WO1995022686A1 - Wärmerohrvorrichtung, insbesondere vorrichtung zum kühlen von schwingungen ausführenden motorteilen - Google Patents

Wärmerohrvorrichtung, insbesondere vorrichtung zum kühlen von schwingungen ausführenden motorteilen Download PDF

Info

Publication number
WO1995022686A1
WO1995022686A1 PCT/EP1995/000526 EP9500526W WO9522686A1 WO 1995022686 A1 WO1995022686 A1 WO 1995022686A1 EP 9500526 W EP9500526 W EP 9500526W WO 9522686 A1 WO9522686 A1 WO 9522686A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat pipe
heat
piston rod
piston
engine
Prior art date
Application number
PCT/EP1995/000526
Other languages
English (en)
French (fr)
Inventor
Lutz Hamann
Original Assignee
Ficht Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ficht Gmbh filed Critical Ficht Gmbh
Priority to DE59500610T priority Critical patent/DE59500610D1/de
Priority to EP95909715A priority patent/EP0745181B1/de
Publication of WO1995022686A1 publication Critical patent/WO1995022686A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/06Arrangements for cooling pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/22Liquid cooling characterised by evaporation and condensation of coolant in closed cycles; characterised by the coolant reaching higher temperatures than normal atmospheric boiling-point
    • F01P2003/2278Heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/06Arrangements for cooling pistons
    • F01P3/08Cooling of piston exterior only, e.g. by jets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/06Arrangements for cooling pistons
    • F01P3/10Cooling by flow of coolant through pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Definitions

