WO1995031426A1 - Procede de preparation d'acides carboxyliques ou des esters correspondants en presence d'un catalyseur a base d'iridium et d'iodures sous forme soluble - Google Patents

Procede de preparation d'acides carboxyliques ou des esters correspondants en presence d'un catalyseur a base d'iridium et d'iodures sous forme soluble Download PDF

Info

Publication number
WO1995031426A1
WO1995031426A1 PCT/FR1995/000625 FR9500625W WO9531426A1 WO 1995031426 A1 WO1995031426 A1 WO 1995031426A1 FR 9500625 W FR9500625 W FR 9500625W WO 9531426 A1 WO9531426 A1 WO 9531426A1
Authority
WO
WIPO (PCT)
Prior art keywords
iodides
iridium
reaction
mixture
excluded
Prior art date
Application number
PCT/FR1995/000625
Other languages
English (en)
Inventor
Philippe Denis
Dominique Nobel
Robert Perron
Philippe Perrona
Joël Schwartz
Original Assignee
Pardies Acetiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9405896A external-priority patent/FR2719841B1/fr
Priority claimed from FR9412712A external-priority patent/FR2725983B1/fr
Application filed by Pardies Acetiques filed Critical Pardies Acetiques
Priority to AU25710/95A priority Critical patent/AU2571095A/en
Priority to US08/737,507 priority patent/US5773642A/en
Priority to EP95920140A priority patent/EP0759022B1/fr
Publication of WO1995031426A1 publication Critical patent/WO1995031426A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/36Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/12Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols

Definitions

  • the present invention relates to a process for preparing carboxylic acids or the corresponding esters, by carbonylation, in the liquid phase, of an alcohol, in the presence of an iridium-based catalyst.
  • carboxylic acids and more particularly acetic acid
  • a homogeneous catalyst is a well known process, having been the subject of numerous patents and articles.
  • the catalysts which can be used in this type of reaction are, among others, cobalt, rhodium and iridium.
  • the object of the present invention is therefore to propose a mode of preparation of carboxylic acids by a carbonylation reaction of an appropriate reagent, not using a rhodium-based catalyst, while retaining a productivity comparable to that of the processes. using the above catalyst.
  • the object of the process according to the invention is to obtain carboxylic acids or corresponding esters having (n + 1) carbon atoms, by reaction in the liquid phase, of carbon monoxide with at least one alcohol having n carbon atoms, in the presence of a catalytic system based on an iridium compound and a halogen promoter.
  • the process according to the invention is characterized by maintaining, in the medium, during the reaction, water in a content varying between 0 excluded and 10%, of the halogen promoter in a content varying between 0 excluded and 10% of the ester corresponding to carboxyiic acid and the abovementioned alcohol, in a content varying between 2 and 40%, of iodides in soluble form, so that the atomic ratio of iodides to iridium is between 0 excluded and 10, the aforementioned carboxyic acid constituting the solvent for the reaction.
  • the process according to the invention carried out in the presence of an iridium-based catalyst under the stable conditions explained above, is much more efficient than the processes described using such a catalyst.
  • the process according to the invention makes it possible to achieve carbonyiation rates of alcohol to carboxyic acid, expressed in moles, comparable to those obtained with the processes catalyzed by rhodium, by putting in uses similar amounts of catalyst.
  • the process according to the invention is carried out in the presence of relatively small quantities of halogen promoter. This has the advantages of reducing the quantity of promoter to be separated from the acid formed and of reducing the energy consumption necessary for the recovery of this halogenated compound as well as its specific consumption, that is to say its consumption during '' continuous operation of the carbonylation process.
  • the carbonylation reaction of the invention is carried out in the presence of a catalytic system based on at least one compound of iridium and a halogen promoter.
  • the catalytic system is in the form of compounds which are soluble in the reaction mixture.
  • All of the iridium compounds which are soluble or which can be dissolved in the reaction medium, under the conditions for carrying out the invention can be used.
  • suitable in particular for the implementation of the invention iridium in the metallic state, the simple salts of this metal, the oxides or even the coordination complexes.
  • simple iridium salts are used, such as iridium halides, the halogen being more particularly chosen from chlorine, bromine or preferably iodine.
  • Iridium oxides as well as soluble complexes of coordination of iridium, are suitable for the implementation of the invention.
  • the most commonly used compounds are those having ligands chosen from carbon monoxide or a carbon monoxide / halogen combination, the halogen being chosen from chlorine, bromine or more particularly iodine. It is not however excluded to use soluble complexes of iridium whose ligands are chosen from organo-phosphorus or organo-nitrogen compounds, for example.
  • a catalyst solution may be prepared from an iridium carbonyl complex such as lr 4 CoI 2, P 31 * m 'is contacting said compound with hydroiodic acid and / or a precursor of such an acid, in the presence of a solvent.
  • an iridium carbonyl complex such as lr 4 CoI 2
  • P 31 * m ' is contacting said compound with hydroiodic acid and / or a precursor of such an acid, in the presence of a solvent.
  • iodine C 1 -C 10 alkyl iodides, or alternatively C 1 -C 6 alkyl iodides
  • Q the iodides of Asian metals.
  • solvents all the compounds can be used insofar as they dissolve the hydroiodic acid or its precursor and the compound based on iridium obtained. More particularly, solvents are used, alone or in combination mixture, chosen from carboxylic acids or the corresponding esters, obtained by the process according to the invention, or water.
  • the contacting takes place under a total pressure of between 1 and 10 bar, at a temperature at most equal to the boiling point of the abovementioned solvent, under the conditions of the contacting.
  • the operation can be carried out in air, under an inert gas or even under carbon monoxide.
  • Another example of an advantageous method for the preparation of a catalytic solution suitable for the implementation of the invention consists in bringing into contact, in the liquid phase, one or more hydrated or non-iridium oxides, with hydroiodic acid or a compound capable of releasing hydroiodic acid.
  • the hydroiodic acid can be used in the form of a gas, of a solution, more particularly aqueous. It can also be used in the form of a precursor, such as in particular those mentioned in the previous variant. More particularly, the amount of hydroiodic acid is such that the ratio between the number of moles of hydroiodic acid to the number of moles of iridium varies between 1 and 100.
  • the process according to the invention can be carried out in air, under an inert gas, under carbon monoxide, these gases being alone or in combination.
  • the total concentration of iridium in the reaction medium used, in the process according to the invention is between 0.1 and 100 mmol / l.
  • the iridium concentration varies from 0.5 to 40 mmol / l and preferably between 1 and 25 mmol / l.
  • the second component of the catalytic system is a halogen promoter.
  • This can be in the form of a halogen alone, or in combination with other elements such as, for example, hydrogen, a C1-C6 alkyl radical Q. a C-
  • the halogen is generally chosen from chlorine, bromine or iodine, the latter being preferred.
  • the promoter used comprises hydrogen or a C-
  • this embodiment is carried out in the presence of a halogen promoter whose radical corresponds to that of the alcohol used as reactant during the reaction according to the invention.
  • the content of halogen promoter in the medium is between 0 excluded and 10%. According to a variant of the invention, the content of halogen compound in the reaction medium is between 0.5 and 8% and preferably between 1 and 6%.
  • the reaction according to the invention is carried out in the presence of an alcohol comprising one carbon atom less in relation to the carboxyic acid, or to the corresponding ester, produced.
  • reagents suitable for carrying out the reaction mention may be made of saturated alcohols having one to ten carbon atoms.
  • saturated alcohols having one to ten carbon atoms.
  • These alcohols can be mono- or di-hydroxylated.
  • the alcohols used are chosen from monohydroxylated compounds. It is important to note that the alcohol used as reagent can be present in the reaction medium as such or in masked form. Indeed, said alcohol can be either in the form of a halogen derivative and / or an ether and / or an ester obtained by reaction between said alcohol and the carboxyic acid present.
  • the content of reagent in the reaction medium can vary within wide limits, due to the different species under which the reagent can be present.
  • the alcohol content as such in the reaction medium can be between 0 and 10%.
  • the medium comprises an alcohol content of between 0.1 and 8%.
  • the other reagent necessary to obtain a carboxyic acid is carbon monoxide. This can be used in pure form or diluted in gases such as hydrogen, methane, carbon dioxide, or any other type of gas such as nitrogen.
  • carbon monoxide having a purity of at least 99% is used.
  • the partial pressure of carbon monoxide is usually between 5 and 200 bar, more particularly between 5 and 100 bar.
  • the partial pressure of carbon monoxide is between 10 and 50 bar. It should however be noted that partial pressures outside these ranges remain possible.
  • the carbonylation reaction according to the invention is also carried out in the presence of water.
  • the water content in the reaction medium is more particularly between 0 excluded and 10%.
  • the water content in the medium is between 0.5 and 8% and preferably between 2 and 8%.
  • the process according to the invention is carried out in the presence of esters corresponding, preferably, to the reaction of the alcohol involved in the reaction, with the carboxyic acid present in the reaction medium. . More particularly, the content of ester in said medium is between 2 and 40%.
  • the ester content is between 5 and 30%.
  • the process according to the invention is carried out in a solvent which preferably corresponds to the carboxylic acid formed by the reaction.
  • the process according to the invention is finally implemented in the presence of iodides in the form soluble in the reaction medium.
  • the iodides can be introduced as such into the reaction medium but also in the form of compounds capable of forming soluble iodides.
  • iodides ionic species, that is to say that does not include covalent iodides (such as in particular the halogen promoter) or hydroiodic acid.
  • the iodides introduced into said mixture are chosen from mineral or organic iodides.
  • mineral iodides mention may be made mainly of iodides of alkaline-earth or alkali metal, the latter being preferred. These include potassium iodide, lithium iodide, sodium iodide.
  • organic iodides mention may be made of organic compounds, comprising at least one organophosphorus group and / or at least one organo-nitrogen group, reacting with iodine-based compounds, to give ionic species containing this halogen.
  • organic compounds comprising at least one organophosphorus group and / or at least one organo-nitrogen group, reacting with iodine-based compounds, to give ionic species containing this halogen.
  • triphenyl phosphonium iodide N-methyltriethyl ammonium iodide.
  • iodides can have other origins than those indicated above.
  • these compounds can come from impurities such as alkali or alkaline earth metals, impurities present in the raw materials used to prepare the catalytic solution.
