JPS6343411A - Phase shifter - Google Patents

Phase shifter

Info

Publication number
JPS6343411A
JPS6343411A JP18804286A JP18804286A JPS6343411A JP S6343411 A JPS6343411 A JP S6343411A JP 18804286 A JP18804286 A JP 18804286A JP 18804286 A JP18804286 A JP 18804286A JP S6343411 A JPS6343411 A JP S6343411A
Authority
JP
Japan
Prior art keywords
phase shift
capacitor
resistor
series circuit
shift setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18804286A
Other languages
Japanese (ja)
Inventor
Yasuhiro Tanaka
康博 田中
Tadayoshi Kitayama
北山 忠義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18804286A priority Critical patent/JPS6343411A/en
Publication of JPS6343411A publication Critical patent/JPS6343411A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a phase shift amount close to 360 deg. immune from output fluctuation byt providing a series circuit comprising a capacitor and an inductor for phase shift setting and the 2nd series circuit comprising resistors and connected in parallel with the 1st series circuit. CONSTITUTION:A signal subject to phase shift is outputted to the 1st series circuit 2 and the 2nd series circuit 7 via a buffer amplifier 1. The phase of a difference (V1-V2) between the potential V1 at a connecting point of resistors 21, 22 and a potential V2 at a connecting point at an inductor 7 and a resistor 73 is 180+2tan<-1>(omegaL/R), where R is a resistance of the resistor 73. In bringing the resistor R to '0', the phase shift of the potential difference (V1-V2) with respect to the capacitance C of a variable capacitor 71 changed from '0' to infinite is 360 deg.. Since it is difficult to bring the capacitance of the variable capacitor 71 to '0' or inifinite, even when the minimum value C1 of the capacitance is larger than '0' and the maximum value C2 is definite, a larger phase shift is obtianed with the decreased resistance R by deciding the minimum value C1 and the maximum value C2 in the relation of (1/omegaC2)<omegaL<(1/omegaC1).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、360°近い移相量を有し、移相量の変化
に伴なう出力変動のない移相装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a phase shift device that has a phase shift amount of nearly 360° and is free from output fluctuations due to changes in the phase shift amount.

〔従来の技術〕[Conventional technology]

第3図は、例えば「電子通信ハンドブック」(昭和48
年増補改定版の第132頁参照)に開示された回路図よ
り容易に想像できる従来の移相装置を示す回路構成図で
ある。
Figure 3 shows, for example, the "Electronic Communication Handbook" (1972).
FIG. 2 is a circuit configuration diagram showing a conventional phase shift device that can be easily imagined from the circuit diagram disclosed in the 2011 revised edition, page 132.

図において、1はバッファアンプ、2は第1の直列回路
であり、第1の抵抗21と第2の抵抗22から構成され
ている。3は第2の直列回路であり、第3のコンデンサ
31と可変抵抗32から構成されている。4は第1のコ
ンデンサ、5は第2のコンデンサ、6は差動増幅器であ
る。
In the figure, 1 is a buffer amplifier, and 2 is a first series circuit, which is composed of a first resistor 21 and a second resistor 22. 3 is a second series circuit, which is composed of a third capacitor 31 and a variable resistor 32. 4 is a first capacitor, 5 is a second capacitor, and 6 is a differential amplifier.