  • Heat pipe device in particular device for cooling vibrating engine parts
  • the invention relates to a heat pipe device, in particular a device for cooling vibration-producing engine parts, such as pistons of internal combustion engines.
  • the invention also relates to the use of such a cooling device for cooling the pistons of two-stroke engines.
  • crank-loop motors Cooling the pistons of crank-loop motors is particularly problematic.
  • a motor known for example from DE-OS 34 33 510, has at least two piston-cylinder units lying opposite one another on an axis, the rigidly fastened piston rods of which are coupled via a crank-loop drive arranged between the piston-cylinder units.
  • the crank loop drive with which the reciprocating movement of the piston rods is converted into a rotary movement, generally consists of a crank loop frame, on the webs of which the piston rods are also rigidly fastened on the outside and in the interior of which a sliding block is seated, which is connected to the inside by the Web-arranged slideways is guided and in which a crank pin of a crank drive executing the rotational movement is rotatably inserted, the axis of the crank pin extending transversely to the axis of the piston rods.
  • the prior art includes stationary heat pipes, with which heat energy is transferred from a heat source to a heat sink at an almost constant temperature by evaporation and condensation of a working fluid in the heat pipe at the same temperature in a closed space of constant pressure.
  • the heat pipe can be designed as a so-called ' capillary heat pipe, the inside of which is continuously provided with a porous lining, the cavities of which are interconnected on all sides, so that capillary forces can transport the working fluid in any direction as soon as imbalances occur in the wetting of the capillaries .
  • the heat is transported exclusively by capillary forces, regardless of the orientation of the heat pipe.
  • the design of the piston rod of a two-stroke engine described above as a capillary heat pipe is ineffective because the heat dissipation by capillary forces is much too slow.
  • the invention has for its object to provide a device for cooling vibrating engine parts of the type mentioned, with which the engine parts, in particular pistons of two-stroke internal combustion engines, can be effectively cooled without great effort.
  • the invention relates to a heat pipe device which is characterized by the combination of a heat pipe with a shaking device which sets the heat pipe in rapid reciprocating movements in the longitudinal axial direction.
  • the heat pipe can be designed with or without an inner lining.
  • a particularly preferred application of the heat pipe shaking principle is, according to the invention, the use of the hollow piston rod of a crank-loop two-stroke internal combustion engine as a heat pipe.
  • FIG. 1 shows a partially cut end view of a crank loop motor with a cooling device according to the invention in a piston rod;
  • Fig. 2 shows in detail an expanded design of the cooling device according to the invention in a piston rod.
  • the two-stroke engine according to FIG. 1 has two working cylinders 1 and 2 lying opposite one another with the same axis, which are firmly connected to opposite sides of a crankcase 3.
  • working pistons 4 and 5 run, on which piston rods 6 and 7 are rigidly attached.
  • the piston rods 6 and 7 are firmly connected to a crank loop frame 8, which includes a rectilinear link 9, the longitudinal axis 10 of which is directed at an angle of 90 ° transversely to the longitudinal axis 11 of the two working cylinders 1 and 2.
  • the piston rod 6 is guided in a so-called partition wall bearing 15, which is inserted in the wall of the crankcase 3, to which the cylinder 1 is connected.
