路がそれぞれ形成 され、 それらが縦続接続されている。 しかも、 n p n型のトランジスタ 286と p n p型のトランジスタ 288を用いているので、 インダクタ 260の一方端であるトラ ンジスタ 286のべ一ス電位とトランジスタ 288のエミッタ電位とをほぼ同じに設定 することができ、 直流阻止用キャパシタが不要となる。  The transistor 286 and the resistor 290 form a first emitter follower circuit, and the other transistor 288 and the resistor 292 form a second emitter follower circuit, which are cascaded. Moreover, since the npn-type transistor 286 and the pnp-type transistor 288 are used, the base potential of the transistor 286, which is one end of the inductor 260, and the emitter potential of the transistor 288 can be set to be almost the same. This eliminates the need for a DC blocking capacitor.
なお、 上述した各実施形態においては各種の変形が可能である。  Note that various modifications are possible in each of the embodiments described above.
例えば、 上述した各実施例の発振器においては、 移相回路 10 C、 10 Lあるいは 移相回路 30 C、 30 L内の差動増幅器 12、 32によって 2入力の差分を 2倍に増幅し て各移相回路の出力とすることにより、 発振器のループゲインをほぼ 1に設定す るように構成したが、 差動増幅器 12、 32の増幅度をこれ以外の値に設定してもよ い。 例えば、 各差動増幅器 12、 32において 2入力の差分を増幅せずに、 あるいは 2倍以外の増幅度で増幅して出力するとともに、 非反転回路 50あるいは位相反転 回路 80の増幅度を調整して発振器のループゲインを 1以上に設定するように構成 してもよい。  For example, in each of the oscillators of the above-described embodiments, the difference between the two inputs is doubled by the differential amplifiers 12 and 32 in the phase shift circuits 10 C and 10 L or the phase shift circuits 30 C and 30 L, respectively. Although the loop gain of the oscillator is set to approximately 1 by using the output of the phase shift circuit, the amplification of the differential amplifiers 12 and 32 may be set to other values. For example, in each of the differential amplifiers 12 and 32, the difference between the two inputs is not amplified or amplified with an amplification other than twice and output, and the amplification of the non-inverting circuit 50 or the phase inverting circuit 80 is adjusted. The loop gain of the oscillator may be set to 1 or more.
また、 上述した各実施形態の発振器には 2つの移相回路が含まれているが、 発 振周波数を可変する場合には、 両方の移相回路に含まれる C R回路あるいは L R 回路を構成する抵抗とキャパシタあるいはイングクタの少なくとも 1つの素子定 数を変える場合の他、 一方の移相回路に含まれる C R回路あるいは L R回路を構 成する抵抗とキャパシタあるいはイングクタの少なくとも 1つの素子定数を変え る場合が考えられる。 あるいは、 第 1図等に示した各移相回路内の可変抵抗 16、 36等を抵抗値が固定の抵抗に置き換えて、 発振周波数が固定の発振器を構成して もよい。 In addition, the oscillator of each of the above-described embodiments includes two phase shift circuits. However, when the oscillation frequency is varied, the resistor constituting the CR circuit or the LR circuit included in both phase shift circuits is used. In addition to changing at least one element constant of the capacitor and the intagta, changing the resistance and at least one element constant of the capacitor and the intagta that constitute the CR circuit or the LR circuit included in one phase shift circuit May be considered. Alternatively, an oscillator having a fixed oscillation frequency may be configured by replacing the variable resistors 16 and 36 in each phase shift circuit shown in FIG. 1 and the like with a resistor having a fixed resistance value.
また、 上述した各実施例の発振器は、 発振器を構成する 2つの移相回路の中の 1つの回路から、 あるいは 2つの移相回路と非反転回路 50ある t、は位相反転回路 80の中の 1つの回路から正弦波信号を取り出すようにしたが、 発振器を構成する 2つの回路あるいは 3つの回路から正弦波信号を取り出すようにしてもよい。 特 に、 発振器を構成する 2つの移相回路の各時定数を同じに設定した場合には、 各 移相回路における位相シフト量が 9 0 ° となるため、 互いに位相が 9 0 ° ずれた 2相出力を取り出すことができる。 また、 位相反転回路 80を挟む前後の回路から は、 互いに位相が反転した 2相出力を取り出すことができる。 産業上の利用可能性  In addition, the oscillator of each of the above-described embodiments is obtained from one of the two phase shift circuits constituting the oscillator, or two of the phase shift circuits and the non-inverting circuit 50. Although a sine wave signal is extracted from one circuit, a sine wave signal may be extracted from two or three circuits constituting an oscillator. In particular, when the time constants of the two phase shift circuits forming the oscillator are set to be the same, the phase shift amount in each phase shift circuit is 90 °, and the phases are shifted 90 ° from each other. Phase output can be obtained. Further, from the circuits before and after the phase inversion circuit 80, two-phase outputs whose phases are inverted with each other can be obtained. Industrial applicability
以上の発明を実施するための最良の形態に基づく説明から明らかなように、 こ の発明の発振器によると、 構成する各素子を集積回路の製法によって形成するこ とが可能であるから、 発振器全体を半導体ウェハ上に集積回路として小型に形成 でき、 大量生産によって廉価に作ることができる。  As is clear from the description based on the best mode for carrying out the present invention, according to the oscillator of the present invention, the constituent elements can be formed by an integrated circuit manufacturing method. Can be formed as a small integrated circuit on a semiconductor wafer and can be manufactured at low cost by mass production.
特に、 各移相回路の C R回路あるいは L R回路を構成する可変抵抗として F E Tのソース · ドレイン間のチャネルを使用し、 この F E Tのゲートに印加する制 御電圧を変化させてチヤネルの抵抗を変化させるように構成すると、 制御電圧を 印加する配線のィンダクタンスゃ静電容量の影響を回避することができ、 ほぼ設 計どおりの理想的な特性を備えた発振器を得ることができる。  In particular, the channel between the source and drain of the FET is used as a variable resistor that constitutes the CR circuit or LR circuit of each phase shift circuit, and the control voltage applied to the gate of this FET is changed to change the channel resistance. With such a configuration, it is possible to avoid the influence of the inductance of the wiring to which the control voltage is applied divided by the capacitance, and to obtain an oscillator having ideal characteristics almost as designed.