次に、上記第3図に示す従来の移相装置の動作について
説明する。移相を受ける信号はバッファアンプ1に入力
される。バッファアンプ1の出力は、第1の直列回路2
と第2の直列回路3に出力される。バッファアンプ1の
出力信号をVin、信号の角周波数をW、第1の直列回
路2の第1の抵抗21と第2の抵抗22の抵抗値を共に
だとし、第2の直列回路3の第1のコンデンサ31の容
量値をC1可変抵抗32の抵抗値をRvとすると、第1
の直列回路2の第1の抵抗21と第2の抵抗22との接
続点の電位■1は、 V+  = +V i n       −”・(1)
となる。また、第2の直列回路3の第1のコンデンサ3
1と可変抵抗32との接続点の電位■2は、となる。し
たがって、各電位■、と■2の電位差Vl−= M””
 exp(−j2tan wcRv) ・・・・・(4
)となり、可変抵抗32の抵抗値Rv;t−0から十分
に大きな値にまで変化させることにより、電位差vl−
v、の大きさを変えずに位相を0度からほぼ180度ま
で遅らせることができる。そして、上記電位差vl−■
2を差動増幅器6で取り出し増幅して出力する。
Next, the operation of the conventional phase shifter shown in FIG. 3 will be explained. The phase-shifted signal is input to a buffer amplifier 1. The output of the buffer amplifier 1 is connected to the first series circuit 2.
is output to the second series circuit 3. Assume that the output signal of the buffer amplifier 1 is Vin, the angular frequency of the signal is W, the resistance values of the first resistor 21 and the second resistor 22 of the first series circuit 2 are both equal, and the If the capacitance value of the first capacitor 31 is C1 and the resistance value of the variable resistor 32 is Rv, then
The potential ■1 at the connection point between the first resistor 21 and the second resistor 22 of the series circuit 2 is as follows: V+ = +V i n −”・(1)
becomes. Also, the first capacitor 3 of the second series circuit 3
The potential 2 at the connection point between 1 and the variable resistor 32 is as follows. Therefore, the potential difference between each potential ■ and ■2 is Vl-=M””
exp(-j2tan wcRv) ・・・・・・(4
), and by changing the resistance value Rv of the variable resistor 32 from t-0 to a sufficiently large value, the potential difference vl-
The phase can be delayed from 0 degrees to approximately 180 degrees without changing the magnitude of v. Then, the potential difference vl−■
2 is taken out by a differential amplifier 6, amplified, and output.

ところで、移相装置としては360°の移相量を持つこ
とが望ましい。理論通りに180°の移相量が得られる
なら差動増幅器6の出力の正相・逆相切換えにより36
0°の移相量が得られる。
Incidentally, it is desirable that the phase shift device has a phase shift amount of 360°. If a phase shift of 180° can be obtained as per the theory, by switching the output of the differential amplifier 6 between positive phase and negative phase,
A phase shift amount of 0° is obtained.

しかし諸々の要因で180°の移相量は得られない。例
えば、バッファアンプの出力抵抗が0とはならず有限値
の場合に180°の移相量が得られないことを以下に示
す。バッファアンプの出力抵抗をRoとすると、第1の
直列回路2と第2の直列回路3に加わる信号Voutは
、 Rν=Oのとき Rv =■のとき 従って、V ou t 1Rv=0の位相はVinの位
相よりだけ遅れ、Voutll?ν・はVinと同相で
ある。以上のことからRv=IIooの時の入力信号V
inに対する差動増幅器出力信号の位相遅れは180°
となり、Rv=Oの時の入力信号Vinに対する差動増
幅器出力の位相遅れはOd′となる。このため移相量は
180°−〇dとなり180°未満となる。
However, a phase shift of 180° cannot be obtained due to various factors. For example, it will be shown below that a phase shift amount of 180° cannot be obtained when the output resistance of the buffer amplifier is not 0 but is a finite value. Assuming that the output resistance of the buffer amplifier is Ro, the signal Vout applied to the first series circuit 2 and the second series circuit 3 is as follows: When Rν=O, when Rv=■, therefore, the phase of Vout 1Rv=0 is Delayed by the phase of Vin, Voutll? ν· is in phase with Vin. From the above, the input signal V when Rv=IIoo
The phase delay of the differential amplifier output signal with respect to in is 180°
Therefore, when Rv=O, the phase delay of the differential amplifier output with respect to the input signal Vin is Od'. Therefore, the phase shift amount is 180°-0d, which is less than 180°.

他にも、素子の持つ浮遊容量やリード線のインダクタン
スなどの影響で移相量はさらに制限される。
In addition, the amount of phase shift is further limited by the stray capacitance of the element and the inductance of the lead wire.