  • the piston rod 6 is hollow and according to the invention filled with a certain amount of a working fluid 16 and is used in the manner of a heat pipe. It is zendig z. B. integrally formed with the crank loop 8 and at the other end rigidly connected to the piston 4 via a piston fastening screw 17. Due to the combustion process taking place in the combustion chamber 18 of the cylinder 1, a heat flow 19 flows into the head of the piston 4 and into the piston attachment area. From there, part of the heat flow flows into the piston rod 6, the wall of which on the piston head side is thereby greatly heated. The heat is transferred to the working liquid 16 located in the interior of the piston rod 6, which thereby evaporates.
  • the amount of heat absorbed by the steam is very quickly due to the good heat transfer value of steam to the metal wall of the hollow piston rod 6 to the cooler area of the crank loop Delivered piston rod 6, where steam condenses at least in part to the working fluid.
  • the working fluid thus evaporates during engine operation at the hot end region of the piston rod 6 on the piston head side, and the amount of heat absorbed in the working fluid vapor is released to the cooler end region of the piston rod 6 on the crankshaft side.
  • the enthalpy of the steam is reduced by the proportion which is derived by the cooling of the steam at the cold end of the piston rod 6. A certain amount of heat is determined by this derived amount of heat, which flows into the piston rod 6 at the hot end thereof.
  • the working liquid is preferably water, diphyl, perchlorethylene, trichlorethylene or a halogenated hydrocarbon.
  • the working fluid is filled into the piston rod 6 and the piston rod 6 is then closed.
  • the part of the hollow piston rod 6 which is not filled with the working fluid is preferably evacuated in order to increase the efficiency of the cooling system.
  • part of the heat flow flowing into the piston rod 6 at the hot end is partially released from the loop-side end region to the oil used for the lubrication of the partition wall bearing 15 and is conducted therewith into the oil sump 20 of the crankcase 3 (see arrows 22) .
  • Another part of the heat flow coming from the piston rod 6 is used for the lubrication of the sliding block 12 Oil 21 added and also passed into the oil sump 20.
  • the cold end of the piston rod 6 can additionally be cooled by an oil jet 23 which is directed against the area of the crank rod 6 entering the crank chamber 3 and the oil of which also reaches the oil sump 20.
  • the cavity of the piston rod 6 filled with working fluid 16 can also be in communication with an annular cavity 25 which is formed in the piston head and adjoins the piston crown (see FIG. 2).
  • the fastening device of the piston 4 with the screw 17 can be designed such that the threaded hole for the screw 17 has access to the cavity of the piston rod 6 and can be used as a filling opening for the working fluid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Means For Warming Up And Starting Carburetors (AREA)
  • Valve Device For Special Equipments (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Die Erfindung betrifft eine Wärmerohrvorrichtung, gekennzeichnet durch die Kombination eines Wärmerohres mit einer Schütteleinrichtung, die das Wärmerohr im wesentlichen in längsaxialer Richtung des Rohres in schnelle Hin- und Her-Bewegungen versetzt. Eine besondere Ausführungsform der Wärmerohrvorrichtung dient zum Kühlen von Schwingungen ausführenden Motorteilen, wie beispielsweise Kolben von Verbrennungsmotoren, insbesondere Zweitaktmotoren, gekennzeichnet durch die Verwendung einer motorspezifischen Einrichtung für die Wärmeabführung von dem zu kühlenden Motorteil (4) zu einer Wärmesenke in Form eines hermetisch geschlossenen Wärmeabfuhrrohrs (6), das mit einem Ende im Wärmeübertragungskontakt mit dem zu kühlenden Motorteil (4) steht, sich längsaxial in Richtung der Schwingungen des Motorteils (4) bis zur Wärmesenke erstreckt und mit einer bestimmten Menge einer z.B. an sich bekannten Arbeitsflüssigkeit (16) eines Wärmerohres befüllt ist, die unter Einfluß der abzuführenden Wärme verdampft.