  • the iodides can likewise originate from the corrosion metals which appear during the carbonylation reaction. It is preferable to keep the concentration threshold of these metals relatively low, of the order of a few hundred parts per million, because they have the particular effect of promoting the reaction of gases with water and helping to increase the atomic ratio. iodides / iridium.
  • An important characteristic of the process of the invention consists in introducing into the reaction medium a particular quantity of iodide according to the quantity of iridium present in the middle.
  • this quantity of iodides introduced is such that the atomic ratio iodides introduced / iridium (expressed in mole / mole) is between 0 excluded and 10 and to maintain this ratio in the range indicated, during the reaction.
  • the iodides / iridium atomic ratio is maintained between 0 excluded and 3. More particularly, this ratio is between 0 excluded and 1.5.
  • the present invention consists in keeping in the reaction medium, water, the halogen promoter, the abovementioned ester, iodides and carboxyic acid, in the proportions just explained.
  • the present invention is more particularly intended to be implemented continuously and the stable operating conditions of the process correspond to the composition and to the proportions indicated. More particularly, with regard to soluble iodides, the maintenance of the atomic ratio of soluble iodides / iridium can be carried out by treating a mixture comprising at least the compound of iridium, with an ion-exchange resin and then adding iodides under form soluble in an amount such that said atomic ratio in the reaction mixture is between 0 excluded and 10.
  • a first variant of the invention consists in treating a mixture corresponding to the catalytic solution.
  • catalytic solution is meant the solution comprising an iridium compound in the presence of the appropriate solvent or reagents.
  • the mixture to be treated corresponds to the reaction mixture to which iodides have not yet been added in soluble form.
  • the mixture to be treated corresponds to the reaction mixture during the carbonylation reaction or after it has been stopped.
  • the mixture to be treated can be at least part of the liquid flow originating from the partial vaporization of the reaction mixture.
  • the carbonylation process according to the invention can be suitably implemented in installations exploiting the conventional processes. These usually consist of three zones. The first corresponds to the reaction zone, comprising a pressure reactor; the second is that of separation of the acid, or of the ester, formed, by partial vaporization of the reaction mixture. The vaporized part is then sent to a third zone, that of purification of the carboxyic acid or of the corresponding ester; the part of the mixture remaining in liquid form, mainly comprising the catalyst, is recycled to the reactor.
  • the mixture to be treated can be treated in one step or not.
  • the entire mixture can be treated on the resin.
  • This can in particular be implemented in the case where the mixture is for example the catalytic solution.
  • An operation of this type is generally carried out batchwise. It is also possible to envisage removing part of the mixture, and treating this flow according to the invention, continuously or discontinuously. This is preferably carried out when the carbonylation reaction is carried out simultaneously with the treatment on the resin.
  • the resins suitable for carrying out the invention are more particularly cation exchange resins, of the strong acid or weak acid type, in the hydrogen form.
  • resins of the weak acid type mention may be made of resins which are copolymers of acrylic, methacrylic acid, esters or even corresponding nitriles. Mention may likewise be made of phenolic resins.
  • the resins of the strong acid type mention may be made very particularly of the resins being copolymers of styrene divinylbenzene having functional groups grafted with sulfones.
  • Such resins are sold in particular under the trade name DOWEX from the company Dow, or else PUROLITE from the company Purolite, AMBERLYST from the company Rohm & Haas.
  • resins of the strongly acid type are used.
  • the resins are used either in the form of a gel or in a macroporous form.
  • the treatment of the mixture is carried out more particularly in a fixed bed.
  • the temperature at which the mixture to be treated is brought into contact with the resin is between 10 and 150 ° C. and more particularly between 20 and 100 ° C.
  • iodide ions or their precursor are added, so as to obtain an iodide / iridium atomic ratio in the reaction mixture included in the ranges given above.
  • This addition can be carried out to the mixture just treated but also to the reaction mixture in general, that is to say at any point in the process where said reaction mixture exists.
  • iodides or their precursor can be added at any point in the reaction zone or even in the separation zone.
  • the various components are introduced into a suitable reactor, provided with sufficient stirring means to ensure the gas-liquid transfer.
  • the reactor preferably comprises means for mechanical agitation of the reaction mixture, it is not excluded to operate without such means; the homogenization of the mixture can be achieved by the introduction of carbon monoxide into the reactor.
  • a first variant of the invention consists in introducing the halogenated promoter described above, as it is, into the reaction mixture.
  • a second implementation variant consists in introducing said promoter in the form of at least one precursor.
  • the precursor is generally in the form of a compound capable of releasing the radical of the abovementioned halogen promoter in the reaction medium. This takes place by reaction of the precursor with a halogen, the corresponding hydracid, and / or an iodide; these compounds being present in the medium or else introduced for this purpose.
  • suitable precursors By way of nonlimiting example of suitable precursors, mention may be made of the compounds chosen from alcohols of formula (1) ROH; ethers of formula (2) ROR 'or esters of formulas (3) R'COOR, used alone or as a mixture.
  • the radicals R and R ' which are identical or different, each represent a C-
  • methanol, ethanol, propanol, butanol, dimethyl ether, ie diethyl ether, ethylene oxide, methyl acetate are in particular suitable precursors of the halogen promoter.
  • the carbonylation reaction is carried out at a temperature between 150 and 250 ° C.
  • the reaction temperature varies between 180 and 210 ° C.
  • the reaction mixture is regularly purged of the corrosion metals which it contains, including in particular iron, molybdenum, chromium, nickel.
  • This operation is carried out by any means known to those skilled in the art, such as for example the treatment of the reaction mixture with an ion exchange resin or else by precipitation of the catalyst and separation of the latter from the corrosion metals, by filtration.
  • the process according to the invention is suitable for the manufacture of any type of carboxyic acid or of the corresponding esters, comprising at least two carbon atoms.
  • it can be used to prepare propionic acid from ethanol, succinic acid from ethylene oxide, adipic acid from
  • this process is particularly suitable for obtaining acetic acid and / or methyl acetate from methanol.
  • the process according to the invention is carried out using methyl iodide, methyl acetate, iodides in soluble form and acetic acid as solvent , in addition to methanol.
  • the catalytic solution used is obtained from lr4CO-
  • the mixture is heated to reflux with stirring and in air for 4 hours.
  • the introductions of methanol, methyl iodide, methyl acetate and water are adjusted so that the contents of the various components in the reaction medium are maintained as indicated in the table below.
  • the residence time in the reactor is approximately 10 minutes.
  • the total pressure in the autoclave is 30 bar and the temperature is maintained at 190 ° C.
  • the reaction mixture On leaving the autoclave, the reaction mixture is degassed and cooled.
  • the mixture and the gases are analyzed by gas chromatography.
  • the water, methyl acetate and methyl iodide contents are expressed in% by weight, relative to the total weight of the reaction mixture, the complement to 100% is provided by acetic acid.
  • the lithium iodide and iridium contents are expressed in ppm.
  • Vcar b represents the carbonylation speed, expressed in mol / lh It is obtained by measuring the rate of consumption of CO, taking into account, moreover, the quantity of this gas involved in the formation of CO 2 .
  • a reaction mixture resulting from a carbonylation reaction containing mainly acetic acid, a soluble complex of iridium (1800 ppm of iridium), methyl iodide, acetate are treated of methyl, methanol, water and containing 51 ppm of lithium in the form of soluble iodide in a column 2.7 cm in diameter and 25 cm high, in which 26 ml of resin were placed DOWEX C-500.
  • the resin was subjected before its use to successive washes with water and isopropanol in order to remove any organic pollutants present in the commercial product and was immersed for 24 hours in a solution of acetic acid until its maximum swelling.
  • the reaction mixture is supplied at ambient temperature at atmospheric pressure at the top of the column.
  • the solution obtained at the bottom of the column is returned to the top for a new contact with the resin.
  • the treatment is continued for 4 hours to reach the balance of adsorption.
  • the solution is recovered for analysis.
  • the assay by atomic absorption indicates that 0.2 ppm of lithium remains in the form of iodide soluble in the solution, which corresponds to an adsorption yield of 97.3%. Furthermore, it can be seen that the iridium is not adsorbed on the resin.
  • Iridium is not adsorbed on the resin.
  • the procedure is as for the previous example, except that the resin used is PUROLITE C 100 resin.
  • the treatment is carried out with an iridium catalytic solution containing 16,500 ppm of iridium, 76 ppm of sodium in the form of soluble iodide and 7 ppm of potassium in the form of soluble iodide.
  • the treatment is carried out by passing over an AMBERLYST 16 resin (Rohm and Haas), according to the same procedure as that described in the previous examples.
  • the volume of resin used is of the order of 10 ml and the volume of catalytic solution treated is of the order of 630 ml.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