〔発明が解決しよ、うとする問題点〕[Problem that the invention seeks to solve]

上記従来の移相装置は以上のように構成されているので
、バッファアンプの出力インピーダンスの影響で、可変
抵抗32の抵抗値Rvの変化に伴なうバッファアンプ出
力信号Voutの位相変化。
Since the conventional phase shift device is configured as described above, the phase of the buffer amplifier output signal Vout changes due to the change in the resistance value Rv of the variable resistor 32 due to the influence of the output impedance of the buffer amplifier.

及び素子の浮遊容量、リード線のインダクタンスの影響
等で移相量が180°に達しないという問題点があった
There is also a problem that the amount of phase shift does not reach 180° due to the influence of stray capacitance of the element, inductance of the lead wire, etc.

この発明は、かかる問題点を解決するためになされたも
ので、移相量の変化に伴なう出力変動を伴なわずに36
0°近い移相量を持つ移相装置を得ることを目的とする
This invention was made in order to solve this problem, and it is possible to reduce
The purpose is to obtain a phase shift device having a phase shift amount close to 0°.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る移相装置は、移相設定コンデンサと移相
設定インダクタから成る直列回路と第3の抵抗とから成
り、かつ第1の直列回路と並列に接続される第2の直列
回路を設けることにより、移相設定コンデンサ又は移相
設定インダクタを変化させて360°近い移相量を得る
ようにしたものである。
The phase shift device according to the present invention includes a second series circuit, which includes a series circuit including a phase shift setting capacitor and a phase shift setting inductor, and a third resistor, and is connected in parallel with the first series circuit. Accordingly, a phase shift amount of nearly 360° is obtained by changing the phase shift setting capacitor or phase shift setting inductor.

〔作用〕[Effect]

この発明の移相装置においては、第2の直列回路を構成
する移相設定コンデンサと移相設定インダクタの直列接
続は、例えば移相設定コンデンサの容量を変えることに
よりリアクタンスが変化するだけでなく、その正負をも
変化させうるため360°に近い移相量を得ることがで
きる。
In the phase shift device of this invention, the series connection of the phase shift setting capacitor and the phase shift setting inductor that constitute the second series circuit not only changes the reactance by changing the capacitance of the phase shift setting capacitor, for example, but also changes the reactance by changing the capacitance of the phase shift setting capacitor. Since the positive and negative sides can also be changed, it is possible to obtain a phase shift amount close to 360°.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明の一実施例である移相装置を示す回路
構成図である。図において、1はバッファアンプ、2は
第1の直列回路であり、第1の抵抗21と第2の抵抗2
2から構成されている。7は第2の直列回路で、移相設
定コンデンサとしての可変コンデンサと移相設定インダ
クタとしてのインダクタ及び第3の抵抗から構成されて
いる。
FIG. 1 is a circuit diagram showing a phase shifter according to an embodiment of the present invention. In the figure, 1 is a buffer amplifier, 2 is a first series circuit, and a first resistor 21 and a second resistor 2
It is composed of 2. A second series circuit 7 includes a variable capacitor as a phase shift setting capacitor, an inductor as a phase shift setting inductor, and a third resistor.

4は第1のコンデンサ、5は第2のコンデンサ、6は差
動増幅器である。
4 is a first capacitor, 5 is a second capacitor, and 6 is a differential amplifier.

次に、上記第1図に示すこの発明の一実施例である移相
装置の動作について説明する。移相を受ける信号はバッ
ファアンプ1に入力される。バッフ7アンブlの出力は
第1の直列回路2と第2の直列回路7に出力される。
Next, the operation of the phase shift device shown in FIG. 1, which is an embodiment of the present invention, will be explained. The phase-shifted signal is input to a buffer amplifier 1. The output of the buffer 7 amble 1 is output to the first series circuit 2 and the second series circuit 7.