Description

Wärmerohrvorrichtung, insbesondere Vorrichtung zum Kühlen von Schwingungen ausführenden Motorteilen
Die Erfindung betrifft eine Wärmerohrvorrichtung, insbesondere eine Vorrichtung zum Kühlen von Schwingungen ausführenden Motorteilen, wie beispielsweise Kolben von Verbrennungsmotoren. Die Erfindung betrifft zudem die Anwendung einer derartigen Kühlvorrichtung zur Kühlung der Kolben von Zweitaktmotoren.
Schwingungen ausführende Motorteile bedürfen regelmäßig der Kühlung. Beispielsweise müssen Kolben von Verbrennungsmotoren aufgrund des^ mit dem Brennverlauf verbundenen Wärmestrσms aus dem Verbrennungsraum in die Kolben gekühlt werden, damit ihre Formstabilität erhalten bleibt. Bei Otto-Motoren werden die Kolben beispielsweise durch Anspritzen ihrer Unterseiten mit Motoröl aus dem Kurbelkasten gekühlt. Das dabei erwärmte Motoröl wird über Ölkühler rückgekühlt.
Die Anforderung an die Kühlung von Motorkolben wächst mit zunehmender Leistungsdichte des Motors. Besonders hohe Anforde¬ rungen werden an Zweitaktmotoren mit Kolbenkantensteuerung gestellt, was zum einen dadurch bedingt ist, daß Zweitaktmotoren im Vergleich zu Otto-Motoren eine doppelt so hohe Leistungsdichte aufweisen (beim Zweitaktmotor erfolgt ein Verbrennungsprozeß nach jeweils einem Kurbelwinkel von 360°, während beim Otto-Motor ein Verbrennungsprozeß nach jeweils einem Kurbelwinkel von 720° erfolgt) und zum anderen dadurch, daß das heiße Abgas die Kolbenkante des Kolbenbodens beim Arbeitstakt "Ausströmen" partiell stark erhitzt. Im Gegensatz zu Otto-Motoren ist bei kurbelkastengespülten Zweitaktmotoren eine Ölkühlung nicht möglich, da das beim Zweitaktmotor stark vernebelte Öl mit dem Gas in den Verbrennungsraum gerissen werden würde. Einen geringen, jedoch in der Praxis nicht ausreichenden Beitrag zur Kühlung kann der den Kolben kühlende Wärmestrom der Verdampfungs¬ wärme des Brennstoffs liefern, wenn er mit der Kolbenunterseite in Berührung gelangt. Dieser Beitrag zur Kolbenkühlung entfällt jedoch bei modernen Zweitaktmotoren, bei denen der Kraftstoff über Einspritzsysteme zugeführt wird. Für die Kolbenkühlung bei Zweitaktmotoren kommt ferner ein in Überschuß für die Kolben¬ schmierung zugeführtes Öl deshalb nicht in Betracht, weil der Kurbelraum vom Vorkompressionsraum abgeschottet ist.
Besonders problematisch ist die Kühlung der Kolben von Kurbel¬ schlaufenmotoren. Ein derartiger, beispielsweise aus der DE-OS 34 33 510 bekannter Motor weist mindestens zwei auf einer Achse sich gegenüberliegende Kolbenzylindereinheiten auf, deren starr befestigte Kolbenstangen über einen zwischen den Kolbenzylinder¬ einheiten angeordneten Kurbelschleifentrieb gekoppelt sind. Der Kurbelschleifentrieb, mit dem die hin- und hergehende Bewegung der Kolbenstangen in eine Rotationsbewegung umgewandelt wird, besteht in der Regel aus einem Kurbelschleifenrahmen, an dessen Stegen außenseitig die Kolbenstangen ebenfalls starr befestigt sind und in dessen Innenraum ein Gleitstein sitzt, der durch innenseitig an den Stegen angeordnete Gleitbahnen geführt wird und in dem drehbar ein Kurbelzapfen eines die Rotationsbewegung ausführenden Kurbeltriebes steckt, wobei sich die Achse des Kurbelzapfens quer zur Achse der Kolbenstangen erstreckt.
Es ist intern versucht worden, die Kühlung der Kolben eines Kurbelschlaufenmotors über die Kolbenstangen zu bewirken. Im Versuch scheitern diese Maßnahmen zur Kühlung der Kolben über die Kolbenstange durch Öl aus dem Kurbelraum an der Zuführung des Öls in die hohl ausgebildete Kolbenstange. Grundsätzlich kann Öl in die Kolbenstange ausschließlich an zwei Punkten eingeführt werden, nämlich einerseits am Umfang der Kolbenstange über das Trennwandlager im Bereich des oberen Totpunkts (OT) und zum anderen stirnseitig über die Gleitbahn zum Kulissenstein. Im zuerst genannten Fall wird die Kolbenstange an genau dem Punkt durch Ölzufuhröffnungen geschwächt, an dem sie im Betrieb die höchste Belastung erfährt. Im zweiten Fall steht durch das schnelle Überfahren des Gleitsteins nicht ausreichend Zeit zur Verfügung, die erforderliche Ölstrommenge in die Stange ein¬ zuleiten.
