WO1995026570A1 - Ferroelectric memory device - Google Patents

Ferroelectric memory device Download PDF

Info

Publication number
WO1995026570A1
WO1995026570A1 PCT/JP1995/000533 JP9500533W WO9526570A1 WO 1995026570 A1 WO1995026570 A1 WO 1995026570A1 JP 9500533 W JP9500533 W JP 9500533W WO 9526570 A1 WO9526570 A1 WO 9526570A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferroelectric
capacitor
memory device
ferroelectric memory
voltage
Prior art date
Application number
PCT/JP1995/000533
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Nakano
Masayoshi Ohmura
Original Assignee
Olympus Optical Co., Ltd.
Symetrix Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP6058397A external-priority patent/JPH1140759A/en
Priority claimed from JP6222896A external-priority patent/JPH1139860A/en
Application filed by Olympus Optical Co., Ltd., Symetrix Corporation filed Critical Olympus Optical Co., Ltd.
Publication of WO1995026570A1 publication Critical patent/WO1995026570A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5657Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using ferroelectric storage elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors

Definitions

  • the present invention relates to a ferroelectric memory device using a ferroelectric material for an information recording medium, and in particular, to a ferroelectric memory device for performing non-destructive readout using a twisted- ⁇ hysteresis characteristic. Also, the present invention relates to a ferroelectric memory device using a ferroelectric for a recording medium, and more particularly to a ferroelectric memory device capable of reducing a stable polarization value by at least 3 using a twisted-hysteresis characteristic. The present invention relates to a ferroelectric memory device using a ferroelectric memory element exhibiting multiple hysteresis characteristics having more than one device.
  • ferroelectric materials have hysteresis characteristics and can store information as a non-volatile memory using this characteristic.
  • the reading method of these ferroelectric memories has been performed by destructive reading using a domain-inverted current that requires rewriting of a selected cell.
  • ferroelectric memory by the destructive readout method is characterized by the fact that polarization reversal is repeated and ferroelectricity deteriorates, so that the remanent polarization is reduced. It is not only difficult to prolong the service life due to problems such as the problem of rewriting, but also it is necessary to rewrite with a complicated circuit.
  • non-destructive information is read in a read electric field smaller than the coercive electric field by utilizing a capacitance difference controlled by a polarization state. Reading is being performed.
  • the difference in capacitance between recorded and unrecorded states is small, so that the S / N ratio is deteriorated and the cell integration is reduced.
  • MFIS device MFMIS
  • FET field effect transistor
  • Figure 22A shows an example of a conventional MFMIS-type device, — ⁇
  • This is an equivalent circuit composed of a combination of a tower (Sawyer Tower) circuit and a field-effect transistor.
  • the in V in this respect is a positive value
  • in the voltage V eT to M Q point is a negative value.
  • the voltage information stored in the dielectric capacitor ( CL ) 2 is read out by the field-effect transistor 203.
  • the field-effect transistor 203 is an n-type MOSFET, so that at a point, the field-effect transistor 203 is in a conducting state, at a point, a non-conducting state, and The difference in voltage at point Q can be read.
  • the voltage v ei; (
  • V FE V FE
  • a memory element having a configuration shown in FIG. 23A has been devised as a memory element capable of nondestructive operation to prevent the deterioration of the strong dielectric thin film.
  • This memory element includes a ferroelectric capacitor 206, a dielectric capacitor 207 connected in series to the ferroelectric capacitor 206, and a resistance element 208 connected in parallel to the dielectric capacitor 207. Consists of Also, this memory The element is provided with a field-effect transistor 209 as a switch element for reading.
  • FIG. 23B shows a hysteresis characteristic in a circuit in which the resistive element 208 is connected in parallel with the dielectric capacitor 207.
  • the storage voltages ⁇ ⁇ , ⁇ ⁇ have two polarizations P 0, P j of the ferroelectric capacitor 206 and electric fields in the directions of the polarizations. Is obtained.
  • the current flowing between the terminal 205 and the ground via the field effect transistor 209 which is ON-OFF controlled by the voltage of the dielectric capacitor 207 Can be detected.
  • the polarity of the stored information is detected as the direction of the read current by using a switch element that is actually turned on by a positive voltage and a conductive switch element that is turned on by a negative voltage.
  • a storage element is used for an arithmetic unit or the like.
  • the readout switch element an element composed of an n-type MOS transistor and a p-type MOS transistor formed on a silicon (Si) substrate is known. It is.
  • each memory element is marked with 1 or 0, and a sequence of these two numerical values is used as stored information.
  • the present invention has been made in view of the above-described points, and can perform non-destructive readout by using the twisted-hysteresis characteristic, has a long life, and is ferroelectric suitable for integration. It is intended to provide a body memory device.
  • the present invention provides a ferroelectric memory device using a ferroelectric memory element having a multiple hysteresis characteristic having at least three or more stable polarization values by utilizing the twisted hysteresis characteristic.
  • the purpose is to provide.
  • a ferroelectric memory device is provided which differs in at least one of the sizes.
  • a plurality of first capacitor units formed by ferroelectric capacitors are formed on the insulator, and a plurality of first capacitor units having different coercive electric fields from the first capacitor unit on the insulator.
  • the second capacitor unit is formed with a lower electrode newly formed on the insulator, a ferroelectric film formed on the lower electrode, and a ferroelectric film formed on the lower electrode. And at least one or more of the first and second capacitor units are electrically connected to each other.
  • a ferroelectric memory device is provided.
  • the multi-hysteresis characteristic having at least three or more stable electrode values is provided, and the multi-valued voltage accompanying the multi-hysteresis characteristic is used as information.
  • a ferroelectric capacitor formed by sandwiching a ferroelectric between electrode materials; a dielectric capacitor connected in series to the ferroelectric capacitor; and the multiple hysteresis stored in the ferroelectric capacitor.
  • a ferroelectric memory device including a voltage-current conversion element for reading out multi-valued voltage information accompanying the lysis characteristic.
  • the electric field strength of the second electrode area is smaller than the electric field strength of the first electrode area. It becomes smaller, and has the same effect as if a ferroelectric capacitor with a different coercive electric field (or film thickness) and area were connected in parallel, and a twisted hysteresis characteristic was obtained.
  • the memory state "0" and memory state "1" of this twisted hysteresis characteristic In these two values, the information stored by the back-switching phenomenon is read non-destructively.
  • the ferroelectric memory device is such that a first ferroelectric capacitor (unit) is sandwiched between electrodes made of a conductor on both sides of a ferroelectric substance on a substrate or an insulator. And a second ferroelectric capacitor (unit) having a different coercive electric field or a different film thickness is formed in parallel or in a stacked configuration. A cis characteristic is obtained.
  • the ferroelectric memory device having the configuration according to the third aspect includes a ferroelectric capacitor having multiple hysteresis characteristics having at least three or more stable polarization values and a serial connection with the ferroelectric capacitor.
  • a ferroelectric memory element consisting of a connected dielectric capacitor and a multi-valued voltage information written using the multiple hysteresis characteristic is read out by a voltage-to-current conversion element. Three or more pieces of voltage information can be obtained when the polarization state changes with a stable polarization value.
  • FIG. 1 is a diagram showing a combined hysteresis characteristic in a ferroelectric memory device according to a first embodiment of the present invention
  • FIG. 2 is a diagram showing a configuration of a ferroelectric capacitor in the ferroelectric memory device of the first embodiment
  • FIG. 3 is a block diagram showing a configuration in which the ferroelectric capacitors shown in FIG. 2 are arranged as a memory cell and peripheral circuits are connected;
  • FIG. 4 is a diagram showing a configuration example of the ferroelectric memory device according to the second embodiment of the present invention in which the shape of the upper electrode of the ferroelectric capacitor is different;
  • FIG. 5 is a view showing a configuration example of a ferroelectric memory device according to a third embodiment of the present invention in which ferroelectric capacitors having different coercive electric fields having the structure shown in FIG. 2 or FIG. 4 are connected in parallel. ;
  • FIG. 6 is a diagram showing a configuration in which ferroelectric capacitors formed of different ferroelectric materials and having different coercive electric fields are connected in parallel in a ferroelectric memory device according to a fourth embodiment of the present invention
  • FIG. 7A and 7B show a ferroelectric capacitor showing a symmetric hysteresis characteristic and a ferroelectric capacitor showing an asymmetric hysteresis characteristic in a ferroelectric memory device according to a fifth embodiment of the present invention.
  • FIGS. 8A to 8E are diagrams showing an example of a laminated structure of a ferroelectric capacitor having an asymmetric hysteresis characteristic in a ferroelectric memory device according to a sixth embodiment of the present invention and the characteristics thereof;
  • FIGS. 9A and 9B are diagrams showing another structural example and characteristics of a ferroelectric capacitor having asymmetric hysteresis characteristics in a ferroelectric memory device according to a seventh embodiment of the present invention.
  • FIG. 10 is a diagram showing an example of a laminated structure of ferroelectric capacitors formed in parallel on a substrate in a ferroelectric memory device according to an eighth embodiment of the present invention.
  • FIG. 11 shows a ferroelectric memory device formed in parallel on a substrate in a ferroelectric memory device according to a ninth embodiment of the present invention. View showing another example of the laminated structure
  • FIG. 12 is a diagram showing an example of a laminated structure of ferroelectric capacitors formed by being laminated on a substrate in a ferroelectric memory device according to a tenth embodiment of the present invention
  • FIGS. 13A, 13B and 13C show the multiple hysteresis characteristics of the ferroelectric memory element used in the ferroelectric memory device according to the eleventh embodiment of the present invention.
  • FIGS. 14A to 14H show the multi-hysteresis characteristics and spontaneous polarization of the ferroelectric memory device shown in FIG. 13B;
  • FIGS. 15A and 15B show the first and second embodiments of the present invention, respectively.
  • FIG. 1 is a diagram showing a configuration of a ferroelectric memory device used in a ferroelectric memory device as an example and a current-voltage characteristic of the ferroelectric memory device;
  • FIGS. 16A to 16C show the configuration of a ferroelectric memory device used in a ferroelectric memory device according to a thirteenth embodiment of the present invention, and multiple hysteresis of the ferroelectric memory device.
  • FIG. 17 is a diagram showing a configuration of a ferroelectric memory device as a 14th embodiment according to the present invention.
  • FIGS. 18A to 18C show the structure and configuration of a ferroelectric memory device according to a fifteenth embodiment of the present invention, respectively;
  • FIGS. 19A and 19B are diagrams showing the structure of a ferroelectric memory element used in a ferroelectric memory device as a 16th embodiment according to the present invention.
  • FIGS. 20A and B show a 17th embodiment according to the present invention, respectively.
  • FIGS. 21A and 21B are diagrams each showing an application example to a matrix calculator for multiply-accumulate operation by a ferroelectric memory device according to an eighteenth embodiment of the present invention.
  • FIGS. 22A and 22B show a circuit example of a conventional MIS element and a hysteresis characteristic of the MIS element, respectively;
  • Figures 23A and B are diagrams showing a configuration example of a conventional non-destructive storage element and a hysteresis characteristic of the storage element, respectively;
  • FIG. 1 shows a first embodiment according to the present invention.
  • 2 shows a composite hysteresis characteristic of the ferroelectric memory device of FIG. Figure 2 shows the configuration of the ferroelectric capacitor.
  • the composite hysteresis characteristic shown in FIG. 1 is such that at least one of the areas of the areas facing the formation and arrangement of the first and second electrodes of the strong dielectric capacitor differs as will be described later. This is the combined hysteresis (hereinafter, referred to as twisted hysteresis) characteristic obtained when the above is obtained.
  • the ferroelectric capacitor 1 is provided with a lower electrode 3 made of a conductor below the ferroelectric 2 and an upper electrode 4 having a smaller electrode area than the lower electrode 3. Is provided above the ferroelectric 2.
  • the thickness d of the ferroelectric material 2 used for the unit memory cell unit arranged in the memory cell array unit of the ferroelectric memory device described later is defined as the area S i of the electrode of the upper electrode 4. Assuming that the diagonal polarization P 2 is generated in the vertical direction P 2 , the diagonal polarization P 2 is generated in the area S 2 of the dipole P i generated in the area S 2 having only the lower electrode without the upper electrode 4 and having only one side electrode part. Direction), it becomes P 2 '. Therefore, it is assumed that the polarization of the memory cell portion is composed of the P i component and the P 2 ′ component.
  • Figure 1 shows the combined hysteresis characteristics of the polarizations P i and ⁇ 2 '.
  • a ferroelectric capacitor as shown in Fig. 2 is considered to be the same as connecting two ferroelectric capacitors with different coercive electric fields in parallel, so the medium of the high-speed hysteresis characteristics as shown in Fig. 1 is obtained. Non-destructive reading by the back switching phenomenon becomes possible in two values of the memory state "0" and the memory state "1". However, state "2" in Fig. 1 is not used as information recording.
  • the ferroelectric capacitor 1 is also arranged as a memory cell array as a unit memory cell, and its peripheral circuits are a write circuit 6, a read circuit 7, a switching circuit 8, and a row switching control.
  • FIG. 2 is a block diagram showing a circuit configuration of the entire ferroelectric memory device to which a unit 9 and a column switching control unit 10 are connected.
  • the writing circuit 6, the row switching control unit 9, and the column switching control unit 10 apply a coercive electric field e c to each cell of the matrix memory 5 or a writing voltage e larger than e.
  • w [e c '> e m > e £ ( Note re state "1"), e ro> e e' ( Note re state "CT)] polarization direction of the information written to each cell by applying a is It is done.
  • the switching circuit 8 is set so that the reading circuit 7 operates. Row et al of the column switching with a control circuit 9, 1 0, large voltage e information of the selected cell Ri by anti electric field e e. (e c '>e.> e c ) and read.
  • the differential dielectric constant slope of the hysteresis
  • the differential dielectric constant is significantly different from the applied read voltage at "0" and "1", so that the output current has a large difference. Then, it is possible to determine the state of "1” and "0” and read out the information in a non-destructive manner.
  • the ferroelectric memory device of the second embodiment is as follows.
  • the use of a ferroelectric capacitor formed with the upper electrode as a strip-shaped upper electrode 11 as shown in Fig. 4 adds a portion to which an oblique electric field is applied, resulting in good twisted hysteresis characteristics. I try to make it easier.
  • the ferroelectric memory device according to this embodiment has the same dielectric constant ⁇ 1, thickness dl, d2, and area SI, S2.
  • Fig. 5 shows a ferroelectric capacitor 1 having a high steered hysteresis characteristic as shown in Fig. 1 and having a different coercive electric field of the structure shown in Fig. 2 or Fig. 4. This is a configuration where they are connected in parallel.
  • ferroelectric Note Re device t this embodiment will be described ferroelectric Note Re device of the fourth embodiment, as shown in FIG. 6, the dielectric constant £ 1, epsilon 2 and area SI, Since S2 is made of a different ferroelectric material, ferroelectric capacitors having different coercive electric fields are connected in parallel.
  • the difference in the differential permittivity during the back switching phenomenon in the memory states "0" and "1" of the twisted hysteresis characteristics as shown in Fig. 1 obtained from such a structure can be used to increase the output current. A difference is created, and the state of "0" and "1" can be read nondestructively.
  • a ferroelectric memory device according to a fifth embodiment will be described.
  • the ferroelectric memory device includes a ferroelectric capacitor A having symmetric hysteresis characteristics and an asymmetric hysteresis as shown in FIG. 7B.
  • a ferroelectric capacitor B exhibiting cis characteristics is connected in parallel as shown in Fig. 7A. With this configuration, a composite hysteresis characteristic of AZZB can be obtained as shown in FIG. 7B.
  • ferroelectric Note Re device t this embodiment will be described ferroelectric Note Re device of the sixth embodiment of the MFMIS having an asymmetric hysteresis characteristic of the laminated structure as shown in FIG. 8A A ferroelectric capacitor is used.
  • an insulator film 22, a conductor film 23, a ferroelectric film 24, and a conductor film 25 are sequentially laminated on an n-type semiconductor substrate 21. .
  • the depletion layer of the MIS type capacitor (21, 22, 23) composed of the lower three layers is controlled by the direction of polarization of the ferroelectric 24. With this effect, an asymmetric hysteresis characteristic as shown in FIG. 8B is obtained.
  • the ferroelectric memory device according to the seventh embodiment has a MFMIS-type ferroelectric memory having an asymmetric hysteresis characteristic of a laminated structure as shown in FIG. 9A.
  • a body capacitor is used.
  • an insulator thin film 27 Sio
  • a ferroelectric film 28 and an upper electrode 29 are sequentially formed on an n-type semiconductor substrate 26.
  • the thickness of the depletion layer on the surface of the n-type semiconductor substrate 26 is controlled by the direction of polarization of the ferroelectric film 28. Because I Ri insulator film 2 7 thickness thereto is changed equivalently, the asymmetric hysteresis characteristic shown in FIG. 9 B obtained £ Then, ferroelectric Note Re apparatus of the eighth embodiment ferroelectric memory device of c explaining this embodiment uses a ferroelectric capacitor formed in parallel form laterally stacked structure as shown in FIG. 1 0.
  • an n-type well region 39 is formed on a P-type semiconductor (Si) substrate 31 and an insulating film 32, a lower electrode 33, a ferroelectric film 34, A unit A having a plurality of asymmetric capacitors formed by an upper electrode 35, a lower electrode 33, a ferroelectric film 38 and an upper electrode 35 on the P-type semiconductor substrate 31.
  • a unit B having a plurality of capacitors having symmetrical hysteresis characteristics is formed.
  • the ferroelectric film 34 included in the unit A has a coercive electric field different from that of the ferroelectric film 38 of the unit B.
  • the ferroelectric Note Re apparatus of the ninth embodiment of the ferroelectric Note for Li apparatus illustrating £ this embodiment is formed in parallel form laterally stacked structure as shown in FIG. 1 1 Use a ferroelectric capacitor.
  • an insulating film 42 is formed on a semiconductor substrate 41, and a lower electrode 43 is further formed. Thereafter, a desired portion of the lower electrode 43 is etched to form a thin portion.
  • a ferroelectric film 44 is formed on the lower electrode so as to have a flat surface by using the Spin On technology, and an upper electrode 46 is further formed.
  • the lower electrode 43 is formed on the thick part.
  • a ferroelectric capacitor comprising a plurality of second electrodes comprising a first electrode and a second electrode, wherein at least one of the formation arrangement of the first electrode and the second electrode is different from the size of the facing electrode area.
  • the first electrode and the second electrode of the ferroelectric capacitor can be formed by changing the arrangement relationship or the size of the opposing electrode area. Since the twisted hysteresis characteristic is obtained, information can be read nondestructively using the twisted hysteresis characteristic.
  • the ferroelectric capacitor of (2) at least one of the first and second electrodes is changed in shape to increase the area of the portion to which the oblique electric field is applied. As a result, good twisted hysteresis characteristics can be easily obtained.
  • the plurality of capacitor units A thus formed have a smaller coercive electric field because the ferroelectric film 44 has a smaller film thickness than the plurality of capacitor units B formed in the portion where the lower electrode 43 is thin.
  • the capacitor units A and B having different coercive electric fields are arbitrarily connected using the wiring electrode 47, and a ferroelectric capacitor having a desired twisted-state hysteresis characteristic is obtained.
  • the ferroelectric memory device of the present embodiment uses a ferroelectric capacitor formed in a vertically-parallel manner with a laminated structure as shown in FIG.
  • an insulating film 52 is formed on a semiconductor substrate 51, and three layers of a lower electrode 53, a ferroelectric film 54, and an upper electrode 55 are further formed.