また、 移相回路内の C R回路を構成するキャパシタを静電容量変換回路によつ て、 あるいは移相回路内の L R回路を構成するインダクタをインダクタンス変換 回路によって構成すると、 静電容量やインダクタンスを容易に大きくできるので、 発振周波数の低周波化や発振器全体の実装面積の小型化が可能となる。  Also, if the capacitor that forms the CR circuit in the phase shift circuit is formed by a capacitance conversion circuit, or the inductor that forms the LR circuit in the phase shift circuit is formed by an inductance conversion circuit, the capacitance and inductance will be reduced. Since the size can be easily increased, the oscillation frequency can be reduced and the mounting area of the entire oscillator can be reduced.
さらに、 L C共振を利用した発振器においては、 発振周波数 ωが 1 STL Cで あるから、 発振周波数を調整するために静電容量 Cまたはインダクタンス Lを変 化させると、 発振周波数はその変化量の平方根に比例して変化するが、 この発明 の発振器によると、 2つの移相回路に含まれる抵抗の抵抗値に比例して変化させ ることも可能となり、 発振周波数の大幅な調整が可能となる。 Furthermore, in an oscillator using LC resonance, the oscillation frequency ω is 1 STL C, so if the capacitance C or the inductance L is changed to adjust the oscillation frequency, the oscillation frequency will be the square root of the change. Changes in proportion to According to this oscillator, it is also possible to change the resistance in proportion to the resistance value of the resistors included in the two phase shift circuits, and it is possible to greatly adjust the oscillation frequency.

Claims

請 求 の 範 囲 The scope of the claims
1. 入力される交流信号が両端に印加されており、 抵抗値がほぼ等しい第 1およ び第 2の抵抗よりなる第 1の直列回路と、 前記交流信号が両端に印加されてお り、 第 3の抵抗とキャパシタよりなる第 2の直列回路と、 前記第 1の直列回路 を構成する前記第 1および第 2の抵抗の接続点の電位と前記第 2の直列回路を 構成する前記第 3の抵抗と前記キャパシタの接続点の電位との差分を所定の増 幅度で増幅して出力する差動増幅器とよりなる 2つの移相回路を備え、 縦続接続された前記 2つの移相回路の後段の出力を前段の入力側に帰還させ るとともに、 前記 2つの移相回路の L、ずれか一方から正弦波発振出力を取り出 すことを特徴とする発振器。 1. An input AC signal is applied to both ends, a first series circuit including first and second resistors having substantially equal resistance values, and the AC signal is applied to both ends, A second series circuit including a third resistor and a capacitor; a potential at a connection point of the first and second resistors forming the first series circuit; and a third series circuit forming the second series circuit. And a differential amplifier that amplifies the difference between the potential of the resistor and the potential of the connection point of the capacitor with a predetermined amplification degree and outputs the amplified signal. The subsequent stage of the two cascade-connected two phase shift circuits An oscillator characterized by feeding back the output of the phase shifter to the input side of the preceding stage, and extracting a sine wave oscillation output from one of L and shift of the two phase shift circuits.
2. 前記 2つの移相回路から 2相出力を取り出すことを特徴とする請求の範囲 1 に記載の発振器。  2. The oscillator according to claim 1, wherein a two-phase output is extracted from the two phase shift circuits.
3. 前記第 2の直列回路を構成する前記第 3の抵抗および前記キャパシタの接続 の仕方を、 前記 2つの移相回路において反対にしたことを特徴とする請求の範 囲 1に記載の発振器。  3. The oscillator according to claim 1, wherein the connection of the third resistor and the capacitor constituting the second series circuit is reversed in the two phase shift circuits.
4. 前記 2つの移相回路の少なくとも一方の前記第 3の抵抗を F E Tのチャネル によって形成し、 ゲート電圧を変えてチャネル抵抗を変えることを特徴とする 請求の範囲 1に記載の発振器。  4. The oscillator according to claim 1, wherein the third resistor of at least one of the two phase shift circuits is formed by an FET channel, and the channel resistance is changed by changing a gate voltage.
5. 前記 2つの移相回路の少なくとも一方の前記第 3の抵抗を pチャネル型の F E Tと nチヤネル型の F E Tとを並列接続することにより形成し、 極性が異な る各 F E Tのゲート電圧の大きさを変えてチャネル抵抗を変えることを特徴と する請求の範囲 1に記載の発振器。  5. The third resistor of at least one of the two phase shift circuits is formed by connecting a p-channel FET and an n-channel FET in parallel, and the magnitude of the gate voltage of each FET having a different polarity is formed. 2. The oscillator according to claim 1, wherein the channel resistance is changed by changing the length.
6. 前記 2つの移相回路の少なくとも一方の前記キャパシタを可変容量素子によ り形成し、 この静電容量を変えることにより、 発振周波数を変化させることを 特徴とする請求の範囲 1に記載の発振器。  6. The oscillation frequency is changed by forming at least one of the capacitors of the two phase shift circuits by a variable capacitance element, and changing the capacitance to change the oscillation frequency. Oscillator.
7. 前記 2つの移相回路の少なくとも一方の前記キャパシタを、 利得が負の値を 有する増幅器と、 前記増幅器の入出力間に並列接続されたキャパシタ素子とか らなる静電容量変換回路によつて形成することを特徴とする請求の範囲 1に記 載の発振器。 7. At least one of the capacitors of the two phase shift circuits is connected to a capacitance conversion circuit including an amplifier having a negative gain and a capacitor element connected in parallel between the input and output of the amplifier. Claim 1 characterized by forming Oscillator.
8. 前記増幅器の利得を可変して前記増幅器の入力側からみた静電容量を変える ことにより、 発振周波数を変化させることを特徴とする請求の範囲 7に記載の  8. The oscillation frequency according to claim 7, wherein the oscillation frequency is changed by changing the capacitance of the amplifier as viewed from the input side by changing the gain of the amplifier.