バッファアンプ1の入力信号をV in s信号の角周
波数をW、第1の直列回路2の第1の抵抗21と第2の
抵抗22の抵抗値を共にR′とし、第2の直列回路7の
可変コンデンサ71の容量をCv、インダクタ72のイ
ンダクタンスをL1第3の抵抗73の抵抗値をRとする
と、第2の直列回路7のインダクタ72と第3の抵抗7
3との接続点のとなる。
The angular frequency of the input signal of the buffer amplifier 1 is V in s signal is W, the resistance values of the first resistor 21 and the second resistor 22 of the first series circuit 2 are both R', and the second series circuit 7 Let the capacitance of the variable capacitor 71 be Cv, the inductance of the inductor 72 be L1, and the resistance value of the third resistor 73 be R.
This is the connection point with 3.

一方、上述したように第1の直列回路2の第1の抵抗2
1と第2の抵抗22との接続点の電位Vは、 Vl  =工・Vin        ・・・・・・(
23)であるから、電位差vl−v2は、 となる。
On the other hand, as described above, the first resistor 2 of the first series circuit 2
The potential V at the connection point between resistor 1 and second resistor 22 is as follows: Vl = engineering・Vin (
23), the potential difference vl-v2 is as follows.

v、 −v2とVinの位相差と可変コンデンサ71の
容量Cvの関係を第2図に示す。図においてCvを0→
■と変化出来るものとするとVl−V2の位相さらに、
R→Oとすればv、 −v2のCv O→閃に対する移
相量は360°となり従来装置の2倍の移相量を得るこ
とが出来る。
FIG. 2 shows the relationship between the phase difference between v, -v2 and Vin and the capacitance Cv of the variable capacitor 71. In the figure, Cv is 0 →
If it can be changed as ■, then the phase of Vl-V2 is furthermore,
If R→O, then the amount of phase shift of v, -v2 with respect to Cv O→Flash is 360°, which is twice the amount of phase shift than the conventional device.

しかし、実際の可変コンデンサは容量を0にすることも
■′にすることも難しい。そこで可変コンデンサの容量
の最小値CI  がOより大きく、容量の最大値C2が
有限であっても、 となるようにCr 、 C2を決めれば、第2図に示し
たように第3の抵抗73の抵抗値Rを小さくする程、大
きな移相量が得られる。従ってRを十分小さくすること
により、十分な移相量が得られる。
However, in actual variable capacitors, it is difficult to make the capacitance zero or ■'. Therefore, even if the minimum capacitance CI of the variable capacitor is larger than O and the maximum capacitance C2 is finite, if Cr and C2 are determined so that the third resistor 73 is The smaller the resistance value R is, the larger the amount of phase shift can be obtained. Therefore, by making R sufficiently small, a sufficient amount of phase shift can be obtained.

なお上記実施例では、第2の直列回路7に可変コンデン
サ71とインダクタ72を用いたが、固定コンデンサと
可変インダクタを用いて、移相量の調整を可変インダク
タによって行なってもよい。
In the above embodiment, the variable capacitor 71 and the inductor 72 are used in the second series circuit 7, but a fixed capacitor and a variable inductor may be used, and the amount of phase shift may be adjusted by the variable inductor.