  • a unit B composed of a plurality of capacitors having a structure, and an interlayer insulating film 56 formed on the unit B, a lower electrode 57, a ferroelectric 58, and an upper electrode 5 9 and a unit A composed of a plurality of capacitors composed of nine capacitors.
  • two ferroelectric capacitors whose coercive fields are more than three times different from each other are formed by using different materials or changing the film thickness with the same material. can do.
  • the capacitors of unit A and unit B are arbitrarily connected using wiring electrode 60, and a ferroelectric capacitor having desired characteristics can be obtained.
  • a ferroelectric capacitor having desired characteristics can be obtained.
  • the values of the coercive electric fields are different from each other, and the capacitance of the ferroelectric capacitor at the time of back switching in several polarization states of the twisted hysteresis.
  • a ferroelectric memory device characterized in that the polarization state is read out nondestructively by using a method.
  • the plurality of ferroelectric capacitors have different values of the coercive electric field of the ferroelectrics, and can be obtained with respect to those ferroelectric capacitors.
  • the polarization state can be read out nondestructively by utilizing the capacitance difference at the time of back switching in some polarization states of the distant hysteresis characteristics.
  • the ferroelectric capacitors having different coercive fields are formed by connecting materials having different relative dielectric constants in parallel to each other, thereby obtaining a high-speed hysteresis.
  • a memory device with characteristics is configured, and the polarization state can be read out nondestructively by utilizing the capacitance difference during back-switching of some polarization states of the twisted hysteresis characteristics.
  • At least one of the plurality of ferroelectric capacitors connected in parallel has asymmetric hysteresis characteristics
  • the polarization state can be read nondestructively by utilizing the capacitance difference at the time of switching of the twisted hysteresis characteristics.
  • the memory state can be read nondestructively by applying the read drive voltage under an electric field larger than the coercive electric field.
  • high density is possible due to large SZN.
  • the ferroelectric capacitor having asymmetric hysteresis according to (5) wherein the ferroelectric memory device has a multilayer structure of a conductor, a ferroelectric, a conductor, an insulator, and a semiconductor. . Therefore, according to the ferroelectric memory device of (7), the ferroelectric capacitor having the asymmetric hysteresis characteristic described in (5) can be a conductor, a ferroelectric, a conductor, an insulator, It has a multi-layer structure of semiconductor.
  • the ferroelectric memory device having the above constitutions (6) and (7), the twisted hysteresis characteristic for realizing the non-destructive read ferroelectric memory having a large SZN can be easily obtained. Will be obtained.
  • a unit ferroelectric capacitor comprising a lower electrode film formed on an insulator, a ferroelectric film formed on the lower electrode film, and an upper electrode film formed on the ferroelectric film
  • a plurality of first capacitor units are formed on the insulator, and a plurality of second capacitor units having different coercive electric fields from the first capacity unit are formed on the insulator.
  • the ferroelectric memory device of (8) when an electric field is applied to the ferroelectric capacitor, the electric field strength of the second electrode area becomes smaller than that of the first electrode area.
  • the ferroelectric capacitor has a smaller area and a different coercive field (or film thickness) and area. This has the same effect as connecting a capacitor in parallel, and a twisted hysteresis characteristic is obtained.
  • the binary state of the memory state "0" and the memory state -1 of this twisted hysteresis characteristic is obtained. In, information stored by the back switching phenomenon can be read out nondestructively.
  • the coercive electric field is different due to the different ferroelectric thicknesses of the plurality of first and second ferroelectric capacitor units, and the twisty field is different.
  • a ferroelectric capacitor having a dehysteresis characteristic is formed.
  • the ferroelectric memory device of (11) the first ferroelectric capacitor unit and the second ferroelectric capacitor unit having different coercive electric fields are laminated and formed three-dimensionally. It is composed.
  • the ferroelectric memory device of (11) is capable of electrically connecting a plurality of ferroelectric capacitor units having different coercive electric fields to provide a ferroelectric device having a desired twisted hysteresis characteristic. Capacitors can be obtained.
  • a first unit formed by arranging a plurality of first unit ferroelectric capacitors each having a laminated structure of a lower electrode film, a ferroelectric film, and an upper electrode film sequentially formed on an insulator.
  • a second capacitor unit having the same laminated structure as the first unit ferroelectric capacitor and having a plurality of second unit ferroelectric capacitors having different coercive electric fields arranged on the insulator;
  • a ferroelectric device characterized in that at least one unit ferroelectric capacitor in each of the capacitor unit and at least one unit ferroelectric capacitor in the second capacitor unit has a storage medium electrically connected in series or in parallel. Body memory device.
  • the stored information can be read out nondestructively, and the ferroelectric memory having a long life and suitable for integration is provided.
  • Providing equipment Can be.
  • a ferroelectric capacitor having a twisted hysteresis characteristic for realizing the non-destructive read ferroelectric memory device having a large SZN.
  • a ferroelectric capacitor having desired twisted hysteresis characteristics can be formed.
  • the ferroelectric memory devices of the first and second embodiments can be applied to multi-valued memory of two or more values by using the same back switching phenomenon in two or more values. .
  • Figure 13A shows the twisted hysteresis characteristic of the ferroelectric used in the ferroelectric memory device, that is, the multiple hysteresis characteristic. Inflection points are shown, and two inflection points are shown for a negative electric field. An example of this ferroelectric memory element will be described below.
  • FIGS. 14A to 14H are diagrams showing the multi-hysteresis characteristic and the spontaneous polarization.
  • Ferroelectric having multiple hysteresis characteristics Equivalently, considered parallel connection of C FE L OW showing the C FE H IgH and low coercive field characteristics showing a high coercive electric field characteristics.
  • a circuit configuration in which a ferroelectric capacitor is directly connected to a dielectric capacitor is used to measure the amount of charge associated with the polarization reversal of the ferroelectric (Soyer-tower method).
  • the soy tower method uses the dielectric capacity to transfer the charge associated with the polarization reversal. This is a method of transferring the data to a computer for observation. At this time, the electric charge stored in the ferroelectric capacitor and the dielectric capacitor is free, and due to the leakage resistance, the charge gradually decreases to zero regardless of the presence or absence of spontaneous polarization of the ferroelectric.
  • X represents a composition ratio and ranges from 0.2 to 1.0
  • y represents a composition ratio and ranges from 0.85 to 1.0.
  • 1 3 voltage-current conversion element 1 3 shown in B is has a good UNA characteristic of FIG. 1 3 C, 0. 7 when the (m A), when the 2 V L 1. 4 (m A ) Is shown.
  • V RE AD a predetermined voltage
  • FIG. 15A a ferroelectric memory element included in a ferroelectric memory device according to a 12th embodiment of the present invention.
  • This ferroelectric memory element is configured as shown in FIG. 15A using the multi-hysteresis ferroelectric capacitor described above.
  • FIG. Referring to A and B, we clarify the relationship between spontaneous polarization and memory voltage.
  • Uni ferroelectric Note Li element by shown in FIG. 23 A is strongly dielectric key Yapashita (C FE) 206, and Soiya Tower circuit consisting of series connection of the dielectric capacitor) 20 7, a ferroelectric capacitor (C FE ) Charge-effect transistor (n Type MO SFET) 209 controlled by charge stored in dielectric capacitor (CL) 207 according to polarization change of 206, and dielectric capacitor (C j ⁇ ) 207 and a resistance element 208 connected in parallel.
  • a voltage signal is input from the input terminal 204, and the memory is input. Write operation to.
  • the voltage applied to the ferroelectric capacitor (C Fr ) 201 is applied to the V F dielectric capacitor (C,) 202 by polarization of the ferroelectric capacitor (C FE ) 201.
  • the pressure V e, and to those graphed is a hysteresis Li cis characteristics shown in FIG. 22 B.
  • FIG. 23A by providing the resistive element 208, the above-described excess charge is removed, and the holding state is the same as the direction of the voltage applied during polarization, as shown in the hysteresis characteristic shown in FIG. 23B. Has been obtained.
  • the second embodiment has the configuration shown in FIG. 15A, and the ferroelectric capacitor (C FE ) 206 of FIG. 23 A is changed to a multi-hysteresis ferroelectric capacitor (C FE ) 31. It is the structure which did.
  • the retained information is O mA, 1.5 mA, and 3 mA, respectively. Determine the current flowing through 24 Can be detected.
  • FIGS. 16A, 16B and 16C a ferroelectric memory element constituting a ferroelectric memory device according to a thirteenth embodiment of the present invention will be described with reference to FIGS. 16A, 16B and 16C.
  • V MP I V MPO by applying ⁇ v 2 becomes the magnitude of the sinusoidal voltage (or pulse)
  • 3 V MP2
  • the characteristics of the voltage-current conversion elements 33 and 34 used for reading are as shown in Fig. 16C with respect to the voltage between terminals 40 and 35 or the voltage between terminals 39 and 35. Is shown. Reading in the ferroelectric memory element of this embodiment is performed by connecting the terminals 37 and 38 to ground, connecting the terminal 39 to a positive power supply, and connecting the terminal 40 to a negative power supply.
  • the voltage-current conversion element 33 is a p-type MOS transistor
  • the voltage-current conversion element 34 is an n-type MOS transistor.
  • the read element composed of the voltage-current conversion element 33 and the voltage-current conversion element 34 has a terminal 39 connected to the positive power supply and a terminal 40 connected to the negative power supply. It is assumed that the relationship between the current I flowing from the terminal 36 and the potential V of 35 is set as shown in FIG. 16C.
  • the resistor is lk ⁇ and the storage state is + V M , a current of -1 mA flows from the output terminal 36, so that the potential difference of --IV can be detected and At v M , the potential difference is + IV.
  • the storage state is 0, a potential difference of 0 V can be detected.
  • the ferroelectric memory device includes a ferroelectric capacitor 41 having a multi-history characteristic, a dielectric capacitor 42 arranged in series with the ferroelectric capacitor 41, and a dielectric capacitor 42. And a reading circuit including voltage-to-current conversion elements 44 and 45.
  • the multi-hysteresis characteristics of this ferroelectric capacitor are assumed to be the same as the characteristics shown in FIGS. 14A to 14H.
  • the voltage between the terminals 46 and 47 is controlled to be in the state 1 (polarization Pi) shown in FIGS. 14A and 14B. Then, the voltage v P1 is held as a voltage of the opposite polarity to the voltage v p2 .
  • the power supply for writing has both positive and negative polarities, and the magnitude is arbitrarily controlled.
  • p
  • a positive power supply is connected to the terminal 4S
  • a negative power supply is connected to the terminal 49
  • the potential of the terminal 50 changes from negative to positive with respect to the ground. Then, the characteristics shown in FIG. 16C are shown.
  • FIGS. 18A, B and C An example of a ferroelectric memory device will be described.
  • the ferroelectric memory device of this embodiment includes a ferroelectric capacitor 61, a dielectric capacitor 62, a resistor 63, a p-type MOS, and a n-type MOS formed on a silicon (Si) substrate.
  • Voltage-to-current conversion elements 64 and 65 each formed of a MOS transistor.
  • 66 is an input terminal
  • 67 is an output terminal
  • 68 is a positive power supply terminal
  • 69 is a negative power supply terminal.
  • the voltage-current conversion characteristics as shown in FIG. 16C can be realized by performing the electrical wiring shown in FIG. 18C using the p-M0S, n-MOS transistor.
  • the M0S type transistor is a field-effect type transistor, in which 0 N and 0 FF control of the transistor is performed by an electric field, and current injection is required as in a bipolar type transistor. do not do.
  • the detection can be performed without reducing the charge, and a long-term storage is possible.
  • a parasitic capacitance called Ces is generated between the terminal 72 and the terminal 71 shown in FIG. 19A.
  • This is a parasitic capacitance formed between the PO 1 y Si gate electrode and the P + diffusion layer (source) by using the gate oxide film Si 0 2 as a dielectric. It depends on the thickness d of the oxide film and the overlapped area S of the P o 1 y Si gate electrode and the P + diffusion layer (source). In other words,
  • the capacitance value is increased. Also, if the thickness d is reduced, the capacitance value also increases.
  • the ferroelectric material having a multi-hysteresis characteristic
  • a device was created by controlling only the overlap area so as to have a value 10 times the capacitance value near the V bias.
  • a resistor element is made by separately providing a resistor made of Po1ySi between terminal 71 and terminal 72.
  • the memory element according to the present invention accesses the memory for 10 to 8 sec, and the capacitance of the charge holding capacitor is set to lxl CT 13 (F).
  • the resistance created by was set to 5 ⁇ 10 4 ⁇ .
  • FIG. 2 OA and B a 17th embodiment according to the present invention will be described.
  • a ferroelectric memory device as an example and a ferroelectric memory element used in the ferroelectric memory device will be described.
  • FIG. 2OA shows the configuration of a ferroelectric memory element (unit memory cell) used in the ferroelectric memory device of this embodiment.
  • FIG. 20B shows a ferroelectric memory device configured using this ferroelectric memory element.
  • two unit memory cells are used for ease of explanation.
  • the present invention is not limited to this, and a matrix structure in which many memory cells are arranged is used. Of course, it is preferable.
  • the ferroelectric memory element (unit memory cell) shown in FIG. 20A is the same as the ferroelectric memory element shown in FIG. 13B, and detailed description is omitted here. .
  • the ferroelectric memory device shown in FIG. 20B has two ferroelectric memory elements 81, 1 (hereinafter, referred to as cells 1 and 2) and a write-in device for selecting a cell into which data is to be written.
  • Address decoder 101 bipolar write power supply for writing multi-valued polarization during writing (voltage magnitude varies according to information to be written) 103, read for selecting cell from which data is read It comprises an address decoder 1-2, a read current detection circuit 106 for detecting read current and discriminating information, and a read / write (RZW) control circuit 105.
  • the transistor switch 82 (SW1) or 92 When writing is not being performed, the transistor switch 82 (SW1) or 92 is always connected to the cell transistor 84 (W-SW1) or 94 via the inverter 83 or 92.
  • the grounded part is grounded (when storing and reading out the memory).
  • the read address decoder 102 turns on the transistor 86 (R-SW2) or 96, and the cell is connected to the read power supply 104. At the same time, the transistor 85 (W-SW2) or 95 is turned off (off) by the RZW control circuit 105.
  • the current flowing from the read power supply 104 to the cell 1 or 2 has a value determined by the polarization state of the cell, and this current flows into the read current detection circuit 106.
  • the characteristics of the voltage-to-current conversion element of the cell are the characteristics shown in FIG. 15B, and the multiple hysteresis characteristics are those shown in FIGS. 14A to 14H.
  • Figure 14 A, shown in B, memory voltage polarization state P j of the polarization state of the state 1 is the V M in FIG. 1 5 B, the polarization state P 2 in the state 3 shown FIG. 14 E, the F the Note Li voltage at the time of FIG. 1 5 B - a V M.
  • it shows 0 V in a state equivalent to states 2 and 4 shown in Figs. 14C and 14D and Figs. 14G and 14H.
  • the memory cells M11 to M33 shown in FIG. 21A correspond to the ferroelectric memory element shown in FIG. 17 of the fourteenth embodiment described above. Further, in this embodiment, the arrangement of three rows and three columns is adopted in order to make the explanation easy to understand, but the present invention is not limited to this.
  • memory cells M11 to M33 are arranged in a matrix, and switches S1 to S3 are provided for each row.
  • the current output from the memory element is 0 A.
  • the nonvolatile memory voltage 0.8 V is stored in the dielectric capacitor 42, If the current of 500 / iA and 10.8 V are stored, the current of 500 A is output from the output terminal 51 (see FIG. 17).
  • an n-dimensional matrix operation circuit By expanding this to n dimensions, an n-dimensional matrix operation circuit can be constructed. In addition, as can be seen from such an operation, since it is a parallel operation unit, a very high-speed product-sum operation unit can be realized.
  • a ferroelectric material that has multi-hysteresis characteristics with at least three or more stable polarization values and stores multi-valued voltages associated with the multi-hysteresis characteristics as information
  • a ferroelectric capacitor formed between materials
  • a dielectric capacitor connected in series to the ferroelectric capacitor
  • a voltage-current conversion element for reading multi-valued voltage information associated with the multiple hysteresis characteristics stored in the ferroelectric capacitor
  • the ferroelectric memory device of (1) Since the ferroelectric memory device of (1) has three or more stable polarization values, three or more pieces of voltage information stored when the polarization state changes can be obtained.
  • the information that can be stored in a normal ferroelectric memory device is binary, but the ferroelectric memory device of the present invention has a multi-layered structure.
  • a ferroelectric material having a steeresis characteristic three or more values can be stored.
  • a voltage-to-current conversion element instead of an ON-OFF switch as the readout element, multi-valued storage and multi-valued read-out are possible.
  • a dielectric capacitor connected in series with the ferroelectric capacitor
  • a ferroelectric element capable of multi-value storage comprising: a resistance element connected in parallel to the ferroelectric capacitor; Body memory device.
  • the voltage-current conversion element according to (2) is connected to a continuous portion between the ferroelectric capacitor and the dielectric capacitor.
  • ferroelectric memory devices of (2) and (3) have three or more stable polarization values, three or more pieces of voltage information corresponding to the polarization state can be obtained. Since voltage information can be directly stored, long-term memory is possible, and multi-value storage of three or more values is possible.
  • the voltage-current conversion element for reading multi-valued voltage information is an element whose current is controlled with respect to a positive voltage. And an element whose current is controlled with respect to a negative voltage.
  • the ferroelectric memory device is a storage element capable of storing and reading out multi-valued information of three or more values. Since conversion is possible, voltage information corresponding to the polarization state can be stored for a long period of time in both polarities, and multi-value reading of the information voltage is possible.
  • the voltage-current conversion element described in the above (3) or (4) is constituted by a MOS type transistor.
  • the ferroelectric memory device according to the present invention of (5) is realized as a conventional multi-valued memory S i device (not realized by a device).
  • a ferroelectric memory device can be created in monolithic on a substrate.
  • the dielectric capacitor, a gate capacitance of M 0 ST r, the resistance element is made of polycrystalline silicon.
  • the ferroelectric memory device according to the present invention (6) uses a resistive element technology using a top-down silicon to provide an unprecedented multi-value storage memory element.
  • the structure for realizing such a ferroelectric memory device is simplified, and a separate dielectric capacitor is manufactured by using the gate capacitance of the MOS transistor as a dielectric capacitor.
  • the resistive element is made of polysilicon, which is usually used in the Si process, to prevent the process from becoming complicated.
  • (7) In the ferroelectric memory device described in (1) or (2) above, a plurality of ferroelectric memory elements are arranged, a desired memory element is selected, and writing / reading is performed. Have means to do.
  • Such a ferroelectric memory device of (7) has characteristics of multi-value storage and nonvolatile storage by selecting a desired ferroelectric memory element and performing writing and reading. This is a ferroelectric memory device capable of non-destructive and multi-value storage.
  • a plurality of output terminals of the memory element described in (3) or (4) above are shared, and the vector information input from the input terminal and the vector information stored in the memory element in advance are used.
  • the matrix operation with the torque information is processed in parallel, and the multiplication result is output from the output terminal.
  • Such a ferroelectric memory device of (8) can perform a vector operation of information having three or more values and performs a high-speed matrix operation.
  • a ferroelectric memory element having a multiple hysteresis characteristic having at least three or more stable polarization values is provided.
  • Ferroelectric used A memory device can be provided.
  • the ferroelectric memory device of the present invention has a ferroelectric memory having multiple hysteresis characteristics in the storage medium. by using the body, rests may multilevel storage of three or more values at least 0
  • the ferroelectric memory device according to the present invention as described above can be widely used as a nonvolatile memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)