9. 入力される交流信号が両端に印加され、 抵抗値がほぼ等しい第 1および第 2 の抵抗により構成された第 1の直列回路と、 前記交流信号が両端に印加され、 第 3の抵抗とキャパシタにより構成された第 2の直列回路と、 前記第 1の直列 回路を構成する前記第 1および第 2の抵抗の接続点の電位と前記第 2の直列回 路を構成する前記第 3の抵抗と前記キャパシタの接続点の電位との差分を所定 の増幅度で増幅して出力する差動増幅器とよりなる 2つの移相回路と、 9. An input AC signal is applied to both ends, a first series circuit composed of first and second resistors having substantially equal resistance values, and the AC signal is applied to both ends, and a third resistor A second series circuit constituted by a capacitor; a potential at a connection point of the first and second resistors constituting the first series circuit; and a third resistor constituting the second series circuit. And a differential amplifier that amplifies the difference between the potential at the connection point of the capacitor and the potential at a predetermined amplification degree and outputs the result.
入力される交流信号の位相を変えずに出力する非反転回路と、  A non-inverting circuit that outputs the input AC signal without changing the phase,
を備え、 前記 2つの移相回路および前記非反転回路のそれぞれを縦続接続し、 これら縦続接続された複数の回路の中の最終段の出力を初段の入力側に帰還さ せるとともに、 これら複数の回路のいずれかから正弦波発振出力を取り出すこ とを特徴とする発振器。  Cascading each of the two phase-shift circuits and the non-inverting circuit, and returning the output of the last stage among the plurality of cascaded circuits to the input side of the first stage. An oscillator characterized by extracting a sine wave oscillation output from one of the circuits.
1 0. 前記 2つの移相回路および前記非反転回路から 2相出力を取り出すことを 特徴とする請求の範囲 9に記載の発振器。  10. The oscillator according to claim 9, wherein a two-phase output is extracted from the two phase shift circuits and the non-inverting circuit.
1 1. 前記第 2の直列回路を構成する前記第 3の抵抗および前記キャパシタの接 続の仕方を、 前記 2つの移相回路において反対にしたことを特徴とする請求の 範囲 9に記載の発振器。  10. The oscillator according to claim 9, wherein the third resistor and the capacitor constituting the second series circuit are connected in opposite ways in the two phase shift circuits. .
1 2. 前記 2つの移相回路の少なくとも一方の前記第 3の抵抗を F E Tのチヤネ ルによって形成し、 ゲート電圧を変えてチャネル抵抗を変えることを特徴とす る請求の範囲 9に記載の発振器。  12. The oscillator according to claim 9, wherein the third resistor of at least one of the two phase shift circuits is formed by a FET channel, and a gate voltage is changed to change a channel resistance. .
1 3. 前記 2つの移相回路の少なくとも一方の前記第 3の抵抗を ρチヤネル型の F E Tと ηチャネル型の F E Tとを並列接続することにより形成し、 極性が異 なる各 F Ε Τのゲート電圧の大きさを変えてチャネル抵抗を変えることを特徴 とする請求の範囲 9に記載の発振器。  1 3. The third resistor of at least one of the two phase shift circuits is formed by connecting a ρ-channel type FET and an η-channel type FET in parallel, and the gate of each F Ε な る having a different polarity is formed. 10. The oscillator according to claim 9, wherein the channel resistance is changed by changing the magnitude of the voltage.
1 4. 前記 2つの移相回路の少なくとも一方の前記キャパシタを可変容量素子に より形成し、 この静電容量を変えることにより、 発振周波数を変化させること を特徴とする請求の範囲 9に記載の発振器。1 4. To change the oscillation frequency by forming at least one of the capacitors of the two phase shift circuits with a variable capacitance element and changing this capacitance. 10. The oscillator according to claim 9, wherein:
5. 前記 2つの移相回路の少なくとも一方の前記キャパシタを、 利得が負の値 を有する増幅器と、 前記増幅器の入出力間に並列接続されたキャパシタ素子と からなる静電容量変換回路によつて形成することを特徴とする請求の範囲 9に 記載の発振器。 5. At least one of the capacitors of the two phase shift circuits is connected to a capacitance conversion circuit including an amplifier having a negative gain and a capacitor element connected in parallel between the input and output of the amplifier. 10. The oscillator according to claim 9, wherein the oscillator is formed.
6. 前記増幅器の利得を可変して前記増幅器の入力側からみた静電容量を変え ることにより、 発振周波数を変化させることを特徴とする請求の範囲 1 5に記 載の発振器。6. The oscillator according to claim 15, wherein an oscillation frequency is changed by changing a capacitance of the amplifier as viewed from an input side of the amplifier by changing a gain of the amplifier.
7. 入力される交流信号が両端に印加され、 抵抗値がほぼ等しい第 1および第 2の抵抗により構成された第 1の直列回路と、 前記交流信号が両端に印加され、 第 3の抵抗とイングクタにより構成された第 2の直列回路と、 前記第 1の直列 回路を構成する前記第 1および第 2の抵抗の接続点の電位と前記第 2の直列回 路を構成する前記第 3の抵抗と前記ィンダクタの接続点の電位との差分を所定 の増幅度で増幅して出力する差動増幅器とよりなる 2つの移相回路を備え、 縦続接続された前記 2つの移相回路の後段の出力を前段の入力側に帰還させ るとともに、 前記 2つの移相回路のいずれか一方から正弦波発振出力を取り出 すことを特徴とする発振器。  7. An input AC signal is applied to both ends, a first series circuit including first and second resistors having substantially equal resistance values, and the AC signal is applied to both ends, and a third resistor A second series circuit constituted by an intagter; a potential at a connection point of the first and second resistors constituting the first series circuit; and a third resistor constituting the second series circuit. And a differential amplifier that amplifies the difference between the potential at the connection point of the inductor and the potential at a predetermined amplification degree and outputs the amplified signal. The output of the latter stage of the two cascaded phase shift circuits is provided. An oscillator that feeds back to a previous stage input side and extracts a sine wave oscillation output from one of the two phase shift circuits.
8. 前記 2つの移相回路から 2相出力を取り出すことを特徴とする請求の範囲 1 7に記載の発振器。  8. The oscillator according to claim 17, wherein a two-phase output is extracted from the two phase shift circuits.