また、第2の直列回路7のインダクタ72の代わりに可
変インダクタを用いると、可変コンデンサの容量値を変
えることにより可変コンデンサと可変インダクタよりな
る直列回路のリアクタンスの正負が変わるような可変イ
ンダクタンスのインダクタンス値が容易に得られる。
Furthermore, if a variable inductor is used instead of the inductor 72 of the second series circuit 7, the inductance of the variable inductance can be changed by changing the capacitance value of the variable capacitor to change the positive or negative of the reactance of the series circuit consisting of the variable capacitor and the variable inductor. Values are easily obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明によれば、移相設定コンデ
ンサと移相設定インダクタから成る直列回路と、第3の
抵抗とから成り、かつ第1の直列回路と並列に接続され
る第2の直列回路を設けたので、移相設定コンデンサ又
は移相設定インダクタを変化させて360’近い移相量
を得ることができる。また、振幅の変動も伴なわないと
いう優れた効果を奏する。
As explained above, according to the present invention, the second series circuit is connected in parallel to the first series circuit, and the second series circuit is made up of a series circuit including a phase shift setting capacitor and a phase shift setting inductor, and a third resistor. With the circuit provided, the phase shift setting capacitor or phase shift setting inductor can be varied to obtain a phase shift amount close to 360'. Further, an excellent effect is achieved in that there is no accompanying fluctuation in amplitude.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す回路構成図、φ 第2図は、入力信号と出力信号の位相差と可変コンデン
サの容量値との関係を示す図、第3図は従来の移相装置
を示す回路構成図である。 図において、1はバッファアンプ、2は第1の直列回路
、21は第1の抵抗、22は第2の抵抗、3は第2の直
列回路、31は第3のコンデンサ、32は可変抵抗、4
は第1のコンデンサ、5は第2のコンデンサ、6は差動
増幅器、7は第2の直列回路、71は可変コンデンサ、
72はインダクタ、73は第3の抵抗である。 なお、各図中、同一符号は同−又は相当部分を示す。 代理人  大  岩  増  ta<ほか2名)嘉1図 73:冨シ層氏坑 第2図 冨3図 3;冨3の直列回路 31;竿3のコンデ゛ンサ 32;可受港抗
Fig. 1 is a circuit diagram showing an embodiment of the present invention, φ Fig. 2 is a diagram showing the relationship between the phase difference between the input signal and the output signal and the capacitance value of the variable capacitor, and Fig. 3 is a diagram showing the relationship between the phase difference between the input signal and the output signal and the capacitance value of the variable capacitor. FIG. 2 is a circuit configuration diagram showing a phase device. In the figure, 1 is a buffer amplifier, 2 is a first series circuit, 21 is a first resistor, 22 is a second resistor, 3 is a second series circuit, 31 is a third capacitor, 32 is a variable resistor, 4
is the first capacitor, 5 is the second capacitor, 6 is the differential amplifier, 7 is the second series circuit, 71 is the variable capacitor,
72 is an inductor, and 73 is a third resistor. In each figure, the same reference numerals indicate the same or corresponding parts. Agent: Masu Oiwa TA (and 2 others) Ka1 Figure 73: Fuji layer Uji mine Figure 2 Fuji 3 Figure 3; Series circuit 31 of Fuji 3; Capacitor 32 of rod 3;

Claims (6)

【特許請求の範囲】[Claims] (1)移相を受ける入力信号が入力されるアンプと、第
1の抵抗及び第2の抵抗の直列接続から成り、前記アン
プの出力端子とアース間に接続される第1の直列回路と
、移相設定コンデンサと移相設定インダクタ及び第3の
抵抗との直列接続から成り、前記第1の直列回路と並列
に接続される第2の直列回路と、前記第1の抵抗及び第
2の抵抗の共通接続点が第1のコンデンサを介して正相
入力端子に接続され、かつ前記移相設定コンデンサと移
相設定インダクタとの直列回路と第2の抵抗との共通接
続点が第2のコンデンサを介して逆相入力端子に接続さ
れる差動増幅器とから構成され、この差動増幅器より出
力を得ることを特徴とする移相装置。
(1) a first series circuit consisting of an amplifier to which an input signal subjected to a phase shift is input, and a first resistor and a second resistor connected in series, and connected between the output terminal of the amplifier and ground; a second series circuit consisting of a series connection of a phase shift setting capacitor, a phase shift setting inductor, and a third resistor and connected in parallel with the first series circuit; and the first resistor and the second resistor. A common connection point between the series circuit of the phase shift setting capacitor and the phase shift setting inductor and a second resistor is connected to the positive phase input terminal via the first capacitor, and a common connection point between the series circuit of the phase shift setting capacitor and the phase shift setting inductor and the second resistor is connected to the second capacitor. and a differential amplifier connected to an anti-phase input terminal via a phase shifter, the phase shifting device being characterized in that it obtains an output from the differential amplifier.
(2)前記移相設定コンデンサは可変コンデンサより成
ることを特徴とする特許請求の範囲第1項記載の移相装
置。
(2) The phase shift device according to claim 1, wherein the phase shift setting capacitor is a variable capacitor.
(3)前記移相設定インダクタは可変インダクタより成
ることを特徴とする特許請求の範囲第1項記載の移相装
置。
(3) The phase shift device according to claim 1, wherein the phase shift setting inductor is a variable inductor.
(4)前記移相設定コンデンサ及び移相設定インダクタ
は可変コンデンサと可変インダクタより成ることを特徴
とする特許請求の範囲第1項記載の移相装置。
(4) The phase shift device according to claim 1, wherein the phase shift setting capacitor and the phase shift setting inductor are comprised of a variable capacitor and a variable inductor.
(5)前記移相設定コンデンサのリアクタンスの絶対値
の最大値を移相設定インダクタのリアクタンス値より大
きく、かつ移相設定コンデンサのリアクタンスの絶対値
の最小値を移相設定インダクタのリアクタンス値より小
さくすることを特徴とする特許請求の範囲第1項記載の
移相装置。
(5) The maximum absolute value of the reactance of the phase shift setting capacitor is greater than the reactance value of the phase shift setting inductor, and the minimum absolute value of the reactance of the phase shift setting capacitor is smaller than the reactance value of the phase shift setting inductor. A phase shift device according to claim 1, characterized in that:
(6)移相設定インダクタのリアクタンスの最大値を、
移相設定コンデンサのリアクタンスの絶対値より大きく
、移相設定インダクタのリアクタンスの最小値を、移相
設定コンデンサのリアクタンスの絶対値より小さくする
ことを特徴とする特許請求の範囲第1項記載の移相装置
(6) The maximum reactance of the phase shift setting inductor is
The shifter according to claim 1, wherein the absolute value of the reactance of the phase shift setting capacitor is greater than the absolute value of the reactance of the phase shift setting capacitor, and the minimum value of the reactance of the phase shift setting inductor is smaller than the absolute value of the reactance of the phase shift setting capacitor. Phase device.
JP18804286A 1986-08-11 1986-08-11 Phase shifter Pending JPS6343411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18804286A JPS6343411A (en) 1986-08-11 1986-08-11 Phase shifter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18804286A JPS6343411A (en) 1986-08-11 1986-08-11 Phase shifter