Abstract

A ferroelectrique capacitor used in a memory cell section of a ferroelectric memory device comprises a polarization P1 region having a film thickness (d) and an area S1, and a polarization P2 region which is a component in the P1 direction of oblique polarization P2 having only one electrode section and an area S2. The combined hysteresis characteristics of the polarizations P1 and P2 include a twisted hysteresis characteristic. When the memory state of the twisted hysteresis characteristic is '0' and '1', nondestructive readout is possible due to a back switching phenomenon. A ferroelectric memory device of another mode of this invention comprises a ferroelectric capacitor (11) which has a multiplex hysteresis characteristic having at least three stable polarization values attributed to the twisted hysteresis characteristic and is formed by sandwiching a ferroelectric material which stores multilevel voltages resulting from the multiplex hysteresis characteristic as information between electrode materials, dielectric capacitor (12) connected in series to the capacitor (11), and voltage-current converting element (16) which reads out the multilevel information stored in the capacitor (11).

Description

明 細 書 強誘電体 メ モ リ 装 置 技術分野  Description Ferroelectric memory device Technical field
本発明は、 強誘電体材料を情報記録媒体に用いた強誘電体 メ モ リ装置に係り、 特に、 ッイ スティ ド ♦ ヒステリ シス特性 を利用して非破壊読出しを行う強誘電体メモ リ装置に関する, また、 本発明は、 強誘電体を記録媒体に用いる強誘電体メ モ リ装置に係り、 特に、 ッイ スティ ド · ヒ ステ リ シス特性を 利用して安定な分極値を少なく とも 3個以上有する多重ヒス テ リ シス特性を示す強誘電体メ モ リ素子を用いた強誘電体メ モリ装置に関する。 背景技術  The present invention relates to a ferroelectric memory device using a ferroelectric material for an information recording medium, and in particular, to a ferroelectric memory device for performing non-destructive readout using a twisted- ♦ hysteresis characteristic. Also, the present invention relates to a ferroelectric memory device using a ferroelectric for a recording medium, and more particularly to a ferroelectric memory device capable of reducing a stable polarization value by at least 3 using a twisted-hysteresis characteristic. The present invention relates to a ferroelectric memory device using a ferroelectric memory element exhibiting multiple hysteresis characteristics having more than one device. Background art
一般に、 強誘電体材料はヒ ステリ シス特性を有し、 この特 性を利用した不揮発性メモリ と して、 情報を記憶できること が知られている。 従来、 これらの強誘電体メ モ リ の読み出し 法は、 選択セルの再書き込みが必要な分極反転電流を利用す る破壊読み出しにより行われている。  In general, it is known that ferroelectric materials have hysteresis characteristics and can store information as a non-volatile memory using this characteristic. Conventionally, the reading method of these ferroelectric memories has been performed by destructive reading using a domain-inverted current that requires rewriting of a selected cell.
一方、 本出願人よる特願平 5 — 6 8 8 9 0号と、 他の出願 人による U S P , 5 1 4 0 1 5 4 8号および特開平 5— 1 9 8 1 9 4号公報においては、 分極状態によつて支配される容 量差を利用した非破壊読み出し法による強誘電体メモリが提 案されている。 On the other hand, in Japanese Patent Application No. 5-68890 filed by the present applicant, and in USP 5,514,154, and Japanese Patent Application Laid-Open No. 5-198,194 filed by other applicants, A ferroelectric memory based on a non-destructive readout method using a capacitance difference governed by the polarization state is proposed. Is being planned.
しかしながら、 前述した従来の強誘電体メ モ リ には、 以下 のような欠点がある。  However, the conventional ferroelectric memory described above has the following disadvantages.
まず、 破壊読み出し法による強誘電体メ モ リ は、 分極反転 が繰り返されるために強誘電性の劣化により、 残留分極が小 さ く なるために、 メ モ リ装置と しては、 フ ァティ ーグの問題 等で高寿命化が難かしいだけでなく 、 複雑な回路による再書 き込みが必要となる。  First, ferroelectric memory by the destructive readout method is characterized by the fact that polarization reversal is repeated and ferroelectricity deteriorates, so that the remanent polarization is reduced. It is not only difficult to prolong the service life due to problems such as the problem of rewriting, but also it is necessary to rewrite with a complicated circuit.
さ らに、 本出願人や他の出願人による非破壊読出し法によ る強誘電体では、 分極状態によって、 支配されれる容量差を 利用して、 抗電界より小さい読み出し電界で情報を非破壊読 み出しを行っている。 しかるに、 このような強誘電体メモリ は、 実際に、 非破壊読出しを行う と、 記録時と未記録時との 容量値の差が小さいため、 S /Nが悪く なると共に、 セル集 積化に伴って、 信号レベルが小さ く なるため、 データとノィ ズとの区別ができなく なる場合があり、 高密度化が難かしい £ 一方、 従来においては強誘電体バルクに薄膜 トラ ンジスタ を形成した不揮発性半導体メモ リ素子が提案されている。 ま た近年、 電界効果 トラ ンジスタ ( F E T) のゲー ト上に強誘 電体薄膜を形成した素子 (M F I S素子、 若しく は M F M I S ) で試作されている。 これらの M F I S素子、 若しく は M F M I S素子は、 非破壊読出し可能なメ モ リ素子で有効であ り、 現在、 注目されている構造のメ モ リ素子である。 In addition, in the ferroelectric by the non-destructive read method of the present applicant and other applicants, non-destructive information is read in a read electric field smaller than the coercive electric field by utilizing a capacitance difference controlled by a polarization state. Reading is being performed. However, in such a ferroelectric memory, when non-destructive reading is actually performed, the difference in capacitance between recorded and unrecorded states is small, so that the S / N ratio is deteriorated and the cell integration is reduced. with, since the signal level is Naru rather small, may not be able to distinguish between data and Noi's, densification hardly Kashii £ other hand, a thin film was formed tiger Njisuta ferroelectric bulk in the conventional nonvolatile Semiconductor memory devices have been proposed. In recent years, a prototype device (MFIS device or MFMIS) in which a strong dielectric thin film is formed on a gate of a field effect transistor (FET) has been manufactured. These MFIS elements or MFMIS elements are effective as nondestructive readable memory elements, and are currently attracting attention.
この従来の M F M I S型素子について以下に説明する。  This conventional MFMIS type device will be described below.
図 2 2 Aは、 従来の M F M I S型素子の例と して、 ソィャ — ♦ タワー ( S a w y e r T o w e r ) 回路と電界効果型 トラ ンジスタを組み合わせた構成の等価回路である。 強誘電 体キャパシタ ( C FE) 20 1 と誘電体キャパシ夕 ( C L ) 2 02を直列接続したソィヤー · タヮー回路の端子 204より、 正弦波状の電圧を印加した時の各々のキャパシタ両端電圧は、 図 22 Bに示すようなヒステリ シス特性を示す。 その後、 端 子 204を接地すると、 図 22 Bに示す MQ もしく は、 Mj の点で安定となる。 Figure 22A shows an example of a conventional MFMIS-type device, — ♦ This is an equivalent circuit composed of a combination of a tower (Sawyer Tower) circuit and a field-effect transistor. A ferroelectric capacitor (C FE) 20 1 and the dielectric Capacity evening (CL) 2 02 terminal 204 of Soiya-Tawa circuits connected in series, each capacitor voltage across when applying a sinusoidal voltage, FIG. It shows hysteresis characteristics as shown in 22B. After that, when the terminal 204 is grounded, it becomes stable at the point of M Q or M j shown in FIG. 22B.
例えば、 この 点に於ける V は正の値であり、 MQ 点 に於ける電圧 VeTは、 負の値である。 この誘電体キャパシタ ( C L ) 2に蓄えられた電圧情報は電界効果型 トラ ンジスタ 20 3により、 読出し動作が行われる。 こ こで、 電界効果ト ランジスタ 20 3は、 n型 MO S F E Tであるため、 点 においては、 電界効果型 トラ ンジスタ 203は導通状態とな り、 点に於いては、 非導通状態となり、 及び MQ 点 の電圧の違いを読み出すこ とができる。 尚、 電圧 vei; (=—For example, the in V in this respect is a positive value, in the voltage V eT to M Q point is a negative value. The voltage information stored in the dielectric capacitor ( CL ) 2 is read out by the field-effect transistor 203. Here, the field-effect transistor 203 is an n-type MOSFET, so that at a point, the field-effect transistor 203 is in a conducting state, at a point, a non-conducting state, and The difference in voltage at point Q can be read. Note that the voltage v ei; (= —
V FE) が保持されている問は、 読出しは非破壊で行う ことが できる。 If V FE ) is maintained, reading can be performed nondestructively.
また、 他の例と しては、 非破壊動作可能な記憶素子で強誘 電体薄膜の劣化を防止するものと して、 図 23 Aに示す構成 のメ モ リ素子が考案されている。  Further, as another example, a memory element having a configuration shown in FIG. 23A has been devised as a memory element capable of nondestructive operation to prevent the deterioration of the strong dielectric thin film.
このメ モ リ素子は、 強誘電体キャパシタ 206と、 この強 誘電体キャパシタ 206に直列に接続された誘電体キャパシ タ 207と、 さ らに前記誘電体キャパシタ 207に並列接続 された抵抗素子 208とから構成される。 また、 このメ モ リ 素子には読出し用のスィ ツチ素子と して電界効果型 トラ ンジ スタ 2 0 9が設けられている。 This memory element includes a ferroelectric capacitor 206, a dielectric capacitor 207 connected in series to the ferroelectric capacitor 206, and a resistance element 208 connected in parallel to the dielectric capacitor 207. Consists of Also, this memory The element is provided with a field-effect transistor 209 as a switch element for reading.
このメ モ リ素子は、 強誘電体キャパシタ 2 0 6の分極反転 に伴なう電荷を誘電体キャパシタ 2 0 7に蓄積する際に、 抵 抗素子 2 0 8によ り一部放電するこ とにより、 記憶保持に際 して、 強誘電体キャパシタ 2 0 6で、 強誘電分極によって生 じた電圧が、 誘電体キャパシタ 2 0 7に蓄積された電荷で打 ち消されないようにして、 保持時間を長く するものである。 図 2 3 Bは、 抵抗素子 2 08を誘電体キャパシ夕 2 0 7と 並列に接続した回路における ヒステリ シス特性である。 これ により、 強誘電体キャパシタ 2 0 6に正の電圧を印加すると、 結果と して、 Μριの点で安定し、 その点での強誘電体キャパ シタ 2 0 6の電圧 V FEは正確であり、 印加した電界と同方向 のメモリ電圧が 己憶されていることがわかる。 逆に、 負電界 を印加した場合は、 MpQの点で安定となり、 その点での電圧 V prは負を示す。 In this memory element, when the charge accompanying the polarization reversal of the ferroelectric capacitor 206 is stored in the dielectric capacitor 207, a part of the charge is discharged by the resistance element 208. Therefore, when the memory is held, the voltage generated by the ferroelectric capacitor 206 in the ferroelectric capacitor 206 is prevented from being canceled by the electric charge accumulated in the dielectric capacitor 207, and the holding time is maintained. Is to lengthen. FIG. 23B shows a hysteresis characteristic in a circuit in which the resistive element 208 is connected in parallel with the dielectric capacitor 207. As a result, when a positive voltage is applied to the ferroelectric capacitor 206 , the result is that the ferroelectric capacitor 206 is stabilized at the point Μρι , and the voltage V FE of the ferroelectric capacitor 206 at that point is accurate. It can be seen that the memory voltage in the same direction as the applied electric field is remembered. Conversely, when a negative electric field is applied, the voltage becomes stable at the point of M pQ , and the voltage V pr at that point becomes negative.
このよ うなメ モ リ素子の構成により強誘電体キャパシ夕 2 0 6の 2つの安定な分極 P 0 , P j に対して、 その分極と方 向の電界をもつ、 記憶電圧 Μρϋ, Μριが得られる。 また、 こ のメモ リ素子の読出しに際しては、 誘電体キャパシ夕 2 0 7 の電圧により O N— O F F制御される電界効果型トラ ンジス 夕 2 0 9を介して端子 2 0 5 と接地間に流れる電流の有無の 検出を行う こ とができる。 With such a configuration of the memory element , the storage voltages Μ ρϋ , Μ ρι have two polarizations P 0, P j of the ferroelectric capacitor 206 and electric fields in the directions of the polarizations. Is obtained. When reading this memory element, the current flowing between the terminal 205 and the ground via the field effect transistor 209 which is ON-OFF controlled by the voltage of the dielectric capacitor 207 Can be detected.
前述した 2つの従来例における読出し用 トラ ンジスタと し ては、 実際には正の電圧により導通するスィ ツチ素子と、 負 の電圧により導通スィ ツチ素子を用いることにより、 記憶さ れた情報の極性を読出し電流の向きと して検出するようにし た記憶素子が、 演算器等に用いられている。 前記読出し用ス イ ッチ素子と しては、 シ リ コ ン ( S i ) 基板上に作られた n 型 M O S ト ラ ン ジスタ、 p 型 M O S ト ラ ン ジスタ とで構成さ れる素子が公知である。 As the readout transistors in the two conventional examples described above, In practice, the polarity of the stored information is detected as the direction of the read current by using a switch element that is actually turned on by a positive voltage and a conductive switch element that is turned on by a negative voltage. A storage element is used for an arithmetic unit or the like. As the readout switch element, an element composed of an n-type MOS transistor and a p-type MOS transistor formed on a silicon (Si) substrate is known. It is.
また、 シ リ コ ン ( S i ) デバイス上で、 抵抗素子を作成す る場合には、 M 0 S ト ラ ン ジスタのチ ャ ネル抵抗を用いたり, ドープ ドポ リ シ リ コンで作製することが知られている。  Also, when creating a resistor on a silicon (Si) device, use the channel resistance of the MOS transistor or use a doped polysilicon. It is known.
前述した強誘電体メ モ リ素子を複数個並べて作製したメ モ リ装置が、 既に米国ラム ト ロン社、 ク リサリ ス社等で製造を 試みられている。 また、 記憶素子と して S R A Mを用いた 2 値 ( 1, 0 ) 情報を扱うべク トル乗算器は、 試作段階である ( しかしながら、 前述した従来例のメモ リ装置を構成する強 誘電体メモリ素子に記億できる情報は、 強誘電体のもつ 2つ の安定な分極 , Ρ! に基づく ものであり、 Ρ () → Ρ { 若 しく は P i -* P 0 へ変移する際の分極反転に伴なう電荷情報、 即ち、 通常の強誘電体では安定な分極状態が 2点しかないた め、 記億できる情報は 2値になる ( 2値メ モ リ ) 。 Memory devices manufactured by arranging a plurality of the above-mentioned ferroelectric memory elements have already been manufactured by Lamtron, Krisalis, and others in the United States. Also, a vector multiplier using binary information (1,0) using SRAM as a storage element is in a prototype stage ( however, the ferroelectric memory constituting the conventional memory device described above). serial billion can be information on the device, two stable polarization with a ferroelectric, is based on Ρ, Ρ () → Ρ {young properly is P i -! * polarization inversion at the time of transition to the P 0 The charge information associated with this, that is, ordinary ferroelectrics have only two stable polarization states, so the information that can be stored is binary (binary memory).
一般には、 多数のメ モ リ素子を配列し、 各メ モ リ素子に、 1若しく は 0を記億させて、 それらの 2種類の数値の並びが 記憶情報と して利用されている。  In general, a large number of memory elements are arranged, and each memory element is marked with 1 or 0, and a sequence of these two numerical values is used as stored information.
従って、 記憶すべき情報量が増えると、 それらを記憶する ために必要とするメモリ素子の数が多く なるため、 メモリ装 置が大型化し、 それに伴い消費電力の増大や放熱処理等の問 題も付随する。 さ らには、 これらの記憶装置を制御する制御 回路も大型化し、 演算処理の時間が遅く なり、 制御も複雑に なってしま う。 発明の開示 Therefore, as the amount of information to be stored increases, As the number of memory elements required for this purpose increases, the size of the memory device increases, and this also entails problems such as an increase in power consumption and heat dissipation. Furthermore, the control circuits that control these storage devices also become larger, which slows down the processing time and complicates the control. Disclosure of the invention
従って、 本発明は、 以上のような点にに鑑みてなされたも ので、 ッイ スティ ドヒ ステリ シス特性を利用して非破壊読み 出しでき、 高寿命化され、 且つ集積化に好適する強誘電体メ モ リ装置を提供することを目的とする。  Therefore, the present invention has been made in view of the above-described points, and can perform non-destructive readout by using the twisted-hysteresis characteristic, has a long life, and is ferroelectric suitable for integration. It is intended to provide a body memory device.
また、 本発明はッイ スティ ドヒステリ シス特性を利用して 安定な分極値を少なく と も 3個以上有する多重ヒステリ シス 特性の強誘電体メ モ リ素子を用いる強誘電体メ モ リ装置を提 供することを目的とする。  Further, the present invention provides a ferroelectric memory device using a ferroelectric memory element having a multiple hysteresis characteristic having at least three or more stable polarization values by utilizing the twisted hysteresis characteristic. The purpose is to provide.
本発明の第 1 の態様によると、 上記目的を達成するために, 基板上に形成された導電体膜からなる第 1電極と、 前記第 1 電極上に形成され、 情報が書き込まれる強誘電体膜と、 この 強誘電体膜上に形成された導電体膜から成る複数の第 2電極 とを具備し、 前記第 1電極と前記第 2電極との形成配置関係 若しく は対向する電極面積の大きさのうち、 少なく ともどち らか一方が異なる強誘電体メモ リ装置が提供される。  According to a first aspect of the present invention, in order to achieve the above object, a first electrode formed of a conductive film formed on a substrate, and a ferroelectric formed on the first electrode and on which information is written And a plurality of second electrodes made of a conductor film formed on the ferroelectric film, wherein a formation arrangement relationship between the first electrode and the second electrode or an area of an electrode area opposed to each other is provided. A ferroelectric memory device is provided which differs in at least one of the sizes.
また、 本発明の第 2の態様によると、 絶縁体上に形成され た下部電極膜と、 前記下部電極膜上に形成された強誘電体膜 とこの強誘電体膜上に形成された上部電極膜とから成る単位 強誘電体キャパシタにより形成された複数個の第 1のキャパ シタュニッ トが前記絶縁体上に複数個形成され、 さ らに前記 絶縁体上に前記第 1のキャパシタュニッ ト と抗電界の異なる 複数の第 2のキャパシ夕ュニッ トを形成し、 この第 2のキヤ パシタュニッ トは前記絶縁体上に新たに形成された下部電極 と該下部電極上に形成された強誘電体膜と該強誘電体膜上に 形成され下部電極と形状の異なる上部電極を有した単位強誘 電体キャパシタから構成し、 前記第 1、 第 2のキャパシ夕ュ ニッ トにおいて少なく と も 1個以上が電気的に接続されてい る強誘電体メ モ リ装置が提供される。 According to a second aspect of the present invention, a lower electrode film formed on an insulator, a ferroelectric film formed on the lower electrode film, and an upper electrode formed on the ferroelectric film Unit consisting of membrane A plurality of first capacitor units formed by ferroelectric capacitors are formed on the insulator, and a plurality of first capacitor units having different coercive electric fields from the first capacitor unit on the insulator. The second capacitor unit is formed with a lower electrode newly formed on the insulator, a ferroelectric film formed on the lower electrode, and a ferroelectric film formed on the lower electrode. And at least one or more of the first and second capacitor units are electrically connected to each other. A ferroelectric memory device is provided.
さ らに、 本発明の第 3の態様によると、 少なく とも 3個以 上の安定な電極値を有する多重ヒステリ シス特性を有し、 多 重ヒステリ シス特性に伴なう多値電圧を情報と して記憶する 強誘電体を電極材料で挾んで形成する強誘電体キャパシタと、 前記強誘電体キヤパシタに直列に接続された誘電体キヤパシ 夕と、 前記強誘電体キャパシタに記憶される前記多重ヒステ リ シス特性に伴なう多値電圧情報を読み出す電圧電流変換素 子とで構成された強誘電体メ モ リ装置が提供される。  Furthermore, according to the third aspect of the present invention, the multi-hysteresis characteristic having at least three or more stable electrode values is provided, and the multi-valued voltage accompanying the multi-hysteresis characteristic is used as information. A ferroelectric capacitor formed by sandwiching a ferroelectric between electrode materials; a dielectric capacitor connected in series to the ferroelectric capacitor; and the multiple hysteresis stored in the ferroelectric capacitor. Provided is a ferroelectric memory device including a voltage-current conversion element for reading out multi-valued voltage information accompanying the lysis characteristic.
以上のような第 1の態様による強誘電体メ モ リ装置は、 強 誘電体キャパシタに電界をかけると、 第 2の電極面積部分の 電界強度が第 1 の電極面積部分の電界強度に比べて小さ く な り、 あたかも抗電界 (または膜厚) と面積の異なる強誘電体 キャパシタを並列接続したのと同じ効果をもつことになり、 ッイスティ ドヒステリ シス特性が得られる。 このツイスティ ドヒステ リ シス特性のメモ リ状態 " 0 " とメモ リ状態 " 1 " の 2値において、 バッ クスィ ツチング現象による記億される 情報が非破壊読み出しされる。 In the ferroelectric memory device according to the first aspect as described above, when an electric field is applied to the ferroelectric capacitor, the electric field strength of the second electrode area is smaller than the electric field strength of the first electrode area. It becomes smaller, and has the same effect as if a ferroelectric capacitor with a different coercive electric field (or film thickness) and area were connected in parallel, and a twisted hysteresis characteristic was obtained. The memory state "0" and memory state "1" of this twisted hysteresis characteristic In these two values, the information stored by the back-switching phenomenon is read non-destructively.
また、 第 2の態様による強誘電体メ モ リ装置は、 基板若し く は絶縁体上に強誘電体の両側から導体からなる電極で挾み 第 1の強誘電体キャパシタ (ユニッ ト) を形成し、 さ らに抗 電界若しく は膜厚の異なる第 2の強誘電体キャパシタ (ュニ ッ ト) を並列的若し く は積層形成して構成し、 所定の接続に より、 ッイスティ ドヒステリ シス特性が得られる。  Further, the ferroelectric memory device according to the second embodiment is such that a first ferroelectric capacitor (unit) is sandwiched between electrodes made of a conductor on both sides of a ferroelectric substance on a substrate or an insulator. And a second ferroelectric capacitor (unit) having a different coercive electric field or a different film thickness is formed in parallel or in a stacked configuration. A cis characteristic is obtained.
さ らに、 第 3の態様による構成の強誘電体メ モ リ装置は、 少なく とも 3個以上の安定な分極値がある多重履歴特性を有 する強誘電体キャパシタと該強誘電体キヤパシタに直列接続 された誘電体キヤパシ夕とからなる強誘電体メモリ素子によ り構成され、 前記多重ヒステリ シス特性を利用して書き込ま れた多値電圧情報を電圧電流変換素子で読み出すことにより、 3個以上の安定な分極値で分極状態が変化する際に蓄えられ る電圧情報が 3個以上得られる。 図面の簡単な説明  Further, the ferroelectric memory device having the configuration according to the third aspect includes a ferroelectric capacitor having multiple hysteresis characteristics having at least three or more stable polarization values and a serial connection with the ferroelectric capacitor. A ferroelectric memory element consisting of a connected dielectric capacitor and a multi-valued voltage information written using the multiple hysteresis characteristic is read out by a voltage-to-current conversion element. Three or more pieces of voltage information can be obtained when the polarization state changes with a stable polarization value. BRIEF DESCRIPTION OF THE FIGURES
図 1 は本発明による第 1実施例と しての強誘電体メ モ リ装 置における合成ヒステリ シス特性を示す図 ;  FIG. 1 is a diagram showing a combined hysteresis characteristic in a ferroelectric memory device according to a first embodiment of the present invention;
図 2は第 1実施例の強誘電体メ モ リ装置における強誘電体 キャパシタの構成を示す図 ;  FIG. 2 is a diagram showing a configuration of a ferroelectric capacitor in the ferroelectric memory device of the first embodiment;
図 3は図 2に示した強誘電体キャパシタをメモ リセルァレ ィと して配置し、 その周辺回路を接続した構成を示すブロッ ク図 ; 図 4は本発明による第 2実施例の強誘電体メ モ リ装置にお ける強誘電体キヤパシタの上部電極の形状が異なる構成例を 示す図 ; FIG. 3 is a block diagram showing a configuration in which the ferroelectric capacitors shown in FIG. 2 are arranged as a memory cell and peripheral circuits are connected; FIG. 4 is a diagram showing a configuration example of the ferroelectric memory device according to the second embodiment of the present invention in which the shape of the upper electrode of the ferroelectric capacitor is different;
図 5は本発明の第 3実施例による強誘電体メ モ リ装置と し て図 2若しく は図 4に示した構造の抗電界が異なる強誘電体 キャパシタを並列接続した構成例を示す図 ;  FIG. 5 is a view showing a configuration example of a ferroelectric memory device according to a third embodiment of the present invention in which ferroelectric capacitors having different coercive electric fields having the structure shown in FIG. 2 or FIG. 4 are connected in parallel. ;
図 6は本発明による第 4実施例と しての強誘電体メモ リ装 置における異なる強誘電体材料で形成した抗電界が異なる強 誘電体キヤパシタを並列接続した構成を示す図 ;  FIG. 6 is a diagram showing a configuration in which ferroelectric capacitors formed of different ferroelectric materials and having different coercive electric fields are connected in parallel in a ferroelectric memory device according to a fourth embodiment of the present invention;
図 7 A , Bは本発明による第 5実施例と しての強誘電体メ モ リ装置における対称ヒステリ シス特性を示す強誘電体キヤ パシ夕と非対称ヒステリ シス特性を示す強誘電体キャパシタ とを並列接続した構成例とその合成ヒステリ シス特性を示す 図 ;  7A and 7B show a ferroelectric capacitor showing a symmetric hysteresis characteristic and a ferroelectric capacitor showing an asymmetric hysteresis characteristic in a ferroelectric memory device according to a fifth embodiment of the present invention. Diagram showing a configuration example connected in parallel and its combined hysteresis characteristics;