9. 前記第 2の直列回路を構成する前記第 3の抵抗および前記イングクタの接 続の仕方を、 前記 2つの移相回路において反対にしたことを特徴とする請求の 範囲 1 7に記載の発振器。  9. The oscillator according to claim 17, wherein a connection method of the third resistor and the intagter constituting the second series circuit is reversed in the two phase shift circuits. .
0. 前記 2つの移相回路の少なくとも一方の前記第 3の抵抗を F E Tのチヤネ ルによつて形成し、 ゲート電圧を変えてチヤネル抵抗を変えることを特徴とす る請求の範囲 1 7に記載の発振器。  0. The claim 17, wherein the third resistor of at least one of the two phase shift circuits is formed by a channel of a FET, and the channel resistance is changed by changing a gate voltage. Oscillator.
1. 前記 2つの移相回路の少なくとも一方の前記第 3の抵抗を pチャネル型の F E Tと nチャネル型の F E Tとを並列接続することにより形成し、 極性が異 なる各 F E Tのゲート電圧の大きさを変えてチャネル抵抗を変えることを特徴 とする請求の範囲 1 7に記載の発振器。 1. The third resistor of at least one of the two phase shift circuits is formed by connecting a p-channel FET and an n-channel FET in parallel, and the magnitude of the gate voltage of each FET having a different polarity is formed. 18. The oscillator according to claim 17, wherein the channel resistance is changed by changing the length.
2. 前記 2つの移相回路の少なくとも一方の前記ィンダクタが有するィンダク タンスを変えることにより、 発振周波数を変化させることを特徴とする請求の 範囲 1 7に記載の発振器。 2. The oscillator according to claim 17, wherein an oscillation frequency is changed by changing an inductance of at least one of the two phase shift circuits.
3. 前記 2つの移相回路の少なくとも一方の前記インダクタを、 利得を 0から3. Change the gain of at least one of the two phase shift circuits from 0 to
1の間に設定した増幅器と、 前記増幅器の入出力間に並列接続されたィンダク タ素子とからなるイングクタンス変換回路によって形成することを特徴とする 請求の範囲 1 7に記載の発振器。 18. The oscillator according to claim 17, wherein the oscillator is formed by an inductance conversion circuit including an amplifier set between 1 and an inductor element connected in parallel between the input and output of the amplifier.
4. 前記増幅器の利得を可変して前記増幅器の入力側からみたィンダク夕ンス を変えることにより、 発振周波数を変化させることを特徴とする請求の範囲 24. The oscillation frequency is varied by varying the gain of the amplifier to change the inductance seen from the input side of the amplifier.
3に記載の発振器。3. The oscillator according to 3.
5. 入力される交流信号が両端に印加され、 抵抗値がほぼ等しい第 1および第 2の抵抗により構成された第 1の直列回路と、 前記交流信号が両端に印加され、 第 3の抵抗とイングクタにより構成された第 2の直列回路と、 前記第 1の直列 回路を構成する前記第 1および第 2の抵抗の接続点の電位と前記第 2の直列回 路を構成する前記第 3の抵抗と前記ィンダクタの接続点の電位との差分を所定 の増幅度で増幅して出力する差動増幅器とよりなる 2つの移相回路と、  5. An input AC signal is applied to both ends, a first series circuit including first and second resistors having substantially equal resistance values, and the AC signal is applied to both ends, and a third resistor A second series circuit constituted by an intagter; a potential at a connection point of the first and second resistors constituting the first series circuit; and a third resistor constituting the second series circuit. And a differential amplifier that amplifies the difference between the potential at the connection point of the inductor and the potential at the connection point of the inductor with a predetermined amplification degree and outputs the amplified signal.
入力される交流信号の位相を変えずに出力する非反転回路と、  A non-inverting circuit that outputs the input AC signal without changing the phase,
を備え、 前記 2つの移相回路および前記非反転回路のそれぞれを縦統接続し、 これら縦続接続された複数の回路の中の最終段の出力を初段の入力側に帰還さ せるとともに、 これら複数の回路のいずれかから正弦波発振出力を取り出すこ とを特徴とする発振器。  Each of the two phase shift circuits and the non-inverting circuit is cascaded, and the output of the last stage among the plurality of cascade-connected circuits is fed back to the input side of the first stage. An oscillator characterized by extracting a sine wave oscillation output from any one of the above circuits.
6. 前記 2つの移相回路および前記非反転回路から 2相出力を取り出すことを 特徴とする請求の範囲 2 5に記載の発振器。  6. The oscillator according to claim 25, wherein a two-phase output is extracted from the two phase shift circuits and the non-inverting circuit.
7. 前記第 2の直列回路を構成する前記第 3の抵抗および前記インダクタの接 続の仕方を、 前記 2つの移相回路において反対にしたことを特徴とする請求の 範囲 2 5に記載の発振器。  7. The oscillator according to claim 25, wherein a connection manner of the third resistor and the inductor constituting the second series circuit is reversed in the two phase shift circuits. .
8. 前記 2つの移相回路の少なくとも一方の前記第 3の抵抗を F E Tのチヤネ ルによって形成し、 ゲート電圧を変えてチャネル抵抗を変えることを特徴とす る請求の範囲 2 5に記載の発振器。 8. The oscillator according to claim 25, wherein the third resistor of at least one of the two phase shift circuits is formed by a channel of an FET, and a channel voltage is changed by changing a gate voltage. .
9. 前記 2つの移相回路の少なくとも一方の前記第 3の抵抗を pチャネル型の F E Tと nチャネル型の F E Tとを並列接続することにより形成し、 極性が異 なる各 F E Tのゲート電圧の大きさを変えてチャネル抵抗を変えることを特徴 とする請求の範囲 2 5に記載の発振器。 9. The third resistor of at least one of the two phase shift circuits is formed by connecting a p-channel FET and an n-channel FET in parallel, and the magnitude of the gate voltage of each FET having a different polarity is formed. 26. The oscillator according to claim 25, wherein the channel resistance is changed by changing the length.
0. 前記 2つの移相回路の少なくとも一方の前記ィンダクタが有するィンダク タンスを変えることにより、 発振周波数を変化させることを特徴とする請求の 範囲 2 5に記載の発振器。0. The oscillator according to claim 25, wherein an oscillation frequency is changed by changing an inductance of at least one of said two phase shift circuits.