La présente invention concerne la préparation d'acides carboxyliques ou des esters correspondants, par réaction d'un alcool avec du monoxyde de carbone en présence d'un catalyseur à l'iridium et d'un promoteur halogéné. La réaction est effectuée avec un mélange réactionnel dont la composition est la suivante: de 0 exclu à 10 % d'eau, de 0 exclu à 10 % de promoteur halogéné, de 2 à 40 % d'ester correspondant à la réaction de l'alcool avec l'acide, des iodures sous forme soluble, dans une teneur telle que le rapport atomique des iodures à l'iridium varie de 0 exclu à 10, l'acide carboxylique étant utilisé comme solvant de la réaction.

Description

PROCEDE DE PREPARATION D'ACIDES CARBOXYL1QUES OU DES ESTERS
CORRESPONDANTS EN PRESENCE D'UN CATALYSEUR A BASE D'IRIDIUM
ET D'IODURES SOUS FORME SOLUBLE.
La présente invention concerne un procédé de préparation d'acides carboxyliques ou des esters correspondants, par carbonyiation, en phase liquide, d'un alcool, en présence d'un catalyseur à base d'iridium.
L'obtention d'acides carboxyliques, et plus particulièrement d'acide acétique, par réaction de monoxyde de carbone avec un alcool comme le méthanol, en présence d'un catalyseur homogène est un procédé bien connu, ayant fait l'objet de nombreux brevets et articles. Les catalyseurs susceptibles d'être utilisés dans ce type de réaction sont entre autres le cobalt, le rhodium et l'iridium.
Seuls les procédés de carbonyiation utilisant des catalyseurs à base de rhodium font actuellement l'objet de nouveaux développements à une échelle industrielle. Les dernières générations de ces procédés mettent ainsi en oeuvre le rhodium, des quantités importantes de sels soiubles d'iodures stabilisant le métal précité et de faibles teneurs en eau. Ils sont très performants puisqu'ils permettent d'atteindre des vitesses de carbonyiation du méthanol en acide acétique supérieures à 10 mol/l.h. La préparation d'acides carboxyliques catalysée par le cobalt n'est plus retenue actuellement pour faire l'objet de nouvelles exploitations du fait des conditions de réaction très dures en pression et en température. Malgré de telles conditions les résultats obtenus, en terme de sélectivité en acide formé, sont relativement peu satisfaisants, en comparaison des contraintes à gérer. Quant aux procédés utilisant une catalyse à base d'iridium, les résultats mis en évidence sont très peu performants. En effet, les vitesses de carbonyiation rapportées sont de l'ordre de 2 à 4 mol/h. I d'acide formé alors que le nombre de moles d'iridium engagé dans la réaction est très important. De tels procédés ne sont pas exploitables de façon satisfaisante sur le pian industriel. Dans la demande de brevet européen EP 618 184, est décrit un procédé de carbonyiation d'un alcool, tel que le méthanol, en présence d'un système catalytique à base d'iridium et d'un promoteur halogène, amélioré par rapport au procédé décrit ci- dessus. Il a été trouvé qu'en maintenant une composition particulière du mélange réactionnel, comprenant jusqu'à 10 % en eau, en alcool, en promoteur halogène, et jusqu'à 40 % en ester correspondant à l'alcool et à l'acide, il était possible d'atteindre des vitesses de carbonyiation pouvant supérieures ou égales à 10 mol/h.l d'acide formé. De telles vitesses de carbonyiation sont tout à fait comparables à celles obtenues en mettant en oeuvre le procédé de carbonyiation catalysé au rhodium. La présente invention a donc pour but de proposer un mode de préparation d'acides carboxyliques par une réaction de carbonyiation d'un réactif approprié, ne mettant pas en oeuvre un catalyseur à base de rhodium, tout en conservant une productivité comparable à celles des procédés utilisant le catalyseur précité. Ainsi, le procédé selon l'invention a pour objet l'obtention d'acides carboxyliques ou des esters correspondants, présentant (n+1) atomes de carbone, par réaction en phase liquide, de monoxyde de carbone avec au moins un alcool présentant n atomes de carbone, en présence d'un système catalytique à base d'un composé de l'iridium et d'un promoteur halogène. Le procédé selon l'invention, en outre, est caractérisé par le maintien, dans le milieu, pendant la réaction, de l'eau dans une teneur variant entre 0 exclu et 10 %, du promoteur halogène dans une teneur variant entre 0 exclu et 10%, de l'ester correspondant à l'acide carboxyiique et l'alcool précité, dans une teneur variant entre 2 et 40 %, d'iodures sous forme solubles, de telle sorte que le rapport atomique des iodures à l'iridium soit compris entre 0 exclu et 10, l'acide carboxyiique précité constituant le solvant de la réaction.
Dans tout ce qui va suivre, et sauf indication contraire, les pourcentages indiqués sont exprimés en poids, rapportés au poids total du mélange réactionnel.
Il a été trouvé de façon totalement surprenante que le procédé selon l'invention, réalisé en présence d'un catalyseur à base d'iridium dans les conditions stables explicitées ci-dessus, est beaucoup plus performant que les procédés décrits mettant en oeuvre un tel catalyseur. De plus, et ce fait est important, le procédé selon l'invention permet d'atteindre des vitesses de carbonyiation de l'alcool en acide carboxyiique, exprimées en moles, comparables à celles obtenues avec les procédés catalysés par le rhodium, en mettant en oeuvre des quantités de catalyseur similaires. II est de même à noter que le procédé selon l'invention est mis en oeuvre en présence de quantités relativement faibles de promoteur halogène. Ceci présente les avantages de diminuer la quantité de promoteur à séparer de l'acide formé et de diminuer la consommation d'énergie nécessaire à la récupération de ce composé halogène ainsi que sa consommation spécifique, c'est-à-dire sa consommation lors d'une exploitation en continu du procédé de carbonyiation.
Par ailleurs, cette mesure a permis de baisser, pour des teneurs en eau et en ester données, la teneur en hydracide correspondant à l'halogène du promoteur dans le milieu. Par conséquent la corrosivité dudit milieu est diminuée, rendant plus facile et moins coûteux le choix des matériaux, mis en contact avec un tel milieu. On a enfin constaté que l'iridium mis en oeuvre dans de telles conditions est remarquablement sélectif, en ce sens que la quantité de sous-produits formés, comme par exemple l'acide propionique, l'acide formique, est très faible. En effet, la quantité des deux acides précités formés pendant la réaction est, en général, pour chacun d'eux, inférieure à 200 ppm.
Mais d'autres buts et avantages de ia présente invention apparaîtront plus clairement à la lecture de la description qui va suivre. Ainsi qu'il a été dit précédemment, la réaction de carbonyiation de l'invention est réalisée en présence d'un système catalytique à base d'au moins un composé de l'iridium et d'un promoteur halogène.
La réaction étant effectuée en phase liquide, le système catalytique se présente sous forme de composés solubles dans le mélange réactionnel. Tous les composés de l'iridium, solubles ou pouvant être solubilisés dans le milieu réactionnel, dans les conditions de réalisation de l'invention, peuvent être utilisés. A titre d'exemple et sans intention de se limiter, conviennent notamment à la mise en oeuvre de l'invention, l'iridium à l'état métallique, les sels simples de ce métal, les oxydes ou encore les complexes de coordination. Pour plus de détail, on pourra notamment se référer au brevet américain US 3 772 380 dans laquelle figure une liste de tels composés.
De préférence, on utilise des sels simples d'iridium, comme les haiogénures d'iridium, l'halogène étant plus particulièrement choisi parmi le chlore, le brome ou de préférence l'iode. Les oxydes d'iridium de même que les complexes solubles de coordination de l'iridium, conviennent à la mise en oeuvre de l'invention. Dans cette dernière catégorie les composés les plus couramment employés sont ceux présentant des ligands choisis parmi le monoxyde de carbone ou une combinaison monoxyde de carbone/halogène, l'halogène étant choisi parmi le chlore, le brome ou plus particulièrement l'iode. Il n'est toutefois pas exclu d'utiliser des complexes solubles d'iridium dont les ligands sont choisis parmi des composés organo-phosphorés ou organo-azotés, par exemple.
Ces catalyseurs peuvent être obtenus par toute méthode connue de l'homme du métier.
Cependant, selon un mode particulièrement avantageux, on peut préparer une solution catalytique à partir d'un complexe carbonylè d'iridium, tel que lr4COi2, P31* m'se en contact dudit composé avec de l'acide iodhydrique et/ou un précurseur d'un tel acide, en présence d'un solvant.
Comme précurseur susceptible de libérer l'acide iodhydrique, on peut mentionner, à titre d'exemple, l'iode, les iodures d'alkyle en C-j-Cio, ou encore les iodures d'alcoyles en C-| -C-| Q, les iodures de métaux aicalins.
En ce qui concerne les solvants, tous les composés peuvent être utilisés dans la mesure où ils solubilisent l'acide iodhydrique ou son précurseur et le composé à base d'iridium obtenu. Plus particulièrement on met en oeuvre des solvants, seuls ou en mélange, choisis parmi les acides carboxyliques ou les esters correspondants, obtenus par le procédé selon l'invention, ou l'eau.
La mise en contact a lieu sous une pression totale comprise entre 1 et 10 bar, à une température au plus égaie à la température d'ébullition du solvant précité, dans les conditions de la mise en contact.
L'opération peut être effectuée sous air, sous un gaz inerte ou encore sous monoxyde de carbone.
Un autre exemple de méthode avantageuse pour la préparation d'une solution catalytique convenable à la mise en oeuvre de l'invention, consiste à mettre en contact, en phase liquide, un ou plusieurs oxydes hydratés ou non d'iridium, avec de l'acide iodhydrique ou un composé susceptible de libérer de l'acide iodhydrique. L'acide iodhydrique peut être employé sous la forme d'un gaz, d'une solution, plus particulièrement aqueuse. Il peut encore être utilisé sous la forme d'un précurseur, comme notamment ceux mentionnés dans la précédente variante. Plus particulièrement la quantité d'acide iodhydrique est telle que le rapport entre le nombre de moles d'acide iodhydrique au nombre de moles d'iridium, varie entre 1 et 100.
Le procédé selon l'invention peut être mis en oeuvre sous air, sous un gaz inerte, sous monoxyde de carbone, ces gaz étant seuls ou en combinaison. Généralement, la concentration totale en iridium dans le milieu réactionnel engagé, dans le procédé selon l'invention, est comprise entre 0,1 et 100 mmol/l.
Selon un mode de réalisation particulier, la concentration en iridium varie de 0,5 à 40 mmol/l et de préférence entre 1 et 25 mmol/l.
Le second constituant du système catalytique est un promoteur halogène. Celui-ci peut se présenter sous la forme d'un halogène seul, ou en combinaison avec d'autres éléments comme par exemple l'hydrogène, un radical alkyle en CI -C-J Q. un radical acyle en C-|-C-|o. un radical aryle en Cβ-C-io-
L'halogène est en général choisi parmi le chlore, le brome ou l'iode, ce dernier étant préféré. Selon un mode de réalisation particulier de l'invention, le promoteur mis en oeuvre comprend l'hydrogène ou un radical alkyle en C-|-C-|o- P|us particulièrement, le promoteur utilisé dans l'invention comprend l'halogène et un radical alkyle en C-|-Cιo-
De préférence, ce mode de réalisation est effectué en présence d'un promoteur halogène dont le radical correspond à celui de l'alcool utilisé comme réactif lors de la réaction selon l'invention.
La teneur en promoteur halogène dans le milieu est comprise entre 0 exclu et 10 %. Selon une variante de l'invention, la teneur en composé halogène dans le milieu réactionnel est comprise entre 0,5 et 8 % et de préférence entre 1 et 6 %. Comme cela a été mentionné auparavant, la réaction selon l'invention est effectuée en présence d'un alcool comprenant un atome de carbone en moins par rapport à l'acide carboxyiique, ou à l'ester correspondant, fabriqué.
Parmi les réactifs convenables à la mise en oeuvre de la réaction, on peut citer les alcools saturés, présentant un à dix atomes de carbone. A titre d'exemple de tels composés, on peut citer notamment le méthanol, l'éthanol, le propanol, le butanol, le 1 ,4-butanediol. Ces alcools peuvent être mono- ou di- hydroxylés.
Selon un mode de réalisation préféré, les alcools utilisés sont choisis parmi les composés monohydroxylés. II est important de noter que l'alcool utilisé comme réactif peut être présent dans le milieu réactionnel en tant que tel ou sous forme masquée. En effet, ledit alcool peut se trouver indifféremment sous la forme d'un dérivé halogène et/ou d'un éther et/ou d'un ester obtenu par réaction entre ledit alcool et l'acide carboxyiique présent.
Ainsi, la teneur en réactif dans le milieu réactionnel peut varier dans de larges limites, du fait des différentes espèces sous lesquelles le réactif peut se présenter.
Par conséquent, la teneur en alcool en tant que tel, dans le milieu réactionnel peut être comprise entre 0 et 10 %.
De préférence, le milieu comprend une teneur en alcool comprise entre 0,1 et 8 %.
L'autre réactif nécessaire à l'obtention d'un acide carboxyiique est le monoxyde de carbone. Celui-ci peut être utilisé sous forme pure ou diluée dans des gaz tels que l'hydrogène, le méthane, le dioxyde de carbone, ou tout autre type de gaz comme par exemple l'azote.
Selon un mode particulier de réalisation de l'invention, on utilise un monoxyde de carbone présentant une pureté d'au moins 99 %. La pression partielle en monoxyde de carbone est habituellement comprise entre 5 et 200 bar, plus particulièrement entre 5 et 100 bar. De préférence, la pression partielle en monoxyde de carbone est comprise entre 10 et 50 bar. Il faut cependant noter que des pressions partielles en dehors de ces gammes restent envisageables.
La réaction de carbonyiation selon l'invention est effectuée en outre, en présence d'eau. La teneur en eau dans le milieu réactionnel est plus particulièrement comprise entre 0 exclu et 10 %.
Selon un mode de réalisation particulier de l'invention, la teneur en eau dans le milieu est comprise entre 0,5 et 8 % et de préférence entre 2 et 8 %.
Outre les composés et réactifs précédemment mentionnés, le procédé selon l'invention est réalisé en présence d'esters correspondant, de préférence, à la réaction de l'alcool mis en jeu dans la réaction, avec l'acide carboxyiique présent dans le milieu réactionnel. Plus particulièrement, la teneur en ester dans ledit milieu est comprise entre 2 et 40%.
Selon un mode de réalisation particulier de l'invention, la teneur en ester est comprise entre 5 et 30%. Le procédé selon l'invention est effectué dans un solvant qui, de préférence, correspond à l'acide carboxyiique formé par la réaction.
Le procédé selon l'invention est enfin mis en oeuvre en présence d'iodures sous forme soluble dans le milieu réactionnel. Les iodures peuvent être introduits en tant que tels dans le milieu réactionnel mais aussi sous la forme de composés susceptibles de former des iodures solubles.
Par iodures, on entend des espèces ioniques, c'est-à-dire ne comprenant pas les iodures covalents (tels que notament le promoteur halogène) ni l'acide iodhydrique.
Ainsi, les iodures introduits dans ledit mélange, en tant que tels, sont choisis parmi les iodures minéraux ou organiques A titre d'iodures minéraux, on peut citer principalement les iodures de métal alcalino-terreux ou alcalin, ces derniers étant préférés. On peut citer parmi ceux-ci l'iodure de potassium, l'iodure de lithium, l'iodure de sodium.
A titre d'iodures organiques, on peut citer les composés organiques, comprenant au moins un groupe organo-phosphoré et/ou au moins un groupe organo-azoté, réagissant avec des composés à base d'iode, pour donner des espèces ioniques renfermant cet halogène. A titre d'exemple, on peut mentionner l'iodure de triphényle phosphonium, l'iodure de N-méthyltriéthyle ammonium.
A titre de composés susceptibles de former des iodures solubles dans le milieu réactionnel, on peut citer par exemple les carboxylates, les hydroxydes de métaux alcalins ou alcalino-terreux, tels que l'acétate de lithium, la potasse, la soude notamment.
En outre, il est à noter que les iodures peuvent avoir d'autres origines que celles indiquées ci-dessus.
Ainsi, ces composés peuvent provenir d'impuretés comme les métaux alcalins ou alcalino-terreux, impuretés présentes dans les matières premières employées pour préparer la solution catalytique.
Les iodures peuvent de même provenir des métaux de corrosion apparaissant pendant la réaction de carbonyiation. Il est préférable de maintenir le seuil de concentration de ces métaux relativement faible, de l'ordre de quelques centaines de parties par millions, car ils ont notamment pour effet de favoriser la réaction de gaz à l'eau et contribuent à augmenter le rapport atomique iodures / iridium.
Une caractéristique importante du procédé de l'invention consiste à introduire dans le miiieu réactionnel une quantité d'iodure particulière selon la quantité d'iridium présent dans le miiieu. Ainsi, cette quantité d'iodures introduite est telle que le rapport atomique iodures introduits/iridium (exprimé en mole/mole), est compris entre 0 exclu et 10 et à maintenir ce rapport dans la gamme indiquée, pendant la réaction.
Selon un mode de réalisation préféré de l'invention, ie rapport atomique iodures/iridium est maintenu entre 0 exclu et 3. Plus particulièrement, ce rapport est compris entre 0 exclu et 1 ,5.
On a trouvé que l'ajout de telles quantités d'iodures permet d'améliorer la stabilité du catalyseur et de conserver une productivité importante au procédé.
Ainsi que cela a été indiqué auparavant, la présente invention consiste à maintenir dans ie miiieu réactionnel, l'eau, le promoteur halogène, l'ester précité, les iodures et l'acide carboxyiique, dans les proportions venant d'être explicitées.
Par conséquent, la présente invention est plus particulièrement destinée à être mise en oeuvre en continu et les conditions stables de fonctionnement du procédé correspondent à la composition et aux proportions indiquées. Plus particulièrement, en ce qui concerne les iodures solubles, ie maintien du rapport atomique iodures solubles / iridium peut être effectué en traitant un mélange comprenant au moins le composé de l'iridium, avec une résine échangeuse d'ions puis en ajoutant des iodures sous forme soluble dans une quantité telle que ledit rapport atomique dans le mélange réactionnel soit compris entre 0 exclu et 10. Une première variante de l'invention consiste à traiter un mélange correspondant à la solution catalytique. Par solution catalytique, on entend la solution comprenant un composé de l'iridium en présence du ou des solvants ou réactifs appropriés.
Selon une seconde variante, le mélange à traiter correspond au mélange réactionnel auquel on n'a pas encore ajouté d'iodures sous forme soluble. Selon une troisième variante, le mélange à traiter correspond au mélange réactionnel pendant la réaction de carbonyiation ou après qu'elle ait été arrêtée. Ainsi, plus particulièrement, le mélange à traiter peut être au moins une partie du flux liquide provenant de la vaporisation partielle du mélange réactionnel.
Il est rappelé à ce sujet que le procédé de carbonyiation selon l'invention peut être convenablement mis en oeuvre dans les installations exploitant les procédés classiques. Ces dernières sont habituellement constituées de trois zones. La première correspond à la zone de réaction, comprenant un réacteur sous pression ; la seconde est celle de séparation de l'acide, ou de l'ester, formé, par vaporisation partielle du mélange réactionnel. La partie vaporisée est ensuite envoyée dans une troisième zone, celle de purification de l'acide carboxyiique ou de l'ester correspondant ; la partie du mélange restée sous forme liquide, comprenant principalement le catalyseur, est recyclée au réacteur.
La combinaison des variantes précédentes est bien entendu envisageable. Le mélange à traiter peut l'être en une étape ou non. Ainsi, on peut traiter la totalité du mélange sur la résine. Ceci peut notamment être mis en oeuvre dans le cas où le mélange est par exemple la solution catalytique. Une opération de ce type est en général réalisée en discontinu. On peut aussi envisager écarter une partie du mélange, et traiter ce flux selon l'invention, en continu ou en discontinu. Ceci est de préférence mis en oeuvre lorsque l'on mène la réaction de carbonyiation simultanément avec le traitement sur la résine.
Les résines convenant à la mise en oeuvre de l'invention sont plus particulièrement des résines échangeuses de cations, de type acide fort ou acide faible, sous la forme hydrogène.
A titre d'exemple de résines du type acide faible, on peut citer les résines qui sont des copolymères d'acide acrylique, méthacryiique, des esters ou encore des nitriles correspondants. On peut de même citer les résines phénoiiques.
Parmi les résines de type acide fort, on peut mentionner tout particulièrement les résines étant des copolymères de styrène divinylbenzène présentant des groupements fonctionnels greffés suifonés. De telles résines sont commercialisées notamment sous la dénomination commerciale DOWEX de la société Dow, ou encore PUROLITE de la société Purolite, AMBERLYST de la société Rohm & Haas.
Selon un mode de réalisation préféré, on utilise des résines du type fortement acide.
Les résines sont employées indifféremment sous la forme d'un gel ou sous une forme macroporeuse.
Par ailleurs, le traitement du mélange est réalisé plus particulièrement en lit fixe.
La température à laquelle est effectuée la mise en contact du mélange à traiter avec la résine est comprise entre 10 et 150 °C et pius particulièrement entre 20 et 100°C.
Une fois ie mélange traité, on ajoute des ions iodures ou leur précurseur, de telle sorte à obtenir un rapport atomique iodure / iridium dans le mélange réactionnel compris dans les gammes données auparavant. Cette addition peut être effectuée au mélange venant d'être traité mais aussi au mélange réactionnel en général, c'est-à-dire en tout point du procédé où ledit mélange réactionnel existe.
Ainsi, on peut ajouter les iodures ou leur précurseur en tout point de la zone de réaction ou encore de la zone de séparation. Lors du démarrage de la réaction, les divers composants sont introduits dans un réacteur approprié, muni de moyens d'agitation suffisants pour assurer ie transfert gaz- liquide. Il est à noter que si ie réacteur comprend de préférence des moyens d'agitation mécanique du mélange réactionnel, il n'est pas exclu d'opérer sans de tels moyens ; l'homogénéisation du mélange pouvant être réalisée par l'introduction du monoxyde de carbone dans ie réacteur.
Les composants du miiieu réactionnel sont introduits sans ordre préférentiel, sous leur forme propre et/ou sous la forme d'un ou plusieurs précurseurs. Une première variante de l'invention consiste à introduire le promoteur halogène décrit auparavant, tel quel, dans le mélange réactionnel.
Une seconde variante de mise en oeuvre, consiste à introduire ledit promoteur sous la forme d'au moins un précurseur.
Dans ce cas de figure, le précurseur se présente généralement sous la forme d'un composé susceptible de libérer dans le miiieu réactionnel le radical du promoteur halogène précité. Ceci a lieu par réaction du précurseur avec un halogène, l'hydracide correspondant, et/ou un iodure ; ces composés étant présents dans le miiieu ou bien introduits à cet effet.
A titre d'exemple non limitatif de précurseurs convenables, on peut citer les composés choisis parmi les alcools de formule (1) ROH ; les éthers de formule (2) ROR' ou encore des esters de formules (3) R'COOR, utilisés seuls ou en mélange. Dans ces formules, les radicaux R et R', identiques ou différents, représentent chacun un radical alkyle en C-|-Cιo. acyie en C-|-Cιo. ou aryie en Cs-Cio ; avec le radical R correspondant au radical du promoteur halogène. Ainsi, le méthanol, l'éthanol, le propanol, le butanol, le diméthyl éther, ie diéthyl éther, l'oxyde d'èthylène, l'acétate de méthyle, sont notamment des précurseurs convenables du promoteur halogène.
Habituellement la réaction de carbonyiation est réalisée à une température comprise entre 150 et 250 °C. De préférence la température de réaction varie entre 180 et 210°C.
Selon un mode de réalisation particulier du procédé selon l'invention, le mélange réactionnel est purgé régulièrement des métaux de corrosion qu'il contient, dont notamment le fer, le molybdène, le chrome, le nickel. Cette opération est réalisée selon tout moyen connu de l'homme du métier, comme par exemple le traitement du mélange réactionnel par une résine échangeuse d'ions ou encore par précipitation du catalyseur et séparation de ce dernier, des métaux de corrosion, par filtration.
Le procédé seion l'invention convient à la fabrication de tout type d'acide carboxyiique ou des esters correspondants, comprenant au minimum deux atomes de carbone. Ainsi, celui-ci peut être mis en oeuvre pour préparer l'acide propionique à partir de l'éthanol, l'acide succinique à partir de l'oxyde d'èthylène, l'acide adipique à partir du
1 ,4-butanediol, ou les esters correspondants à ces acides.
Cependant, ce procédé convient tout particulièrement à l'obtention d'acide acétique et/ou d'acétate de méthyle à partir de méthanol. Selon un mode de réalisation préféré de l'invention, le procédé selon l'invention est mis en oeuvre à partir d'iodure de méthyle, d'acétate de méthyle, d'iodures sous forme soluble et d'acide acétique en tant que solvant, outre le méthanol.
Des exemples concrets mais non limitatifs de l'invention vont maintenant être présentés.
EXEMPLES 1 ET 2
Ces essais de réaction de carbonyiation ont été réalisés en continu dans un autoclave de 300 cm^ muni d'un moyen d'agitation mécanique et de moyens d'introduction des réactifs.
La solution catalytique utilisée est obtenue à partir de lr4CO-|2 et est préparée comme suit :
On introduit dans un ballon en verre, 10 g de lr4COi2. 50 g d'acide iodhydrique en solution à 57 % dans l'eau et 290 g d'acide acétique.
Le mélange est chauffé à reflux sous agitation et sous air pendant 4 heures.
Les introductions de méthanol, d'iodure de méthyle, d'acétate de méthyle et d'eau sont réglées de telle sorte que les teneurs des différents composants dans le milieu réactionnel soient maintenues comme indiquées dans le tableau ci-dessous. Le temps de séjour dans le réacteur est d'environ 10 minutes. La pression totale dans l'autoclave est de 30 bar et la température est maintenue à 190°C.
A la sortie de l'autoclave, le mélange réactionnel est dégazé et refroidi.
Le mélange et les gaz sont analysés par chromatographie en phase gazeuse.
ExemDle H,O CH,CO,CH-, CH-,1 Lil Ir Ll/lr Vrnrh
1 9,5 23 1.3 33 1200 0.7 8,5
2 5.8 13 4 61 1760 0.96 9,1
Les teneurs en eau, acétate de méthyle, iodure de méthyle sont exprimées en % poids, rapporté au poids total du mélange réactionnel, le complément à 100 % est apporté par l'acide acétique.
Les teneurs en iodure de lithium et en iridium sont exprimées en ppm.
Vcarb représente la vitesse de carbonyiation, exprimée en mol/l.h. Elle est obtenue par mesure du débit de consommation du CO en tenant compte, en outre, de la quantité de ce gaz engagée dans la formation de CO2.
EXEMPLE 3
On traite 50 ml d'un mélange réactionnel issu d'une réaction de carbonyiation, contenant majoritairement de l'acide acétique, un complexe soluble d'iridium (1800 ppm d'iridium), de l'iodure de méthyle, de l'acétate de méthyle, du méthanol, de l'eau et contenant 51 ppm de lithium sous forme d'iodure soluble dans une colonne de 2,7 cm de diamètre et d'une hauteur de 25 cm, dans laquelle on a disposé 26 ml de résine DOWEX C-500.
La résine a subi avant son utilisation des lavages successifs à l'eau et à l'isopropanol en vue d'éliminer les éventuels polluants organiques présents dans le produit commercial et a été immergée pendant 24 heures dans une solution d'acide acétique jusqu'à son gonflement maximal.
Le mélange réactionnel est alimenté à température ambiante sous pression atmosphérique en tête de colonne. La solution obtenue en pied de colonne est renvoyée en tête pour une nouvelle mise en contact avec la résine. Le traitement est poursuivi pendant 4 heures pour atteindre l'équilibre d'adsorption.
En fin de traitement, on récupère la solution pour l'analyser. Le dosage par absorption atomique indique qu'il reste 0,2 ppm de lithium sous forme d'iodure soluble dans la solution, ce qui correspond à un rendement d'adsorption de 97,3 %. Par ailleurs, on constate que l'iridium n'est pas adsorbé sur la résine.
EXEMPLE 4
On procède comme dans l'exemple précédent mais le mélange réactionnel est traité par la résine PUROLITE C 100.
L'analyse de la solution récupérée par adsorption atomique montre qu'il reste 0,45 ppm de lithium sous forme d'iodure soluble, ce qui correspond à un rendement d'adsorption de 94 %. L'iridium n'est pas adsorbé sur la résine. EXEMPLE 5
On traite 50 ml d'un mélange réactionnel issu d'une réaction de carbonyiation, contenant de l'acide acétique, un complexe soluble d'iridium (2100 ppm d'iridium), de l'iodure de méthyle, de l'acétate de méthyle, du méthanol, de l'eau et contenant 245 ppm de potassium sous forme d'iodure soluble.
On procède de la même façon que pour l'exemple 1.
L'analyse de la solution récupérée par adsorption atomique montre qu'il reste 0,3 ppm de potassium sous forme d'iodure soluble, ce qui correspond à un rendement d'adsorption supérieur à 99 %.
L'iridium n'est pas adsorbé sur la résine.
EXEMPLE 6
On procède comme pour l'exemple précédent, excepté ie fait que la résine utilisée est la résine PUROLITE C 100.
L'analyse montre qu'il reste 3,8 ppm de potassium sous forme d'iodure soluble, ce qui correspond à un rendement d'adsorption de 97 %. L'iridium n'est pas adsorbé.
EXEMPLE 7
On effectue le traitement d'une solution catalytique d'iridium contenant 16500 ppm d'iridium, 76 ppm de sodium sous forme d'iodure soluble et 7 ppm de potassium sous forme d'iodure soluble.
Le traitement est réalisé par passage sur une résine AMBERLYST 16 (Rohm et Haas), selon le même mode opératoire que celui décrit dans les exemples précédents.
Le volume de résine employé est de l'ordre de 10 ml et le volume de solution catalytique traité est de l'ordre de 630 ml.
Les résultats montrent qu'il reste 5 ppm de sodium, correspondant à un rendement d'adsorption de 93 %, et 2 ppm de potassium, ce qui correspond à un rendement de 70 %.

Claims

REVENDICATIONS
1/ Procédé de préparation d'acides carboxyliques, ou des esters correspondants, présentant (n+1) atomes de carbone, par réaction en phase liquide, de monoxyde de carbone avec au moins un alcool présentant n atomes de carbone, en présence d'un système catalytique à base d'un composé de l'iridium et d'un promoteur halogène, caractérisé en ce que l'on maintient dans le miiieu, pendant la réaction, l'eau, dans une teneur variant entre 0 exclu et 10 %, le promoteur halogène, dans une teneur variant entre 0 exclu et 10%, l'ester correspondant à l'acide carboxyiique et à l'alcool précités, dans une teneur variant entre 2 et 40 %, des iodures sous forme soluble dans un quantité telle que le rapport atomique des iodures à l'iridium est compris entre 0 exclu et 10 ; l'acide carboxyiique constituant le solvant de la réaction.
2/ Procédé selon l'une quelconque des revendicationçprécédentes, caractérisé en ce que l'on maintient ie rapport atomique des iodures et l'iridium entre 0 exclu et 3 et de préférence entre 0 exclu et 1 ,5.
3/ Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on utilise des iodures de métal alcalin, de composés organo-phosphorés ou organo-azotés.
4/ Procédé selon la revendication précédente, caractérisé en ce que l'on maintient dans le mélange une teneur en eau comprise entre 0,5 et 8 %.
5/ Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on maintient dans ie mélange une teneur en promoteur halogène comprise entre 0,5 et 8 %.
6/ Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on maintient dans le mélange une teneur en ester précité comprise entre 5 et 30 %.
7/ Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on maintient le rapport atomique des iodures à l'iridium en effectuant les étapes suivantes :
- traitement par une résine échangeuse d'ions d'un mélange comprenant au moins le composé de l'iridium, - addition d'iodures sous forme soluble dans une quantité telle que le rapport atomique des iodures à l'iridium dans ie mélange réactionnel soit compris entre 0 exclu et 10. __
8/ Procédé selon la revendication 7, caractérisé en ce que l'on traite un mélange correspondant à la solution catalytique.
9/ Procédé selon l'une quelconque des revendications 7 ou 8, caractérisé en ce que l'on traite un mélange correspondant au mélange réactionnel avant l'introduction des iodures solubles.
10/ Procédé selon l'une quelconque des revendications 7 ou 9, caractérisé en ce que l'on traite le mélange réactionnel.
11/ Procédé selon l'une quelconque des revendications 7 à 10, caractérisé en ce que l'on effectue le traitement avec une résine échangeuse de cations de type acide fort ou acide faible, sous la forme hydrogène.
12/ Procédé selon la revendication précédente, caractérisé en ce que l'on effectue la traitement avec une résine de copolymères styrène-divinylbenzène présentant des groupements fonctionnels greffés sulfonés.
13/ Procédé selon l'une des revendications précédentes, caractérisé en ce que l'on utilise un alcool hydrocarboné saturé en C-|-Cιo-
14/ Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on utilise un promoteur halogène comprenant un halogène choisi parmi le chlore le brome ou l'iode, en combinaison avec de l'hydrogène, un radical alkyle en C-| -CI Q. un radical acyle en C-|-Cιo ou un radical aryle en Cg-Cto-
15/ Procédé selon la revendication précédente, caractérisé en ce que l'on utilise un promoteur halogène dont le radical correspond à celui de l'alcool précité.
16/ Procédé selon l'une des revendications précédentes, caractérisé en ce que l'on prépare l'acide acétique par réaction du méthanol avec du monoxyde de carbone, en présence d'eau, d'iodure de méthyle, d'acétate de méthyle, d'iodures de métal alcalin, l'acide acétique constituant le soivant de la réaction.
PCT/FR1995/000625 1994-05-13 1995-05-15 Procede de preparation d'acides carboxyliques ou des esters correspondants en presence d'un catalyseur a base d'iridium et d'iodures sous forme soluble WO1995031426A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU25710/95A AU2571095A (en) 1994-05-13 1995-05-15 Method for the preparation of carboxylic acids or corresponding esters in the presence of a soluble iridium-based catalyst
US08/737,507 US5773642A (en) 1994-05-13 1995-05-15 Process for the preparation of carboxylic acids or the corresponding esters in the presence of a soluble catalyst based on iridium and iodides
EP95920140A EP0759022B1 (fr) 1994-05-13 1995-05-15 Procede de preparation d'acides carboxyliques ou des esters correspondants en presence d'un catalyseur a base d'iridium et d'iodures sous forme soluble

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR9405896A FR2719841B1 (fr) 1994-05-13 1994-05-13 Procédé de préparation d'acides carboxyliques ou des esters correspondants en présence d'un catalyseur à base d'iridium.
FR94/05896 1994-05-13
FR94/12712 1994-10-21
FR9412712A FR2725983B1 (fr) 1994-10-21 1994-10-21 Procede de preparation d'acides carboxyliques en presence d'un catalyseur a base d'iridium et d'iodures sous forme soluble

Publications (1)

Publication Number Publication Date
WO1995031426A1 true WO1995031426A1 (fr) 1995-11-23

Family

ID=26231173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1995/000625 WO1995031426A1 (fr) 1994-05-13 1995-05-15 Procede de preparation d'acides carboxyliques ou des esters correspondants en presence d'un catalyseur a base d'iridium et d'iodures sous forme soluble

Country Status (6)

Country Link
US (1) US5773642A (fr)
EP (1) EP0759022B1 (fr)
KR (1) KR100371761B1 (fr)
CN (1) CN1070167C (fr)
AU (1) AU2571095A (fr)
WO (1) WO1995031426A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0849248A1 (fr) * 1996-12-19 1998-06-24 BP Chemicals Limited Procédé de carbonylation pour la production de l'acide acétique catalysé par l'iridium
EP0983792A1 (fr) * 1998-09-03 2000-03-08 BP Chemicals Limited Procédé de carbonylation
US6326515B1 (en) 1998-09-08 2001-12-04 Bp Chemicals Limited Carbonylation of methanol to acetic acid with removal of impurities from the product
FR2845086A1 (fr) * 2002-09-30 2004-04-02 Bp Chem Int Ltd Procede pour la production d'acide acetique

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9625335D0 (en) * 1996-12-05 1997-01-22 Bp Chem Int Ltd Process
US6552221B1 (en) 1998-12-18 2003-04-22 Millenium Petrochemicals, Inc. Process control for acetic acid manufacture
US6355595B1 (en) * 1999-08-25 2002-03-12 Eastman Chemical Company Group 5 metal promoted iridium carbonylation catalyst
US6353132B1 (en) * 1999-08-25 2002-03-05 Eastman Chemical Company Vapor phase carbonylation process using group 5 metal promoted iridium catalyst
US6323364B1 (en) * 1999-08-31 2001-11-27 Celanese International Corporation Rhodium/inorganic iodide catalyst system for methanol carbonylation process with improved impurity profile
US6232352B1 (en) 1999-11-01 2001-05-15 Acetex Limited Methanol plant retrofit for acetic acid manufacture
US6274096B1 (en) 1999-11-01 2001-08-14 Acetex (Cyprus) Limited Methanol plant retrofit
US6781014B1 (en) 1999-11-01 2004-08-24 Acetex (Cyprus) Limited Methanol plant retrofit for manufacture of acetic acid
US6531630B2 (en) 2000-12-29 2003-03-11 Kenneth Ebenes Vidalin Bimodal acetic acid manufacture
US6846951B1 (en) 2003-10-09 2005-01-25 Acetex (Cyprus) Limited Integrated process for acetic acid and methanol
CA2496839A1 (fr) 2004-07-19 2006-01-19 Woodland Chemical Systems Inc. Methode de production d'ethanol a partir de gaz de synthese a teneur elevee en monoxyde de carbone
JP2009532483A (ja) 2006-04-05 2009-09-10 ウッドランド バイオフュールズ インコーポレイテッド 合成ガスを介してバイオマスをエタノールに変換するための方法
CN112439437B (zh) * 2019-08-28 2023-08-15 中国石油化工股份有限公司 作为合成醋酸的催化剂的含铱溶液及其制备方法、应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3772380A (en) * 1970-03-12 1973-11-13 Monsanto Co Production of carboxylic acids and esters
EP0196173A1 (fr) * 1985-03-07 1986-10-01 Celanese Corporation Elimination des composés iodures des milieux non-aqueux organiques
EP0484020A2 (fr) * 1990-10-31 1992-05-06 The British Petroleum Company P.L.C. Procédé de purification d'acide acétique et/ou d'anhydride acétique
EP0618184A1 (fr) * 1993-03-31 1994-10-05 Pardies Acetiques Procédé de préparation d'acides carboxyliques ou des esters correspondants en présence d'un catalyseur à base d'irridium

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681707A (en) * 1982-09-30 1987-07-21 The British Petroleum Company P.L.C. Process for the production of carboxylic acid esters and/or carboxylic acids
US4482497A (en) * 1982-09-30 1984-11-13 The Halcon Sd Group, Inc. Preparation of carboxylic acids
US5144068A (en) * 1984-05-03 1992-09-01 Hoechst Celanese Corporation Methanol carbonylation process
GB9223170D0 (en) * 1992-11-05 1992-12-16 British Petroleum Co Plc Process for preparing carboxylic acids
GB9306409D0 (en) * 1993-03-26 1993-05-19 Bp Chem Int Ltd Process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3772380A (en) * 1970-03-12 1973-11-13 Monsanto Co Production of carboxylic acids and esters
EP0196173A1 (fr) * 1985-03-07 1986-10-01 Celanese Corporation Elimination des composés iodures des milieux non-aqueux organiques
EP0484020A2 (fr) * 1990-10-31 1992-05-06 The British Petroleum Company P.L.C. Procédé de purification d'acide acétique et/ou d'anhydride acétique
EP0618184A1 (fr) * 1993-03-31 1994-10-05 Pardies Acetiques Procédé de préparation d'acides carboxyliques ou des esters correspondants en présence d'un catalyseur à base d'irridium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0849248A1 (fr) * 1996-12-19 1998-06-24 BP Chemicals Limited Procédé de carbonylation pour la production de l'acide acétique catalysé par l'iridium
US5877348A (en) * 1996-12-19 1999-03-02 Bp Chemicals Limited Iridium-catalyzed carbonylation process for the production of acetic acid
CN1117059C (zh) * 1996-12-19 2003-08-06 英国石油化学品有限公司 用于制备乙酸的铱催化的羰基化方法
EP0983792A1 (fr) * 1998-09-03 2000-03-08 BP Chemicals Limited Procédé de carbonylation
US6255527B1 (en) 1998-09-03 2001-07-03 Bp Chemicals Limited Carbonylation of methanol to acetic acid with carbon monoxide flow controls
SG82632A1 (en) * 1998-09-03 2001-08-21 Bp Chem Int Ltd Carbonylation process
US6326515B1 (en) 1998-09-08 2001-12-04 Bp Chemicals Limited Carbonylation of methanol to acetic acid with removal of impurities from the product
FR2845086A1 (fr) * 2002-09-30 2004-04-02 Bp Chem Int Ltd Procede pour la production d'acide acetique

Also Published As

Publication number Publication date
AU2571095A (en) 1995-12-05
KR100371761B1 (ko) 2003-05-22
CN1070167C (zh) 2001-08-29
KR970703298A (ko) 1997-07-03
EP0759022B1 (fr) 2000-01-26
US5773642A (en) 1998-06-30
EP0759022A1 (fr) 1997-02-26
CN1151155A (zh) 1997-06-04

Similar Documents

Publication Publication Date Title
EP0759022B1 (fr) Procede de preparation d'acides carboxyliques ou des esters correspondants en presence d'un catalyseur a base d'iridium et d'iodures sous forme soluble
EP0618184B1 (fr) Procédé de préparation d'acides carboxyliques ou des esters correspondants en présence d'un catalyseur à base d'iridium
CA2120407C (fr) Procede de preparation d'acides carboxyliques ou des esters correspondants en presence d'un catalyseur a base de rhodium et d'iridium
EP0955298A1 (fr) Procédé de fabrication de carbonate de glycérol
KR20040111524A (ko) 메탄올 카보닐화에 의한 아세트산의 제조시 재생 스트림의산화 처리법
FR2485518A1 (fr) Procede de production de l'ethylene-glycol et de ses esters carboxyliques par hydrogenation catalytique du glycolaldehyde
FR2502144A1 (fr) Procede pour produire du lactate de methyle et procede pour separer l'a-acetoxy- ou propionyloxy-propionaldehyde d'une solution aqueuse
EP0785919B1 (fr) Preparation d'acides carboxyliques ou des esters correspondants par carbonylation en presence d'iridium
BE897893A (fr) Preparation d'acides carboxyliques
EP3227254B1 (fr) Oxydation catalytique du but-3-ène-1,2-diol
CA2180290C (fr) Procede de preparation d'une solution a base d'iridium et son utilisation en tant que catalyseur
FR2726556A1 (fr) Procede de preparation d'acides carboxyliques par carbonylation en presence d'iridium
EP0037354B1 (fr) Procédé de préparation de l'acide acétique par carbonylation
EP1127042A1 (fr) Preparation d'acide acetique et/ou d'acetate de methyle en presence d'iridium et de platine
FR2725983A1 (fr) Procede de preparation d'acides carboxyliques en presence d'un catalyseur a base d'iridium et d'iodures sous forme soluble
US6617478B2 (en) Process for preparing a 1,3-alkandiol from 3-hydroxyester
FR2719841A1 (fr) Procédé de préparation d'acides carboxyliques ou des esters correspondants en présence d'un catalyseur à base d'iridium.
BE828603A (fr) Catalyseur pour l'oxydation en phase liquide des olefines et procede d'obtention dudit catalyseur
EP0108698B1 (fr) Procédé d'obtention de cobalttétracarbonylates alcalinoterreax et de leurs solutions et leur application à la carbonylation de composés à groupes halogénométhyle
FR2546514A1 (fr) Procede et systeme pour la production d'ethanol
FR2527598A1 (fr) Procede de preparation d'acide acetique en presence d'eau
WO1997035828A1 (fr) Procede de preparation d'acide acetique et/ou d'acetate de methyle par isomerisation et carbonylation
WO1997035829A1 (fr) Procede de preparation d'acide acetique et/ou d'acetate de methyle par isomerisation de formiate de methyle
FR2560889A1 (fr) Nouveaux catalyseurs d'oxydation de mercaptans en disulfures, leur procede de preparation et leur application a l'adoucissement de distillats petroliers
FR2703352A1 (fr) Procédé de préparation d'acides carboxyliques ou des esters correspondants en présence d'un catalyseur à base d'iridium.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95193656.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AM AU BB BG BR BY CA CN CZ EE FI GE HU JP KG KP KR KZ LK LR LT LV MD MG MN MX NO NZ PL RO RU SG SI SK TJ TT UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995920140

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995920140

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08737507

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1995920140

Country of ref document: EP