図 8 A乃至 Eは本発明による第 6実施例と しての強誘電体 メモ リ装置における非対称ヒステリ シス特性を有する強誘電 体キャパシタの積層構造例及びそれの特性を示す図 ;  8A to 8E are diagrams showing an example of a laminated structure of a ferroelectric capacitor having an asymmetric hysteresis characteristic in a ferroelectric memory device according to a sixth embodiment of the present invention and the characteristics thereof;
図 9 A, Bは本発明による第 7実施例と しての強誘電体メ モリ装置における非対称ヒステリ シス特性を有する強誘電体 キャパシタの他の構造例及び特性を示す図 ;  9A and 9B are diagrams showing another structural example and characteristics of a ferroelectric capacitor having asymmetric hysteresis characteristics in a ferroelectric memory device according to a seventh embodiment of the present invention;
図 1 0は本発明による第 8実施例と しての強誘電体メモリ 装置における基板上に並列形成された強誘電体キヤパシ夕の 積層構造の一例を示す図 ;  FIG. 10 is a diagram showing an example of a laminated structure of ferroelectric capacitors formed in parallel on a substrate in a ferroelectric memory device according to an eighth embodiment of the present invention;
図 1 1 は本発明による第 9実施例と しての強誘電体メモリ 装置における基板上に並列形成された強誘電体キャパシ夕の 積層構造のその他の一例を示す図 ; FIG. 11 shows a ferroelectric memory device formed in parallel on a substrate in a ferroelectric memory device according to a ninth embodiment of the present invention. View showing another example of the laminated structure;
図 1 2は本発明による第 1 0実施例と しての強誘電体メモ リ装置における基板上に積層して形成された強誘電体キャパ シタの積層構造の一例を示す図 ;  FIG. 12 is a diagram showing an example of a laminated structure of ferroelectric capacitors formed by being laminated on a substrate in a ferroelectric memory device according to a tenth embodiment of the present invention;
図 1 3 A, B , Cはそれぞれ本発明の第 1 1実施例と して の強誘電体メ モ リ装置に用いられる強誘電体メ モ リ素子の多 重ヒ ステ リ シス特性、 該強誘電体メ モ リ素子の構成及び該強 誘電体メ モ リ素子の電流電圧特性を示す図 ;  FIGS. 13A, 13B and 13C show the multiple hysteresis characteristics of the ferroelectric memory element used in the ferroelectric memory device according to the eleventh embodiment of the present invention. A diagram showing the configuration of the dielectric memory device and the current-voltage characteristics of the ferroelectric memory device;
図 1 4 A乃至 Hは図 1 3 Bに示した強誘電体メ モ リ素子の 多重ヒ ステリ シス特性と、 自発分極について示した図 ; 図 1 5 A, Bはそれぞれ本発明の第 1 2実施例と しての強 誘電体メ モ リ装置に用いられる強誘電体メ モ リ素子の構成及 び該強誘電体メ モ リ素子の電流電圧特性を示す図 ;  FIGS. 14A to 14H show the multi-hysteresis characteristics and spontaneous polarization of the ferroelectric memory device shown in FIG. 13B; FIGS. 15A and 15B show the first and second embodiments of the present invention, respectively. FIG. 1 is a diagram showing a configuration of a ferroelectric memory device used in a ferroelectric memory device as an example and a current-voltage characteristic of the ferroelectric memory device;
図 1 6 A乃至 Cはそれぞれ本発明の第 1 3実施例としての 強誘電体メ モ リ装置に用いられる強誘電体メ モ リ素子の構成、 該強誘電体メ モ リ素子の多重ヒステリ シス特性及び該強誘電 体メ モ リ素子の電流電圧特性を示す図 ;  FIGS. 16A to 16C show the configuration of a ferroelectric memory device used in a ferroelectric memory device according to a thirteenth embodiment of the present invention, and multiple hysteresis of the ferroelectric memory device. A diagram showing characteristics and current-voltage characteristics of the ferroelectric memory element;
図 1 7は本発明による第 1 4実施例と しての強誘電体メ モ リ装置の構成を示す図 ;  FIG. 17 is a diagram showing a configuration of a ferroelectric memory device as a 14th embodiment according to the present invention;
図 1 8 A〜 Cはそれぞれ本発明による第 1 5実施例と して の強誘電体メ モ リ装置の構造及び構成を示す図 ;  FIGS. 18A to 18C show the structure and configuration of a ferroelectric memory device according to a fifteenth embodiment of the present invention, respectively;
図 1 9 A, Bはそれぞれ本発明による第 1 6実施例として の強誘電体メ モ リ装置に用いられる強誘電体メモ リ素子の構 造を示す図 ;  FIGS. 19A and 19B are diagrams showing the structure of a ferroelectric memory element used in a ferroelectric memory device as a 16th embodiment according to the present invention;
図 2 0 A, Bはそれぞれ本発明による第 1 7実施例として の強誘電体メ モ リ装置に用いられる強誘電体メ モリ素子 (単 位メ モ リセル) の構成及び強誘電体メ モ リ装置全体の回路構 成を示す図 : FIGS. 20A and B show a 17th embodiment according to the present invention, respectively. Figure showing the configuration of the ferroelectric memory element (unit memory cell) used in the ferroelectric memory device of the present invention and the circuit configuration of the entire ferroelectric memory device:
図 2 1 A , Bはそれぞれ本発明による第 1 8実施例と して の強誘電体メモリ装置による積和演算用マ ト リ ッ クス演算器 への応用例を示す図 ;  FIGS. 21A and 21B are diagrams each showing an application example to a matrix calculator for multiply-accumulate operation by a ferroelectric memory device according to an eighteenth embodiment of the present invention;
図 2 2 A , Bは、 それぞれ従来の M F I S型素子の回路例 及び該 M F M I S型素子のヒステリ シス特性を示す図 ;  FIGS. 22A and 22B show a circuit example of a conventional MIS element and a hysteresis characteristic of the MIS element, respectively;
図 2 3 A, Bは、 それぞれ従来の非破壊動作可能な記憶素 子の構成例及びその記憶素子のヒステリ シス特性を示す図 ;  Figures 23A and B are diagrams showing a configuration example of a conventional non-destructive storage element and a hysteresis characteristic of the storage element, respectively;
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
先ず、 図 1 乃至図 1 2を参照して本発明による上記第 1乃 至第 2の態様に含まれる第 1乃至第 1 0の実施例を説明する 図 1 は、 本発明による第 1実施例と しての強誘電体メモリ 装置における合成ヒステリ シス特性を示す。 図 2は、 強誘電 体キヤパシ夕の構成を示す。  First, first to tenth embodiments included in the first to second embodiments according to the present invention will be described with reference to FIGS. 1 to 12. FIG. 1 shows a first embodiment according to the present invention. 2 shows a composite hysteresis characteristic of the ferroelectric memory device of FIG. Figure 2 shows the configuration of the ferroelectric capacitor.
図 1 に示す合成ヒステリ シス特性は、 後述するように強誘 電体キャパシタの第 1電極と第 2電極の形成配置関係と対向 する面積の大きさのうち、 少なく と もどちらか一方を異なる ように して得た場合の合成ヒステリ シス (以下、 ッイスティ ドヒステリ シスと称する) 特性である。  The composite hysteresis characteristic shown in FIG. 1 is such that at least one of the areas of the areas facing the formation and arrangement of the first and second electrodes of the strong dielectric capacitor differs as will be described later. This is the combined hysteresis (hereinafter, referred to as twisted hysteresis) characteristic obtained when the above is obtained.
このツイスティ ドヒステリ シス特性は、 抗電界 (または膜 厚) と面積の異なる強誘電体キャパシタを並列接続すること で得られることが、 本出願人により承継された米国特許出願 U S S N 3 2 8, 1 1 0及び日本国特許出願特願平 5 - 2 6 9 1 6 6号に詳しく 記載されており、 こ こでの説明は省略す る o This twisted hysteresis characteristic is due to the Thickness) and ferroelectric capacitors having different areas can be obtained in parallel, and the US patent application USSN 328,110, filed by the present applicant and Japanese Patent Application No. Hei 5-5-2, filed by the present applicant. It is described in detail in No. 6 916, and the explanation is omitted here o
次に、 図 2に示すように、 強誘電体キャパシタ 1 には、 強 誘電体 2の下部に導体からなる下部電極 3が設けられると共 に、 該下部電極 3より電極面積が小さい上部電極 4が強誘電 体 2の上部に ¾けられている。  Next, as shown in FIG. 2, the ferroelectric capacitor 1 is provided with a lower electrode 3 made of a conductor below the ferroelectric 2 and an upper electrode 4 having a smaller electrode area than the lower electrode 3. Is provided above the ferroelectric 2.
後述する強誘電体メ モ リ装置のメ モ リ セルアレイ部に配置 される単位メ モ リセル部に使用される強誘電体 2において、 その膜厚 d と し、 上部電極 4の電極の面積 S i に発生する分 極 P i 部分と、 上部電極 4が設けられず下部電極だけの片側 電極部しかもたない部分の面積 S 2 に発生する斜め分極 P 2 とすると、 この斜め分極 P 2 を垂直方向 方向) に変換 すると P 2 ' になる ものとする。 よって、 このメモリセル部 の分極は、 P i 成分と、 P 2 ' 成分からなるものとする。 そ れらの分極 P i と Ρ 2 ' の合成ヒステリ シス特性は図 1 に示 すようになる。 The thickness d of the ferroelectric material 2 used for the unit memory cell unit arranged in the memory cell array unit of the ferroelectric memory device described later is defined as the area S i of the electrode of the upper electrode 4. Assuming that the diagonal polarization P 2 is generated in the vertical direction P 2 , the diagonal polarization P 2 is generated in the area S 2 of the dipole P i generated in the area S 2 having only the lower electrode without the upper electrode 4 and having only one side electrode part. Direction), it becomes P 2 '. Therefore, it is assumed that the polarization of the memory cell portion is composed of the P i component and the P 2 ′ component. Figure 1 shows the combined hysteresis characteristics of the polarizations P i and Ρ 2 '.
つま り、 図 2の強誘電体キャパシタ 1 に電界をかけると、 面積 s 2 部分の電界強度が面積 S 部分の電界強度に比べて 小さ く なり、 あたかも互いに抗電界 (または膜厚) と面積の 異なる 2つの強誘電体キャパシタを並列接続したのと同じ効 果をもつことになり、 図 1 に示すようなッイスティ ドヒステ リ シス特性を描く ことになる。 一般に、 強誘電体のヒステリ シス特性についてバッ クスィ ツチングと呼ばれる現象がある。 これは、 例えば抗電界より 大きい電界を印加して、 分極を飽和状態に して電界方向に配 列させた後、 電界の強さをゼロに戻したとき、 また、 電界方 向が同じ読み出しパルスを印加し、 ゼロに戻すと再び初期の 分極状態に戻る現象をさ している。 図 2に示すような強誘電 体キャパシタでは、 2つの抗電界の違う強誘電体キヤパシ夕 を並列接続したのと同じと考えられるため、 図 1 に示すよう なッイ スティ ドヒステ リ シス特性のメ モ リ状態 " 0 " とメモ リ状態 " 1 " の 2値において、 バッ クスイ ッチング現象によ る非破壊読み出しが可能になる。 ただし、 図 1 において状態 " 2 " は情報の記録と して使用しない。 That is, when applying an electric field to the ferroelectric capacitor 1 of FIG. 2, the electric field intensity of the area s 2 parts Nari rather small compared to the field strength of the area S portion, though the coercive field (or thickness) and the area to each other This has the same effect as connecting two different ferroelectric capacitors in parallel, and draws the twisted hysteresis characteristics as shown in Fig.1. Generally, there is a phenomenon called back-switching in the hysteresis characteristic of ferroelectrics. This is, for example, when an electric field larger than the coercive electric field is applied, the polarization is saturated, the array is arranged in the direction of the electric field, and then the intensity of the electric field is returned to zero. When the voltage is applied and returned to zero, it returns to the initial polarization state. A ferroelectric capacitor as shown in Fig. 2 is considered to be the same as connecting two ferroelectric capacitors with different coercive electric fields in parallel, so the medium of the high-speed hysteresis characteristics as shown in Fig. 1 is obtained. Non-destructive reading by the back switching phenomenon becomes possible in two values of the memory state "0" and the memory state "1". However, state "2" in Fig. 1 is not used as information recording.
図 3は、 前記強誘電体キヤパシタ 1も単位メ モ リ セルとす るメモリセルアレイ と して配置し、 その周辺回路と して書込 み回路 6、 読出し回路 7、 切換回路 8、 行切換制御部 9及び 列切換制御部 1 0を接铳した強誘電体メ モ リ装置全体の回路 構成を示すブロ ッ ク図である。  In FIG. 3, the ferroelectric capacitor 1 is also arranged as a memory cell array as a unit memory cell, and its peripheral circuits are a write circuit 6, a read circuit 7, a switching circuit 8, and a row switching control. FIG. 2 is a block diagram showing a circuit configuration of the entire ferroelectric memory device to which a unit 9 and a column switching control unit 10 are connected.
この図 3に示すよ うに、 各メ モ リ セルが図 1 に示したヒス テリ シス特性をもつマ ドリ ッ クスメ モ リ 5を考える。 まず、 書込み回路 6と、 行切換制御部 9 と、 列切換制御部 1 0 とに よって、 マ ト リ ッ ク スメ モ リ 5の各セルに抗電界 e c 、 また は e より大きい書き込み電圧 e w [ e c ' > e m > e £ (メ モ リ状態 " 1 " ) 、 e ro > e e ' (メ モ リ状態 " CT ) ] を印加することで各セルに分極方向の情報書き込みが行われ る。 次に、 その情報書き込みを終えた後、 切換回路 8によ って 読出し回路 7が動作するように設定される。 さ らに行、 列切 換制御回路 9, 1 0を使って、 選択されたセルの情報を抗電 界 e e よ り大きい電圧 e。 ( e c ' > e 。 > e c ) を印加し て読み出す。 As shown in FIG. 3, let us consider a matrix memory 5 in which each memory cell has the hysteresis characteristics shown in FIG. First, the writing circuit 6, the row switching control unit 9, and the column switching control unit 10 apply a coercive electric field e c to each cell of the matrix memory 5 or a writing voltage e larger than e. w [e c '> e m > e £ ( Note re state "1"), e ro> e e' ( Note re state "CT)] polarization direction of the information written to each cell by applying a is It is done. Next, after completing the information writing, the switching circuit 8 is set so that the reading circuit 7 operates. Row et al of the column switching with a control circuit 9, 1 0, large voltage e information of the selected cell Ri by anti electric field e e. (e c '>e.> e c ) and read.
また本発明に用いる合成ヒ ステリ シス特性では " 0 " 、 " 1 " における読み出し用印加電圧に対して、 微分誘電率 ( ヒステリ シ スの傾き) が大き く異なるため、 出力電流に大 きな差を生じ、 " 1 " と " 0 " の状態を判別して情報を非破 壊で読み出すことが可能である。  In the combined hysteresis characteristics used in the present invention, the differential dielectric constant (slope of the hysteresis) is significantly different from the applied read voltage at "0" and "1", so that the output current has a large difference. Then, it is possible to determine the state of "1" and "0" and read out the information in a non-destructive manner.
従って、 従来の破壊読み出しするこ とによって、 失われた 情報を再書き込みするための複雑な回路が不要であるだけで なく 、 使用に伴ぅ フ ァティ ーグによる性能劣化も少なく、 高 寿命で高性能な強誘電体メ モ リ装置を提供するこ とができ る £ また、 上記強誘電体メ モ リ装置は同様のバッ ク スイ ツチ ン グ現象を用いるこ とによ り 2値以上の多値メ モ リ にも応用可 能である。 Therefore, not only does a complicated circuit for rewriting lost information by the conventional destructive read-out be required, but also there is little performance degradation due to use, and a long life and a long life. Ru can and child provides performance ferroelectric Note re device £ Further, the ferroelectric Note Li apparatus similar back-Sui Tutsi in g phenomenon Ri by the on and Mochiiruko binary or more multi It can also be applied to value memory.
次に、 第 2実施例の強誘電体メモリ装置について説明する c 前述した図 2に示すような斜め分極を利用したツイスティ ドヒステリ シス特性の作成法において、 面積 s 2 部分の電界 強度は、 上部電極端 4から離れるに従い急速に低下すると考 えられる。 従って、 ッイ スティ ド ヒステ リ シス特性を実現し 得るのは限られた面積条件になってしま う。 Then, the electric field strength of the strong in ferroelectric memory device creation method twisty Dohisuteri cis characteristics utilizing slant polarization as shown in FIG. 2 and c above to describe an area s 2 portions of the second embodiment, upper electrode It is thought that it decreases rapidly as the distance from Extreme 4 increases. Therefore, it is limited area conditions that can realize the fast hysteresis characteristic.
その改善法と して、 第 2実施例の強誘電体メ モ リ装置は、 上部電極を図 4に示すようなく し形状の上部電極 1 1 と して 形成した強誘電体キヤパシタを用いることにより、 斜め電界 を印加する部分が增加し、 良好なッイ スティ ドヒステリ シス 特性が得易く なるようにしている。 As an improvement method, the ferroelectric memory device of the second embodiment is as follows. The use of a ferroelectric capacitor formed with the upper electrode as a strip-shaped upper electrode 11 as shown in Fig. 4 adds a portion to which an oblique electric field is applied, resulting in good twisted hysteresis characteristics. I try to make it easier.
次に、 第 3実施例の強誘電体メ モ リ装置について説明する, この実施例の強誘電体メ モ リ装置は、 同一誘電率 ε 1で、 厚み d l , d 2及び面積 S I , S 2を異ならせることにより . 図 1に示すようなッイ スティ ドヒステリ シス特性を有し、 図 2若しく は図 4に示した構造の抗電界が異なる強誘電体キヤ パシタ 1を図 5に示すよ う に並列接続した構成である。  Next, a ferroelectric memory device according to a third embodiment will be described. The ferroelectric memory device according to this embodiment has the same dielectric constant ε1, thickness dl, d2, and area SI, S2. Fig. 5 shows a ferroelectric capacitor 1 having a high steered hysteresis characteristic as shown in Fig. 1 and having a different coercive electric field of the structure shown in Fig. 2 or Fig. 4. This is a configuration where they are connected in parallel.
この構成では、 ッイ スティ ドヒ ステリ シス特性のメモリ状 態 " 0" , " 1 " におけるバッ クスイ ッチング現象時の微分 誘電率の違いを利用して出力電流に大きな差を生じさせ " 0 ' In this configuration, a large difference is generated in the output current by making use of the difference in the differential permittivity during the back switching phenomenon in the memory states “0” and “1” of the high-speed hysteresis characteristic.
, " 1 " の状態を非破壊で^み出すことが可能である。 , "1" can be extracted nondestructively.
次に、 第 4実施例の強誘電体メ モ リ装置について説明する t この実施例の強誘電体メ モ リ装置は、 図 6に示すように、 誘電率 £ 1, ε 2と面積 S I , S 2とが異なる強誘電体材料 で形成したことにより、 抗電界が異なる強誘電体キャパシタ を並列接続させた構成である。 このよ う な構造から得られる 図 1に示すようなッイスティ ドヒステリ シス特性のメモリ状 態 " 0 " , " 1 " におけるバッ クスイ ツチング現象時の微分 誘電率の違いを利用して、 出力電流に大きな差を生じさせ、 "0" , " 1 " の状態を非破壊で読み出すことができる。 次に、 第 5実施例の強誘電体メモリ装置について説明する この実施例の強誘電体メ モ リ装置は、 図 7 Bに示すように 対称ヒステリ シス特性を示す強誘電体キャパシタ Aと非対称 ヒステリ シス特性を示す強誘電体キャパシタ Bとを図 7 Aに 示すように並列接続して構成する。 この構成により、 図 7 B に示すように AZZBの合成ヒステリ シス特性を得ることが でき る。 Then, the ferroelectric Note Re device t this embodiment will be described ferroelectric Note Re device of the fourth embodiment, as shown in FIG. 6, the dielectric constant £ 1, epsilon 2 and area SI, Since S2 is made of a different ferroelectric material, ferroelectric capacitors having different coercive electric fields are connected in parallel. The difference in the differential permittivity during the back switching phenomenon in the memory states "0" and "1" of the twisted hysteresis characteristics as shown in Fig. 1 obtained from such a structure can be used to increase the output current. A difference is created, and the state of "0" and "1" can be read nondestructively. Next, a ferroelectric memory device according to a fifth embodiment will be described. The ferroelectric memory device according to the fifth embodiment includes a ferroelectric capacitor A having symmetric hysteresis characteristics and an asymmetric hysteresis as shown in FIG. 7B. A ferroelectric capacitor B exhibiting cis characteristics is connected in parallel as shown in Fig. 7A. With this configuration, a composite hysteresis characteristic of AZZB can be obtained as shown in FIG. 7B.
図 7 Bに示すように "0" 状態は、 " 1 " 状態に比べて、 パ ッ ク スイ ツチング時の分極 Pの変化量が大きいため、 大き な出力電流差を生じさせることができ、 "0" , " 1 " 状態 を非破壌で読み出すことができる。  As shown in FIG. 7B, in the “0” state, the amount of change in the polarization P at the time of pack switching is larger than that in the “1” state, so that a large output current difference can be generated. "0", "1" state can be read out without blasting.
次に、 第 6実施例の強誘電体メ モ リ装置について説明する t この実施例の強誘電体メ モ リ装置は、 図 8Aに示すような 積層構造の非対称ヒステリ シス特性を有する M F M I S型の 強誘電体キャパシタを用いる。 Then, the ferroelectric Note Re device t this embodiment will be described ferroelectric Note Re device of the sixth embodiment of the MFMIS having an asymmetric hysteresis characteristic of the laminated structure as shown in FIG. 8A A ferroelectric capacitor is used.
この強誘電体キャパシ夕は、 図 8 Aに示すように n型半導 体基板 2 1上に、 絶縁体膜 22、 導体膜 23、 強誘電体膜 2 4、 導体膜 2 5を順次積層する。 前記強誘電体 24の分極の 向きにより、 下方 3層からなる M I S型キャパシ夕 ( 2 1, 22, 23) の空乏層を制御する。 この効果によ り、 図 8 B に示すような非対称ヒステリ シス特性が得られる。  In this ferroelectric capacitor, as shown in FIG. 8A, an insulator film 22, a conductor film 23, a ferroelectric film 24, and a conductor film 25 are sequentially laminated on an n-type semiconductor substrate 21. . The depletion layer of the MIS type capacitor (21, 22, 23) composed of the lower three layers is controlled by the direction of polarization of the ferroelectric 24. With this effect, an asymmetric hysteresis characteristic as shown in FIG. 8B is obtained.
また図 8 Cは、 前記導体膜 23、 絶縁体膜 22、 半導体基 板 2 1からなる M I S型キヤパシタが誘電体膜 23、 強誘電 体膜 24、 導体膜 2 5からなる強誘電体キヤパシ夕の分極状 態 P = "◦ " 及び P - " 1 " の反電界により C G , C j の異 なる大きさをもつことを示している。 この異なる値を持つ M I S型キャパシタが、 図 8 Dのように強誘電体キャパシタ'と 直列接続されるため P = " 0 " の時は等価的に大きな容量を 示し、 同様に、 図 8 Eのよ うに P = " 1 " の時は小さい容量 を示す。 従って、 図 8 Bのような非対称ヒステリ シス特性を 得ることができる。 FIG. 8C shows that the MIS type capacitor composed of the conductor film 23, the insulator film 22, and the semiconductor substrate 21 is a dielectric film 23, a ferroelectric film. Shows that with different sizes of C G, C j by the depolarization of "1" - the body layer 24, a conductor film 2 5 ferroelectric Kiyapashi evening polarization state P = "◦" and P I have. Since the MIS type capacitor having this different value is connected in series with the ferroelectric capacitor 'as shown in Fig. 8D, when P = "0", it shows an equivalently large capacitance. Thus, when P = "1", the capacitance is small. Therefore, an asymmetric hysteresis characteristic as shown in FIG. 8B can be obtained.
次に、 第 7実施例の強誘電体メモリ装置について説明する, この実施例の強誘電体メモ リ装置は、 図 9 Aに示すような 積層構造の非対称ヒステリ シス特性を有する M F M I S型の 強誘電体キャパシタを用いる。  Next, a ferroelectric memory device according to a seventh embodiment will be described. The ferroelectric memory device according to the seventh embodiment has a MFMIS-type ferroelectric memory having an asymmetric hysteresis characteristic of a laminated structure as shown in FIG. 9A. A body capacitor is used.
この強誘電体キャパシタは、 n型半導体基板 2 6上に、 絶 縁体薄膜 2 7 ( S i 0 ) 、 強誘電体膜 28、 さ らに、 上部 電極 2 9を順次形成する。 こ こで、 強誘電体膜 28の分極の 向きにより、 n型半導体基板 2 6表面の空乏層の厚みを制御 する。 これによ り絶縁体膜 2 7の厚みが等価的に変化するた め、 図 9 Bに示すような非対称ヒステリ シス特性が得られる £ 次に、 第 8実施例の強誘電体メ モ リ装置について説明する c この実施例の強誘電体メモ リ装置は、 図 1 0に示すような 積層構造で横方向に並列状に形成された強誘電体キャパシタ を用いる。 これらの強誘電体キャパシタは、 P型半導体 ( S i ) 基板 3 1 に、 n型ゥエル領域 3 9を形成し、 その上部に絶縁膜 3 2、 下部電極 3 3、 強誘電体膜 3 4、 上部電極 3 5により構 成される非対称キヤパシ夕を複数個形成したュニッ ト Aと、 前記 P型半導体基板上 3 1 に下部電極 3 3、 強誘電体膜 3 8 . 上部電極 3 5により構成される対称ヒステリ シス特性を有す るキャパシタを複数個形成したュニッ ト B とを形成する。 In this ferroelectric capacitor, an insulator thin film 27 (Sio), a ferroelectric film 28, and an upper electrode 29 are sequentially formed on an n-type semiconductor substrate 26. Here, the thickness of the depletion layer on the surface of the n-type semiconductor substrate 26 is controlled by the direction of polarization of the ferroelectric film 28. Because I Ri insulator film 2 7 thickness thereto is changed equivalently, the asymmetric hysteresis characteristic shown in FIG. 9 B obtained £ Then, ferroelectric Note Re apparatus of the eighth embodiment ferroelectric memory device of c explaining this embodiment uses a ferroelectric capacitor formed in parallel form laterally stacked structure as shown in FIG. 1 0. In these ferroelectric capacitors, an n-type well region 39 is formed on a P-type semiconductor (Si) substrate 31 and an insulating film 32, a lower electrode 33, a ferroelectric film 34, A unit A having a plurality of asymmetric capacitors formed by an upper electrode 35, a lower electrode 33, a ferroelectric film 38 and an upper electrode 35 on the P-type semiconductor substrate 31. A unit B having a plurality of capacitors having symmetrical hysteresis characteristics is formed.
こ こで、 ュニッ ト Aに含まれる強誘電体膜 3 4は、 ュニッ ト Bの強誘電体膜 3 8とは異なる抗電界をもつように形成さ れる ものとする。 これらのュニッ ト 、 ュニッ ト Bを配線用 電極 3 7を用いて任意に結線することにより、 所望のッイス ティ ドヒステリ シス特性を有する強誘電体キヤパシ夕が得ら れる。  Here, it is assumed that the ferroelectric film 34 included in the unit A has a coercive electric field different from that of the ferroelectric film 38 of the unit B. By arbitrarily connecting these units and unit B by using the wiring electrode 37, a ferroelectric capacitor having desired desired hysteresis characteristics can be obtained.
次に、 第 9実施例の強誘電体メ モ リ装置について説明する £ この実施例の強誘電体メ モ リ装置は、 図 1 1 に示すような 積層構造で横方向に並列状に形成された強誘電体キャパシ夕 を用いる。 Then, the ferroelectric Note Re apparatus of the ninth embodiment of the ferroelectric Note for Li apparatus illustrating £ this embodiment is formed in parallel form laterally stacked structure as shown in FIG. 1 1 Use a ferroelectric capacitor.
これらの強誘電体キャパシ夕は、 図 1 1 に示すように、 半 導体基板上 4 1 に絶縁膜 4 2を形成し、 さ らに下部電極 4 3 を成膜する。 その後、 下部電極 4 3の所望する部分をエッチ ングすることにより膜厚の薄い部分を形成する。  In these ferroelectric capacitors, as shown in FIG. 11, an insulating film 42 is formed on a semiconductor substrate 41, and a lower electrode 43 is further formed. Thereafter, a desired portion of the lower electrode 43 is etched to form a thin portion.
この下部電極上に、 S p i n O n技術を用いて、 表面が 平坦になるように強誘電体膜 4 4を成膜し、 更に上部電極 4 6を形成する。 ここで、 下部電極 4 3が厚い部分上に形成さ 以上、 第 1乃至第 1 0の実施例に基づいて説明したが、 本 発明の第 1及び第 2の態様による発明には、 以下のような強 誘電体メ モ リ装置が含まれている ものとする。 A ferroelectric film 44 is formed on the lower electrode so as to have a flat surface by using the Spin On technology, and an upper electrode 46 is further formed. Here, the lower electrode 43 is formed on the thick part. Although the description has been given based on the first to tenth embodiments, the invention according to the first and second aspects of the present invention includes the following ferroelectric memory device. And
( 1 ) 基板上に形成された導電体膜からなる第 1電極と、 第 1電極上に形成され、 情報が書き込まれる強誘電体膜と、 この強誘電体膜上に形成された導電体膜から成る複数の第 2 電極を具備する強誘電体キャパシタにおいて、 第 1電極と第 2電極の形成配置と、 対向する電極面積の大きさのうち、 少 なく と もどちらか一方が異なることを特徴とする強誘電体メ モ リ装置。  (1) A first electrode formed of a conductive film formed on a substrate, a ferroelectric film formed on the first electrode to which information is written, and a conductive film formed on the ferroelectric film A ferroelectric capacitor comprising a plurality of second electrodes comprising a first electrode and a second electrode, wherein at least one of the formation arrangement of the first electrode and the second electrode is different from the size of the facing electrode area. Ferroelectric memory device.
従って、 この ( 1 ) の強誘電体メモリ装置によれば、 強誘 電体キャパシタの第 1の電極と第 2電極の形成配置関係若し く は対向する電極面積の大きさを異ならせることにより、 ッ イスティ ドヒステリ シス特性が得られるので、 このツイステ ィ ドヒステリ シス特性を利用して情報を非破壊読み出しする こ とができる。  Therefore, according to the ferroelectric memory device of (1), the first electrode and the second electrode of the ferroelectric capacitor can be formed by changing the arrangement relationship or the size of the opposing electrode area. Since the twisted hysteresis characteristic is obtained, information can be read nondestructively using the twisted hysteresis characteristic.
( 2 ) 前記 ( 1 ) 記載の強誘電体メ モリ装置において、 第 1電極もしく は第 2電極の少なく ともどちらか一方の電極形 状を変えたことを特徴とする強誘電体メ モ リ装置。  (2) The ferroelectric memory device according to (1), wherein the shape of at least one of the first electrode and the second electrode is changed. apparatus.
従って、 この ( 2 ) の強誘電体キャパシタによれば、 第 1 電極も し く は第 2電極の少なく ともどちらか一方の電極形状 を変え、 斜め電界を印加する部分の面積を増加させることに より、 良好なッイスティ ドヒステリ シス特性が得易く なる。  Therefore, according to the ferroelectric capacitor of (2), at least one of the first and second electrodes is changed in shape to increase the area of the portion to which the oblique electric field is applied. As a result, good twisted hysteresis characteristics can be easily obtained.
( 3 ) 前記 ( 1 ) 、 ( 2 ) 記載及び複数の強誘電体キャパ シ夕を並列に接続した強誘電体メ モ リ装置において、 前記複 1 9 (3) In the ferroelectric memory device described in (1) or (2) and a plurality of ferroelectric capacitors connected in parallel, 1 9
れた複数のキャパシタュニッ ト A部は、 下部電極 4 3が薄い 部分に形成された複数のキャパシタュニ ッ ト B部に比べて強 誘電体膜 4 4の膜厚が薄いため、 抗電界が小さい。 The plurality of capacitor units A thus formed have a smaller coercive electric field because the ferroelectric film 44 has a smaller film thickness than the plurality of capacitor units B formed in the portion where the lower electrode 43 is thin.
このようにして抗電界の異なるキャパシタュニッ ト A及び Bを配線用電極 4 7を用いて任意に結線し、 所望のッイ ステ ィ ドヒステリ シス特性を有する強誘電体キャパシタが得られ る o  In this way, the capacitor units A and B having different coercive electric fields are arbitrarily connected using the wiring electrode 47, and a ferroelectric capacitor having a desired twisted-state hysteresis characteristic is obtained.o
次に、 第 1 0実施例の強誘電体メモリ装置について説明す る o  Next, the ferroelectric memory device of the tenth embodiment will be described.
この実施例の強誘電体メ モ リ装置は、 図 1 2に示すような 積層構造で縦方向に並列状に形成された強誘電体キヤパシ夕 を用いる。  The ferroelectric memory device of the present embodiment uses a ferroelectric capacitor formed in a vertically-parallel manner with a laminated structure as shown in FIG.
この強誘電体キャパシタは、 図 1 2に示すように、 半導体 基板 5 1上に絶縁膜 5 2を形成し、 更に下部電極 5 3、 強誘 電体膜 5 4、 上部電極 5 5の 3層構造からなる複数のキャパ シ夕で構成されているュニッ ト B と、 該ュニッ ト B上に層間 絶縁膜 5 6を形成し、 その上部に下部電極 5 7、 強誘電体 5 8、 上部電極 5 9からなる複数のキャパシタで構成されてい るュニッ ト Aとが積層されている。  In this ferroelectric capacitor, as shown in FIG. 12, an insulating film 52 is formed on a semiconductor substrate 51, and three layers of a lower electrode 53, a ferroelectric film 54, and an upper electrode 55 are further formed. A unit B composed of a plurality of capacitors having a structure, and an interlayer insulating film 56 formed on the unit B, a lower electrode 57, a ferroelectric 58, and an upper electrode 5 9 and a unit A composed of a plurality of capacitors composed of nine capacitors.
これらのュニッ 卜 Aとュニ ッ ト Bにおいて、 異種材料を用 いるか若し く は、 同種材料で膜厚を変えることにより、 抗電 界が互いに 3倍以上異なる 2つの強誘電体キャパシタを形成 することができる。 これらのュニッ ト A及びュニッ ト Bのキ ャパシタを配線電極 6 0を用いて任意に結線し、 所望の特性 を有する強誘電体キャパシタが得られる。 数の強誘電体キャパシタは抗電界の値が互いに異なっている ことを特徴と し、 その強誘電体キャパシタに於いて得られる ッイスティ ドヒステリ シスのいく つかの分極状態でのバッ ク スィ ッチング時の容量を利用して非破壊で分極状態を読み出 すことを特徴とする強誘電体メ モ リ装置。 In these Units A and B, two ferroelectric capacitors whose coercive fields are more than three times different from each other are formed by using different materials or changing the film thickness with the same material. can do. The capacitors of unit A and unit B are arbitrarily connected using wiring electrode 60, and a ferroelectric capacitor having desired characteristics can be obtained. Are characterized in that the values of the coercive electric fields are different from each other, and the capacitance of the ferroelectric capacitor at the time of back switching in several polarization states of the twisted hysteresis. A ferroelectric memory device characterized in that the polarization state is read out nondestructively by using a method.
従って、 この ( 3 ) の強誘電体メ モリ装置によれば、 前記 複数の強誘電体キャパシタは強誘電体の抗電界の値が互いに 異なっており、 それらの強誘電体キャパシタについて得られ るッイ スティ ドヒステリ シス特性のいくつかの分極状態での バッ クスイ ツチング時の容量差を利用して非破壊で分極状態 を読み出すことができる。  Therefore, according to the ferroelectric memory device of (3), the plurality of ferroelectric capacitors have different values of the coercive electric field of the ferroelectrics, and can be obtained with respect to those ferroelectric capacitors. The polarization state can be read out nondestructively by utilizing the capacitance difference at the time of back switching in some polarization states of the distant hysteresis characteristics.
( 4 ) 前記 ( 3 ) において、 比誘電率の異なる強誘電体キ ャパシ夕を並列接続したメ モ リ素子に於いて得られるッイス ティ ドヒステリ シスのいく つかの分極状態でのバッ クスィ ッ チング時の容量差を利用した非破壊読み出し法を特徴とする 強誘電体メモリ装置。  (4) In the above (3), when back-switching in several polarization states of the switched hysteresis obtained in a memory element in which ferroelectric capacitors having different relative dielectric constants are connected in parallel. A ferroelectric memory device characterized by a non-destructive readout method utilizing a capacitance difference between the two.
従って、 この (4 ) の強誘電体メ モ リ装置によれば、 抗電 界の異なる強誘電体キャパシタを比誘電率の異なる材料を並 列接続して形成することにより、 ッイ スティ ドヒステリ シス 特性をもつメ モ リ装置が構成され、 そのツイスティ ドヒステ リ シス特性のいくつかの分極状態のバッ クスィ ツチング時の 容量差を利用して、 非破壊で分極状態を読み出すことができ る o  Therefore, according to the ferroelectric memory device of (4), the ferroelectric capacitors having different coercive fields are formed by connecting materials having different relative dielectric constants in parallel to each other, thereby obtaining a high-speed hysteresis. A memory device with characteristics is configured, and the polarization state can be read out nondestructively by utilizing the capacitance difference during back-switching of some polarization states of the twisted hysteresis characteristics.o
( 5 ) 前記 ( 3 ) または (4 ) において、 並列接続した複 数の強誘電体キャパシタのうち、 少なく とも一つ以上の強誘 電体キヤパシタが、 非対称なヒステリ シスを持つことを特徴 とする強誘電体メモリ装置。 (5) In the above (3) or (4), at least one or more ferroelectric capacitors among the plurality of ferroelectric capacitors connected in parallel. A ferroelectric memory device, wherein the electric capacitor has an asymmetric hysteresis.
従って、 この ( 5 ) の強誘電体メ モ リ装置によれば、 並列 接続した複数の強誘電体キャパシタのうち、 少なく とも一つ 以上の強誘電体キャパシタが非対称なヒステリ シス特性を有 し、 そのツイスティ ドヒステ リ シス特性のノく'ッ クスィ ッチン グ時の容量差を利用して、 非破壊で分極状態を読み出すこと ができ る。  Therefore, according to the ferroelectric memory device of (5), at least one of the plurality of ferroelectric capacitors connected in parallel has asymmetric hysteresis characteristics, The polarization state can be read nondestructively by utilizing the capacitance difference at the time of switching of the twisted hysteresis characteristics.
よって、 前記 ( 1 ) 〜 ( 5 ) までの構成の強誘電体メ モ リ 装置によれば、 読み出し ドラィブ電圧の印加により、 メ モ リ 状態を抗電界より大きい電界下で、 非破壊で読み出すことが 可能であり、 かつ S Z Nを大き く とれるため高密度化が可能 である。  Therefore, according to the ferroelectric memory device having the configuration of (1) to (5), the memory state can be read nondestructively by applying the read drive voltage under an electric field larger than the coercive electric field. In addition, high density is possible due to large SZN.
( 6 ) 前記 ( 5 ) 記載の非対称ヒステリ シスをもつ強誘電 体キャパシタにおいて、 導電体、 強誘電体、 絶縁体、 半導体 の多層膜構造からなる こ とを特徴と した強誘電体メ モリ装置 t 従って、 この ( 6 ) の強誘電体メモリ装置によれば、 前記 ( 5 ) 記載の非対称ヒステリ シス特性を有する強誘電体キヤ パシタが、 導電体、 強誘電体、 絶縁体、 半導体の多層膜構造 で構成される。  (6) The ferroelectric capacitor having an asymmetric hysteresis according to the above (5), wherein the ferroelectric memory device has a multilayer structure of a conductor, a ferroelectric, an insulator, and a semiconductor. Therefore, according to the ferroelectric memory device of (6), the ferroelectric capacitor having the asymmetric hysteresis characteristic described in (5) is a multilayer film structure of a conductor, a ferroelectric, an insulator, and a semiconductor. It consists of.
( 7 ) 前記 ( 5 ) 記載の非対称ヒステリ シスをもつ強誘電 体キャパシタにおいて導電体、 強誘電体、 導電体、 絶縁体、 半導体の多層膜構造からなることを特徴と した強誘電体メモ リ装置。 従って、 この ( 7 ) の強誘電体メ モ リ装置によれば、 前記 ( 5 ) 記載の非対称ヒステリ シス特性を有する強誘電体キヤ パシタが、 導電体、 強誘電体、 導電体、 絶縁体、 半導体の多 層膜構造で構成される。 (7) The ferroelectric capacitor having asymmetric hysteresis according to (5), wherein the ferroelectric memory device has a multilayer structure of a conductor, a ferroelectric, a conductor, an insulator, and a semiconductor. . Therefore, according to the ferroelectric memory device of (7), the ferroelectric capacitor having the asymmetric hysteresis characteristic described in (5) can be a conductor, a ferroelectric, a conductor, an insulator, It has a multi-layer structure of semiconductor.
よって、 前記 ( 6 ) , ( 7 ) までの構成の強誘電体メ モ リ 装置によれば、 S Z Nが大きい前記非破壊読み出し強誘電体 メ モ リを実現するためのツイスティ ドヒステリ シス特性が容 易に得られるようになる。  Therefore, according to the ferroelectric memory device having the above constitutions (6) and (7), the twisted hysteresis characteristic for realizing the non-destructive read ferroelectric memory having a large SZN can be easily obtained. Will be obtained.
( 8 ) 絶縁体上に形成された下部電極膜と、 前記下部電極 膜上に形成された強誘電体膜とこの強誘電体膜上に形成され た上部電極膜とから成る単位強誘電体キヤパシタにより形成 された複数個の第 1のキャパシタユニッ トが前記絶縁体上に 複数個形成され、 さ らに前記絶縁体上に前記第 1のキャパシ 夕ュニッ ト と抗電界の異なる複数の第 2のキャパシタュニッ トを形成し、 この第 2のキャパシタュニッ トは前記絶縁体上 に新たに形成された下部電極と該下部電極上に形成された強 誘電体膜と該強誘電体膜上に形成され下部電極と形状の異な る上部電極を有した単位強誘電体キャパシタから構成し、 前 記第 1、 第 2のキャパシタュニッ トにおいて少なく と も 1個 以上が電気的に接続されていることを特徴とする強誘電体メ モリ装置。  (8) A unit ferroelectric capacitor comprising a lower electrode film formed on an insulator, a ferroelectric film formed on the lower electrode film, and an upper electrode film formed on the ferroelectric film A plurality of first capacitor units are formed on the insulator, and a plurality of second capacitor units having different coercive electric fields from the first capacity unit are formed on the insulator. Forming a capacitor unit; a second capacitor unit having a lower electrode newly formed on the insulator, a ferroelectric film formed on the lower electrode, and a lower electrode formed on the ferroelectric film; And a unit ferroelectric capacitor having an upper electrode having a shape different from that of the first and second capacitor units, wherein at least one of the first and second capacitor units is electrically connected. Dielectric memory device.
従って、 この ( 8 ) の強誘電体メ モ リ装置によれば、 強誘 電体キャパシタに電界をかけると、 第 2の電極面積部分の電 界強度が第 1の電極面積部分の電界強度に比べて小さく なり、 あたかも抗電界 (または膜厚) と面積の異なる強誘電体キヤ パシタを並列接続したのと同じ効果をもつことになり、 ツイ スティ ドヒステリ シス特性が得られるので、 このツイスティ ドヒステ リ シス特性のメ モ リ状態 " 0 " とメ モ リ状態 - 1 " の 2値において、 バッ クスィ ツチング現象により記憶される 情報を非破壊で読み出すことができる。 Therefore, according to the ferroelectric memory device of (8), when an electric field is applied to the ferroelectric capacitor, the electric field strength of the second electrode area becomes smaller than that of the first electrode area. The ferroelectric capacitor has a smaller area and a different coercive field (or film thickness) and area. This has the same effect as connecting a capacitor in parallel, and a twisted hysteresis characteristic is obtained. The binary state of the memory state "0" and the memory state -1 of this twisted hysteresis characteristic is obtained. In, information stored by the back switching phenomenon can be read out nondestructively.
(9) 前記 (8) において、 複数の第 1の強誘電体キャパ シ夕ュニッ トと複数の第 2の強誘電体キヤパシタュニッ トの 強誘電体の材質が異なるこ とを特徴と した強誘電体メ モリ装 従って、 この ( 9) の強誘電体メ モ リ装置によれば、 第 1 の強誘電体キヤパシタュニッ ト と第 2の強誘電体キヤパシタ ュニッ 卜との強誘電体の材質が異なるこ とにより、 抗電界が 異なり、 ッイ スティ ドヒステリ シス特性をもつ強誘電体キヤ パシタが構成され、 そのツイスティ ドヒステリ シス特性のい くつかの分極状態でのバッ クスィ ッチング時の容量差を利用 して、 非破壊で分極状態を読み出すことができる。  (9) The ferroelectric material according to (8), wherein the ferroelectric materials of the plurality of first ferroelectric capacitor units and the plurality of second ferroelectric capacitor units are different. Therefore, according to the ferroelectric memory device of (9), the ferroelectric material of the first ferroelectric capacitor unit is different from that of the second ferroelectric capacitor unit. Thus, a ferroelectric capacitor having a different coercive electric field and a twisted hysteresis characteristic is formed, and by utilizing the capacitance difference at the time of back switching in several polarization states of the twisted hysteresis characteristic, The polarization state can be read out nondestructively.
(10) 前記 ( 8) において、 複数の強誘電体キャパシタュ ニッ ト Aと複数の強誘電体キャパシタュニ ッ ト Bの強誘電体 の厚みが異なることを特徴とする強誘電体メモリ装置。  (10) The ferroelectric memory device according to (8), wherein the thicknesses of the ferroelectrics of the plurality of ferroelectric capacitor units A and the plurality of ferroelectric capacitor units B are different.
従って、 この ( 1 0) の強誘電体メ モ リ装置によれば、 複 数の第 1、 第 2の強誘電体キャパシタュニッ 卜の強誘電体の 厚みが異なることにより、 抗電界が異なり、 ッイスティ ドヒ ステリ シス特性をもつ強誘電体キャパシタが構成される。  Therefore, according to the (10) ferroelectric memory device, the coercive electric field is different due to the different ferroelectric thicknesses of the plurality of first and second ferroelectric capacitor units, and the twisty field is different. A ferroelectric capacitor having a dehysteresis characteristic is formed.
(11) 前記 ( 8) において、 複数の強誘電体キャパシタュ ニッ ト Aと抗電界の異なる複数の強誘電体キャパシタュニッ ト Bを積層して 3次元化することを特徴とする強誘電体メモ リ装置。 (11) In the above (8), the plurality of ferroelectric capacitor units A having different coercive electric fields from the plurality of ferroelectric capacitor units A A ferroelectric memory device characterized by stacking B to form a three-dimensional structure.
従って、 この ( 1 1 ) の強誘電体メ モ リ装置によれば、 第 1の強誘電体キャパシタュニッ ト、 抗電界の異なる第 2の強 誘電体キャパシタュニッ トを積層形成して、 3次元的に構成 される。  Therefore, according to the ferroelectric memory device of (11), the first ferroelectric capacitor unit and the second ferroelectric capacitor unit having different coercive electric fields are laminated and formed three-dimensionally. It is composed.
よって、 この ( 1 1 ) の強誘電体メ モ リ装置は、 抗電界の 違う複数の強誘電体キャパシタュニッ トを電気的に接続する ことにより、 所望のッイ スティ ドヒステリ シス特性をもつ強 誘電体キャパシタを得るこ とができるようになる。  Therefore, the ferroelectric memory device of (11) is capable of electrically connecting a plurality of ferroelectric capacitor units having different coercive electric fields to provide a ferroelectric device having a desired twisted hysteresis characteristic. Capacitors can be obtained.
( 12) 絶縁体上に順次形成された下部電極膜、 強誘電体膜 及び、 上部電極膜の積層構造からなる第 1 の単位強誘電体キ ャパシタを複数個配置して構成される第 1のキャパシタュ二 ッ 卜 と、  (12) A first unit formed by arranging a plurality of first unit ferroelectric capacitors each having a laminated structure of a lower electrode film, a ferroelectric film, and an upper electrode film sequentially formed on an insulator. Capacitor unit and
前記第 1 の単位強誘電体キャパシタと同じ積層構造で、 抗 電界が異なる第 2の単位強誘電体キャパシタを前記絶縁体上 に複数個配置して構成される第 2のキャパシタュニッ トと、 前記第 1 キャパシタュニッ ト と前記第 2のキャパシタュニ ッ ト内の少なく とも各 1個以上の単位強誘電体キャパシタが 電気的に直列若しく は並列に接続された記憶媒体を有するこ とを特徴とする強誘電体メモ リ装置。  A second capacitor unit having the same laminated structure as the first unit ferroelectric capacitor and having a plurality of second unit ferroelectric capacitors having different coercive electric fields arranged on the insulator; (1) A ferroelectric device characterized in that at least one unit ferroelectric capacitor in each of the capacitor unit and at least one unit ferroelectric capacitor in the second capacitor unit has a storage medium electrically connected in series or in parallel. Body memory device.
以上詳述したように本発明の第 1乃至第 1 0の実施例によ れば、 格納する情報を非破壊で読み出すこ とができ、 高寿命 化され集積化に好適する強誘電体メモ リ装置を提供すること ができる。 As described in detail above, according to the first to tenth embodiments of the present invention, the stored information can be read out nondestructively, and the ferroelectric memory having a long life and suitable for integration is provided. Providing equipment Can be.
また、 これらの実施例によれば、 S Z Nが大きい上記非破 壊読み出し強誘電体メ モ リ装置を実現するためのツイスティ ドヒステリ シス特性を有する強誘電体キャパシタを形成する ことができ、 さ らに抗電界の違う複数の強誘電体キャパシタ ュニッ トを電気的に接続することで所望のッイスティ ドヒス テリ シス特性をもつ強誘電体キャパシタを形成することがで きる。  Further, according to these embodiments, it is possible to form a ferroelectric capacitor having a twisted hysteresis characteristic for realizing the non-destructive read ferroelectric memory device having a large SZN. By electrically connecting a plurality of ferroelectric capacitor units having different coercive electric fields, a ferroelectric capacitor having desired twisted hysteresis characteristics can be formed.
従って、 本発明の第 1及び第 2の態様によれば、 従来のよ うに破壌読み出しによって、 失われた情報を再書き込みする ための複雑な回路が不要であるだけでなく 、 これらの回路の 使用に伴うフ ァティ ーグによる性能劣化も少なく、 高寿命で 高性能な強誘電体メモリ装置を提供することができる。 そし て、 上記第 1及び第 2の態様の強誘電体メモリ装置は 2値以 上において、 同様のバッ クスィ ッチング現象を用いることに より、 2値以上の多値メモ リ にも応用可能である。  Therefore, according to the first and second aspects of the present invention, not only a complicated circuit for rewriting the information lost by the burst reading as in the related art is unnecessary, but also It is possible to provide a long-life, high-performance ferroelectric memory device with little performance deterioration due to use during use. The ferroelectric memory devices of the first and second embodiments can be applied to multi-valued memory of two or more values by using the same back switching phenomenon in two or more values. .
次に、 図 1 3 A , B, C乃至図 2 1 A, Bを参照して本発 明による上記第 3の態様に含まれる第 1 1 乃至第 1 8の実施 例を説明する。  Next, the eleventh to eighteenth embodiments included in the third aspect of the present invention will be described with reference to FIGS. 13A, B, and C to FIGS. 21A and 21B.
図 1 3 A, B, Cを参照して、 本発明による第 1 1実施例 と しての強誘電体メモ リ装置に用いられる強誘電体メモリ素 子の多重ヒステリ シス特性について説明する。  With reference to FIGS. 13A, 13B and 13C, the multi-hysteresis characteristic of the ferroelectric memory element used in the ferroelectric memory device according to the first embodiment of the present invention will be described.
図 1 3 Aは、 強誘電体メ モ リ素子に用いられる強誘電体の ツイ スティ ドヒステリ シス特性すなわち多重ヒステリ シス特 性を示すものであり、 正電界を印加するこ とにより 2 ケ所の 変曲点を示し、 且つ負電界に対しても 2ケ所の変曲点を示す。 この強誘電体メモリ素子の例について、 以下に説明する。 Figure 13A shows the twisted hysteresis characteristic of the ferroelectric used in the ferroelectric memory device, that is, the multiple hysteresis characteristic. Inflection points are shown, and two inflection points are shown for a negative electric field. An example of this ferroelectric memory element will be described below.
図 14 A乃至 14 Hは、 多重ヒステリ シス特性と、 自発分 極について示した図である。 多重ヒステリ シス特性を有する 強誘電体は等価的には、 高抗電界特性を示す C FEH i g hと 低抗電界特性を示す C FEL OWの並列接続と考えられる。 14A to 14H are diagrams showing the multi-hysteresis characteristic and the spontaneous polarization. Ferroelectric having multiple hysteresis characteristics Equivalently, considered parallel connection of C FE L OW showing the C FE H IgH and low coercive field characteristics showing a high coercive electric field characteristics.
ここで、 図 14 A乃至 14 Hに示す各々の状態においては、 状態 1. C H i h, C FE L OW共に同じ方向の自 発分極 P h , P L を持つ (図 14 A, B ) 。 Here, in the state of each shown in FIG. 14 A to 14 H, state 1. CH ih, C FE L OW both spontaneous polarization P h in the same direction, with P L (FIG. 14 A, B).
状態 2. C FE H i g hは、 状態 1 と同様の P h を示し、 C FE L OWのみ分極反転が起こ り一 P L の状態である。 全 体では、 丁度、 I P h I = I P L I とすると、 自発分極は 0 である (図 14 C, D ) 。 State 2. C FE High shows the same P h as in State 1, and only C FE L OW is in a state of P L due to polarization inversion. The whole, just when the IP h I = IP L I, the spontaneous polarization is zero (FIG. 14 C, D).
状態 3. 状態 1 とは正反対の自発分極一 Ph 及び一 P L を 持つ (図 14 E , F ) 。 State 3. It has a spontaneous polarization of 1 P h and 1 P L , which is the exact opposite of state 1 (Figs. 14E, F).
状態 4. 状態 2と、 正反対の自発分極一 P H , P L が存在 するが、 全体では、 状態 2と同じく 0を示す (図 14 G, H) こ こで、 前記多重ヒステリ シス特性を有する強誘電体を用 いて、 図 1 3 Bに示す構成のメ モ リ素子を考える。 State 4. There are spontaneous polarizations P H and PL opposite to State 2, but they are all 0 as in State 2 (Fig. 14G, H). Here, the strong point having the multiple hysteresis characteristic is obtained. Consider a memory element having the configuration shown in Fig. 13B using a dielectric.
一般に、 強誘電体キャパシタと誘電体キャパシタを直接接 続した回路構成は、 強誘電体の分極反転に伴なう電荷量を測 定する際に用いられる (ソィヤー ♦ タワー法) 。 つまり、 ソ ィヤー · タ ワー法は分極反転に伴なう電荷を誘電体キャパシ タに移して観察する方法である。 この際、 強誘電体キャパシ タ及び誘電体キャパシタに蓄えられた電荷は自由であり、 漏 れ抵抗により、 強誘電体の自発分極の有無にかかわらず、 減 少し、 やがて 0になってしま う。 In general, a circuit configuration in which a ferroelectric capacitor is directly connected to a dielectric capacitor is used to measure the amount of charge associated with the polarization reversal of the ferroelectric (Soyer-tower method). In other words, the soy tower method uses the dielectric capacity to transfer the charge associated with the polarization reversal. This is a method of transferring the data to a computer for observation. At this time, the electric charge stored in the ferroelectric capacitor and the dielectric capacitor is free, and due to the leakage resistance, the charge gradually decreases to zero regardless of the presence or absence of spontaneous polarization of the ferroelectric.
図 1 3 Bにおいて、 強誘電体キャパシ夕 ( C F ) 1 1 の状 態は、 図 1 4 Aに示す P i (状態 1 ) の位置にあつたとする, 但し、 キャパシタには電荷が蓄えられていないものとする。 二こで、 端子 1 5を接地した状態で、 端子 1 4より 自発分 極 P L のみを反転しう る電圧を印加した後、 端子 1 4を接地 する。 この自発分極 P T がー P L に反転する際に発生した反 転電荷 Q L は、 誘電体キャパシタ ( C ) 1 2に蓄積され、 V L = Q L / Cなる電位を発生する (この時の自発分極は P Qp 状態 2 ) 。 In Fig. 13B, the state of ferroelectric capacitor ( CF ) 11 is assumed to be at the position of Pi (state 1) shown in Fig. 14A. However, electric charge is stored in the capacitor. Shall not be. With terminal 15 grounded, apply a voltage from terminal 14 to invert only spontaneous polarization PL, and then ground terminal 14. Inversion charge QL generated upon reversing the spontaneous polarization P T gar PL are accumulated in the dielectric capacitor (C) 1 2, V L = Q L / C becomes generates potential (spontaneous at this The polarization is in the P Qp state 2).
また、 この状態から、 端子 1 4より P h が反転しうる電圧 を印加した後、 再び端子 1 4を接地する。 こ こでは P h Further, from this state, after the P h from the terminal 1 4 is applied a voltage which can be reversed, to ground the terminal 1 4 again. Here, P h
P h となり、 自発分極は P。 (状態 3 ) となる。 この反転に 伴なう電荷 Q は、 Q L と同じ大きさであることは明らかで ある。 P h and the spontaneous polarization is P. (State 3). It is clear that the charge Q associated with this inversion is the same size as QL.
従って、 V H = ( Q L + Q H ) Z Cとなり、 V H = 2 V , である。 Therefore, V H = (Q L + Q H) ZC becomes, V H = 2 V, is.
これらの P } , P 0pf P 2 に於ける状態での、 誘電体キヤ ノ、。シタ ( C ) 1 2の電位は、 各々、 0 ( V ) , V L ( V ) , 2 V L ( v ) となり、 キャパシタ ( C ) 1 2に対し、 3値が 記憶されていることがわかる。 上記誘電体キャパシ夕の材料と しては P b y S r }_y (T i x Z r j_x ) 03 または P b y C a i.y (T i χ Z τ _τ ) 03 または P b y B a ^y (T i x Z r 1_ ) 03 の化学組 成式を有する高誘電体材料が好適である。 These P}, at P 0 p f in state P 2, the dielectric Canon Bruno. The potentials of the capacitor (C) 12 are 0 (V), VL (V), and 2 VL (v), respectively, indicating that three values are stored for the capacitor (C) 12. . Is the above dielectric Capacity evening material P b y S r} _ y (T i x Z r j_ x) 0 3 or P b y C ai. Y ( T i χ Z τ _ τ) 0 3 or P by B a ^ y (T i x Z r 1 _ Σ) high dielectric material having a 0 3 chemical group Narushiki are preferred.
なお、 この化学組成式中の Xは組成比を表し、 0. 2〜 1. 0範囲であり、 且つ yは組成比を表し、 0. 85〜 1. 0の 範囲である。  In this chemical composition formula, X represents a composition ratio and ranges from 0.2 to 1.0, and y represents a composition ratio and ranges from 0.85 to 1.0.
次に、 このような強誘電体メ モ リ素子からのデータ読出し について説明する。 図 1 3 Bに示した電圧電流変換素子 1 3は、 図 1 3 Cのよ うな特性をもっており、 の時は 0. 7 ( m A ) , 2 V L の時は 1. 4 ( m A ) を示す。 こ こで、 図 1 3 Bの端子 1 7を接地すると、 端子 1 7と端子 1 8との 間に電圧が印加される。 この際、 端子 1 6に所定電圧 (VRE AD) を印加した時の電源から端子 1 6に流れ込む電流は、 P j , P 0p, P 2 に対し各々、 0 ( A ) , 0. 7 ( m A ) , 1. 4 (m A ) となる。 従って、 これらの電流を検出することに より、 3値の状態を判別するこ とができる。 Next, data reading from such a ferroelectric memory device will be described. 1 3 voltage-current conversion element 1 3 shown in B is has a good UNA characteristic of FIG. 1 3 C, 0. 7 when the (m A), when the 2 V L 1. 4 (m A ) Is shown. Here, when the terminal 17 in FIG. 13B is grounded, a voltage is applied between the terminal 17 and the terminal 18. At this time, current flowing from the power source upon application of a predetermined voltage (V RE AD) to the terminals 1 6 to the terminal 1 6 each P j, P 0p, to P 2, 0 (A), 0. 7 ( m A), 1.4 (m A). Therefore, the ternary state can be determined by detecting these currents.
そして、 強誘電体メ モ リ素子の記憶を消去する場合は、 端 子 1 5を接地した状態で、 端子 1 4より P H , - P L が反転 しうる大きさの負電圧を印加し、 分極状態を P i に戻す。 ま た、 この後、 端子 1 4 , 1 8を接地し、 自由電荷を放電し、 強誘電体キャパシタ 1 1、 誘電体キャパシタ 1 2の蓄積電荷 を 0にする。 When erasing the memory of the ferroelectric memory element, apply a negative voltage large enough to invert PH and -PL from terminal 14 with terminal 15 grounded, Change state back to P i. After that, the terminals 14 and 18 are grounded to discharge the free charges, and the accumulated charges in the ferroelectric capacitors 11 and 12 are set to 0.
次に、 本発明による第 1 2実施例と しての強誘電体メモリ 装置を構成する強誘電体メ モ リ素子について説明する。 この強誘電体メモ リ素子は、 前述した多重ヒステリ シス強 誘電体キャパシタを用いて、 図 1 5 Aに示すように構成する, こ こで、 本実施例の理解を助けるために、 図 2 3 A, Bを 参照して自発分極と記憶電圧との関係を明らかにする。 Next, a ferroelectric memory element included in a ferroelectric memory device according to a 12th embodiment of the present invention will be described. This ferroelectric memory element is configured as shown in FIG. 15A using the multi-hysteresis ferroelectric capacitor described above. Here, in order to facilitate understanding of this embodiment, FIG. Referring to A and B, we clarify the relationship between spontaneous polarization and memory voltage.
図 23 Aに示すよ うに強誘電体メ モ リ素子は、 強誘電体キ ャパシタ (C FE) 206と、 誘電体キャパシタ ) 20 7との直列接続からなるソィヤー · タワー回路と、 強誘電体 キャパシタ (C FE) 206の分極変化に応じ誘電体キャパシ タ ( C L ) 2 0 7に蓄えられた電荷により制御される電荷効 果型 ト ラ ンジスタ (n T y p e MO S F E T) 209と、 誘 電体キャパシタ (C j^ ) 207に並列に接続された抵抗素子 208から構成されている。 Uni ferroelectric Note Li element by shown in FIG. 23 A is strongly dielectric key Yapashita (C FE) 206, and Soiya Tower circuit consisting of series connection of the dielectric capacitor) 20 7, a ferroelectric capacitor (C FE ) Charge-effect transistor (n Type MO SFET) 209 controlled by charge stored in dielectric capacitor (CL) 207 according to polarization change of 206, and dielectric capacitor (C j ^) 207 and a resistance element 208 connected in parallel.
ここで、 通常のソィヤー · タワーと電界効果型 トラ ンジス タ (n T y p e MO S F E T) 209からなる図 22 Aに示 したメ モ リ素子では、 入力端子 204から電圧信号を入力し、 メ モ リへの書き込み動作を行う。  Here, in the memory element shown in FIG. 22A including a normal soy tower and a field-effect transistor (n type MOS FET) 209, a voltage signal is input from the input terminal 204, and the memory is input. Write operation to.
このとき、 強誘電体キヤパシタ ( C Fr) 20 1に印加され る電圧を VF 誘電体キャパシタ (C , ) 202に強誘電体 キャパシタ (C FE) 20 1の分極した結果と して得られる電 圧を V e,と してグラフ化したものが、 図 22 Bに示すヒステ リ シス特性である。 At this time, the voltage applied to the ferroelectric capacitor (C Fr ) 201 is applied to the V F dielectric capacitor (C,) 202 by polarization of the ferroelectric capacitor (C FE ) 201. the pressure V e, and to those graphed is a hysteresis Li cis characteristics shown in FIG. 22 B.
ここで、 書き込み動作を終え、 入力端子 2 0 4を 0 Vにし たとき、 つま りメモ リ保持状態での V FE, V 各々の値は M j , M0 を示すことは自明である。 この状態で、 M} に着目すると、 これは強誘電体 C FEに正 の電圧を印加し分極された結果であるが、 の状態は印加 した正の電圧とは反対の負の電圧が c FEの両端に印加された ところで保持していることを示している。 It is obvious that when the write operation is completed and the input terminal 204 is set to 0 V, that is, the values of V FE and V in the memory holding state indicate M j and M 0 , respectively. In this state, paying attention to M } , this is the result of polarization by applying a positive voltage to the ferroelectric C FE . In the state of, the negative voltage opposite to the applied positive voltage is c FE It shows that it is held where the voltage is applied to both ends of.
これは、 強誘電体が分極反転したときに発生する過剰電荷 により 自らの分極を打ち消して見かけ上逆に分極してしま つ たのと同じである。  This is the same as the fact that the ferroelectric substance has its own polarization canceled out by the excess charge generated when the polarization is reversed, and apparently reverses the polarization.
そこで、 図 2 3 Aでは抵抗素子 2 0 8を設けることにより、 上述の過剰電荷を取り除き、 図 2 3 Bに示すヒステリ シス特 性のように分極の際に印加した電圧の向きと同じ保持状態が 得られている。  Therefore, in FIG. 23A, by providing the resistive element 208, the above-described excess charge is removed, and the holding state is the same as the direction of the voltage applied during polarization, as shown in the hysteresis characteristic shown in FIG. 23B. Has been obtained.
ところで、 第 2実施例は図 1 5 Aに示す構成であり、 図 2 3 Aの強誘電体キャパシタ ( C FE) 2 0 6を多重ヒステリ シ ス強誘電体キャパシタ ( C FE) 3 1 に変更した構造である。 こ こで用いた多重ヒステリ シス強誘電体キャパシタ ( c FE)By the way, the second embodiment has the configuration shown in FIG. 15A, and the ferroelectric capacitor (C FE ) 206 of FIG. 23 A is changed to a multi-hysteresis ferroelectric capacitor (C FE ) 31. It is the structure which did. The multi-hysteresis ferroelectric capacitor ( cFE ) used here
3 1 は図 1 4 A乃至 1 4 Hに示したヒステリ シス特性を有す るものであるため、 図 1 4 A, Bに示す状態 1 ( P 1 ) 、 図 1 4 C , Dまたは G, Hに示す状態 2または 4 ( P 0 ) 、 図 14 E, Fに示す状態 3 ( P 2 ) に対応した図 1 5 Bに示す ような電圧信号一 VM (V) , 0 (V) , +vM (V) を得 ている。 Since 31 has the hysteresis characteristics shown in FIGS. 14A to 14H, the state 1 (P 1 ) shown in FIGS. 14A and 14B and the state shown in FIGS. A voltage signal V M (V), 0 (V), as shown in FIG. 15B corresponding to the state 2 or 4 (P 0 ) shown in H and the state 3 (P 2 ) shown in FIGS. + v M (V).
図 1 5 Aの電圧電流変換素子 24は図 1 5 Bに示す電圧電 流変換特性を示すため、 保持情報は各々 O m A, 1. 5 m A, 3 mAと して該電圧電流変換素子 24に流れる電流を判別し て検出可能とするこ とができる。 Since the voltage-to-current converter 24 of FIG. 15A shows the voltage-to-current conversion characteristics shown in FIG. 15B, the retained information is O mA, 1.5 mA, and 3 mA, respectively. Determine the current flowing through 24 Can be detected.
次に、 図 1 6 A, B , Cを参照して、 本発明による第 1 3 実施例と しての強誘電体メ モ リ装置を構成する強誘電体メ モ リ素子を説明する。  Next, a ferroelectric memory element constituting a ferroelectric memory device according to a thirteenth embodiment of the present invention will be described with reference to FIGS. 16A, 16B and 16C.
まず、 図 1 6 Aに示す端子 3 8を接地した状態で、 端子 3 7より振幅 V p_p = 2 V。 となる正弦波電圧を印加したとき の強誘電体キャパシタ ( C FE) 3 1 の両端電圧 V FEと、 誘電 体キャパシタ ( C L ) 3 2の両端電圧 V との関係を図 1 6 Bに示す。 First, in a state where the grounding terminal 3 8 shown in FIG. 1 6 A, the amplitude V p _p = 2 V. from terminal 3 7 Figure 16B shows the relationship between the voltage V FE across the ferroelectric capacitor (C FE ) 31 and the voltage V across the dielectric capacitor (CL) 32 when a sinusoidal voltage is applied.
この強誘電体メ モ リ素子は上記正弦波電圧を印加した後で、 端子 3 7を接地したときに、 記憶状態となり、 自発分極 P , の状態では、 vMP1 ( V pP= - vCL) 、 P h の状態では、 V This ferroelectric memory element is in the memorized state when the terminal 37 is grounded after the above-mentioned sine wave voltage is applied, and in the state of spontaneous polarization P, v MP1 (V pP =-v CL ) , in the state of P h, V
MP2 (一 V FE= V CL) であ 00 00 for MP2 (one V FE = V CL)
また、 VMP2 の状態で、 端子 3 7に— まで低下する電 圧を印加した後、 端子 3 7を接地したとき、 もしく は VMP I の状態で、 端子 3 7に V i まで上昇する電圧を印加した後、 端子 3 7を接地したとき、 各々 VMPo ( V FE= V CL= 0 ) と なる。 In addition, in the state of V MP2, when a voltage that decreases to −37 is applied to terminal 37, when terminal 37 is grounded, or in the state of V MP I , the voltage rises to Vi at terminal 37. after application of a voltage, when the ground terminal 3 7, and each V MP o (V FE = V CL = 0).
このようにして図 1 6 Aに示す端子 3 8 , 3 7間において、 , ± v2 なる大きさの正弦波電圧 (またはパルス) を 印加することにより VMP I , VMPO , VMP2 の 3つの状態を a [憶する。 In this way, in between the terminals 3 8, 3 7 shown in FIG. 1 6 A,, V MP I , V MPO by applying ± v 2 becomes the magnitude of the sinusoidal voltage (or pulse), 3 V MP2 Remember two states a [
読み出し用となる電圧電流変換素子 3 3 , 34の特性は、 端子 4 0、 端子 3 5間の電圧も しく は、 端子 3 9、 端子 3 5 間の電圧に対して図 1 6 Cに示す特性を示す。 そして、 本実施例の強誘電体メモ リ素子における読出しは、 端子 3 7、 端子 3 8を接地し、 端子 3 9を正の電源、 端子 4 0を負の電源に接続して行われる。 この場合、 電圧電流変換 素子 3 3は p型 M O S ト ラ ンジスタであり、 電圧電流変換素 子 34は n型 M O S トラ ンジスタで構成されている。 The characteristics of the voltage-current conversion elements 33 and 34 used for reading are as shown in Fig. 16C with respect to the voltage between terminals 40 and 35 or the voltage between terminals 39 and 35. Is shown. Reading in the ferroelectric memory element of this embodiment is performed by connecting the terminals 37 and 38 to ground, connecting the terminal 39 to a positive power supply, and connecting the terminal 40 to a negative power supply. In this case, the voltage-current conversion element 33 is a p-type MOS transistor, and the voltage-current conversion element 34 is an n-type MOS transistor.
こ こで、 電圧電流変換素子 3 3及び電圧電流変換素子 34 によ り構成された読み出し用素子は、 端子 3 9を正電源に接 続すると共に、 端子 4 0を負電源に接続すると、 端子 3 5の 電位 Vにより、 端子 3 6より流れ出る電流 I の関係が図 1 6 C となるように設定されているものとする。  Here, the read element composed of the voltage-current conversion element 33 and the voltage-current conversion element 34 has a terminal 39 connected to the positive power supply and a terminal 40 connected to the negative power supply. It is assumed that the relationship between the current I flowing from the terminal 36 and the potential V of 35 is set as shown in FIG. 16C.
次に、 図 1 6 Aの端子 3 8を接地した状態で、 端子 3 7よ り正弦波電圧を印加したときの C Fr 3 1 , C L 3 2各々に生 ずる電圧波形は、 図 1 6 Bに示すようになる。 Then, with the ground terminal 3 8 in FIG. 1 6 A, the C Fr 3 1, C L 3 2 each raw sly voltage waveforms when applying the terminal 3 7 good Ri sinusoidal voltage, FIG 6 As shown in B.
また、 端子 3 7が 0 ( V ) となったときに、 つま りメモリ における保持状態では、 VMpQ , VMpi , VMp2 の 3値が得 られる。 こ こで、 VMPG ' VMP1 ' VMP2 に対応した C L 3 2両端 の電圧 V CLは各々 0 (V) , - V M (V) , + vM (V) で ある。 When the terminal 37 becomes 0 (V), that is, in the holding state in the memory, three values of V MpQ , V Mpi , and V Mp2 are obtained. In here, V MPG 'V MP1' V MP2 C L 3 2 voltage across V CL of which corresponds to each 0 (V), - V M (V), a + v M (V).
このことから図 1 6 Aの端子 3 5の電位は、 記憶状態によ り、 + V,, , 0 , — vM であることは明らかである。 From this, it is clear that the potential of the terminal 35 in FIG. 16A is + V ,,, 0, —v M depending on the storage state.
また、 読み出し部の電圧電流変換素子 3 3 , 34の特性が 図 1 6 Cを示すような特性であることから、 + VM では一 1 mA、 0 Vでは O m A、 一 V M では + 1 m Aの電流が端子 3 6より流れるので、 これを適宜な構成で検出してやれば記憶 内容を読み出すこ とができる。 In addition, since the characteristics of the voltage-current conversion elements 33 and 34 in the readout section are as shown in FIG. 16C, +1 M for + V M , O mA for 0 V, and + V for 1 V M Since a current of 1 mA flows from terminal 36, if this is detected with an appropriate configuration, it will be stored. The contents can be read.
例えば、 出力端子 3 6に直列に抵抗体を接続すると、 V = I * R (V : 電位差、 I : 電流、 R : 抵抗) のオームの法則 により、 この抵抗体の両端の電位差を測定することで簡単に、 電流を電圧に変換し、 読み出すことが可能である。  For example, if a resistor is connected in series with the output terminal 36, the potential difference between both ends of this resistor must be measured according to the Ohm's law of V = I * R (V: potential difference, I: current, R: resistance). It is possible to easily convert current to voltage and read it out.
例えば、 抵抗体が l k Ωの場合、 記憶状態が + VM では、 出力端子 3 6より、 — 1 m Aの電流が流れるため、 — I Vの 電位差を検出することができると共に、 記憶状態が一 vM で は、 + I Vの電位差となり、 記憶状態が 0では、 0 Vの電位 差を検出することができる。 For example, if the resistor is lk Ω and the storage state is + V M , a current of -1 mA flows from the output terminal 36, so that the potential difference of --IV can be detected and At v M , the potential difference is + IV. When the storage state is 0, a potential difference of 0 V can be detected.
次に、 図 1 7を参照して、 本発明による第 1 4実施例と し ての強誘電体メ モ リ装置について説明する。  Next, a ferroelectric memory device as a fourteenth embodiment of the present invention will be described with reference to FIG.
この実施例による強誘電体メモリ装置は、 多重履歴特性を 持つ強誘電体キャパシタ 4 1 と、 前記強誘電体キャパシタ 4 1 と直列に配置された誘電体キャパシタ 4 2、 更に誘電体キ ャパシタ 4 2と並列に設けられた抵抗素子 4 3から構成され るメ モ リ素子部と、 電圧電流変換素子 44 , 4 5からなる読 出し回路とから構成されている。 この強誘電体キヤパシ夕の 多重ヒステリ シス特性は、 図 1 4 A乃至 1 4 Hに示す特性と 同等の特性であるものとする。  The ferroelectric memory device according to this embodiment includes a ferroelectric capacitor 41 having a multi-history characteristic, a dielectric capacitor 42 arranged in series with the ferroelectric capacitor 41, and a dielectric capacitor 42. And a reading circuit including voltage-to-current conversion elements 44 and 45. The multi-hysteresis characteristics of this ferroelectric capacitor are assumed to be the same as the characteristics shown in FIGS. 14A to 14H.
図 1 7に示す端子 4 7を接地した状態で、 端子 4 6より、 正の電圧を印加し、 図 1 4 E , Fに示す状態 3 (自発分極 P 2 ) とする。 その後、 端子 4 6を接地すると、 多重ヒステリ シス強誘電体キャパシタ ( C Fr) 4 1、 誘電体キャパシタ ( C L ) 4 2、 抵抗 (R) 4 3は、 等価的に並列接続となり、 端子 4 7 , 5 0間には、 分極 P 2に対応した電圧 V p2が保持 される。 尚、 この電圧 V p2は、 端子 4 7に対し端子 5 0が、 負電位と してあらわれ、 分極 P 2 と同方向の電界をもつもの である。 このため、 V pつは、 P 2 が保持されるかぎり、 保持 される。 With the terminal 47 shown in FIG. 17 grounded, a positive voltage is applied from the terminal 46 to obtain the state 3 (spontaneous polarization P 2 ) shown in FIGS. 14E and F. Thereafter, when the ground terminal 4 6, multiple hysteresis ferroelectric capacitor (C F r) 4 1, ferroelectric capacitor (C L) 4 2, resistance (R) 4 3 becomes equivalently connected in parallel, A voltage V p2 corresponding to the polarization P 2 is held between the terminals 47 and 50 . The voltage V p2 is such that the terminal 50 appears as a negative potential with respect to the terminal 47 and has an electric field in the same direction as the polarization P 2 . Therefore, one V p as long as P 2 is held and retained.
同様に、 端子 4 6 , 4 7間の電圧を制御し、 図 1 4 A , B に示す状態 1 (分極 Pi ) とする。 すると、 電圧 vP1が電圧 vp2とは、 逆極性の電圧と して保持される。 書き込み用電源 は正負両極性で大きさ も任意に制御される。 また、 図 1 4 C , D及び 1 4 G , Hに示す状態 2及び 4に相当する場合には、 ρ = ϋであるため、 vpQP = V p0h = 0 となり電位状態と し ては区別できない。 ' Similarly, the voltage between the terminals 46 and 47 is controlled to be in the state 1 (polarization Pi) shown in FIGS. 14A and 14B. Then, the voltage v P1 is held as a voltage of the opposite polarity to the voltage v p2 . The power supply for writing has both positive and negative polarities, and the magnitude is arbitrarily controlled. In addition, in the cases corresponding to the states 2 and 4 shown in Figs. 14C and D and 14G and H, since ρ = p, v pQP = V p 0h = 0 and the potential state is distinguished. Can not. '
以上により、 このメ モ リ素子は分極状態に応じた記憶電圧 と して、 V pi, 0 , V p2 ( = - V ρι) を得ることができる。 前記電圧電流素子 44, 4 5からなる読出し回路において は、 端子 4 Sに正電源を接続し、 端子 4 9には負電源を接続 し、 接地に対し端子 5 0の電位を負から正に変化させると図 1 6 Cで示した特性を示すものとする。 As described above, this memory element can obtain V pi , 0, V p 2 (= −V ρι ) as a storage voltage according to the polarization state. In the read circuit composed of the voltage-current elements 44 and 45, a positive power supply is connected to the terminal 4S, a negative power supply is connected to the terminal 49, and the potential of the terminal 50 changes from negative to positive with respect to the ground. Then, the characteristics shown in FIG. 16C are shown.
こ こで、 記憶電圧 V p2=— VM , V pi= VM (図 1 6 B ) とすると、 分極 P i では電圧 vP1を記憶しているため、 出力 端子 5 1 より一 1 m Aの電流が流れ、 分極 P 2 のときには 1 m Aの電流が流れ、 分極 0のときは、 0 m Aの電流となるの で、 これらを判別して読出しを行う ことができる。 Here, assuming that the storage voltage V p2 = — V M , V pi = V M (FIG. 16B), since the voltage V P1 is stored in the polarization P i, one milliamperes from the output terminal 51. current flows in a current of 1 m a flows when the polarization P 2, when the polarization 0, 0 m a than the current, can be read to determine them.
次に、 図 1 8 A, B , Cを参照して、 本発明による第 1 5 実施例と しての強誘電体メ モ リ装置について説明する。 Next, referring to FIGS. 18A, B and C, the fifteenth embodiment according to the present invention will be described. An example of a ferroelectric memory device will be described.
この実施例の強誘電体メ モ リ素子は、 各々 シ リ コ ン ( S i ) 基板上に形成した強誘電体キャパシタ 6 1、 誘電体キャパシ 夕 6 2、 抵抗 6 3及び p型 M O S、 n型 M O S トラ ンジスタ で構成される電圧電流変換素子 64 , 6 5 とを含む。  The ferroelectric memory device of this embodiment includes a ferroelectric capacitor 61, a dielectric capacitor 62, a resistor 63, a p-type MOS, and a n-type MOS formed on a silicon (Si) substrate. Voltage-to-current conversion elements 64 and 65 each formed of a MOS transistor.
図 1 8 C中、 6 6は入力端子、 6 7は出力端子、 68は正 電源端子、 6 9は負電源端子である。  In FIG. 18C, 66 is an input terminal, 67 is an output terminal, 68 is a positive power supply terminal, and 69 is a negative power supply terminal.
以上において、 p型 M 0 S トラ ンジスタは、 負の電圧がゲ — ト ( G ) に印加されたときに、 ソース ( S ) 、 ドレイ ン (D) 問が導通状態になる。 また、 n型 M 0 S トラ ンジスタ は、 正の電位がゲー ト ( G) に、 印加されたときに、 ソース ( S ) ドレイ ン (D) 間が導通状態となる。 '  As described above, in the p-type MOS transistor, when a negative voltage is applied to the gate (G), the source (S) and the drain (D) become conductive. In addition, in the n-type MOS transistor, when a positive potential is applied to the gate (G), a conduction state is established between the source (S) and the drain (D). '
従って、 図 1 8 Cに示した電気的配線を p — M 0 S , n - M O S トラ ンジスタを用いて行なう ことにより、 図 1 6 Cに 示すような電圧電流変換特性を実現することができる。  Therefore, the voltage-current conversion characteristics as shown in FIG. 16C can be realized by performing the electrical wiring shown in FIG. 18C using the p-M0S, n-MOS transistor.
また、 M 0 S型 ト ラ ンジスタは、 電界効果型 トラ ンジスタ であり、 トラ ンジスタの 0 N , 0 F F制御が電界により行な われ、 バイポーラ型 トラ ンジスタのように、 電流の注入を必 要と しない。  In addition, the M0S type transistor is a field-effect type transistor, in which 0 N and 0 FF control of the transistor is performed by an electric field, and current injection is required as in a bipolar type transistor. do not do.
このため誘電体キャパシタ 6 2に蓄えられた電荷に応じた 電位を電流におき換えて検出する場合、 電荷を減少させずに 検出できるので、 長期の記億が可能である。  Therefore, when a potential corresponding to the charge stored in the dielectric capacitor 62 is replaced with a current and detected, the detection can be performed without reducing the charge, and a long-term storage is possible.
次に、 図 1 9 A, Bを参照して、 本発明による第 1 6実施 例と しての強誘電体メ モ リ装置に用いられる強誘電体メモリ 素子について説明する。 図 1 9 Aに示す端子 7 2 と端子 7 1間に、 C esという寄生 容量が発生する。 これは、 ゲー ト酸化膜 S i 02 を誘電体と して、 P o 1 y S i ゲー ト電極と P + 拡散層 (ソース) 間に できる寄生容量であり、 その大きさは、 ゲー ト酸化膜の厚み d と、 P o 1 y S i ゲー ト電極と P + 拡散層 (ソース) のォ 一バーラ ップした面積 S に依存する。 つま り、 Next, a ferroelectric memory element used in a ferroelectric memory device according to a sixteenth embodiment of the present invention will be described with reference to FIGS. 19A and 19B. A parasitic capacitance called Ces is generated between the terminal 72 and the terminal 71 shown in FIG. 19A. This is a parasitic capacitance formed between the PO 1 y Si gate electrode and the P + diffusion layer (source) by using the gate oxide film Si 0 2 as a dielectric. It depends on the thickness d of the oxide film and the overlapped area S of the P o 1 y Si gate electrode and the P + diffusion layer (source). In other words,
C = ε * £ 0 * S / d ( ε : 比誘電率、 ε ϋ : 誘電率、 S 面積、 d : 厚み) から成る閲係がなりたっている。  C = ε * £ 0 * S / d (ε: relative permittivity, ε ϋ: permittivity, S area, d: thickness) is becoming more important.
従って、 上記オーバーラ ップ面積 Sを大き く すれば、 容量 値が大き く成る。 また、 厚み dを薄く すれば、 やはり、 容量 値は大き く成る。  Therefore, if the overlap area S is increased, the capacitance value is increased. Also, if the thickness d is reduced, the capacitance value also increases.
従って、 ゲー ト電極に直列に接続された、 多重履歴特性を 持つ強誘電体に対して、 任意の容量比を持たせることが、 上 記、 面積及び厚みを制御することで実現できる。  Therefore, it is possible to provide an arbitrary capacitance ratio to a ferroelectric having multiple hysteresis characteristics connected in series to the gate electrode by controlling the area and the thickness.
本実施例では、 多重ヒ ステリ シス特性を持つ強誘電体の 0 In this embodiment, the ferroelectric material having a multi-hysteresis characteristic
Vバイアス近傍における容量値の 1 0倍の値を持つように、 オーバーラ ップ面積のみを制御してデバイスを作成した。 A device was created by controlling only the overlap area so as to have a value 10 times the capacitance value near the V bias.
また、 今回作成したデバイスでは端子 7 1 と端子 7 2の間 に、 P o 1 y S i で作成した抵抗体を別途設けることによ り抵抗素子を作っている。  Also, in the device created this time, a resistor element is made by separately providing a resistor made of Po1ySi between terminal 71 and terminal 72.
なお、 本発明によるメ モ リ素子は、 1 0 _8 s e cのメ モ リ へのアクセスを行うため、 また電荷保持用キャパシタの容量 を l x l CT13 ( F ) と してあるために P o l y S i で作 成した抵抗は 5 X 1 04 Ωと した。 Note that the memory element according to the present invention accesses the memory for 10 to 8 sec, and the capacitance of the charge holding capacitor is set to lxl CT 13 (F). The resistance created by was set to 5 × 10 4 Ω.
次に、 図 2 O A, Bを参照して、 本発明による第 1 7実施 例と しての強誘電体メモリ装置及び該強誘電体メ モ リ装置に 用いられる強誘電体メモ リ素子について説明する。 Next, referring to FIG. 2 OA and B, a 17th embodiment according to the present invention will be described. A ferroelectric memory device as an example and a ferroelectric memory element used in the ferroelectric memory device will be described.
図 2 O Aは、 この実施例の強誘電体メ モ リ装置に用いられ る強誘電体メ モ リ素子 (単位メ モ リ セル) の構成を示す。 図 20 Bは、 この強誘電体メ モ リ素子を用いて構成する強誘電 体メ モ リ装置を示す。  FIG. 2OA shows the configuration of a ferroelectric memory element (unit memory cell) used in the ferroelectric memory device of this embodiment. FIG. 20B shows a ferroelectric memory device configured using this ferroelectric memory element.
この実施例では、 説明を容易にするために 2個の単位メ モ リセルで構成したが、 これに限定される ものではなく 、 多数 のメ モ リセルを配置するマ ト リ ッ ク ス構成であっても勿論、 好適する。  In this embodiment, two unit memory cells are used for ease of explanation. However, the present invention is not limited to this, and a matrix structure in which many memory cells are arranged is used. Of course, it is preferable.
図 20 Aに示す強誘電体メ モ リ素子 (単位メ モ リ セル) は、 図 1 3 Bに示した強誘電体メ モ リ素子と同等であり、 こ こで は詳細な説明を省略する。  The ferroelectric memory element (unit memory cell) shown in FIG. 20A is the same as the ferroelectric memory element shown in FIG. 13B, and detailed description is omitted here. .
図 20 Bに示す強誘電体メ モ リ装置は、 2個の強誘電体メ モリ素子 8 1 , 1 (以下、 セル 1 , 2と称する) と、 デー タを書込むセルを選択する書き込み用ァ ドレスデコーダ 1 0 1 と、 書込み時に分極を多値で書き込むための書込み用両極 性電源 (電圧の大きさが書き込みたい情報に従い可変する) 1 03と、 データを読出すセルを選択する読出し用ア ドレス デコーダ 1 ϋ 2と、 読出した電流を検出し、 情報を判別する 読出し電流検出回路 1 06と、 及びリー ド ライ ト (RZW) 制御回路 1 0 5とから構成されている。  The ferroelectric memory device shown in FIG. 20B has two ferroelectric memory elements 81, 1 (hereinafter, referred to as cells 1 and 2) and a write-in device for selecting a cell into which data is to be written. Address decoder 101, bipolar write power supply for writing multi-valued polarization during writing (voltage magnitude varies according to information to be written) 103, read for selecting cell from which data is read It comprises an address decoder 1-2, a read current detection circuit 106 for detecting read current and discriminating information, and a read / write (RZW) control circuit 105.
このような構成において、 セル 1または 2へのデータ書き 込みの際には、 書込み用ア ドレスデコーダ 1 0 1により、 ト ラ ン ジスタ 84 (W— SW 1 ) または 94が導通状態となり、 書込み用両極性電源 1 03が接続される。 また、 トラ ンジス タ 85 (W- S W2) または 9 5は、 読出し時以外は常に導 通させておき、 接地されるように、 前記 RZW制御回路 1 0 5で制御されている。 このため、 書き込み時には、 いずれか 一方のセル側が接地される。 こ こで、 書込み用両極性電源 1 03より書込みたい情報に応じた大きさ及び極性の電圧パル スが印加され、 その後、 接地される。 In such a configuration, when data is written to the cell 1 or 2, the transistor 84 (W—SW 1) or 94 becomes conductive by the write address decoder 101, A bipolar write power supply 103 is connected. The transistor 85 (W-SW2) or 95 is controlled by the RZW control circuit 105 so that the transistor 85 (W-SW2) or 95 is always conducted except when reading and is grounded. Therefore, at the time of writing, one of the cell sides is grounded. Here, a voltage pulse having a magnitude and polarity corresponding to the information to be written is applied from the bipolar write power supply 103, and then grounded.
尚、 書き込みが行われていないときは、 トランジスタスィ ツチ 82 ( S W 1 ) または 9 2からイ ンバー夕 83または 9 2を介して常にセルの トラ ンジスタ 84 (W - S W 1 ) また は 94に接続されている部位は接地されている (記憶保持お よびメモリ読出し時) 。  When writing is not being performed, the transistor switch 82 (SW1) or 92 is always connected to the cell transistor 84 (W-SW1) or 94 via the inverter 83 or 92. The grounded part is grounded (when storing and reading out the memory).
次に、 このように構成された強誘電体メモリ装置における 読出しについて説明する。  Next, reading in the ferroelectric memory device thus configured will be described.
まず読出し用ァ ドレスデコーダ 1 02は トラ ンジスタ 86 (R— SW2) または 96を導通状態にさせ、 セルが読出し 用電源 1 04と接続される。 同時に、 ト ラ ンジスタ 85 (W - S W 2 ) または 9 5は、 R ZW制御回路 1 05より不導通 状態 (オフ状態) にされる。  First, the read address decoder 102 turns on the transistor 86 (R-SW2) or 96, and the cell is connected to the read power supply 104. At the same time, the transistor 85 (W-SW2) or 95 is turned off (off) by the RZW control circuit 105.
従って、 読出し用電源 1 04からセル 1または 2に流れる 電流は、 セルの分極状態によって定まる値となり、 この電流 が読出し電流検出回路 1 06に流れ込む。 こ こで、 セルの電 圧電流変換素子の特性は、 図 1 5 Bに示した特性であり、 多 重ヒステリ シス特性は図 14 A乃至 14 Hに示すものである。 図 14 A, Bに示す、 状態 1の時の分極状態の分極状態 P j のメモ リ電圧は、 図 1 5 Bの VM であり、 図 14 E, Fに 示す状態 3の分極状態 P 2 の時のメ モ リ電圧は図 1 5 Bの - VM である。 また、 図 14 C, D及び図 14 G, Hに示す状 態 2, 4と同等の状態では 0 Vを示す。 Therefore, the current flowing from the read power supply 104 to the cell 1 or 2 has a value determined by the polarization state of the cell, and this current flows into the read current detection circuit 106. Here, the characteristics of the voltage-to-current conversion element of the cell are the characteristics shown in FIG. 15B, and the multiple hysteresis characteristics are those shown in FIGS. 14A to 14H. Figure 14 A, shown in B, memory voltage polarization state P j of the polarization state of the state 1 is the V M in FIG. 1 5 B, the polarization state P 2 in the state 3 shown FIG. 14 E, the F the Note Li voltage at the time of FIG. 1 5 B - a V M. In addition, it shows 0 V in a state equivalent to states 2 and 4 shown in Figs. 14C and 14D and Figs. 14G and 14H.
従って、 読出し電流検出回路 1 06では分極 P i のときは、 3 mA、 P 2 のと きは、 O mA、 0 Vの時 (P = 0) のとき は、 1. 5 m Aを検出し、 それを判別して、 出力する。 Therefore, the read current detection circuit 106 detects 3 mA for polarization P i, O mA for P 2, and 1.5 mA for 0 V (P = 0). , Judge and output.
次に、 本発明による第 1 8実施例と しての強誘電体メ モ リ 装置による積和演算用マ ト リ ッ クス演算器への応用例につい て説明する。  Next, an application example of the ferroelectric memory device according to the eighteenth embodiment of the present invention to a matrix calculator for sum-of-products calculation will be described.
こ こで、 図 2 1 Aに示すメ モ リセル M l 1〜M 33は、 前 述した第 14実施例の図 1 7に示す強誘電体メモリ素子に対 応するものとする。 また本実施例では、 説明を理解し易くす るために、 3行 3列の配置と したが、 これに限定されるもの ではない。  Here, the memory cells M11 to M33 shown in FIG. 21A correspond to the ferroelectric memory element shown in FIG. 17 of the fourteenth embodiment described above. Further, in this embodiment, the arrangement of three rows and three columns is adopted in order to make the explanation easy to understand, but the present invention is not limited to this.
この積和演算用マ ト リ ッ ク ス演算器は、 メモ リセル M 1 1 〜M33をマ ト リ ッ ク ス状に配置し、 各行毎にスィ ツチ S 1 〜 S 3を設けている。  In the matrix calculator for multiply-accumulate operation, memory cells M11 to M33 are arranged in a matrix, and switches S1 to S3 are provided for each row.
図 2 1 Bを参照して、 前記セル M l 1〜M 33に用いたメ モ リ素子の入出力特性を説明する。  With reference to FIG. 21B, the input / output characteristics of the memory element used in the cells M11 to M33 will be described.
まず、 誘電体キャパシタ 4 2 (図 1 7参照) に不揮発性メ モリ電圧 0 Vが記憶されている場合は、 メモ リ素子からの出 力される電流は 0 Aになる。 次に、 前記誘電体キャパシタ 4 2に不揮発性メ モ リ電圧 0. 8 Vが記憶されている場合、 + 5 0 0 /i Aの電流が、 また一 0. 8 Vが記億されている場合、 一 5 0 0 Aの電流が、 それぞれ出力端子 5 1 (図 1 7参照) より出力される。 First, when the nonvolatile memory voltage 0 V is stored in the dielectric capacitor 42 (see FIG. 17), the current output from the memory element is 0 A. Next, when the nonvolatile memory voltage 0.8 V is stored in the dielectric capacitor 42, If the current of 500 / iA and 10.8 V are stored, the current of 500 A is output from the output terminal 51 (see FIG. 17).
このよ うに、 M l 1 〜M 3 3の各々のメ モ リ素子からの出 力は、 図 2 1 A, Bにおいて、 ライ ン 1、 ライ ン 2、 ライ ン As described above, the outputs from the respective memory elements of Ml1 to M33 are shown in FIGS.
3で各々ま とめられ各列毎の和が、 電流計 1 1 1 2 , 1 1 3で検出される。 The sum of each column is collected by 3 and detected by the ammeters 1 1 1 2 and 1 1 3.
こ こで、 次のマ ト リ ッ クス演算について考える  Now consider the following matrix operation
1 0 - 1  1 0-1
( 1 , 0 , 1 ) 0 一 1 0 = ( 0 , 1 一 2 )  (1, 0, 1) 0 1 1 0 = (0, 1 1 2)
一 1  One one
( 1 ) 上記の演算を図 2 1 A, Bの演算器で実際に演算する。  (1) The above calculation is actually performed by the calculation units shown in Figs.
まず、 ( 1. 0. 1 ) の情報をスィ ッチ S I , S 2 , S 3 に対し、 O N, O F F , O Nと して与える。  First, the information of (1.0.1) is given to the switches SI, S2, and S3 as ON, OFF, and ON.
次に、 1 0 — 1  Then, 1 0 — 1
0 - 1 0  0-1 0
一 1 1 一 1  One 1 one one 1
の情報は、 セル M l 1〜M 3 3の不揮発性メモリ電圧と して、 以下に示すように Of the cell Ml 1 to M 33 as shown below.
0 8 V 0 V - 0. 8 V  0 8 V 0 V-0.8 V
0 V - 0. 8 V 0 V  0 V-0.8 V 0 V
- 0. 8 V 0. 8 V - 0. 8 V  -0.8 V 0.8 V-0.8 V
と して与えておく。 And give it.
このとき、 電流計 1 2 の各々の出力値 は、 O A , 5 0 0 11 A , - m Aとなる。 この値を単位メ モ リ セルからの出力電流絶対値 5 0 0 Aで割るこ とによ り、 ( 0 , 1 , - 2 ) となり、 ( 1 ) 式の右辺と一致する。 At this time, the output value of each of the ammeters 1 and 2 Becomes OA, 50011A, -mA. Dividing this value by the absolute value of the output current from the unit memory cell, 500 A, gives (0, 1, -2), which matches the right side of equation (1).
これを、 n次元に広げることにより、 n次元マ ト リ ッ ク ス 演算回路を構築することができる。 また、 このような動作か らわかるように、 並列演算器であるため、 非常に高速の積和 演算器を実現することができる。  By expanding this to n dimensions, an n-dimensional matrix operation circuit can be constructed. In addition, as can be seen from such an operation, since it is a parallel operation unit, a very high-speed product-sum operation unit can be realized.
そして、 本発明の第 1 1乃至第 1 8実施例による強誘電体 メモリ装置は、 以下に記載された記載する構成により種々の 効果が得られる。  In the ferroelectric memory devices according to the eleventh to eighteenth embodiments of the present invention, various effects can be obtained by the configurations described below.
( 1 ) 少なく と も 3個以上の安定な分極値を有する多重ヒ ステ リ シス特性を有し、 多重ヒステ リ シス特性に伴なう多値 電圧を情報と して記憶する強誘電体を電極材料で挟んで形成 する強誘電体キャパシ夕と、  (1) A ferroelectric material that has multi-hysteresis characteristics with at least three or more stable polarization values and stores multi-valued voltages associated with the multi-hysteresis characteristics as information A ferroelectric capacitor formed between materials,
前記強誘電体キヤパシタに直列に接続された誘電体キヤパ シタと、  A dielectric capacitor connected in series to the ferroelectric capacitor;
前記強誘電体キャ パシタに記憶される前記多重ヒ ステリ シ ス特性に伴なう多値電圧情報を読み出す、 電圧電流変換素子 と、  A voltage-current conversion element for reading multi-valued voltage information associated with the multiple hysteresis characteristics stored in the ferroelectric capacitor;
で構成される強誘電体メ モ リ装置。 Ferroelectric memory device composed of
この ( 1 ) の強誘電体メ モ リ装置は、 3個以上の安定な分 極値を有するため、 分極状態が変化する際に蓄えられる電圧 情報も 3個以上得られる。  Since the ferroelectric memory device of (1) has three or more stable polarization values, three or more pieces of voltage information stored when the polarization state changes can be obtained.
これにより、 通常の強誘電体メモリ装置では記憶できる情 報は 2値であるが、 本発明の強誘電体メ モ リ装置は、 多重ヒ ステリ シス特性の強誘電体を用いるこ とにより 3値以上の記 憶が可能である。 また、 読み出し用素子と して、 O N— O F Fスィ ッチではなく、 電圧電流変換素子を用いる事により、 多値記億、 多値読み出しが可能である。 As a result, the information that can be stored in a normal ferroelectric memory device is binary, but the ferroelectric memory device of the present invention has a multi-layered structure. By using a ferroelectric material having a steeresis characteristic, three or more values can be stored. Also, by using a voltage-to-current conversion element instead of an ON-OFF switch as the readout element, multi-valued storage and multi-valued read-out are possible.
(2) 少なく と も 3個以上の安定な分極値を有する多重ヒ ステリ シス特性を示す強誘電体キャパシタと、  (2) A ferroelectric capacitor having multiple hysteresis characteristics having at least three or more stable polarization values,
前記強誘電体キヤパシタに直列に接続された誘電体キャパ シ夕と、  A dielectric capacitor connected in series with the ferroelectric capacitor;
前記強誘電体キャパシタに並列接続された抵抗素子と、 前記強誘電体キャパシタの多重ヒステリ シス特性に伴なう 多値電圧情報を読み出す、 電圧電流変換素子とで構成される 多値記憶できる強誘電体メ モ リ装置。  A ferroelectric element capable of multi-value storage, comprising: a resistance element connected in parallel to the ferroelectric capacitor; Body memory device.
(3) 上記 ( 2) 記載の前記電圧電流変換素子は、 前記強 誘電体キヤパシタと前記誘電体キャパシタとの連続部に接続 されている。  (3) The voltage-current conversion element according to (2) is connected to a continuous portion between the ferroelectric capacitor and the dielectric capacitor.
このよ うな (2) 及び (3) の強誘電体メ モリ装置は、 3 個以上の安定な分極値を持っため、 分極状態に応じた電圧情 報も 3個以上得られるので、 分極状態を直接、 電圧情報とで きるため、 長期記憶が可能であり、 かつ、 3値以上の多値記 億を可能とすることができる。  Since the ferroelectric memory devices of (2) and (3) have three or more stable polarization values, three or more pieces of voltage information corresponding to the polarization state can be obtained. Since voltage information can be directly stored, long-term memory is possible, and multi-value storage of three or more values is possible.
(4 ) 上記 ( 1 ) , (2) 記載の強誘電体メ モ リ装置にお いて、 多値電圧情報を読み出す電圧電流変換素子が、 正の電 圧に対して電流が制御される素子と、 負の電圧に対して電流 が制御される素子とから構成される。  (4) In the ferroelectric memory device described in (1) or (2) above, the voltage-current conversion element for reading multi-valued voltage information is an element whose current is controlled with respect to a positive voltage. And an element whose current is controlled with respect to a negative voltage.
従来は、 記憶した情報に応じて、 正の電流もしく は負の電 流を出力する強誘電体メ モ リ素子であるが、 扱える記憶情報 は 2値と少ない。 この (4 ) の本発明による強誘電体メ モリ 装置は、 3値以上の多値情報を記憶し、 読み出すことが可能 な記憶素子であり、 正負両極性のメ モリ電圧に対し、 電圧電 流変換が可能となるので、 分極状態に対応した電圧情報が両 極性で、 長期記憶でき、 且つ情報電圧に対し、 多値読み出し が可能である。 Conventionally, depending on the stored information, a positive or negative current Although it is a ferroelectric memory element that outputs current, it can handle only a small number of stored information. The ferroelectric memory device according to the present invention of (4) is a storage element capable of storing and reading out multi-valued information of three or more values. Since conversion is possible, voltage information corresponding to the polarization state can be stored for a long period of time in both polarities, and multi-value reading of the information voltage is possible.
( 5 ) 上記 ( 3 ) も しく は (4 ) 記載の電圧電流変換素子 は、 M 0 S型 ト ラ ンジスタで構成される。  (5) The voltage-current conversion element described in the above (3) or (4) is constituted by a MOS type transistor.
この ( 5 ) の本発明による強誘電体メ モ リ装置は、 従来の S ( デバイスでは実現されていない、 多値記憶メモ リ S i デ ィ バイ スと して実現する ものであり、 S i 基板上モノ リ シ ッ クにおいて、 強誘電体メ モ リ素子を作成可能である。  The ferroelectric memory device according to the present invention of (5) is realized as a conventional multi-valued memory S i device (not realized by a device). A ferroelectric memory device can be created in monolithic on a substrate.
( 6 ) 上記 ( 2 ) , (4 ) 記載の誘電体キャパシタが、 M 0 S T r のゲー ト容量であり、 抵抗素子はポリ シリ コンから なる。 (6) above (2), (4), wherein the dielectric capacitor, a gate capacitance of M 0 ST r, the resistance element is made of polycrystalline silicon.
この ( 6 ) の本発明による強誘電体メモリ装置は、 ト ップ ドボ リ シ リ コ ンを用いた抵抗素子技術を利用し、 従来にない 多値記憶メ モ リ素子を提供する もので、 このような強誘電体 メ モ リ装置を具現化する際の構成が簡単になり、 M O S型ト ランジスタのゲ一 ト容量を誘電体キヤパシタと して用いるこ とにより、 別途、 誘電体キャパシタを作製する必要がなく 、 抵抗素子と しては、 通常 S i プロセスの中で日常使用されて いるポ リ シ リ コ ンを使用し、 プロセスの複雑化を防止してい ( 7 ) 上記 ( 1 ) も し く は ( 2 ) 記載の強誘電体メモリ装 置は、 強誘電体メ モ リ素子を複数個配置し、 所望のメ モリ素 子を選択し、 書込み読出しを行なう手段を有する。 The ferroelectric memory device according to the present invention (6) uses a resistive element technology using a top-down silicon to provide an unprecedented multi-value storage memory element. The structure for realizing such a ferroelectric memory device is simplified, and a separate dielectric capacitor is manufactured by using the gate capacitance of the MOS transistor as a dielectric capacitor. There is no need to use a resistor, and the resistive element is made of polysilicon, which is usually used in the Si process, to prevent the process from becoming complicated. (7) In the ferroelectric memory device described in (1) or (2) above, a plurality of ferroelectric memory elements are arranged, a desired memory element is selected, and writing / reading is performed. Have means to do.
このような (7) の強誘電体メ モ リ装置は、 所望の強誘電 体メ モ リ素子を選択し、 書込み読出しを行なう こ とにより、 多値記憶及び不揮発性記憶の特徴を有し、 非破壊、 多値記憶 可能な強誘電体メ モ リ装置である。  Such a ferroelectric memory device of (7) has characteristics of multi-value storage and nonvolatile storage by selecting a desired ferroelectric memory element and performing writing and reading. This is a ferroelectric memory device capable of non-destructive and multi-value storage.
(8) 上記 (3) も しく は (4 ) 記載のメ モ リ素子の出力 端子を複数個共通と し、 入力端子から入力されるべク トル情 報と、 予めメモリ素子に記憶されたベク トル情報との行列演 算を並列処理し、 前記出力端子より乗算結果を出力する。  (8) A plurality of output terminals of the memory element described in (3) or (4) above are shared, and the vector information input from the input terminal and the vector information stored in the memory element in advance are used. The matrix operation with the torque information is processed in parallel, and the multiplication result is output from the output terminal.
従来、 ( 1 , 0 ) 情報を扱う行列演算器は考案されている。 しかし、 実際に行列演算を行なう際には ( 1 , 0) 情報だけ では、 扱う記憶容量が小さい。 そこでアナログ量を ( 1 , 0) 情報におきかえ、 AZD変換等した後、 計算を行なっている が、 アナログ量をそのまま扱えた方が、 行列が小さ く てすむ。 このような (8) の強誘電体メモ リ装置は、 3値以上の情 報のべク トル演算ができ、 高速行列演算を行う。  Conventionally, a matrix calculator that handles (1,0) information has been devised. However, when the matrix operation is actually performed, the storage capacity to be handled is small if only the (1,0) information is used. Therefore, the analog quantity is replaced with (1,0) information, the calculation is performed after AZD conversion, etc., but the matrix can be smaller if the analog quantity is handled as it is. Such a ferroelectric memory device of (8) can perform a vector operation of information having three or more values and performs a high-speed matrix operation.
また本発明は、 前述した実施例に限定されるものではなく、 他にも発明の要旨を逸脱しない範囲で種々の変形や応用が可 能であることは勿論である。  Further, the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications and applications are possible without departing from the gist of the invention.
従って、 以上詳述したように本発明の第 1 1乃至第 1 8実 施例によれば、 安定な分極値を少なく とも 3個以上有する多 重ヒステリ シス特性の強誘電体メ モ リ素子を用いる強誘電体 メ モ リ装置を提供する こ とができる。 Therefore, as described in detail above, according to the eleventh to eighteenth embodiments of the present invention, a ferroelectric memory element having a multiple hysteresis characteristic having at least three or more stable polarization values is provided. Ferroelectric used A memory device can be provided.
従来の強誘電体は、 安定な分極状態が 2点しかないため、 記憶できる情報は、 2値であるが、 本発明の強誘電体メモリ 装置は、 記憶媒体に多重ヒステリ シス特性を有する強誘電体 を用いることにより、 少なく とも 3値以上の多値記憶が可能 でのる 0 Since the conventional ferroelectric has only two stable polarization states, the information that can be stored is binary, but the ferroelectric memory device of the present invention has a ferroelectric memory having multiple hysteresis characteristics in the storage medium. by using the body, rests may multilevel storage of three or more values at least 0
また、 本発明では、 読み出し用素子と して、 O N— O F F スィ ッチではなく 、 電圧電流変換素子を用いるこ とにより、 多値記億、 多値読み出しが可能である。 産業上の利用可能性  Further, in the present invention, by using a voltage-current converter instead of an ON-OFF switch as a read element, multi-value storage and multi-value read are possible. Industrial applicability
以上のような本発明に係る強誘電体メモ リ装置は、 不揮発 性メモリ と して広範に利用することが可能である。  The ferroelectric memory device according to the present invention as described above can be widely used as a nonvolatile memory.

Claims

請 求 の 範 囲 The scope of the claims
1 . 基板上に形成された導電体膜からなる第 1電極と、 前記第 1電極上に形成され、 情報が書き込まれる強誘電体 膜と、 1. a first electrode made of a conductive film formed on a substrate; a ferroelectric film formed on the first electrode and on which information is written;
この強誘電体膜上に形成された導電体膜から成る複数の第 2電極とを具備し、  A plurality of second electrodes made of a conductive film formed on the ferroelectric film,
前記第 1電極と前記第 2電極との形成配置関係若しく は、 対向する電極面積の大きさのうち、 少なく と もどちらか一方 が異なることを特徴とする強誘電体メモ リ装置。  A ferroelectric memory device characterized in that at least one of the formation arrangement relationship between the first electrode and the second electrode or the size of the facing electrode is different.
2 . 前記請求の範囲 1 に記載の強誘電体メモリ装置において, 第 1電極もしく は第 2電極の少なく ともどちらか一方の電極 形状を変えた事を特徴とする強誘電体メ モ リ装置。 2. The ferroelectric memory device according to claim 1, wherein the shape of at least one of the first electrode and the second electrode is changed. .
3 . 前記請求の範囲 1 に記載の強誘電体メモ リ装置において, 前記複数の強誘電体キャパシタは抗電界の値が互いに異なつ ていると共に、 それらの強誘電体キャパシタを並列に接続し て得られるッイ スティ ドヒステリ シスのいく つかの分極状態 でのバッ クスィ ッチング時の容量を利用して非破壊で分極状 態を読み出すことを特徴とする強誘電体メモ リ装置。  3. The ferroelectric memory device according to claim 1, wherein the plurality of ferroelectric capacitors have different values of coercive electric field from each other, and the ferroelectric capacitors are connected in parallel. A ferroelectric memory device characterized in that the polarization state is read out non-destructively by utilizing the capacitance at the time of back switching in several polarization states of the obtained hysteresis hysteresis.
4 . 前記請求の範囲 3に記載の強誘電体メモ リ装置において、 比誘電率の異なる強誘電体キヤパシタを並列接続し得られる ッイスティ ドヒステリ シスのいく つかの分極状態でのバッ ク スィ ッチング時の容量差を利用した非破壌読み出し法を特徴 とする強誘電体メモリ装置。  4. The ferroelectric memory device according to claim 3, wherein the ferroelectric capacitors having different relative dielectric constants are connected in parallel during back-switching in several polarized states of twisted hysteresis. A ferroelectric memory device characterized by a non-destructive readout method utilizing a capacitance difference.
5 . 前記請求の範囲 3または 4に記載の強誘電体メ モ リ装置 において、 並列接続した複数の強誘電体キヤパシタのうち、 少なく とも一つ以上の強誘電体キャパシタが、 非対称なヒス テリ シスを有するこ とを特徴とする強誘電体メモ リ装置。 5. The ferroelectric memory device according to claim 3 or 4 3. The ferroelectric memory device according to claim 1, wherein at least one or more ferroelectric capacitors among the plurality of ferroelectric capacitors connected in parallel have asymmetric hysteresis.
6 . 前記請求の範囲 5に記載の強誘電体メ モリ装置において 前記非対称ヒステリ シスを有する強誘電体キャパシタは、 導 電体、 強誘電体、 絶縁体、 半導体の多層膜構造からなる こ と を特徴とする強誘電体メ モ リ装置。  6. The ferroelectric memory device according to claim 5, wherein the ferroelectric capacitor having the asymmetric hysteresis has a multilayer structure of a conductor, a ferroelectric, an insulator, and a semiconductor. Characteristic ferroelectric memory device.
7 . 前記請求の範囲 5に記載の強誘電体メモ リ装置において. 前記非対称ヒステリ シスをもつ強誘電体キヤパシタは、 導電 体、 強誘電体、 絶縁体、 半導体の多層膜構造からなることを 特徴と した強誘電体メモ リ装置。  7. The ferroelectric memory device according to claim 5, wherein the ferroelectric capacitor having asymmetric hysteresis has a multilayer structure of a conductor, a ferroelectric, an insulator, and a semiconductor. Ferroelectric memory device.
8 . 絶縁体上に形成された第 1 の下部電極膜と、 前記第 1の 下部電極膜上に形成された第 1の強誘電体膜とこの第 1の強 誘電体膜上に形成された第 1 の上部電極膜とから成る単位強 誘電体キャパシタにより形成された複数個の第 1のキャパシ タュニッ 卜と、  8. A first lower electrode film formed on the insulator, a first ferroelectric film formed on the first lower electrode film, and a first ferroelectric film formed on the first ferroelectric film A plurality of first capacitor units formed by a unit ferroelectric capacitor including the first upper electrode film;
前記絶縁体上に形成された前記第 1のキャパシタュニッ ト と抗電界の異なる複数の第 2のキャパシタュニッ トとを具備 し、  A first capacitor unit formed on the insulator and a plurality of second capacitor units having different coercive electric fields,
この第 2のキャパシタュニッ トは前記絶縁体上に形成され た第 2の下部電極と該第 2の下部電極上に形成された第 2の 強誘電体膜と該第 2の強誘電体膜上に形成され第 2の下部電 極と形状の異なる第 2の上部電極を有した単位強誘電体キヤ パシ夕から構成すると共に、  The second capacitor unit has a second lower electrode formed on the insulator, a second ferroelectric film formed on the second lower electrode, and a second ferroelectric film formed on the second ferroelectric film. A unit ferroelectric capacitor having a second upper electrode formed and having a second upper electrode having a shape different from that of the second lower electrode;
H'J BC第 1、 第 2のキャパシ夕ュニッ トにおいて少なく とも 1個以上が電気的に接続されていることを特徴とする強誘電 体メ モリ装置。 H'J BC At least in the first and second capacity units A ferroelectric memory device, wherein at least one device is electrically connected.
9 . 前記請求の範囲 8に記載の強誘電体メ モ リ装置において. 前記複数の第 1 の強誘電体キャパシタュニッ トと前記複数の 第 2の強誘電体キヤパシタュニッ 卜の強誘電体の材質が互い に異なることを特徴とする強誘電体メ モ リ装置。  9. The ferroelectric memory device according to claim 8, wherein the ferroelectric materials of the plurality of first ferroelectric capacitor units and the plurality of second ferroelectric capacitor units are mutually different. A ferroelectric memory device characterized in that:
10. 前記請求の範囲 8に記載の強誘電体メモ リ装置において, 記前複数の第 1 の強誘電体キャパシタュニッ ト と前記複数の 第 2の強誘電体キヤパシタュニッ 卜の強誘電体の厚みが異な ることを特徴とする強誘電体メ モ リ装置。  10. The ferroelectric memory device according to claim 8, wherein the plurality of first ferroelectric capacitor units and the plurality of second ferroelectric capacitor units have different thicknesses of ferroelectric material. A ferroelectric memory device characterized in that:
1 1. 前記請求の範囲 8に記載の強誘電体メ モ リ装置において, 記前複数の第 1の強誘電体キャパシタュニッ ト と抗電界の異 なる前記複数の第 2の強誘電体キャパシタュニッ トを積層し て 3次元化することを特徴とする強誘電体メモ リ装置。  1 1. In the ferroelectric memory device according to claim 8, the plurality of second ferroelectric capacitors having different coercive electric fields from the plurality of first ferroelectric capacitor units described above are provided. A ferroelectric memory device characterized by being stacked to form a three-dimensional structure.
1 2. 絶縁体上に順次形成された下部電極膜、 強誘電体膜及び、 上部電極膜の積層構造からなる第 1の単位強誘電体キャパシ タを複数個配置して構成される第 1のキャパシタュニッ トと、 前記第 1の単位強誘電体キャパシタと同じ積層構造で、 抗 電界が異なる第 2の単位電体キヤパシタを前記絶縁体上に複 数個配置して構成される第 2のキャパシタュニッ 卜 と、  1 2. A first unit formed by arranging a plurality of first unit ferroelectric capacitors each having a laminated structure of a lower electrode film, a ferroelectric film, and an upper electrode film sequentially formed on an insulator. A capacitor unit and a second capacitor unit having the same laminated structure as the first unit ferroelectric capacitor and having a plurality of second unit capacitor capacitors having different coercive electric fields arranged on the insulator. When,
前記第 1 キャパシタュニッ ト と前記第 2のキャパシタュニ ッ ト内の少なく とも各 1個以上の単位 電体キャパシタが電 気的に直列若しく は並列に接続された記憶媒体とを具備する ことを特徴とする強誘電体メ モ リ装置。 The first capacitor unit and a storage medium in which at least one unit capacitor in each of the second capacitor units is electrically connected in series or in parallel. Ferroelectric memory device.
13. 少なく とも 3個以上の安定な分極値を有する多重ヒステ リ シス特性を有し、 多重ヒステリ シス特性に伴なう多値電圧 を情報と して記憶する強誘電体を電極材料で挟んで形成する 強誘電体キヤパシタと、 13. A ferroelectric material that has multi-hysteresis characteristics with at least three or more stable polarization values and that stores multi-valued voltage associated with the multi-hysteresis characteristics as information is sandwiched between electrode materials. To form a ferroelectric capacitor,
前記強誘電体キャパシ タに直列に接続された誘電体キャパ シ夕と、  A dielectric capacitor connected in series with the ferroelectric capacitor;
前記強誘電体キャ パシ夕に記憶される前記多重ヒステリ シ ス特性に伴なう多値電圧情報を読み出す、 電圧電流変換素子 と、  A voltage-current conversion element for reading multi-valued voltage information associated with the multiple hysteresis characteristics stored in the ferroelectric capacitor;
を具備することを特徴と した強誘電体メ モ リ装置。 A ferroelectric memory device characterized by comprising:
14. 上記誘電体キャ パシ タが、 P b γ S r j_y (T i .. Ζ r j_x ) 0つ (式中の Xは組成比を表し、 0. 2〜 1. 0の範 囲であり、 且つ Yは組成比を表し、 0. 85〜 1. 0の範囲 である) の化学組成により規定される高誘電体を有す請求の 範囲 1 3に記載の強誘電体メ モ リ装置。 14. The dielectric calibration Pasi data is, P b γ S r j_ y (T i .. Ζ r j_ x) 0 one (X in the formula represents a composition ratio, 0.2 to 1.0 of the range Wherein Y represents a composition ratio and is in the range of 0.85 to 1.0). apparatus.
15. 上記誘電体キャパシタが、 P b γ C a 1-γ (T i — Ζ r 1-χ ) 0 , (式中の Xは組成比を表し、 0. 2〜 1. 0の範 囲であり、 且つ Υは組成比を表し、 0. 85〜 1. 0の範囲 である) の化学組成により規定される高誘電体を有す請求の 範囲 1 3に記載の強誘電体メ モ リ装置。 15. The above dielectric capacitor is expressed as PbγCa1 (Ti — Ζr1 ) 0, where X represents the composition ratio and is in the range of 0.2 to 1.0. 13. The ferroelectric memory device according to claim 13, wherein the ferroelectric memory device has a high-dielectric substance defined by a chemical composition of (1) and (2) represents a composition ratio and ranges from 0.85 to 1.0. .
16. 上記誘電体キャパシ タカく、 P b y B a j_y ( T i j Z r !_x ) 03 (式中の Xは組成比を表し、 0. 2〜: L. 0の範 囲であり、 且つ Yは組成比を表し、 0. 85〜 1. 0の範囲 である) の化学組成により規定される高誘電体を有す請求の 範囲 1 3に記載の強誘電体メモリ装置。 16. The dielectric Capacity polygonal, P b y B a j_ y (! T ij Z r _ x) 03 (X in the formula represents a composition ratio, 0. 2: be a range of L. 0 13. The ferroelectric memory device according to claim 13, wherein the ferroelectric memory device has a high-dielectric substance defined by a chemical composition represented by the following formula: wherein Y represents a composition ratio and ranges from 0.85 to 1.0.
1 7. 少なく とも 3個以上の安定な分極値を有する多重ヒステ リ シス特性を示す誘電体キャパシタと、 1 7. A dielectric capacitor with multiple hysteresis characteristics with at least three stable polarization values,
前記誘電体キャパシタに直列に接続された誘電体キャパシ 夕と、  A dielectric capacitor connected in series to the dielectric capacitor;
前記誘電体キャパシタに並列接続された抵抗素子と、 前記誘電体キャパシタの多重ヒステリ シス特性に伴なう多 値電圧情報を読み出す、 電圧電流変換素子とで構成される多 値記憶できる強誘電体メモリ装置。  A ferroelectric memory capable of multi-value storage, comprising: a resistance element connected in parallel to the dielectric capacitor; and a voltage-to-current conversion element for reading multi-value voltage information accompanying multiple hysteresis characteristics of the dielectric capacitor. apparatus.
1 8. 前記電圧電流変換素子が、 前記強誘電体キャパシタと前 記誘電体キャパシタ との接続部に接続されている こ とを特徴 とする請求の範囲 2に記載の強誘電体メ モ リ装置。  18. The ferroelectric memory device according to claim 2, wherein the voltage-current conversion element is connected to a connection between the ferroelectric capacitor and the dielectric capacitor. .
1 9. 前記多値電圧情報を読み出す電圧電流変換素子が、 正の 電圧に対して電流が制御される素子と、 負の電圧に対して電 流が制御される素子とから構成されることを特徴とする請求 の範囲 1 3または 1 7に記載の強誘電体メモリ装置。  1 9. The voltage-current conversion element for reading the multi-valued voltage information includes an element whose current is controlled for a positive voltage and an element whose current is controlled for a negative voltage. The ferroelectric memory device according to claim 13 or 17, wherein:
20. 前記誘電体キャパシタが、 M 0 S トラ ンジスタのゲー ト 容量であり抵抗素子はポ リ シ リ コ ンからなることを特徴とす . る請求の範囲 1 7に記載の強誘電体メモリ装置。  20. The ferroelectric memory device according to claim 17, wherein the dielectric capacitor is a gate capacitance of a MOS transistor and the resistive element is made of polysilicon. .
PCT/JP1995/000533 1994-03-29 1995-03-23 Ferroelectric memory device WO1995026570A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP6/58397 1994-03-29
JP6058397A JPH1140759A (en) 1994-03-29 1994-03-29 Ferroelectric memory
JP6/222896 1994-09-19
JP6222896A JPH1139860A (en) 1994-09-19 1994-09-19 Ferro-dielectric material memory device

Publications (1)

Publication Number Publication Date
WO1995026570A1 true WO1995026570A1 (en) 1995-10-05

Family

ID=26399451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000533 WO1995026570A1 (en) 1994-03-29 1995-03-23 Ferroelectric memory device

Country Status (1)

Country Link
WO (1) WO1995026570A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0982779A2 (en) * 1998-08-28 2000-03-01 Semiconductor Technology Academic Research Center Memory structure in ferroelectric nonvolatile memory and readout method therefor
US6327172B1 (en) 1999-05-19 2001-12-04 Semiconductor Technology Academic Research Center Ferroelectric non-volatile memory device
EP1265254A2 (en) * 2001-06-06 2002-12-11 Matsushita Electric Industrial Co., Ltd. Semiconductor device
WO2003001599A1 (en) * 2001-06-22 2003-01-03 Matsushita Electric Industrial Co., Ltd. Semiconductor device and its driving method
JP2007208280A (en) * 2007-03-19 2007-08-16 Toshiba Corp Semiconductor storage device
CN100345075C (en) * 2001-12-20 2007-10-24 松下电器产业株式会社 Potential generating circuit, potential generating device and semiconductor device using the same, and driving method thereof
US7465980B2 (en) 2004-09-10 2008-12-16 Fujitsu Limited Ferroelectric memory, multivalent data recording method and multivalent data reading method
WO2009107489A1 (en) * 2008-02-29 2009-09-03 ソニー株式会社 Variable-capacitance element, method for adjusting variable-capacitance element, variable-capacitance device and electronic apparatus
WO2011156525A2 (en) * 2010-06-09 2011-12-15 Radiant Technologies, Inc. Ferroelectric memories based on arrays of autonomous memory bits
US10510862B2 (en) 2018-03-23 2019-12-17 Toshiba Memory Corporation Semiconductor memory device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03142973A (en) * 1989-10-30 1991-06-18 Seiko Epson Corp Semiconductor storage device
JPH04171978A (en) * 1990-11-06 1992-06-19 Olympus Optical Co Ltd Memory element
JPH04314361A (en) * 1991-04-12 1992-11-05 Olympus Optical Co Ltd Memory device
JPH0582803A (en) * 1991-09-20 1993-04-02 Rohm Co Ltd Capacitor of semiconductor integrated circuit and nonvolatile memory using same
JPH05160360A (en) * 1991-12-09 1993-06-25 Olympus Optical Co Ltd Memory device employing ferroelectric capacitor
JPH07122661A (en) * 1993-10-27 1995-05-12 Olympus Optical Co Ltd Ferroelectric memory device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03142973A (en) * 1989-10-30 1991-06-18 Seiko Epson Corp Semiconductor storage device
JPH04171978A (en) * 1990-11-06 1992-06-19 Olympus Optical Co Ltd Memory element
JPH04314361A (en) * 1991-04-12 1992-11-05 Olympus Optical Co Ltd Memory device
JPH0582803A (en) * 1991-09-20 1993-04-02 Rohm Co Ltd Capacitor of semiconductor integrated circuit and nonvolatile memory using same
JPH05160360A (en) * 1991-12-09 1993-06-25 Olympus Optical Co Ltd Memory device employing ferroelectric capacitor
JPH07122661A (en) * 1993-10-27 1995-05-12 Olympus Optical Co Ltd Ferroelectric memory device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0982779A2 (en) * 1998-08-28 2000-03-01 Semiconductor Technology Academic Research Center Memory structure in ferroelectric nonvolatile memory and readout method therefor
EP0982779A3 (en) * 1998-08-28 2000-05-17 Semiconductor Technology Academic Research Center Memory structure in ferroelectric nonvolatile memory and readout method therefor
US6188600B1 (en) 1998-08-28 2001-02-13 Semiconductor Technology Academic Research Center Memory structure in ferroelectric nonvolatile memory and readout method therefor
US6362500B2 (en) 1998-08-28 2002-03-26 Semiconductor Technology Academic Research Center Memory structure in ferroelectric nonvolatile memory and readout method therefor
US6327172B1 (en) 1999-05-19 2001-12-04 Semiconductor Technology Academic Research Center Ferroelectric non-volatile memory device
US6584008B2 (en) 1999-05-19 2003-06-24 Semiconductor Technology Academic Research Center Ferroelectric non-volatile memory device including a layered structure formed on a substrate
EP1265254A2 (en) * 2001-06-06 2002-12-11 Matsushita Electric Industrial Co., Ltd. Semiconductor device
US6949780B2 (en) 2001-06-06 2005-09-27 Matsushita Electric Industrial Co., Ltd. Semiconductor device
EP1265254A3 (en) * 2001-06-06 2004-07-28 Matsushita Electric Industrial Co., Ltd. Semiconductor device
US6847071B2 (en) 2001-06-06 2005-01-25 Matsushita Electric Industrial Co., Ltd. Semiconductor device
US6940740B2 (en) 2001-06-22 2005-09-06 Matsushita Electric Industrial Co., Ltd. Multilevel semiconductor memory device and method for driving the same as a neuron element in a neural network computer
WO2003001599A1 (en) * 2001-06-22 2003-01-03 Matsushita Electric Industrial Co., Ltd. Semiconductor device and its driving method
CN100345075C (en) * 2001-12-20 2007-10-24 松下电器产业株式会社 Potential generating circuit, potential generating device and semiconductor device using the same, and driving method thereof
US7465980B2 (en) 2004-09-10 2008-12-16 Fujitsu Limited Ferroelectric memory, multivalent data recording method and multivalent data reading method
JP2007208280A (en) * 2007-03-19 2007-08-16 Toshiba Corp Semiconductor storage device
WO2009107489A1 (en) * 2008-02-29 2009-09-03 ソニー株式会社 Variable-capacitance element, method for adjusting variable-capacitance element, variable-capacitance device and electronic apparatus
JP2009212168A (en) * 2008-02-29 2009-09-17 Sony Corp Variable-capacitance element, method for adjusting variable-capacitance element, variable-capacitance device and electronic apparatus
WO2011156525A2 (en) * 2010-06-09 2011-12-15 Radiant Technologies, Inc. Ferroelectric memories based on arrays of autonomous memory bits
WO2011156525A3 (en) * 2010-06-09 2012-04-12 Radiant Technologies, Inc. Ferroelectric memories based on arrays of autonomous memory bits
US8310856B2 (en) 2010-06-09 2012-11-13 Radiant Technology Ferroelectric memories based on arrays of autonomous memory bits
US10510862B2 (en) 2018-03-23 2019-12-17 Toshiba Memory Corporation Semiconductor memory device
US11380773B2 (en) 2018-03-23 2022-07-05 Kioxia Corporation Ferroelectric memory device

Similar Documents

Publication Publication Date Title
US5666305A (en) Method of driving ferroelectric gate transistor memory cell
KR100899583B1 (en) Semiconductor element, semiconductor storage device using the same, data writing method thereof, data readind method thereof, and manufacturing method of those
KR100258751B1 (en) Nonvolatile memory based on metal-ferroelectric-metal-insulator semiconductor structure
KR100355779B1 (en) Ferroelectric non-volatile memory device
CN113488088B (en) Memory device and method of operating memory cells thereof
US20040141357A1 (en) Ferroelectric transistor for storing two data bits
TW200836328A (en) Independently-double-gated transistor memory (IDGM)
CN111937073A (en) Method for reading and writing memory cells in a three-dimensional FeRAM
US6094369A (en) Ferroelectric nonvolatile memory element having capacitors of same dielectric constant and method thereof
WO1995026570A1 (en) Ferroelectric memory device
KR100413805B1 (en) Matrix-type multi-numeration ferroelectric random access memory using leakage current
US6888736B2 (en) Ferroelectric transistor for storing two data bits
JPH11514158A (en) Ferroelectric storage device using low Curie point ferroelectric and encapsulation
JPH07106440A (en) Nonvolatile semiconductor memory and application system thereof
JP3131340B2 (en) Ferroelectric memory element
US7529116B2 (en) Memory device having a threshold voltage switching device and a method for storing information in the memory device
JPH07106450A (en) Ferroelectric gate transistor memory
US6720599B2 (en) Ferroelectric memory and electronic apparatus
JPH0676562A (en) Ferroelectric substance memory
Dormans et al. Processing and performance of integrated ferroelectric and CMOS test structures for memory applications
JP2929909B2 (en) Field-effect transistor
JP3302721B2 (en) Semiconductor storage device
JP2960956B2 (en) Analog readout type memory device
JPH1140759A (en) Ferroelectric memory
JP2933004B2 (en) Semiconductor memory and driving method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)