1. 前記 2つの移相回路の少なくとも一方の前記イングクタを、 利得を 0から 1の間に設定した増幅器と、 前記増幅器の入出力間に並列接続されたィンダク タ素子とからなるイングクタンス変換回路によって形成することを特徴とする 請求の範囲 2 5に記載の発振器。 1. At least one of the two phase shift circuits is an inductance conversion circuit including an amplifier having a gain set between 0 and 1, and an inductor element connected in parallel between the input and output of the amplifier. The oscillator according to claim 25, wherein the oscillator is formed by:
2. 前記増幅器の利得を可変して前記増幅器の入力側からみたインダクタンス を変えることにより、 発振周波数を変化させることを特徴とする請求の範囲 3 1に記載の発振器。 32. The oscillator according to claim 31, wherein the oscillation frequency is changed by changing the gain of the amplifier to change the inductance seen from the input side of the amplifier.
3. 入力される交流信号が両端に印加され、 抵抗値がほぼ等しい第 1および第 2の抵抗により構成された第 1の直列回路と、 前記交流信号が両端に印加され、 第 3の抵抗とキャパシタにより構成された第 2の直列回路と、 前記第 1の直列 回路を構成する前記第 1および第 2の抵抗の接続点の電位と前記第 2の直列回 路を構成する前記第 3の抵抗と前記キャパシタの接続点の電位との差分を所定 の増幅度で増幅して出力する差動増幅器とよりなる第 1の移相回路と、 3. An input AC signal is applied to both ends, a first series circuit including first and second resistors having substantially equal resistance values, and the AC signal is applied to both ends, and a third resistor A second series circuit constituted by a capacitor; a potential at a connection point of the first and second resistors constituting the first series circuit; and a third resistor constituting the second series circuit. A first phase shift circuit including a differential amplifier that amplifies a difference between the potential of the capacitor and a connection point of the capacitor with a predetermined amplification degree and outputs the amplified difference.
入力される交流信号が両端に印加され、 抵抗値がほぼ等しい第 1および第 2 の抵抗により構成された第 1の直列回路と、 前記交流信号が両端に印加され、 第 3の抵抗とイングクタにより構成された第 2の直列回路と、 前記第 1の直列 回路を構成する前記第 1および第 2の抵抗の接続点の電位と前記第 2の直列回 路を構成する前記第 3の抵抗と前記インダクタの接続点の電位との差分を所定 の増幅度で増幅して出力する差動増幅器とよりなる第 2の移相回路と、  An input AC signal is applied to both ends, a first series circuit including first and second resistors having substantially equal resistance values, and the AC signal is applied to both ends, and a third resistor and an A second series circuit configured; a potential at a connection point of the first and second resistors forming the first series circuit; a third resistor forming the second series circuit; and A second phase shift circuit including a differential amplifier that amplifies the difference between the potential at the connection point of the inductor with a predetermined amplification degree and outputs the amplified signal;
を備え、 縦続接続された前記第 1および第 2の移相回路の後段の出力を前段 の入力側に帰還させるとともに、 前記第 1および第 2の移相回路のいずれか一 方から正弦波発振出力を取り出すことを特徴とする発振器。 The output of the subsequent stage of the first and second phase shift circuits connected in cascade is fed back to the input side of the previous stage, and a sine wave oscillation is performed from one of the first and second phase shift circuits. Oscillator characterized by extracting output.
4. 前記第 1および第 2の移相回路から 2相出力を取り出すことを特徴とする 請求の範囲 3 3に記載の発振器。 4. The oscillator according to claim 33, wherein a two-phase output is extracted from the first and second phase shift circuits.
5. 前記第 2の直列回路を構成する前記キャパシタあるいは前記インダクタか らなるリアクタンス素子と前記第 3の抵抗の接続の仕方を、 前記 2つの移相回 路において反対にしたことを特徴とする請求の範囲— 3 3に記載の発振器。 5. The method of connecting the reactance element consisting of the capacitor or the inductor constituting the second series circuit and the third resistor in the two phase shift circuits is reversed. The oscillator according to item 33.
6. 前記第 1および第 2の移相回路の少なくとも一方の前記第 3の抵抗を F E Tのチャネルによって形成し、 ゲート電圧を変えてチャネル抵抗を変えること を特徴とする請求の範囲 3 3に記載の発振器。6. The channel resistance of at least one of the first and second phase shift circuits is formed by a channel of an FET, and a channel resistance is changed by changing a gate voltage. Oscillator.
7. 入力される交流信号が両端に印加され、 抵抗値がほぼ等しい第 1および第 2の抵抗により構成された第 1の直列回路と、 前記交流信号が両端に印加され、 第 3の抵抗とキャパシタにより構成された第 2の直列回路と、 前記第 1の直列 回路を構成する前記第 1および第 2の抵抗の接続点の電位と前記第 2の直列回 路を構成する前記第 3の抵抗と前記キャパシタの接続点の電位との差分を所定 の増幅度で増幅して出力する差動増幅器とよりなる第 1の移相回路と、 7. An input AC signal is applied to both ends, a first series circuit including first and second resistors having substantially equal resistance values, and the AC signal is applied to both ends, and a third resistor A second series circuit constituted by a capacitor; a potential at a connection point of the first and second resistors constituting the first series circuit; and a third resistor constituting the second series circuit. A first phase shift circuit including a differential amplifier that amplifies a difference between the potential of the capacitor and a connection point of the capacitor with a predetermined amplification degree and outputs the amplified difference.