Publications (1)

Publication Number Publication Date
JPS6343411A true JPS6343411A (en) 1988-02-24

Family

ID=16216659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18804286A Pending JPS6343411A (en) 1986-08-11 1986-08-11 Phase shifter

Country Status (1)

Country Link
JP (1) JPS6343411A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995034951A1 (en) * 1994-06-13 1995-12-21 Takeshi Ikeda Oscillator
WO1997022178A1 (en) * 1995-12-14 1997-06-19 Takeshi Ikeda Tuning circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995034951A1 (en) * 1994-06-13 1995-12-21 Takeshi Ikeda Oscillator
WO1997022178A1 (en) * 1995-12-14 1997-06-19 Takeshi Ikeda Tuning circuit

Similar Documents

Publication Publication Date Title
JPS6343411A (en) Phase shifter
US4403196A (en) Pulse width modulated power amplifier with differential connecting line voltage drop comparators
JPH01170123A (en) F1/2 automatic gain control amplifier
JPS61170113A (en) Second order active phase equalizer
US4158824A (en) Multi-node immittance network
JPS62272608A (en) Phase shifting device
CN106415920A (en) Phase-shift circuit
JP2008187654A (en) Floating active inductor
EP0049997A2 (en) Filter circuit suitable for being fabricated into integrated circuit
US20070188973A1 (en) Active capacitor
US20070188274A1 (en) Active inductor
JP2008098906A (en) Floating active inductor
JPS60173922A (en) Converting circuit
JPH039611A (en) Ring oscillator circuit
CN116208108A (en) Programmable gain amplifier circuit and electronic device
JP3010890B2 (en) Resistor multiplier circuit
JPH0257730B2 (en)
RU2033688C1 (en) Active piezoelectric band filter
JPH0246107Y2 (en)
JPH0998067A (en) 90-degree phase shifter
JPH05259806A (en) Primary high pass filter
JPH06120762A (en) Constant impedance phase shifter
JPS6053482B2 (en) variable equalizer
JPS61199308A (en) Dynamic filter
JP2008098907A (en) Floating active capacitor