Als weiterer Nachteil dieser Art der Kolbenkühlung wurde erkannt, daß die sich translatorisch bewegende Masse der Kurbelschlaufe um den Masseanteil für die Ölleitungsführung und die Ölfüllung erhöht wird, wodurch zum Schwingungsausgleich zusätzliche oder größere Ausgleichsmassen vorgesehen werden müssen.
Zum Stand der Technik gehören stationär angeordnete Wärmerohre, mit denen Wärmeenergie bei nahezu konstanter Temperatur von einer Wärmequelle zu einer Wärmesenke durch Verdampfung und Kon¬ densation einer Arbeitsflüssigkeit in dem Wärmerohr bei gleicher Temperatur in einem geschlossenen Raum konstanten Drucks übertragen wird. Das Wärmerohr kann als sogenanntes' Kapillar- Wärmerohr ausgebildet sein, dessen Innenseite durchgehend mit einer porösen Auskleidung versehen ist, deren Hohlräume allseitig miteinander verbunden sind, so daß Kapillarkräfte die Arbeits¬ flüssigkeit in jede Richtung transportieren können, sobald Ungleichgewichte in der Benetzung der Kapillaren auftreten. Der Wärmetransport erfolgt dabei ausschließlich durch Kapillarkräfte, unabhängig von der Ausrichtung des Wärmerohrs. Die Ausbildung der Kolbenstange eines vorstehend beschriebenen Zweitaktmotors als Kapillar-Wärmerohr ist unwirksam, weil die Wärmeableitung durch Kapillarkräfte viel zu langsam ist. Darüber hinaus gibt es Wärmerohre, bei denen der Transport der Arbeitsflüssigkeit ausschließlich durch Schwerkraft erfolgt. Auch ein derartiges Wärmerohr kann nicht die Kühlprobleme von Zweitaktmotoren lösen, weil die Kurbelstangen nicht schwerkraftgerecht angeordnet werden können. Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zum Kühlen von Schwingungen ausführenden Motorteilen der eingangs genannten Art zu schaffen, mit der die Motorteile, insbesondere Kolben von Zweitakt-Verbrennungsmotoren, ohne großen Aufwand effektiv gekühlt werden können.
Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst.
Die Erfindung betrifft im weitesten Sinne eine Wärmerohrvor¬ richtung, die gekennzeichnet ist durch die Kombination eines Wärmerohres mit einer Schüttelvorrichtung, die das Wärmerohr in längsaxialer Richtung in schnelle Hin- und Her-Bewegungen versetzt. Dabei kann das Wärmerohr mit oder ohne Innenauskleidung ausgeführt sein. Eine besonders bevorzugte Anwendung des Wärmerohr-Schüttel-Prinzips liegt erfindungsgemäß in der Verwendung der Hohlkolbenstange eines Kurbelschlaufen-Zweitakt¬ verbrennungsmotors als Wärmerohr.
Vorteilhafte Weiterbildungen der Erfindung sind in den Unter¬ ansprüchen gekennzeichnet.
Nachfolgend wird die Erfindung anhand der Zeichnung beispielhaft näher erläutert; es zeigen:
Fig. 1 eine teilweise aufgeschnittene Stirnansicht eines Kur¬ belschlaufenmotors mit erfindungsgemäßer Kühleinrich¬ tung in einer Kolbenstange;
Fig. 2 in einer Einzelheit eine erweiterte Ausbildung der erfindungsgemäßen Kühleinrichtung in einer Kolbenstan¬ ge.
Der Zweitaktmotor gemäß Fig. 1 hat zwei achsgleich gegenüber¬ liegende Arbeitszylinder 1 und 2, die mit gegenüberliegenden Seiten eines Kurbelgehäuses 3 fest verbunden sind. In den Arbeitszylindern 1 und 2 laufen Arbeitskolben 4 und 5, an denen Kolbenstangen 6 und 7 starr befestigt sind. Die Kolbenstangen 6 und 7 sind mit einem Kurbelschlaufenrahmen 8 fest verbunden, der eine geradlinige Kulisse 9 einschließt, deren Längsachse 10 in einem Winkel von 90° quer zur Längsachse 11 der beiden Arbeits¬ zylinder 1 und 2 gerichtet ist. In der Kulisse 9 bewegt sich ein Gleitstein 12, der auf einem Kurbelzapfen 13 eines Kurbelabtriebs drehbar gelagert ist.
Nimmt man die Drehrichtung R des Motors im Uhrzeigersinn an, so bewegen sich die beiden Arbeitskolben 4 und 5 gleichzeitig gleichgerichtet. Diese Bewegung wird über die Kurbelschleife 8 auf den Kurbelzapfen 13 übertragen, der dadurch dem Kurbelabtrieb eine Drehbewegung aufzwingt.
Da die beiden Zylinderkolbenanordnungen 1, 4 sowie 2, 5 und die zugehörigen Kolbenstangen 6, 7 identisch aufgebaut sind, werden konstruktive Einzelheiten nachfolgend anhand der Kolbenzylinder¬ anordnung 1, 4 näher beschrieben.
Die Kolbenstange 6 ist in einem sogenannten Trennwandlager 15 geführt, das in der Wand des Kurbelgehäuses 3 eingesetzt ist, an die der Zylinder 1 angeschlossen ist.
Die Kolbenstange 6 ist hohl und erfindungsgemäß mit einer bestimmten Menge einer Arbeitsflüssigkeit 16 gefüllt und wird nach Art eines Wärmerohres verwendet. Es ist einendig z. B. einstückig mit der Kurbelschlaufe 8 ausgebildet und anderendig über eine Kolbenbefestigungsschraube 17 starr mit dem Kolben 4 verbunden. Durch den im Verbrennungsraum 18 des Zylinders 1 erfolgenden Verbrennungsprozeß fließt ein Wärmestrom 19 in den Kopf des Kolbens 4 und in den Kolbenbefestigungsbereich. Von dort fließt ein Teil des Wärmestroms in die Kolbenstange 6, deren Wandung kolbenkopfseitig dadurch stark erhitzt wird. Die Wärme wird an die im Innenraum der Kolbenstange 6 befindliche Arbeits¬ flüssigkeit 16 übertragen, die dadurch verdampft. Die vom Dampf aufgenommene Wärmemenge wird wegen des guten Wärmeübergangswertes von Dampf zur Metallwandung der hohlen Kolbenstange 6 sehr schnell an den kühleren, kurbelschlaufenseitigen Bereich der Kolbenstange 6 abgegeben, wo Dampf zumindest teilmengenweise zur Arbeitsflüssigkeit kondensiert. Die Arbeitsflüssigkeit verdampft somit während des Motorbetriebs am heißen, kolbenkopfseitigen Endbereich der Kolbenstange 6, und die im Arbeitsmitteldampf aufgenommene Wärmemenge wird an den kühleren kurbelschlaufensei- tigen Endbereich der Kolbenstange 6 abgegeben. Dabei wird die Enthalpie des Dampfes um denjenigen Anteil vermindert, der durch die Abkühlung des Dampfs am kalten Ende der Kolbenstange 6 abgeleitet wird. Durch diese abgeleitete Wärmemenge wird eine bestimmte Wärmemenge festgelegt, die am heißen Ende der Kolben¬ stange 6 in diese einfließt. Der Dampftransport zum kühleren Endbereich der Kolbenstange 6 sowie der Flüssigkeitstransport zum wärmeren Endbereich der Kolbenstange wird neuartig durch die hin- und hergehende Bewegung der Kolbenstange 6 sehr schnell bewirkt. Aufgrund dieser Schüttelbewegung gelangt der kondensierte Anteil des Dampfes sehr schnell wieder zum heißen Ende der Kolbenstange 6, wo die Arbeitsflüssigkeit durch Wärmeaufnahme vom Kolbenkopf erneut verdampft wird und sehr schnell wieder in Kontakt mit dem kälteren Ende der Kolbenstange 6 kommt. Es ist überraschend, daß dieses Schüttelprinzip eine derart schnelle und effektive Wärmeabfuhr ermöglicht.
Die Arbeitsflüssigkeit ist bevorzugt Wasser, Diphyl, Per- chlorethylen, Trichlorethylen oder ein halogenierter Kohlen¬ wasserstoff. Die Arbeitsflüssigkeit wird in die Kolbenstange 6 gefüllt und die Kolbenstange 6 wird daraufhin verschlossen. Bevorzugt ist der nicht von der Arbeitsflüssigkeit ausgefüllte Teil der hohlen Kolbenstange 6 evakuiert, um den Wirkungsgrad des Kühlsystems zu erhöhen.
Ein Teil des am heißen Ende in die Kolbenstange 6 einfließenden Wärmestroms wird nach der Erfindung vom schlaufenseitigen Endbereich teilweise auch an das für die Schmierung des Trenn¬ wandlagers 15 verwendete Öl abgegeben und mit diesem in den Ölsumpf 20 des Kurbelgehäuses 3 geleitet (siehe Pfeile 22) . Ein weiterer Teil des von der Kolbenstange 6 abgehenden Wärmestroms wird von dem für die Schmierung des Kulissensteins 12 verwendeten Öl 21 aufgenommen und ebenfalls in den Ölsumpf 20 geleitet.
Das kalte Ende der Kolbenstange 6 kann zusätzlich durch einen Ölstrahl 23 gekühlt werden, der gegen den in den Kurbelraum 3 eintretenden Bereich der Kurbelstange 6 gerichtet wird und dessen Öl ebenfalls in den Ölsumpf 20 gelangt.
Der mit Arbeitsflüssigkeit 16 gefüllte Hohlraum der Kolbenstange 6 kann zudem in Übertragungsverbindung mit einem ringförmigen Hohlraum 25 stehen, der im Kolbenkopf, an den Kolbenboden an¬ grenzend ausgebildet ist (siehe Fig. 2). Durch diese Maßnahme kommt die Arbeitsflüssigkeit 16 in unmittelbaren Kontakt mit dem heißen Kolbenboden, so daß Wärme vom Kolbenboden unmittelbar in die Arbeitsflüssigkeit 16 eingeleitet wird. Dabei kann die Befestigungseinrichtung des Kolbens 4 mit der Schraube 17 so ausgebildet sein, daß das Gewindeloch für die Schraube 17 einen Zugang zum Hohlraumm der Kolbenstange 6 hat und als Befüllöffnung für die Arbeitsflüssigkeit verwendet werden kann.

Claims

Patentansprüche
1. Wärmerohrvorrichtung, g e k e n n z e i c h n e t durch die Kombination eines Wärmerohres mit einer Schüttelein¬ richtung, die das Wärmerohr im wesentlichen in längsaxialer Richtung des Rohres in schnelle Hin- und Her-Bewegungen versetzt.
2. Wärmerohrvorrichtung nach Anspruch 1, dadurch g e k e n n z e i c h n e t , daß das Wärmerohr in an sich bekannter Weise eine poröse Auskleidung aufweist.
3. Wärmerohrvorrichtung nach Anspruch 1 und oder 2 zum Kühlen von Schwingungen ausführenden Motorteilen, wie beispielsweise Kolben von Verbrennungsmotoren, insbesondere Zweitaktmotoren, g e k e n n z e i c h n e t durch die Verwendung einer motorspezifischen Einrichtung für die Wärmeabführung von dem zu kühlenden Motorteil (4) zu einer Wärmesenke in Form eines hermetisch geschlossenen Wärme¬ abfuhrrohrs (6), das mit einem Ende im Wärmeübertragungs- kontakt mit dem zu kühlenden Motorteil (4) steht, sich längsaxial in Richtung der Schwingungen des Motorteils (4) bis zur Wärmesenke erstreckt und mit einer bestimmten Menge einer z. B. an sich bekannten Arbeitsflüssigkeit (16) eines Wärmerohres befüllt ist, die unter Einfluß der abzuführen¬ den Wärme verdampft.
4. Wärmerohrvorrichtung nach Anspruch 3, dadurch g e k e n n z e i c h n e t , daß die Arbeitsflüssigkeit (16) eine Dampfdruckkurve hat, die bei einem Druck von etwa 30 Bar in einem Temperaturbe¬ reich zwischen etwa 50 und 300° C liegt.
5. Wärmerohrvorrichtung nach Anspruch 4, dadurch g e k e n n z e i c h n e t , daß die Arbeitsflüssigkeit Wasser, Diphyl, Perchlorethylen, Trichlorethylen oder ein halogenierten Kohlenwasserstoff ist.
6. Wärmerohrvorrichtung nach einem oder mehreren der Ansprüche 3 bis 5, dadurch g e k e n n z e i c h n e t , daß der nicht mit Arbeitsflüssigkeit (16) befüllte Teil des
Rohrs (6) evakuiert ist.
7. Wärmerohrvorrichtung nach einem oder mehreren Ansprüchen 3 bis 6, dadurch g e k e n n z e i c h n e t , daß sie Bestandteil eines Zweittaktmotors, insbesondere
Kurbelschlaufenmotors, ist, mit einem in jedem Zylinder hin- und hergehenden Kolben, dessen Kolbenstange in den
Kurbelraum eintaucht, wobei die Kolbenstange (6) zur
Kühlung des Kolbens (4) als Wärmeabfuhrrohr ausgebildet ist.
8. Wärmerohrvorrichtung nach Anspruch 7, dadurch g e k e n n z e i c h n e t , daß die Kolbenstange (6) im wesentlichen über ihre gesamte Länge hohl ausgebildet und hermetisch dicht abgeschlossen ist.
9. Wärmerohrvorrichtung nach Anspruch 7 oder 8, dadurch g e k e n n z e i c h n e t , daß im Kolben (4) angrenzend an seinen Boden ein Hohlraum ausgebildet (25) ist, der in Übertragungsverbindung mit dem Hohlraum der Kolbenstange (6) steht.
10. Wärmerohrvorrichtung nach Anspruch 9, dadurch g e k e n n z e i c h n e t , daß der im Kolben (4) ausgebildete Hohlraum (25) sich im wesentlichen über die gesamte Fläche des Kolbenbodens erstreckt.
11. Wärmerohrvorrichtung nach einem oder mehreren der An¬ sprüche 7 bis 10 mit einem in der Trennwand zwischen dem Zylinder und dem Kurbelraum angeordneten, von der Kolbenstange durchsetzten Trennwandlager, wobei das Trennwandlager (15) mit Öl aus der Kurbelkammer (3) geschmiert ist, dadurch g e k e n n z e i c h n e t , daß das kalte Ende der Kolbenstange (6) durch ein Ölstrahl (23) gekühlt wird, der gegen den in den Kurbelraum (3) eintretenden Bereich der Kolbenstange (6) gerichtet ist und dessen Öl in den Ölsumpf (20) gelangt.
12. Wärmerohrvorrichtung nach einem oder mehreren der Ansprüche 3 bis 11, wobei der Kolbenkopf an die Kolbenstange mit einer Schraube (17) angeschraubt ist, dadurch g e k e n n z e i c h n e t , daß das Gewindeloch für die Schraube (17) in der Kolben¬ stange einen Zugang zum Hohlraum der Kolbenstange (6) hat.
PCT/EP1995/000526 1994-02-17 1995-02-13 Wärmerohrvorrichtung, insbesondere vorrichtung zum kühlen von schwingungen ausführenden motorteilen WO1995022686A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE59500610T DE59500610D1 (de) 1994-02-17 1995-02-13 Zweitaktmotor
EP95909715A EP0745181B1 (de) 1994-02-17 1995-02-13 Zweitaktmotor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4405091.7 1994-02-17
DE4405091A DE4405091A1 (de) 1994-02-17 1994-02-17 Wärmerohrvorrichtung, insbesondere Vorrichtung zum Kühlen von Schwingungen ausführenden Motorteilen

Publications (1)

Publication Number Publication Date
WO1995022686A1 true WO1995022686A1 (de) 1995-08-24

Family

ID=6510500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1995/000526 WO1995022686A1 (de) 1994-02-17 1995-02-13 Wärmerohrvorrichtung, insbesondere vorrichtung zum kühlen von schwingungen ausführenden motorteilen

Country Status (4)

Country Link
EP (1) EP0745181B1 (de)
AT (1) ATE157740T1 (de)
DE (2) DE4405091A1 (de)
WO (1) WO1995022686A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11761369B1 (en) * 2021-11-01 2023-09-19 United States Of America As Represented By The Secretary Of The Air Force Heat pipes integrated into a 3-D printed part

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004038945A1 (de) * 2004-08-11 2006-02-23 Mahle International Gmbh Leichtmetallkolben mit Wärmerohren
DE102007000652B4 (de) 2007-11-07 2016-08-18 Technische Universität Dresden Kolbenkühlvorrichtung für Kolbenmaschinen mit oszillierender und translatorischer Bewegung des Kolbens und der Kolbenstange
DE102008055939B3 (de) * 2008-11-05 2009-11-05 Rajat Gupta Brennkraftmaschine
USD749715S1 (en) 2012-08-06 2016-02-16 Iff Gmbh Electric heating apparatus
DE102012111136A1 (de) 2012-11-19 2014-05-22 Bertwin R. Geist Immobilien + Erneuerbare Energien E.K. Verfahren zum Herstellen eines für ein vorbestimmtes Medium druckdichten Hohlkörpers
CN105102916B (zh) * 2012-11-19 2018-04-27 R·博特温知识财产+可再生能源公司 用于制造对预定介质进行压力密封的中空主体的方法
DE102013100830A1 (de) 2013-01-28 2014-07-31 Bertwin R. Geist Immobilien + Erneuerbare Energien E.K. Verfahren zum Herstellen einer für ein vorbestimmtes Medium druckdichten, hohlen Kolbenstange
DE102014201473A1 (de) 2014-01-28 2015-07-30 Neuman & Esser Gmbh & Co. Kg Kolbenstange für kolbenkompressoren und kolbenkompressor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3884293A (en) * 1973-07-23 1975-05-20 Isothermics Cooling means
EP0131382A2 (de) * 1983-06-09 1985-01-16 Automotive Engine Associates Hydrodynamischer Kolbenring und Kolbeneinheit mit einer entsprechenden elastomeren Geometrie und internen Kühlung
DE3433510A1 (de) * 1984-09-12 1986-03-20 Ficht GmbH, 8011 Kirchseeon Gleitstein fuer eine mit einer kurbelwelle zusammenwirkenden kurbelschleife, insbesondere fuer eine brennkraftmaschine mit mindestens einem zylinder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841248A (ja) * 1981-09-05 1983-03-10 Mitsubishi Heavy Ind Ltd ピストン
US5413073A (en) * 1993-04-01 1995-05-09 Eaton Corporation Ultra light engine valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3884293A (en) * 1973-07-23 1975-05-20 Isothermics Cooling means
EP0131382A2 (de) * 1983-06-09 1985-01-16 Automotive Engine Associates Hydrodynamischer Kolbenring und Kolbeneinheit mit einer entsprechenden elastomeren Geometrie und internen Kühlung
DE3433510A1 (de) * 1984-09-12 1986-03-20 Ficht GmbH, 8011 Kirchseeon Gleitstein fuer eine mit einer kurbelwelle zusammenwirkenden kurbelschleife, insbesondere fuer eine brennkraftmaschine mit mindestens einem zylinder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11761369B1 (en) * 2021-11-01 2023-09-19 United States Of America As Represented By The Secretary Of The Air Force Heat pipes integrated into a 3-D printed part

Also Published As

Publication number Publication date
EP0745181B1 (de) 1997-09-03
EP0745181A1 (de) 1996-12-04
DE4405091A1 (de) 1995-08-24
ATE157740T1 (de) 1997-09-15
DE59500610D1 (de) 1997-10-09

Similar Documents

Publication Publication Date Title
EP0599095B1 (de) Vorrichtung zur Entlüftung des Kurbelgehäuses einer Brennkraftmaschine mit V-förmig angeordneten Zylindern
DE2539470A1 (de) Brennkraftmaschinenkolben
WO2005103456A2 (de) Ölversorgung für einen verbrennungsmotor
EP0745181B1 (de) Zweitaktmotor
WO1988001017A1 (fr) Partie superieure de piston a palier d'appui incorpore soutenant l'axe du piston de moteurs a pistons
EP0154939B1 (de) Ölgekühlter, zweiteiliger Gelenkkolben
EP1676989B1 (de) Verbrennungsmotor mit einer Kolbenkühlvorrichtung
DE3525607A1 (de) Motorkuehlsystem
DE3546646C2 (en) Oil-cooled internal combustion engine with two-part piston and oil baffle surfaces in the bottom part of the piston
AT1919U1 (de) Brennkraftmaschine mit innerer verbrennung
DE2438193C2 (de) Zylinderkopf für luftgekühlte Einspritz-Brennkraftmaschinen
EP1525912A1 (de) Anordnung zur Aufbereitung von Motoröl in einem Kraftfahrzeug
DE19834398A1 (de) Viertakt-Hubkolbenbrennkraftmaschine
DE3151422C2 (de) Verbrennungs-Kolbenkraftmaschine
DE19533249C1 (de) Strömungsmaschine zur Erzeugung mechanischer Arbeit aus Wärmeenergie und ein Verfahren zur Erzeugung mechanischer Arbeit aus Wärmeenergie mit einer solchen Strömungsmaschine
DE2331706A1 (de) Mit kontinuierlicher verbrennung arbeitende hubkolben-brennkraftmaschine
DE102017223127B3 (de) Wärmeträgerkreislauf mit einem Kühlmantel zur Kühlung einer Wärmequelle eines Antriebsmotors
EP1239137B1 (de) Kolben und Zylinder für einen Stirling-Motor
DE1956503B2 (de) Fluessigkeitsgekuehlter kolben fuer brennkraftmaschinen
AT410244B (de) Viertakt-dieselmotor
DE102016119720B4 (de) Kurbelschlaufen-Motor
DE7911903U1 (de) Zylindereinsatz einer hubkolbenbrennkraftmaschine
CH418725A (de) Brennkraftkolbenmaschine mit Kraftstoffeinspritzung
DE102015007507A1 (de) Brennkraftmaschine
DE10222751B4 (de) Viertakt-Verbrennungsmotor, Kurbeltrieb für einen Verbrennungsmotor sowie Mehrzylinder-Verbrennungsmotor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995909715

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995909715

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995909715

Country of ref document: EP