入力される交流信号が両端に印加され、 抵抗艫がほぼ等しい第 1および第 2 の抵抗により構成された第 1の直列回路と、 前記交流信号が両端に印加され、 第 3の抵抗とインダクタにより構成された第 2の直列回路と、 前記第 1の直列 回路を構成する前記第 1および第 2の抵抗の接続点の電位と前記第 2の直列回 路を構成する前記第 3の抵抗と前記インダクタの接続点の電位との差分を所定 の増幅度で増幅して出力する差動増幅器とよりなる第 2の移相回路と、  An input AC signal is applied to both ends, and a first series circuit including first and second resistors having substantially equal resistance sterns, and the AC signal is applied to both ends, and a third resistor and an inductor A second series circuit configured; a potential at a connection point of the first and second resistors forming the first series circuit; a third resistor forming the second series circuit; and A second phase shift circuit including a differential amplifier that amplifies the difference between the potential at the connection point of the inductor with a predetermined amplification degree and outputs the amplified signal;
入力される交流信号の位相を変えずに出力する非反転回路と、  A non-inverting circuit that outputs the input AC signal without changing the phase,
を備え、 前記第 1および第 2の移相回路と前記非反転回路のそれぞれを縦続 接続し、 これら縦続接続された複数の回路の中の最終段の出力を初段の入力側 に帰還させるとともに、 これら複数の回路のいずれかから正弦波発振出力を取 り出すことを特徴とする発振器。  Wherein the first and second phase shift circuits and the non-inverting circuit are cascade-connected, and the output of the last stage among the plurality of cascade-connected circuits is fed back to the input side of the first stage, An oscillator characterized in that a sine wave oscillation output is obtained from one of the plurality of circuits.
8. 前記第 1および第 2の移相回路と前記非反転回路から 2相出力を取り出す ことを特徴とする請求の範囲 3 7に記載の発振器。  8. The oscillator according to claim 37, wherein a two-phase output is extracted from the first and second phase shift circuits and the non-inverting circuit.
9. 前記第 2の直列回路を構成する前記キャパシタあるいは前記インダクタか らなるリアクタンス素子と前記第 3の抵抗の接続の仕方を、 前記 2つの移相回 路において反対にしたことを特徴とする請求の範囲 3 7に記載の発振器。9. The manner in which the third resistor is connected to the reactance element consisting of the capacitor or the inductor that forms the second series circuit is determined by the two phase shift circuits. 38. The oscillator according to claim 37, wherein the oscillators are reversed.
0. 前記第 1および第 2の移相回路の少なくとも一方の前記第 3の抵抗を F E Tのチャネルによって形成し、 ゲート電圧を変えてチャネル抵抗を変えること を特徴とする請求の範囲 3 7に記載の発振器。0. The third resistance of at least one of the first and second phase shift circuits is formed by an FET channel, and a gate voltage is changed to change a channel resistance. Oscillator.
1. 入力される交流信号が両端に印加され、 抵抗値がほぼ等しい第 1および第 2の抵抗により構成された第 1の直列回路と、 前記交流信号が両端に印加され、 第 3の抵抗とキャパシタにより構成された第 2の直列回路と、 前記第 1の直列 回路を構成する前記第 1および第 2の抵抗の接続点の電位と前記第 2の直列回 路を構成する前記第 3の抵抗と前記キャパシタの接続点の電位との差分を所定 の増幅度で増幅して出力する差動増幅器とよりなる 2つの移相回路と、 1. An input AC signal is applied to both ends, a first series circuit composed of first and second resistors having substantially equal resistance values, and the AC signal is applied to both ends, and a third resistor A second series circuit constituted by a capacitor; a potential at a connection point of the first and second resistors constituting the first series circuit; and a third resistor constituting the second series circuit. And a differential amplifier that amplifies the difference between the potential at the connection point of the capacitor and the potential at a predetermined amplification degree and outputs the result.
入力される交流信号の位相を反転して出力する位相反転回路と、  A phase inversion circuit that inverts the phase of the input AC signal and outputs the inverted signal;
を備え、 前記 2つの移相回路および前記位相反転回路のそれぞれを縦続接続 し、 これら縦続接続された複数の回路の中の最終段の出力を初段の入力側に帰 還させるとともに、 これら複数の回路の t、ずれかから正弦波発振出力を取り出 すことを特徴とする発振器。  Each of the two phase shift circuits and the phase inversion circuit is cascaded, and the output of the last stage among the plurality of cascade-connected circuits is returned to the input side of the first stage. Oscillator characterized by taking out sine wave oscillation output from the difference between t and t of the circuit.
2. 前記 2つの移相回路および前記位相反転回路から 2相出力を取り出すこと を特徴とする請求の範囲 4 1に記載の発振器。  2. The oscillator according to claim 41, wherein a two-phase output is extracted from the two phase shift circuits and the phase inversion circuit.
3. 前記第 2の直列回路を構成する前記第 3の抵抗および前記キャパシタの接 続の仕方を、 前記 2つの移相回路において同じにしたことを特徴とする請求の 範囲 4 1に記載の発振器。  3. The oscillator according to claim 41, wherein the third resistor and the capacitor constituting the second series circuit are connected in the same manner in the two phase shift circuits. .
4. 前記 2つの移相回路の少なくとも一方の前記第 3の抵抗を F E Tのチヤネ ルによって形成し、 ゲート電圧を変えてチャネル抵抗を変えることを特徴とす る請求の範囲 4 1に記載の発振器。  4. The oscillator according to claim 41, wherein the third resistor of at least one of the two phase shift circuits is formed by an FET channel, and a gate voltage is changed to change a channel resistance. .
5. 前記 2つの移相回路の少なくとも一方の前記第 3の抵抗を pチャネル型の 5. Connect the third resistor of at least one of the two phase shift circuits to a p-channel type
F E Tと nチヤネル型の F E Tとを並列接続することにより形成し、 極性が異 なる各 F E Tのゲート電圧の大きさを変えてチャネル抵抗を変えることを特徴 とする請求の範囲 4 1に記載の発振器。41. The oscillator according to claim 41, wherein the FET is formed by connecting an FET and an n-channel FET in parallel, and the channel resistance is changed by changing the magnitude of the gate voltage of each FET having a different polarity. .
6. 前記 2つの移相回路の少なくとも一方の前記キャパシタを可変容量素子に より形成し、 この静電容量を変えることにより、 発振周波数を変化させること を特徴とする請求の範囲 4 1に記載の発振器。 6. At least one of the two phase shift circuits is formed of a variable capacitance element, and the capacitance is changed to change the oscillation frequency. The oscillator according to claim 41, characterized by the following:
7. 前記 2つの移相回路の少なくとも一方の前記キャパシタを、 利得が負の値 を有する増幅器と、 前記増幅器の入出力間に並列接続されたキャパシタ素子と からなる静電容量変換回路によって形成することを特徴とする請求の範囲 4 1 に記載の発振器。 7. The capacitor of at least one of the two phase shift circuits is formed by a capacitance conversion circuit including an amplifier having a negative gain and a capacitor element connected in parallel between the input and output of the amplifier. The oscillator according to claim 41, characterized in that:
8. 前記増幅器の利得を可変して前記増幅器の入力側からみた静電容量を変え ることにより、 発振周波数を変化させることを特徴とする請求の範囲 4 7に記 載の発振器。8. The oscillator according to claim 47, wherein the oscillation frequency is changed by changing the capacitance of the amplifier viewed from the input side by changing the gain of the amplifier.
9. 入力される交流信号が両端に印加され、 抵抗値がほぼ等しい第 1および第 2の抵抗により構成された第 1の直列回路と、 前記交流信号が両端に印加され、 第 3の抵抗とインダクタにより構成された第 2の直列回路と、 前記第 1の直列 回路を構成する前記第 1および第 2の抵抗の接続点の電位と前記第 2の直列回 路を構成する前記第 3の抵抗と前記インダクタの接続点の電位との差分を所定 の増幅度で増幅して出力する差動増幅器とよりなる 2つの移相回路と、 9. An input AC signal is applied to both ends, a first series circuit including first and second resistors having substantially equal resistance values, and the AC signal is applied to both ends, and a third resistor A second series circuit constituted by an inductor; a potential at a connection point of the first and second resistors constituting the first series circuit; and a third resistor constituting the second series circuit. And a differential amplifier that amplifies a difference between a potential at a connection point of the inductor and a potential at a predetermined amplification degree and outputs the result.
入力される交流信号の位相を反転して出力する位相反転回路と、  A phase inversion circuit that inverts the phase of the input AC signal and outputs the inverted signal;
を備え、 前記 2つの移相回路および前記位相反転回路のそれぞれを縦続接続 し、 これら縦続接続された複数の回路の中の最終段の出力を初段の入力側に帰 還させるとともに、 これら複数の回路のいずれかから正弦波発振出力を取り出 すことを特徴とする発振器。 Each of the two phase shift circuits and the phase inversion circuit is cascaded, and the output of the last stage among the plurality of cascade-connected circuits is returned to the input side of the first stage. An oscillator characterized by extracting a sine wave oscillation output from one of the circuits.
0. 前記 2つの移相回路および前記位相反転回路から 2相出力を取り出すこと を特徴とする請求の範囲 4 9に記載の発振器。  0. The oscillator according to claim 49, wherein a two-phase output is taken out from said two phase shift circuits and said phase inversion circuit.
1. 前記第 2の直列回路を構成する前記第 3の抵抗および前記インダクタの接 続の仕方を、 前記 2つの移相回路において同じにしたことを特徴とする請求の 範囲 4 9に記載の発振器。 1. The oscillator according to claim 49, wherein a connection method of the third resistor and the inductor constituting the second series circuit is the same in the two phase shift circuits. .
2. 前記 2つの移相回路の少なくとも一方の前記第 3の抵抗を F E Tのチヤネ ルによって形成し、 ゲート電圧を変えてチャネル抵抗を変えることを特徴とす る請求の範囲 4 9に記載の発振器。  The oscillator according to claim 49, wherein the third resistor of at least one of the two phase shift circuits is formed by a FET channel, and a channel voltage is changed by changing a gate voltage. .
3. 前記 2つの移相回路の少なくとも一方の前記第 3の抵抗を pチャネル型の F E Tと nチャネル型の F E Tとを並列接続することにより形成し、 極性が異 なる各 F E Tのゲート電圧の大きさを変えてチャネル抵抗を変えることを特徴 とする請求の範囲 4 9に記載の発振器。3. The third resistor of at least one of the two phase shift circuits is formed by connecting a p-channel type FET and an n-channel type FET in parallel, and has different polarities. 40. The oscillator according to claim 49, wherein the channel resistance is changed by changing the magnitude of the gate voltage of each FET.
4. 前記 2つの移相回路の少なくとも一方の前記イングクタが有するインダク タンスを変えることにより、 発振周波数を変化させることを特徴とする請求の 範囲 4 9に記載の発振器。4. The oscillator according to claim 49, wherein an oscillation frequency is changed by changing an inductance of at least one of said two phase shift circuits.
5. 前記 2つの移相回路の少なくとも一方の前記インダクタを、 利得を 0から 1の間に設定した増幅器と、 前記増幅器の入出力間に並列接続されたィンダク タ素子とからなるインダクタンス変換回路によって形成することを特徵とする 請求の範囲 4 9に記載の発振器。5. At least one of the inductors of the two phase shift circuits is controlled by an inductance conversion circuit including an amplifier having a gain set between 0 and 1, and an inductor element connected in parallel between the input and output of the amplifier. The oscillator according to claim 49, characterized by being formed.
6. 前記増幅器の利得を可変して前記増幅器の入力側からみたィンダクタンス を変えることにより、 発振周波数を変化させることを特徴とする請求の範囲 5 5に記載の発振器。 6. The oscillator according to claim 55, wherein the oscillation frequency is changed by varying the gain of the amplifier to change the inductance as viewed from the input side of the amplifier.
7. 入力される交流信号が両端に印加され、 抵抗値がほぼ等しい第 1および第 2の抵抗により構成された第 1の直列回路と、 前記交流信号が両端に印加され、 第 3の抵抗とキャパシタにより構成された第 2の直列回路と、 前記第 1の直列 回路を構成する前記第 1および第 2の抵抗の接続点の電位と前記第 2の直列回 路を構成する前記第 3の抵抗と前記キャパシタの接続点の電位との差分を所定 の増幅度で増幅して出力する差動増幅器とよりなる第 1の移相回路と、  7. An input AC signal is applied to both ends, a first series circuit including first and second resistors having substantially equal resistance values, and the AC signal is applied to both ends, and a third resistor A second series circuit constituted by a capacitor; a potential at a connection point of the first and second resistors constituting the first series circuit; and a third resistor constituting the second series circuit. A first phase shift circuit including a differential amplifier that amplifies a difference between the potential of the capacitor and a connection point of the capacitor with a predetermined amplification degree and outputs the amplified difference.
入力される交流信号が両端に印加され、 抵抗値がほぼ等しい第 1および第 2 の抵抗により構成された第 1の直列回路と、 前記交流信号が両端に印加され、 第 3の抵抗とインダクタにより構成された第 2の直列回路と、 前記第 1の直列 回路を構成する前記第 1および第 2の抵抗の接続点の電位と前記第 2の直列回 路を構成する前記第 3の抵抗と前記インダクタの接続点の電位との差分を所定 の増幅度で増幅して出力する差動増幅器とよりなる第 2の移相回路と、  An input AC signal is applied to both ends, a first series circuit composed of first and second resistors having substantially equal resistance values, and the AC signal is applied to both ends, and a third resistor and an inductor A second series circuit configured; a potential at a connection point of the first and second resistors forming the first series circuit; a third resistor forming the second series circuit; and A second phase shift circuit including a differential amplifier that amplifies the difference between the potential at the connection point of the inductor with a predetermined amplification degree and outputs the amplified signal;
入力される交流信号の位相を反転して出力する位相反転回路と、  A phase inversion circuit that inverts the phase of the input AC signal and outputs the inverted signal;
を備え、 前記第 1および第 2の移相回路と前記位相反転回路のそれぞれを縦 続接続し、 これら縦続接続された複数の回路の中の最終段の出力を初段の入力 側に帰還させるとともに、 これら複数の回路のいずれかから正弦波発振出力を 取り出すことを特徴とする発振器。 The first and second phase shift circuits and the phase inverting circuit are cascade-connected, and the output of the last stage among the plurality of cascade-connected circuits is fed back to the input side of the first stage. An oscillator which extracts a sine wave oscillation output from any of the plurality of circuits.
8. 前記第 1および第 2の移相回路と前記位相反転回路から 2相出力を取り出 すことを特徴とする請求の範囲 5 7に記載の発振器。 8. The oscillator according to claim 57, wherein a two-phase output is obtained from the first and second phase shift circuits and the phase inversion circuit.
9. 前記第 2の直列回路を構成する前記キャパシタあるいは前記インダクタか らなるリアクタンス素子と前記第 3の抵抗の接続の仕方を、 前記 2つの移相回 路において同じにしたことを特徴とする請求の範囲 5 7に記載の発振器。0. 前記第 1および第 2の移相回路の少なくとも一方の前記第 3の抵抗を F E Tのチャネルによって形成し、 ゲート電圧を変えてチャネル抵抗を変えること を特徴とする請求の範囲 5 7に記載の発振器。 9. The method of connecting the reactance element comprising the capacitor or the inductor and the third resistor constituting the second series circuit to the third resistor in the same manner in the two phase shift circuits. The oscillator according to range 57. 0. The third resistance of at least one of the first and second phase shift circuits is formed by a channel of an FET, and a channel resistance is changed by changing a gate voltage. Oscillator.
1. 半導体集積回路として形成することを特徴とする請求の範囲 1〜 6 0のい ずれかに記載の発振器。 1. The oscillator according to any one of claims 1 to 60, wherein the oscillator is formed as a semiconductor integrated circuit.
PCT/JP1995/001179 1994-06-13 1995-06-13 Oscillator WO1995034951A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU26312/95A AU2631295A (en) 1994-06-13 1995-06-13 Oscillator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP6/153100 1994-06-13
JP15310094 1994-06-13
JP25909894 1994-09-29
JP6/259098 1994-09-29

Publications (1)

Publication Number Publication Date
WO1995034951A1 true WO1995034951A1 (en) 1995-12-21

Family

ID=26481819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001179 WO1995034951A1 (en) 1994-06-13 1995-06-13 Oscillator

Country Status (2)

Country Link
AU (1) AU2631295A (en)
WO (1) WO1995034951A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037724A1 (en) * 2005-09-27 2007-04-05 Telefonaktiebolaget L M Ericsson (Publ) An oscillator circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132340B1 (en) * 1970-11-20 1976-09-11
JPS5941629Y2 (en) * 1977-03-29 1984-12-01 ソニー株式会社 active inductance circuit
JPS601966B2 (en) * 1977-02-01 1985-01-18 沖電気工業株式会社 Ungrounded variable capacitance circuit
JPS6343411A (en) * 1986-08-11 1988-02-24 Mitsubishi Electric Corp Phase shifter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132340B1 (en) * 1970-11-20 1976-09-11
JPS601966B2 (en) * 1977-02-01 1985-01-18 沖電気工業株式会社 Ungrounded variable capacitance circuit
JPS5941629Y2 (en) * 1977-03-29 1984-12-01 ソニー株式会社 active inductance circuit
JPS6343411A (en) * 1986-08-11 1988-02-24 Mitsubishi Electric Corp Phase shifter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037724A1 (en) * 2005-09-27 2007-04-05 Telefonaktiebolaget L M Ericsson (Publ) An oscillator circuit

Also Published As

Publication number Publication date
AU2631295A (en) 1996-01-05

Similar Documents

Publication Publication Date Title
KR100299740B1 (en) Filter circuit
WO1997017754A1 (en) Tuning amplifier
Xu et al. Current Differencing Cascaded Transconductance Amplifier (CDCTA) and Its Applications on Current-Mode n th-Order Filters
WO1995034953A1 (en) Tuned amplifier
WO1996021970A1 (en) Tuning circuit
WO1995034951A1 (en) Oscillator
KR100367070B1 (en) Tuning Amplifier
JP3625526B2 (en) Tuning amplifier
WO1995034950A1 (en) Oscillator
JPH08111612A (en) Oscillator
JPH0865043A (en) Oscillator
JPH08154017A (en) Oscillator
JP3636774B2 (en) Tuning amplifier
JP6749521B2 (en) Polyphase filter
JPH0865100A (en) Tuned amplifier
JPH08195623A (en) Oscillator
JPH08195622A (en) Oscillator
WO1996004712A1 (en) Tuning amplifier
JPH0865045A (en) Oscillator
JPH0865046A (en) Oscillator
JPH08154034A (en) Tuned amplifier
JPH09139634A (en) Tuning amplifier
JP3628407B2 (en) Tuning amplifier
JPH0865044A (en) Oscillator
JPH08265056A (en) Tuning amplifier

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase