WO1995021683A1 - A method for removing and preventing emissions into the atmosphere of carbon dioxide (co2) from exhaust gases from heat engines - Google Patents

A method for removing and preventing emissions into the atmosphere of carbon dioxide (co2) from exhaust gases from heat engines Download PDF

Info

Publication number
WO1995021683A1
WO1995021683A1 PCT/NO1995/000033 NO9500033W WO9521683A1 WO 1995021683 A1 WO1995021683 A1 WO 1995021683A1 NO 9500033 W NO9500033 W NO 9500033W WO 9521683 A1 WO9521683 A1 WO 9521683A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
heat
exhaust gas
liquid
passed
Prior art date
Application number
PCT/NO1995/000033
Other languages
French (fr)
Inventor
Svein O. RØNNING
Yngvil Bjerve
Olav Falk-Pedersen
Geir Glittum
Olav Bolland
Original Assignee
Kværner Water Systems A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kværner Water Systems A.S. filed Critical Kværner Water Systems A.S.
Priority to EP95910020A priority Critical patent/EP0744987B1/en
Priority to CA002183374A priority patent/CA2183374C/en
Priority to DE69503036T priority patent/DE69503036T2/en
Priority to DK95910020T priority patent/DK0744987T3/en
Priority to US08/693,170 priority patent/US5832712A/en
Priority to AU18260/95A priority patent/AU687171B2/en
Priority to JP52113395A priority patent/JP3659970B2/en
Publication of WO1995021683A1 publication Critical patent/WO1995021683A1/en
Priority to HK98113889A priority patent/HK1012835A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • a method for removing and preventing emissions into the atmosphere of carbon dioxide (CO 2 ) from exhaust gases from heat engines is disclosed.
  • the present invention concerns the removal of carbon dioxide (C0 2 ) which is obtained from the combustion of hydrocarbon gases.
  • C0 2 carbon dioxide
  • One aspect of the invention concerns the removal of C0 2 from exhaust gases from heat engines, especially when such equipment is employed on offshore installations for the production and/or processing of oil and/or gas.
  • a second aspect of the invention concerns the removal of C0 2 which is obtained from the combustion of natural gas in a gas turbine on an offshore oil/gas installation.
  • C0 2 removal process which is intended for use in offshore installations.
  • the most crucial constraint is that space and weight are very expensive commodities offshore, and the equipment therefore has to be as compact and light weight as possible.
  • the C0 2 removal process must be installed in such a manner that maintenance of the separation unit does not interfere with the availability of the oil production process on the platform.
  • the prospects for the disposal of pure C0 2 from offshore installations are good.
  • C0 2 can be compressed and injected either into deep sea water, aquifers, depleted oil/gas reservoirs or into reservoirs which are still in production. The latter can result in enhanced oil recovery.
  • the present invention concerns a method for removing and preventing emissions of carbon dioxide (C0 2 ) into the atmosphere from exhaust gases from heat engines, especially gas turbines, installed on offshore platforms for the production of oil and/or gas.
  • the invention is characterized by the following steps:
  • the exhaust gas from the heat engine is passed through a heat recovery unit, preferably a waste heat boiler, for recovery of the heat content in the exhaust gas in the form of steam,
  • a heat recovery unit preferably a waste heat boiler
  • the power generation concepts have been evaluated in order to find the concept which constitutes the best possible combination of the following factors; low exhaust gas flow, high C0 2 concentration, high efficiency and low weight.
  • a combined cycle with recycling of 40% of the volume of the exhaust gas back to the inlet of the compressor is the most suitable amongst the concepts studied for the removal of C0 2 .
  • the object of this invention has been to evaluate the use of the existing power generation concept for offshore separation of C0 2 from exhaust gas.
  • the basis of these calculations has been an
  • LM2500PE gas turbine since this turbine is the most commonly used in the Norwegian sector of the North Sea.
  • the fuel gas is a typical North Sea natural gas with a lower heating value of 47.6 MJ/kg. This fuel gas produces approximately 2.5 kg of C0 2 per Sm 3 of natural gas, assuming complete combustion.
  • Gas turbine exhaust is not particularly suitable for recovery of CO, due to a typical excess air ratio in the range of 3-3.5, which results in a C0 2 concentration of only 3 - 3.5 mol%.
  • the main objective of this invention has therefore been to find a process which will produce a lower exhaust gas volume and/or a higher CO 2 content than conventional aero-derivative gas turbines.
  • the ECONAMINE FG process was developed in order to remove relatively low concentrations of CO 2 , typically 3-10 vol%, from low pressure gases with a high oxygen content.
  • the solvent chosen for absorption is monoethanolamine (MEA) due to its ability to absorb high C0 2 volumes per MEA volume. Recoveries between 85% and 95% of CO, present in exhaust gases at atmospheric pressure are possible, depending on the C0 2 content of the feed gas.
  • gas absorption membranes have also been employed for removal of CO 2 from exhaust gases, and this technology has already been tested for the removal of sulphur dioxide.
  • Gas absorption membranes are used as contacting devices between a gas and a liquid flow. The separation is caused by the presence of an absorption liquid (MEA) on one side of the membrane which selectively removes certain components from the gas flow from the other side of the membrane.
  • MEA absorption liquid
  • the replacement of conventional absorption columns with membranes can lead to significant reductions both with regard to cost and weight for the absorption unit.
  • CO 2 is absorbed by MEA in the temperature range 20- 70°C, it then enters the stripping column in which C0 2 is released from MEA in the temperature range of 120-150°C. C0 2 is then compressed for injection, and MEA flows back to the absorption unit.
  • the invention has been tested by removing C0 2 from exhaust gases of four GE LM2500PE gas turbines installed on a typical gas compressor platform.
  • Fluor Daniel's ECONAMINE FG process was used to recover C0 2 from atmospheric exhaust gas.
  • the plant was designed to remove CO, from 60% of the total exhaust gas flow.
  • the rest of the exhaust gas is recycled to the gas turbine air compressor. This results in 1054 tons/day of recovered C0 2 based on four turbines.
  • C0 2 is then compressed and sent to a subterranean reservoir or to another non-atmospheric destination. This treated exhaust gas is then vented to the atmosphere.
  • the fuel consumption is 1.282 kg/s with lower heating value of 47562 KJ/kg and a composition as for an average North Sea gas.
  • HRSG heat recovery steam generator
  • the HRSG is designed for steam production at two pressure levels (40 and 4 bar).
  • High pressure steam is expanded through a steam turbine, the condensate leaving the steam turbine is returned to the feed-water preheater and used in the process.
  • the steam turbine is coupled via a gear to an electrical generator which provides the absorption and compression unit with electricity.
  • the steam turbine produces approximately 3 MW of "surplus" energy per gas turbine which can be utilized for other purposes on the platform.
  • the low pressure steam is used to heat the stripping column reboiler.
  • the energy consumption in the reboiler is determined by the characteristics of the absorption chemical.
  • the gas turbine is operated with recycling of exhaust gas.
  • the exhaust gas leaving the HRSG is cooled to 30°C, and 40%» of the total volume is recycled and mixed with fresh air between the air filter and the compressor inlet.
  • the principal limitation of recycling is the 0 2 content of the combustion air. Problems with instability and quenching of the flame may occur if the 0 2 content is too low. 40% recycling for an LM2500 implies 16.5 mol% 0 2 in the combustion air.
  • the gas turbine has been simulated in order to obtain performance data for design conditions with exhaust gas recycle. Performance data for an
  • LM2500PE are given in table 1. A schematic outline of the process is shown in fig. 2.
  • Table 1 Performance data for an LM2500PE with recycle.
  • the fuel energy supplied to each gas turbine is 61.0 MW based on the lower heating value.
  • the distribution of supplied fuel energy for four LM2500PE's is shown in table 2.
  • Table 2 The utilization of fuel energy for four turbines (MW).
  • the overall net efficiency for electrical power generation is 45.5%>.
  • the fuel energy utilization is 67%.
  • the net efficiency for a simple cycle LM2500 is 35.4%.
  • C0 2 is absorbed by an absorption medium in the temperature range of 20-70°C , and is released from MEA in the temperature range of 120-150°C .
  • the exhaust gas from the heat recovery and power generation unit passes through an exhaust gas cooler and an exhaust gas blower before entering an abso ⁇ tion tower.
  • an exhaust gas cooler and an exhaust gas blower before entering an abso ⁇ tion tower.
  • the C0 2 content of the exhaust gas is reduced by means of a chemical reaction with the amine.
  • the size of the abso ⁇ tion tower can be reduced by utilizing advanced technology such as structured packings or gas absorption membranes.
  • the C0 2 enriched MEA is passed to a stripper where the C0 2 is released at temperatures of 120 - 150°C. Degradation of the abso ⁇ tion chemical will occur due to the formation of heat stable salts and other short chain compounds. These contaminants are removed in the MEA purification unit which is in operation for only a short time.
  • Gas absorption membranes are membranes which are employed as contact devices between a gas and a liquid flow.
  • the separation is caused by the presence of an absorption liquid on one side of the membrane which selectively removes certain components from the gas flow on the other side of the membrane.
  • the membrane is intended to provide a contacting area which prevents mixing of the gas and the absorption liquid.
  • the membrane should be highly permeable to the component which is required to be removed.
  • the selectivity in the separation process is derived from the absorption liquid. A highly selective separation can be achieved through an appropriate choice of the abso ⁇ tion liquid.
  • Fig. 3 illustrates the principle for the removal of CO 2 from exhaust gases.
  • the use of gas abso ⁇ tion membranes has several advantages over conven- tional contacting devices such as packed columns:
  • the height of the absorption column will be reduced to around 1/5 that of conventional columns.
  • the operation of the contact equipment is independent of the gas and liquid flow rates. No entrainment, flooding, channeling or foaming.
  • the conventional stripping column can be replaced by a rotating gas/liquid contactor which is called HIGEE. This contactor appears to result in savings both with regard to cost, weight and especially reduction of area requirements.
  • the Higee unit consists of a rotor containing the packing arranged in a torus, and a stationary housing. Two seals are inco ⁇ orated, one shaft seal between the rotating shaft and the housing, and the other between the rotor and the gas/vapor outlet duct in order to prevent gas or vapor from bypassing the rotating packing.
  • the Higee unit is illustrated in fig. 4.
  • Gas enters the housing via a tangential nozzle and flows inwards through the rotating packing. There it comes into intimate contact with the liquid, which has been distributed at the "eye" of the packing, and is forced outwards by the centrifugal forces.
  • the gas (vapor) leaves the nozzle centred on the axis of the machine, while the droplets of liquid leaving the rotor impinge on the rotor's walls (or internals) and the liquid is drained from the housing.
  • the C0 2 resulting from the separation process can be disposed of in several ways: Ocean disposal
  • Liquid or solid C0 2 can be absorbed in sea water.
  • the solubility of C0 2 in sea water increases with decreasing temperatures.
  • the ecological effects of C0 2 disposal in the ocean are still not sufficiently well investigated and understood.
  • C0 2 By injecting C0 2 into petroleum reservoirs, the oil recovery rate can be increased. C0 2 will be mixed with some of the oil which is present, and this mixture of C0 2 and oil will displace oil which cannot be displaced by traditional water injection.
  • C0 2 in the production gas gradually will increase. If the gas is to be exported, the increase in carbon dioxide may affect the quality and saleability of the gas.
  • Disposal in depleted oil and gas reservoirs Disposal of C0 2 in depleted reservoirs is considered to be safe as long as the injection pressure is below the original reservoir pressure. If the reservoir is filled with water, the possibility of CO, escaping the reservoir is greater.
  • Carbon dioxide is used as a raw material for the chemical industry, especially for the production of urea, polycarbonate and alcohols. However, this does not represent an alternative to the disposal of large amounts of C0 2 .
  • the main objective which must be fulfilled by the power generation unit is that the net power output from an LM2500 simple cycle gas turbine (approximately 21 MW) should be available regardless of the power and heat requirements for the C0 2 removal process.
  • the HRSG has to supply a steam turbine with sufficient superheated steam in order to generate at least 3 MW of electricity which is the power requirement for the abso ⁇ tion and injection device. Generation of electricity exceeding this level could be used by the consumers on the platform.
  • the HRSG has to supply saturated steam at a pressure of 4 bar for utilization in the stripper reboiler.
  • the temperature of the exhaust gas is lowered to approximately 125°C when recovering heat for steam generation with the present steam cycle.
  • C0 2 removal by amine abso ⁇ tion it is necessary to cool the exhaust gas further.
  • An exhaust gas cooler using sea water is required in order to reduce the temperature to 30°C . This temperature is chosen in order to obtain the optimum performance for the abso ⁇ tion column.
  • the dew point of the exhaust gas is approximately 42°C . A fraction of the water vapor in the exhaust gas is therefore condensed through the exhaust gas cooler.
  • the recycle ratio is mainly limited by the oxygen content in the combustion air. Flammability calculations of hydrocarbon fuels show that approximately 13 mol% of 0 2 is sufficient to keep a flame burning, (SFPE, 1990). In the present study the limit was set at 16.5 mol% of 0 2 in the combustion air. This implies a recycle ratio of 40% of the total exhaust gas volume.
  • Recycled exhaust gas must be carefully mixed with air in order to ensure homogeneous characteristics.

Abstract

A method for removing and preventing emissions into the atmosphere of carbon dioxide (CO2) from exhaust gases from heat engines, particularly gas turbines, installed on offshore platforms for the production of oil and/or gas, which is characterized by the following steps: (a) natural gas and air are introduced into a heat engine in which natural gas is converted to mechanical energy, (b) the exhaust gas from the heat engine is passed through a heat recovery plant, preferably a waste heat boiler, for recovery of the heat content in the exhaust gas in the form of steam, (c) after emitting heat in the heat recovery unit whereby the temperature of the gas has been reduced to 20-70 °C, the exhaust gas is passed to an absorption column containing an absorption liquid, where the carbon dioxide is absorbed in the said liquid, and the thereby purified exhaust gas, generally free of carbon dioxide, is vented to the atmosphere, (d) the absorption liquid which contains CO2 is passed to a stripping column where the CO2 is removed from the absorption liquid by means of heating to a temperature of 120-150 °C, (e) the thereby regenerated absorption liquid which is generally free of CO2 is recycled to the absorption column and the separated CO2 gas is passed to a compression stage for compression and utilization and/or disposal in a suitable manner.

Description

A method for removing and preventing emissions into the atmosphere of carbon dioxide (CO2) from exhaust gases from heat engines.
The present invention concerns the removal of carbon dioxide (C02) which is obtained from the combustion of hydrocarbon gases. One aspect of the invention concerns the removal of C02 from exhaust gases from heat engines, especially when such equipment is employed on offshore installations for the production and/or processing of oil and/or gas. A second aspect of the invention concerns the removal of C02 which is obtained from the combustion of natural gas in a gas turbine on an offshore oil/gas installation.
In 1989 the Norwegian government set the target that the total C02 emissions in Norway in the year 2000 should be stabilized at the 1989 level. This led to the introduction of the C02 tax in 1991, which thus motivated the Norwegian oil companies to study new methods and technologies in order thereby to reduce the total C02 emissions.
The introduction of the C02 tax on offshore combustion of natural gas has resulted in an increased interest in both energy conservation and the possibility of separating C02 from gas turbine exhaust gases.
Several special considerations have to be taken into account when developing a C02 removal process which is intended for use in offshore installations. The most crucial constraint is that space and weight are very expensive commodities offshore, and the equipment therefore has to be as compact and light weight as possible. Secondly the C02 removal process must be installed in such a manner that maintenance of the separation unit does not interfere with the availability of the oil production process on the platform. Thirdly, the prospects for the disposal of pure C02 from offshore installations are good. C02 can be compressed and injected either into deep sea water, aquifers, depleted oil/gas reservoirs or into reservoirs which are still in production. The latter can result in enhanced oil recovery.
At the First International Conference on Carbon Dioxide Removal (1992), several studies were presented related to C02 removal from power- generating systems. De Ruyck (1992) proposed a combined C02 and steam cycle, which is an extension of the humid air turbine (HAT) cycle. Bolland and Sasther (1992) proposed several alternatives for simplifying C02 removal. Several studies were published by the IEA Greenhouse Gas R & D Programme during 1992, but most of these focused on CO2 abatment from coal fired power plants. Yantovskii et. al. (1992, 1993) described two different concepts for power plants without emissions of C02 to air. However, these concepts are far from being commercially viable.
The present invention concerns a method for removing and preventing emissions of carbon dioxide (C02) into the atmosphere from exhaust gases from heat engines, especially gas turbines, installed on offshore platforms for the production of oil and/or gas. The invention is characterized by the following steps:
(a) Natural gas and air are introduced into a heat engine in which natural gas is converted to mechanical energy,
(b) the exhaust gas from the heat engine is passed through a heat recovery unit, preferably a waste heat boiler, for recovery of the heat content in the exhaust gas in the form of steam,
(c) after emitting heat in the heat recovery unit whereby the temperature of the gas has been reduced to 20-70°C , the exhaust gas is passed to an absorption column containing an absorption liquid, where the carbon dioxide is absorbed in the said liquid, and the thereby purified exhaust gas, generally free of carbon dioxide, is vented to the atmosphere,
(d) the absorption liquid containing C02 is passed to a stripping column where the CO is removed from the absorption liquid by means of heating to a temperature of 120-150°C ,
(e) the thereby regenerated absorption liquid which is generally free of C02 is recycled to the absorption column and the separated C02 gas is passed to a compression stage for compression and utilization and/or disposal in a suitable manner.
The power generation concepts have been evaluated in order to find the concept which constitutes the best possible combination of the following factors; low exhaust gas flow, high C02 concentration, high efficiency and low weight. A combined cycle with recycling of 40% of the volume of the exhaust gas back to the inlet of the compressor is the most suitable amongst the concepts studied for the removal of C02.
The object of this invention, as stated in this application, has been to evaluate the use of the existing power generation concept for offshore separation of C02 from exhaust gas. The basis of these calculations has been an
LM2500PE gas turbine, since this turbine is the most commonly used in the Norwegian sector of the North Sea. The fuel gas is a typical North Sea natural gas with a lower heating value of 47.6 MJ/kg. This fuel gas produces approximately 2.5 kg of C02 per Sm3 of natural gas, assuming complete combustion.
Gas turbine exhaust is not particularly suitable for recovery of CO, due to a typical excess air ratio in the range of 3-3.5, which results in a C02 concentration of only 3 - 3.5 mol%. The main objective of this invention has therefore been to find a process which will produce a lower exhaust gas volume and/or a higher CO2 content than conventional aero-derivative gas turbines.
A method for removing C02 from exhaust gases based on amine absorption patented as Fluor Daniel ECONAMINE FG process (Sander and Mariz, 1992), has been used in the method. The ECONAMINE FG process was developed in order to remove relatively low concentrations of CO2, typically 3-10 vol%, from low pressure gases with a high oxygen content. The solvent chosen for absorption is monoethanolamine (MEA) due to its ability to absorb high C02 volumes per MEA volume. Recoveries between 85% and 95% of CO, present in exhaust gases at atmospheric pressure are possible, depending on the C02 content of the feed gas.
In the method, gas absorption membranes have also been employed for removal of CO2 from exhaust gases, and this technology has already been tested for the removal of sulphur dioxide. Gas absorption membranes are used as contacting devices between a gas and a liquid flow. The separation is caused by the presence of an absorption liquid (MEA) on one side of the membrane which selectively removes certain components from the gas flow from the other side of the membrane. The replacement of conventional absorption columns with membranes can lead to significant reductions both with regard to cost and weight for the absorption unit. In the absorption unit CO2 is absorbed by MEA in the temperature range 20- 70°C, it then enters the stripping column in which C02 is released from MEA in the temperature range of 120-150°C. C02 is then compressed for injection, and MEA flows back to the absorption unit.
The invention has been tested by removing C02 from exhaust gases of four GE LM2500PE gas turbines installed on a typical gas compressor platform.
Fluor Daniel's ECONAMINE FG process was used to recover C02 from atmospheric exhaust gas. The plant was designed to remove CO, from 60% of the total exhaust gas flow. The rest of the exhaust gas is recycled to the gas turbine air compressor. This results in 1054 tons/day of recovered C02 based on four turbines. C02 is then compressed and sent to a subterranean reservoir or to another non-atmospheric destination. This treated exhaust gas is then vented to the atmosphere.
The process is as illustrated schematically in figure 1. The different parts will now be described in the following section.
As input to each of the four gas turbines, it is assumed that the fuel consumption is 1.282 kg/s with lower heating value of 47562 KJ/kg and a composition as for an average North Sea gas.
After beeing expanded through the turbine, the exhaust gas will enter an heat recovery steam generator (HRSG). The HRSG is designed for steam production at two pressure levels (40 and 4 bar). High pressure steam is expanded through a steam turbine, the condensate leaving the steam turbine is returned to the feed-water preheater and used in the process. The steam turbine is coupled via a gear to an electrical generator which provides the absorption and compression unit with electricity. The steam turbine produces approximately 3 MW of "surplus" energy per gas turbine which can be utilized for other purposes on the platform.
The low pressure steam is used to heat the stripping column reboiler. The energy consumption in the reboiler is determined by the characteristics of the absorption chemical. In order to reduce the volume of exhaust gas entering the absorption column and thereby reduce the size and weight of the column, the gas turbine is operated with recycling of exhaust gas. The exhaust gas leaving the HRSG is cooled to 30°C, and 40%» of the total volume is recycled and mixed with fresh air between the air filter and the compressor inlet. The principal limitation of recycling is the 02 content of the combustion air. Problems with instability and quenching of the flame may occur if the 02 content is too low. 40% recycling for an LM2500 implies 16.5 mol% 02 in the combustion air. According to the flammability limits, this should be on the conservative side. The molecular weight of air flowing through the compressor increases slightly when the exhaust gas is recycled, but this effect is not regarded as significant. These assumptions have been accepted by General Electric; Rolls Royce too have generally accepted a high level of recycling.
The gas turbine has been simulated in order to obtain performance data for design conditions with exhaust gas recycle. Performance data for an
LM2500PE are given in table 1. A schematic outline of the process is shown in fig. 2.
Power output 21,3 MW
Fuel consumption 1,282 kg/s
Efficiency 34,8 %
Exhaust gas temperature 543 °C
Flow rate leaving HRSG 66,9 kg/s
Flow rate abs. column inlet 40 kg/s
Exhaust gas CO2 content 5,9 vol%
Turbine outlet pressure 1,053 bar
Exhaust gas recycle 40 %
Table 1 : Performance data for an LM2500PE with recycle.
The fuel energy supplied to each gas turbine is 61.0 MW based on the lower heating value. The distribution of supplied fuel energy for four LM2500PE's is shown in table 2. Fuel energy input 244 MW
Electrical output generated 86,4 MW
Steam generation 127,2 MW
(25,6 of which are converted to electrical power and 52 are used for the stripping reboiler. 49.6 are los¬ ses in generator, converter and cooler)
Heat loss in exhaust gas cooler 42.8 MW
(a fraction of which is latent heat)
Total extraction of energy 256.4 MW
(an additional 12.4 MW due to condensation of water)
Table 2: The utilization of fuel energy for four turbines (MW).
The overall net efficiency for electrical power generation is 45.5%>. When the heat which is passed to the stripping column reboiler is included, the fuel energy utilization is 67%. The net efficiency for a simple cycle LM2500 is 35.4%.
The chemical reaction for amine absorption is (reference: R.N. Maddow "Gas and Liquid Sweetening", Campbell Petroleum Series, 1974):
2(R - NH2) + H20 + C02 - (R - NH3)2C03 where R = C2H4OH
The reaction is reversible and the equilibrium can be altered by altering the temperature. C02 is absorbed by an absorption medium in the temperature range of 20-70°C , and is released from MEA in the temperature range of 120-150°C .
The exhaust gas from the heat recovery and power generation unit passes through an exhaust gas cooler and an exhaust gas blower before entering an absoφtion tower. Through the absoφtion column, the C02 content of the exhaust gas is reduced by means of a chemical reaction with the amine. The size of the absoφtion tower can be reduced by utilizing advanced technology such as structured packings or gas absorption membranes.
The C02 enriched MEA is passed to a stripper where the C02 is released at temperatures of 120 - 150°C. Degradation of the absoφtion chemical will occur due to the formation of heat stable salts and other short chain compounds. These contaminants are removed in the MEA purification unit which is in operation for only a short time.
Gas absorption membranes are membranes which are employed as contact devices between a gas and a liquid flow. The separation is caused by the presence of an absorption liquid on one side of the membrane which selectively removes certain components from the gas flow on the other side of the membrane. The membrane is intended to provide a contacting area which prevents mixing of the gas and the absorption liquid. The membrane, however, should be highly permeable to the component which is required to be removed. The selectivity in the separation process is derived from the absorption liquid. A highly selective separation can be achieved through an appropriate choice of the absoφtion liquid.
The removal of exhaust gas components such as C02 is achieved by the use of porous, hydrophobic membranes in combination with suitable absorption liquids (in this case the amine MEA). As a result of the membrane hydrophobicity and small pore size (normally 0.2 μm) the gas and liquid flows can be kept separate.
Fig. 3 illustrates the principle for the removal of CO2 from exhaust gases. The use of gas absoφtion membranes has several advantages over conven- tional contacting devices such as packed columns:
Compactness of the equipment through the use of hollow fibre membranes.
The height of the absorption column will be reduced to around 1/5 that of conventional columns. - The operation of the contact equipment is independent of the gas and liquid flow rates. No entrainment, flooding, channeling or foaming. The conventional stripping column can be replaced by a rotating gas/liquid contactor which is called HIGEE. This contactor appears to result in savings both with regard to cost, weight and especially reduction of area requirements.
The centrifugal forces produced by rotating a bed of packing act as an artificially high "g" force - thus the name "Higee". At the heart of a Higee is the packing, a reticulated material (usually metal), which has a very large surface area per m3 and a very high voidage. The specific area is normally 2500 m2/m3 with 90% voidage.
The Higee unit consists of a rotor containing the packing arranged in a torus, and a stationary housing. Two seals are incoφorated, one shaft seal between the rotating shaft and the housing, and the other between the rotor and the gas/vapor outlet duct in order to prevent gas or vapor from bypassing the rotating packing. The Higee unit is illustrated in fig. 4.
Gas (or steam when using Higee as a stripper) enters the housing via a tangential nozzle and flows inwards through the rotating packing. There it comes into intimate contact with the liquid, which has been distributed at the "eye" of the packing, and is forced outwards by the centrifugal forces. The gas (vapor) leaves the nozzle centred on the axis of the machine, while the droplets of liquid leaving the rotor impinge on the rotor's walls (or internals) and the liquid is drained from the housing.
At relatively modest speeds, "g" forces are created from 100 up to 1000 times normal gravity. The resulting high shear force produces extremely thin films of liquid, which rapidly replenish the surface, and substantial turbulence, thus causing an extremely efficient mass transfer to take place. Typically, the depth of the packing corresponding to an actual plate is in the region of 1.5- 2.5 cm rather than 30-244 cm in conventional packed towers. As in conventional mass transfer equipment, a satisfactory distribution of both gas and liquid phases is vital in achieving optimum performance.
The C02 resulting from the separation process can be disposed of in several ways: Ocean disposal
Liquid or solid C02 can be absorbed in sea water. The solubility of C02 in sea water increases with decreasing temperatures. The ecological effects of C02 disposal in the ocean are still not sufficiently well investigated and understood.
Enhanced oil recovery (ΕOR
By injecting C02 into petroleum reservoirs, the oil recovery rate can be increased. C02 will be mixed with some of the oil which is present, and this mixture of C02 and oil will displace oil which cannot be displaced by traditional water injection.
One problem which may arise when using C02 for EOR is that the C02 in the production gas gradually will increase. If the gas is to be exported, the increase in carbon dioxide may affect the quality and saleability of the gas.
Disposal in depleted oil and gas reservoirs Disposal of C02 in depleted reservoirs is considered to be safe as long as the injection pressure is below the original reservoir pressure. If the reservoir is filled with water, the possibility of CO, escaping the reservoir is greater.
Industrial use of CQ2
Carbon dioxide is used as a raw material for the chemical industry, especially for the production of urea, polycarbonate and alcohols. However, this does not represent an alternative to the disposal of large amounts of C02.
The main objective which must be fulfilled by the power generation unit is that the net power output from an LM2500 simple cycle gas turbine (approximately 21 MW) should be available regardless of the power and heat requirements for the C02 removal process. This introduced the necessity of a waste heat recovery unit (HRSG) in which the exhaust gas is cooled while simultaneously generating steam which can be utilized for the production of power and in addition supply the stripper reboiler with saturated steam. The HRSG has to supply a steam turbine with sufficient superheated steam in order to generate at least 3 MW of electricity which is the power requirement for the absoφtion and injection device. Generation of electricity exceeding this level could be used by the consumers on the platform. In addition the HRSG has to supply saturated steam at a pressure of 4 bar for utilization in the stripper reboiler.
The temperature of the exhaust gas is lowered to approximately 125°C when recovering heat for steam generation with the present steam cycle. In the case of C02 removal by amine absoφtion it is necessary to cool the exhaust gas further. An exhaust gas cooler using sea water is required in order to reduce the temperature to 30°C . This temperature is chosen in order to obtain the optimum performance for the absoφtion column. The dew point of the exhaust gas is approximately 42°C . A fraction of the water vapor in the exhaust gas is therefore condensed through the exhaust gas cooler.
The current practice for conventional HRSG designs does not reflect the philosophy of the space and weight requirements which are established in the offshore oil industry. Emphasis is therefore made to design a compact, light weight and dual pressure HRSG. Short tubes with a small diameter were applied together with the smallest possible fin thickness and tube spacing. The heavy steam drums were avoided by using "the once through principle" which is usually employed in coal fired boilers with supercritical steam conditions.
Combined cycle with recycling of exhaust gas A combined cycle with partial recycling of exhaust gas was proposed, in order thereby to reduce the volume of exhaust gas for treatment in the absorption process. The exhaust gas which leaves the HRSG is cooled to 30°C , and some of the total volume of exhaust gas is recycled and mixed with fresh air between air filter and compressor inlet. A simplified process flowsheet is shown in fig. 2.
The recycle ratio is mainly limited by the oxygen content in the combustion air. Flammability calculations of hydrocarbon fuels show that approximately 13 mol% of 02 is sufficient to keep a flame burning, (SFPE, 1990). In the present study the limit was set at 16.5 mol% of 02 in the combustion air. This implies a recycle ratio of 40% of the total exhaust gas volume.
Both General Electric and Rolls Royce have in general agreed that this recycle ratio will not significantly influence gas turbine performance, although detailed testing is necessary in order to verify this. Recycling of exhaust gas is a widely used method which is employed in NOx control from stationary sources (Wark and Warner, 1981). The increased gas volume acts as a thermal sink, reducing the overall combustion temperature. In addition the oxygen concentration is lowered. This effect will also be present in gas turbine combustion. However, there are certain issues which must be taken into account with regard to recycling, including the following:
Recycled exhaust gas must be carefully mixed with air in order to ensure homogeneous characteristics.
With low NOx lean burn systems, it may be necessary to modify the design due to more vigorous mixing requirements.
Additional firing of the HRSG in a combined cycle (i.e. using a duct burner between the turbine and the HRSG), increases the power output from the steam turbine, but the efficiency will be somewhat lower compared to a non- fired combined cycle. The C02 concentration of the exhaust gas will increase. However, there is also an undesirable effect of additional firing; the volume of exhaust gas for treatment will increase due to the reduced recycle ratio. Combined with the fact that no need has been identified for the additional power output from the steam turbine, this leads to the conclusion that additional firing of the HRSG is not feasible for C02 removal.
An alternative to installing C02 removal processes offshore will be to install high efficiency gas turbines. The efficiency of gas turbines which are opera¬ ting in the North Sea today is seldom higher than 30-35%. Replacement of these gas turbines with new turbines with efficiencies exceeding 40% will therefore substantially reduce the C02 emmisions.

Claims

PATENT CLAIMS
1. A method for removing and preventing emissions into the atmosphere of carbon dioxide (C02) from exhaust gases from heat engines, particularly gas turbines, installed on offshore platforms for the production of oil and/or gas, characterized by the following steps:
(a) natural gas and air are introduced into a heat engine in which natural gas is converted to mechanical energy,
(b) the exhaust gas from the heat engine is passed through the heat recovery unit, preferably an exhaust heat boiler, for recovery of the heat content in the exhaust gas in the form of steam,
(c) after emitting heat in the heat recovery unit whereby the temperature of the gas has been reduced to 20-70°C , the exhaust gas is passed to an absoφtion column containing an absoφtion liquid, where the carbon dioxide is absorbed in the said liquid, and the thereby purified exhaust gas, generally free of carbon dioxide, is vented to the atmosphere,
(d) the absoφtion liquid which contains C02 is passed to a stripping column where the C02 is removed from the absoφtion liquid by means of heating to a temperature of 120-150°C ,
(e) the thereby regenerated absorption liquid which is generally free of C02 is recycled to the absorption column and the separated C02 gas is passed to a compression stage for compression and utilization and/or disposal in a suitable manner.
2. A method as stated in claim 1, characterized in that approximately 40% of the exhaust gas is recycled to the compressor inlet for the said gas turbine before the exhaust gas is passed to the absoφtion stage (c).
3. A method as stated in one of the preceding claims, characterized in that as a gas absoφtion column a device is employed comprising gas absorption membranes suitable for separating C02 gas from exhaust gases.
4. A method as stated in one of the preceding claims, characterized in that a rotating gas/liquid contactor is employed as a stripping column.
5. A method as stated in one of the preceding claims, characterized in that steam from the heat recovery plant is used to heat the stripping column and that the steam is also used for the production of electrical energy via a high pressure steam turbine.
PCT/NO1995/000033 1994-02-15 1995-02-14 A method for removing and preventing emissions into the atmosphere of carbon dioxide (co2) from exhaust gases from heat engines WO1995021683A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP95910020A EP0744987B1 (en) 1994-02-15 1995-02-14 A method for removing and preventing emissions into the atmosphere of carbon dioxide (co 2) from exhaust gases from heat engines
CA002183374A CA2183374C (en) 1994-02-15 1995-02-14 A method for removing and preventing emissions into the atmosphere of carbon dioxide (co2) from exhaust gases from heat engines
DE69503036T DE69503036T2 (en) 1994-02-15 1995-02-14 METHOD FOR REMOVING AND PREVENTING EMISSIONS INTO THE ATMOSPHERE OF CARBON DIOXIDE FROM EXHAUST FROM HEAT ENGINES
DK95910020T DK0744987T3 (en) 1994-02-15 1995-02-14 Procedure for the removal and prevention of emissions into the atmosphere of carbon dioxide (CO2) from flue gases
US08/693,170 US5832712A (en) 1994-02-15 1995-02-14 Method for removing carbon dioxide from exhaust gases
AU18260/95A AU687171B2 (en) 1994-02-15 1995-02-14 A method for removing and preventing emissions into the atmosphere of carbon dioxide (CO2) from exhaust gases from heat engines
JP52113395A JP3659970B2 (en) 1994-02-15 1995-02-14 A method for removing and preventing carbon dioxide (CO bottom 2) emissions from the exhaust gas generated by a heat engine into the atmosphere
HK98113889A HK1012835A1 (en) 1994-02-15 1998-12-17 A method for removing and preventing emissions into the atmosphere of carbon dioxide (CO 2) from exhaust gases from heat engines

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO940527 1994-02-15
NO940527A NO180520C (en) 1994-02-15 1994-02-15 Method of Removing Carbon Dioxide from Combustion Gases

Publications (1)

Publication Number Publication Date
WO1995021683A1 true WO1995021683A1 (en) 1995-08-17

Family

ID=19896857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NO1995/000033 WO1995021683A1 (en) 1994-02-15 1995-02-14 A method for removing and preventing emissions into the atmosphere of carbon dioxide (co2) from exhaust gases from heat engines

Country Status (12)

Country Link
US (1) US5832712A (en)
EP (1) EP0744987B1 (en)
JP (1) JP3659970B2 (en)
AT (1) ATE167408T1 (en)
AU (1) AU687171B2 (en)
CA (1) CA2183374C (en)
DE (1) DE69503036T2 (en)
DK (1) DK0744987T3 (en)
ES (1) ES2118574T3 (en)
HK (1) HK1012835A1 (en)
NO (1) NO180520C (en)
WO (1) WO1995021683A1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998013124A1 (en) * 1996-09-27 1998-04-02 W.L. Gore & Associates Gmbh Separation of gaseous components from a gas stream with a liquid absorbent
AU720931B2 (en) * 1996-07-31 2000-06-15 Kvaerner Asa Method for removing carbon dioxide from gases
WO2000048709A1 (en) * 1999-02-19 2000-08-24 Norsk Hydro Asa A method for removing and recovering co2 from exhaust gas
WO2000057990A1 (en) * 1999-03-26 2000-10-05 Christensen Process Consulting As Method for controlling the co2 content flue gas from thermal power plants and a thermal power plant using the method
WO2003028854A1 (en) * 2001-10-02 2003-04-10 Union Engineering A/S Method and device for recovery of thermal from an exothermic carbon dioxide absorption process
WO2004072443A1 (en) 2003-02-11 2004-08-26 Statoil Asa Efficient combined cycle power plant with co2 capture and a combustor arrangement with separate flows
US6926829B2 (en) 2000-03-06 2005-08-09 Kvaerner Process Systems A.S. Apparatus and method for separating fluids through a membrane
WO2007019632A1 (en) * 2005-08-16 2007-02-22 Co2Crc Technologies Pty Ltd Plant and process for removing carbon dioxide from gas streams
WO2007117974A1 (en) * 2006-04-07 2007-10-18 Occidental Energy Ventures Corp. A system and method for processing a mixture of hydrocarbon and co2 gas produced from a hydrocarbon reservoir
WO2009046721A1 (en) * 2007-10-12 2009-04-16 Union Engineering A/S Removal of carbon dioxide from a feed gas
WO2012076597A1 (en) 2010-12-08 2012-06-14 Shell Internationale Research Maatschappij B.V. Process for removing carbon dioxide from a gas stream
WO2012092980A1 (en) * 2011-01-07 2012-07-12 Statoil Petroleum As Process for removing acid gas from natural gas
WO2012104202A1 (en) * 2011-02-01 2012-08-09 Alstom Technology Ltd Combined cycle power plant with co2 capture plant
CN103069130A (en) * 2010-08-06 2013-04-24 埃克森美孚上游研究公司 Systems and methods for optimizing stoichiometric combustion
KR101400413B1 (en) * 2012-04-17 2014-05-27 현대건설주식회사 Seawater desalination process by use of imperfect combustion gas
US8858906B2 (en) 2008-03-13 2014-10-14 Shell Oil Company Process for removal of carbon dioxide from a gas
US9222671B2 (en) 2008-10-14 2015-12-29 Exxonmobil Upstream Research Company Methods and systems for controlling the products of combustion
US9353940B2 (en) 2009-06-05 2016-05-31 Exxonmobil Upstream Research Company Combustor systems and combustion burners for combusting a fuel
US9399950B2 (en) 2010-08-06 2016-07-26 Exxonmobil Upstream Research Company Systems and methods for exhaust gas extraction
US9463417B2 (en) 2011-03-22 2016-10-11 Exxonmobil Upstream Research Company Low emission power generation systems and methods incorporating carbon dioxide separation
US9599021B2 (en) 2011-03-22 2017-03-21 Exxonmobil Upstream Research Company Systems and methods for controlling stoichiometric combustion in low emission turbine systems
US9670841B2 (en) 2011-03-22 2017-06-06 Exxonmobil Upstream Research Company Methods of varying low emission turbine gas recycle circuits and systems and apparatus related thereto
US9689309B2 (en) 2011-03-22 2017-06-27 Exxonmobil Upstream Research Company Systems and methods for carbon dioxide capture in low emission combined turbine systems
US9732673B2 (en) 2010-07-02 2017-08-15 Exxonmobil Upstream Research Company Stoichiometric combustion with exhaust gas recirculation and direct contact cooler
US9732675B2 (en) 2010-07-02 2017-08-15 Exxonmobil Upstream Research Company Low emission power generation systems and methods
US9903271B2 (en) 2010-07-02 2018-02-27 Exxonmobil Upstream Research Company Low emission triple-cycle power generation and CO2 separation systems and methods
US9903316B2 (en) 2010-07-02 2018-02-27 Exxonmobil Upstream Research Company Stoichiometric combustion of enriched air with exhaust gas recirculation
WO2019016418A1 (en) 2017-07-21 2019-01-24 Universidad De Sevilla Aqueous composition for the separation of co2 and/or acid gases
US10570825B2 (en) 2010-07-02 2020-02-25 Exxonmobil Upstream Research Company Systems and methods for controlling combustion of a fuel

Families Citing this family (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5265454B2 (en) * 1998-01-23 2013-08-14 茂 田中 Material collector
NO317870B1 (en) * 1998-09-16 2004-12-27 Statoil Asa Process for Producing a H <N> 2 </N> Rich Gas and a CO <N> 2 </N> Rich Gas at High Pressure
JP2000120447A (en) * 1998-10-12 2000-04-25 Toshiba Corp Thermal power plant
GB9906620D0 (en) * 1999-03-23 1999-05-19 Rolls Royce Plc Power generation equipment
DE19952884A1 (en) * 1999-11-03 2001-05-10 Abb Alstom Power Ch Ag Operation method for carbon dioxide gas turbine system, involves using combustion chamber in which fuel is burnt with oxygen, with at least one turbine and one generator
DE10016079A1 (en) * 2000-03-31 2001-10-04 Alstom Power Nv Method for removing carbon dioxide from the exhaust gas of a gas turbine system and device for carrying out the method
FR2825935B1 (en) * 2001-06-14 2003-08-22 Inst Francais Du Petrole LOW CO2 EMISSIONS POWER GENERATOR AND ASSOCIATED METHOD
FI111607B (en) * 2001-10-22 2003-08-29 Matti Nurmia A process for producing liquid carbon dioxide from flue gas under normal pressure
GB2399600B (en) * 2001-10-26 2005-12-14 Alstom Technology Ltd Gas turbine adapted to operate with a high exhaust gas recirculation rate and a method for operation thereof
WO2003055804A1 (en) * 2001-12-31 2003-07-10 Nanomaterials Technology Pte Ltd. Calcium carbonate of different shapes and the preparing process thereof
JP3814206B2 (en) * 2002-01-31 2006-08-23 三菱重工業株式会社 Waste heat utilization method of carbon dioxide recovery process
NO20023050L (en) * 2002-06-21 2003-12-22 Fleischer & Co Process and facilities for carrying out the process
DE10325111A1 (en) * 2003-06-02 2005-01-05 Alstom Technology Ltd Method for generating energy in a gas turbine comprehensive power generation plant and power plant for performing the method
WO2005009592A1 (en) * 2003-07-22 2005-02-03 Dow Global Technologies Inc. Regeneration of acid gas-containing treatment fluids
WO2006022885A1 (en) * 2004-08-06 2006-03-02 Eig, Inc. Ultra cleaning of combustion gas including the removal of co2
FR2881417B1 (en) * 2005-02-01 2007-04-27 Air Liquide PROCESS FOR THE PRODUCTION OF LOW-EMITTING SYNTHESIS GAS OF CARBON DIOXIDE
WO2006107209A1 (en) * 2005-04-05 2006-10-12 Sargas As Low co2 thermal powerplant
PL1907319T3 (en) * 2005-07-18 2010-06-30 Union Eng A/S A method for recovery of high purity carbon dioxide from a gaseous source comprising nitrogen compounds
ATE497408T1 (en) * 2005-12-16 2011-02-15 Evonik Energy Services Gmbh METHOD FOR TREATING FLUE GAS CATALYSTS
JP5230088B2 (en) * 2006-09-06 2013-07-10 三菱重工業株式会社 CO2 recovery apparatus and method
US7827778B2 (en) * 2006-11-07 2010-11-09 General Electric Company Power plants that utilize gas turbines for power generation and processes for lowering CO2 emissions
US7739864B2 (en) * 2006-11-07 2010-06-22 General Electric Company Systems and methods for power generation with carbon dioxide isolation
US7895822B2 (en) * 2006-11-07 2011-03-01 General Electric Company Systems and methods for power generation with carbon dioxide isolation
US20080141645A1 (en) * 2006-12-14 2008-06-19 General Electric Company System and method for low emissions combustion
PL2121520T3 (en) * 2007-01-17 2017-03-31 Union Engineering A/S A method for recovery of high purity carbon dioxide
JP5574710B2 (en) * 2007-01-25 2014-08-20 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ How to reduce carbon dioxide emissions at power plants
EP2125164A1 (en) * 2007-01-25 2009-12-02 Shell Internationale Research Maatschappij B.V. Process for producing a pressurised co2 stream in a power plant integrated with a co2 capture unit
WO2008090166A1 (en) * 2007-01-25 2008-07-31 Shell Internationale Research Maatschappij B.V. Process for enabling constant power output in a power plant integrated with a carbon dioxide capture unit
ES2393266T3 (en) * 2007-02-22 2012-12-19 Fluor Technologies Corporation Configurations for the production of carbon dioxide and hydrogen from gasification streams
DE102007020855A1 (en) * 2007-05-02 2008-11-06 Evonik Energy Services Gmbh Process for purifying flue gases from incineration plants
US8398743B2 (en) * 2007-05-08 2013-03-19 General Electric Company Methods and systems for reducing carbon dioxide in combustion flue gases
US8850789B2 (en) * 2007-06-13 2014-10-07 General Electric Company Systems and methods for power generation with exhaust gas recirculation
US7964170B2 (en) * 2007-10-19 2011-06-21 Fluegen, Inc. Method and apparatus for the removal of carbon dioxide from a gas stream
US8182577B2 (en) 2007-10-22 2012-05-22 Alstom Technology Ltd Multi-stage CO2 removal system and method for processing a flue gas stream
US7862788B2 (en) * 2007-12-05 2011-01-04 Alstom Technology Ltd Promoter enhanced chilled ammonia based system and method for removal of CO2 from flue gas stream
DE102007062413B3 (en) * 2007-12-20 2009-09-10 Conera Process Solutions Gmbh Process and apparatus for reprocessing CO2-containing exhaust gases
US20100074828A1 (en) * 2008-01-28 2010-03-25 Fluegen, Inc. Method and Apparatus for the Removal of Carbon Dioxide from a Gas Stream
CN104098070B (en) 2008-03-28 2016-04-13 埃克森美孚上游研究公司 Low emission power generation and hydrocarbon recovery system and method
CN101981272B (en) 2008-03-28 2014-06-11 埃克森美孚上游研究公司 Low emission power generation and hydrocarbon recovery systems and methods
US20090282977A1 (en) * 2008-05-14 2009-11-19 Alstom Technology Ltd Gas purification system having provisions for co2 injection of wash water
US8397482B2 (en) 2008-05-15 2013-03-19 General Electric Company Dry 3-way catalytic reduction of gas turbine NOx
US20090307974A1 (en) * 2008-06-14 2009-12-17 Dighe Shyam V System and process for reduction of greenhouse gas and conversion of biomass
CA2728220A1 (en) 2008-06-19 2009-12-23 Shell Internationale Research Maatschappij B.V. Process for the removal of carbon dioxide from a gas
DK2328672T3 (en) * 2008-07-29 2014-07-07 Union Engineering As Process for the recovery of pure carbon dioxide
US20100024651A1 (en) * 2008-07-30 2010-02-04 General Electric Company Membrane contactor systems for gas-liquid contact
WO2010014773A1 (en) * 2008-07-31 2010-02-04 Novozymes A/S Modular reactor and process for carbon dioxide extraction
DE102008039449A1 (en) * 2008-08-25 2010-03-04 Rheinisch-Westfälische Technische Hochschule Aachen Emission-free Karftwerk
US7846240B2 (en) 2008-10-02 2010-12-07 Alstom Technology Ltd Chilled ammonia based CO2 capture system with water wash system
US8404027B2 (en) 2008-11-04 2013-03-26 Alstom Technology Ltd Reabsorber for ammonia stripper offgas
US8292989B2 (en) * 2009-10-30 2012-10-23 Alstom Technology Ltd Gas stream processing
JP2010235395A (en) * 2009-03-31 2010-10-21 Hitachi Ltd Apparatus for recovering carbon dioxide, and thermal power system with apparatus for recovering carbon dioxide
NO332547B1 (en) * 2009-07-10 2012-10-22 Statoil Asa Compact absorption-desorption process using concentrated solution
US8784761B2 (en) * 2009-11-20 2014-07-22 Alstom Technology Ltd Single absorber vessel to capture CO2
US8790605B2 (en) * 2009-09-15 2014-07-29 Alstom Technology Ltd Method for removal of carbon dioxide from a process gas
US8309047B2 (en) 2009-09-15 2012-11-13 Alstom Technology Ltd Method and system for removal of carbon dioxide from a process gas
NL1037295C2 (en) * 2009-09-17 2011-03-21 Kema Nederland B V Process for separating carbon dioxide from incineration gases from a gas turbine and gas turbine unit provided with means for separating carbon dioxide from incineration gases.
US8518156B2 (en) * 2009-09-21 2013-08-27 Alstom Technology Ltd Method and system for regenerating a solution used in a wash vessel
EP2305363A1 (en) * 2009-09-29 2011-04-06 Alstom Technology Ltd Power plant for CO2 capture
US8459030B2 (en) * 2009-09-30 2013-06-11 General Electric Company Heat engine and method for operating the same
EP2499332B1 (en) 2009-11-12 2017-05-24 Exxonmobil Upstream Research Company Integrated system for power generation and method for low emission hydrocarbon recovery with power generation
EP2322265A1 (en) 2009-11-12 2011-05-18 Alstom Technology Ltd Flue gas treatment system
JP2011125763A (en) * 2009-12-15 2011-06-30 Hsien Min Yang Apparatus for absorbing carbon dioxide in air
US8293200B2 (en) * 2009-12-17 2012-10-23 Alstom Technology Ltd Desulfurization of, and removal of carbon dioxide from, gas mixtures
US20110146489A1 (en) * 2009-12-17 2011-06-23 Alstom Technology Ltd Ammonia removal, following removal of co2, from a gas stream
JP5686987B2 (en) * 2010-04-20 2015-03-18 三菱日立パワーシステムズ株式会社 Exhaust gas treatment system equipped with carbon dioxide chemical absorption equipment
FR2959137B1 (en) * 2010-04-23 2015-07-03 Solios Environnement SYSTEM AND METHOD FOR THE TREATMENT WITH CONCENTRATION OF SMOKE AND GAS PRODUCED BY AN ELECTROLYTIC TANK IN THE MANUFACTURE OF ALUMINUM
US20110265445A1 (en) 2010-04-30 2011-11-03 General Electric Company Method for Reducing CO2 Emissions in a Combustion Stream and Industrial Plants Utilizing the Same
DE102010019330B4 (en) 2010-05-05 2013-11-07 Ecoloop Gmbh Process for the conversion of carbonates into oxides
US8328911B2 (en) 2010-06-21 2012-12-11 The University Of Kentucky Research Foundation Method for removing CO2 from coal-fired power plant flue gas using ammonia as the scrubbing solution, with a chemical additive for reducing NH3 losses, coupled with a membrane for concentrating the CO2 stream to the gas stripper
US8425655B2 (en) * 2010-07-09 2013-04-23 Carbon Capture Scientific, Llc Gas pressurized separation column and process to generate a high pressure product gas
US9919259B2 (en) 2010-07-09 2018-03-20 Carbon Capture Scientific, Llc Gas pressurized separation column and process to generate a high pressure product gas
US8728209B2 (en) 2010-09-13 2014-05-20 Alstom Technology Ltd Method and system for reducing energy requirements of a CO2 capture system
US8623307B2 (en) 2010-09-14 2014-01-07 Alstom Technology Ltd. Process gas treatment system
EP2463013A1 (en) 2010-12-13 2012-06-13 Shell Internationale Research Maatschappij B.V. Process for removing carbon dioxide from a gas stream
US8329128B2 (en) 2011-02-01 2012-12-11 Alstom Technology Ltd Gas treatment process and system
US9028784B2 (en) 2011-02-15 2015-05-12 Alstom Technology Ltd Process and system for cleaning a gas stream
EP2535101A1 (en) 2011-06-13 2012-12-19 Alstom Technology Ltd Flue gas recirculation with CO2 enrichment membrane
NO20110974A1 (en) * 2011-07-05 2013-01-07 Aker Clean Carbon As Emission control
US20130036748A1 (en) * 2011-08-08 2013-02-14 Michael J. Lewis System and method for producing carbon dioxide for use in hydrocarbon recovery
CN102519053B (en) * 2011-12-15 2014-07-09 东南大学 System capable of improving combustion efficiency of boiler by means of reducing moisture content of air
US9810050B2 (en) 2011-12-20 2017-11-07 Exxonmobil Upstream Research Company Enhanced coal-bed methane production
WO2013112619A1 (en) 2012-01-23 2013-08-01 Battelle Memorial Institute Separation and/or sequestration apparatus and methods
US9162177B2 (en) 2012-01-25 2015-10-20 Alstom Technology Ltd Ammonia capturing by CO2 product liquid in water wash liquid
US8864879B2 (en) 2012-03-30 2014-10-21 Jalal Askander System for recovery of ammonia from lean solution in a chilled ammonia process utilizing residual flue gas
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
WO2014052419A1 (en) * 2012-09-26 2014-04-03 Dow Corning Corporation Method of separating a gas using at least one membrane in contact with an organosilicon fluid
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US10161312B2 (en) 2012-11-02 2018-12-25 General Electric Company System and method for diffusion combustion with fuel-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9447996B2 (en) 2013-01-15 2016-09-20 General Electric Technology Gmbh Carbon dioxide removal system using absorption refrigeration
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
TW201502356A (en) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co Reducing oxygen in a gas turbine exhaust
WO2014133406A1 (en) 2013-02-28 2014-09-04 General Electric Company System and method for a turbine combustor
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
CN105008499A (en) 2013-03-08 2015-10-28 埃克森美孚上游研究公司 Power generation and methane recovery from methane hydrates
TW201500635A (en) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co Processing exhaust for use in enhanced oil recovery
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
CN103301719A (en) * 2013-06-28 2013-09-18 美景(北京)环保科技有限公司 System and method for removing sulfur dioxide from exhaust gas
TWI654368B (en) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 System, method and media for controlling exhaust gas flow in an exhaust gas recirculation gas turbine system
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
WO2015009861A1 (en) * 2013-07-16 2015-01-22 Biogas And Electric, Llc Exhaust scrubber
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US8986640B1 (en) 2014-01-07 2015-03-24 Alstom Technology Ltd System and method for recovering ammonia from a chilled ammonia process
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US9216377B1 (en) 2015-02-24 2015-12-22 Chevron U.S.A. Inc. Method and system for removing impurities from gas streams using rotating packed beds
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
US11471825B2 (en) 2018-03-14 2022-10-18 Gas Technology Institute Membrane absorption process for CO2 capture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0020055A1 (en) * 1979-05-31 1980-12-10 Imperial Chemical Industries Plc Process and apparatus for effecting mass transfer
EP0410845A1 (en) * 1989-07-17 1991-01-30 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Recovery of carbon dioxide plant vent gas using membranes
EP0537593A1 (en) * 1991-10-09 1993-04-21 The Kasai Electric Power Co., Inc. Recovery of carbon dioxide from combustion exhaust gas
EP0551876A2 (en) * 1992-01-17 1993-07-21 The Kansai Electric Power Co., Inc. Process for removing carbon dioxide from combustion exhaust gas

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4434613A (en) * 1981-09-02 1984-03-06 General Electric Company Closed cycle gas turbine for gaseous production
US4528811A (en) * 1983-06-03 1985-07-16 General Electric Co. Closed-cycle gas turbine chemical processor
EP0502596B2 (en) * 1991-03-07 1999-08-25 Mitsubishi Jukogyo Kabushiki Kaisha Apparatus and process for removing carbon dioxide from combustion exhaust gas
EP0553643B1 (en) * 1992-01-17 1998-05-13 The Kansai Electric Power Co., Inc. Method for treating combustion exhaust gas
DK0558019T4 (en) * 1992-02-27 2006-05-01 Kansai Electric Power Co Procedure for Removing Carbon Dioxide from Combustion Exhaust Gas
JP2882950B2 (en) * 1992-09-16 1999-04-19 関西電力株式会社 Method for removing carbon dioxide in flue gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0020055A1 (en) * 1979-05-31 1980-12-10 Imperial Chemical Industries Plc Process and apparatus for effecting mass transfer
EP0410845A1 (en) * 1989-07-17 1991-01-30 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Recovery of carbon dioxide plant vent gas using membranes
EP0537593A1 (en) * 1991-10-09 1993-04-21 The Kasai Electric Power Co., Inc. Recovery of carbon dioxide from combustion exhaust gas
EP0551876A2 (en) * 1992-01-17 1993-07-21 The Kansai Electric Power Co., Inc. Process for removing carbon dioxide from combustion exhaust gas

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU720931B2 (en) * 1996-07-31 2000-06-15 Kvaerner Asa Method for removing carbon dioxide from gases
US6228145B1 (en) 1996-07-31 2001-05-08 Kvaerner Asa Method for removing carbon dioxide from gases
WO1998013124A1 (en) * 1996-09-27 1998-04-02 W.L. Gore & Associates Gmbh Separation of gaseous components from a gas stream with a liquid absorbent
US6655150B1 (en) 1999-02-19 2003-12-02 Norsk Hydro Asa Method for removing and recovering CO2 from exhaust gas
WO2000048709A1 (en) * 1999-02-19 2000-08-24 Norsk Hydro Asa A method for removing and recovering co2 from exhaust gas
WO2000057990A1 (en) * 1999-03-26 2000-10-05 Christensen Process Consulting As Method for controlling the co2 content flue gas from thermal power plants and a thermal power plant using the method
US6926829B2 (en) 2000-03-06 2005-08-09 Kvaerner Process Systems A.S. Apparatus and method for separating fluids through a membrane
WO2003028854A1 (en) * 2001-10-02 2003-04-10 Union Engineering A/S Method and device for recovery of thermal from an exothermic carbon dioxide absorption process
WO2004072443A1 (en) 2003-02-11 2004-08-26 Statoil Asa Efficient combined cycle power plant with co2 capture and a combustor arrangement with separate flows
WO2007019632A1 (en) * 2005-08-16 2007-02-22 Co2Crc Technologies Pty Ltd Plant and process for removing carbon dioxide from gas streams
US8388919B2 (en) 2005-08-16 2013-03-05 Co2Crc Technologies Pty Ltd Plant and process for removing carbon dioxide from gas streams
AU2006281992B2 (en) * 2005-08-16 2011-05-19 Kc8 Capture Technologies Ltd Plant and process for removing carbon dioxide from gas streams
US7976803B2 (en) 2005-08-16 2011-07-12 Co2Crc Technologies Pty Ltd. Plant and process for removing carbon dioxide from gas streams
WO2007117974A1 (en) * 2006-04-07 2007-10-18 Occidental Energy Ventures Corp. A system and method for processing a mixture of hydrocarbon and co2 gas produced from a hydrocarbon reservoir
US7654320B2 (en) 2006-04-07 2010-02-02 Occidental Energy Ventures Corp. System and method for processing a mixture of hydrocarbon and CO2 gas produced from a hydrocarbon reservoir
CN101835524B (en) * 2007-10-12 2013-06-05 由宁工程股份有限公司 Removal of carbon dioxide from a feed gas
US8529854B2 (en) 2007-10-12 2013-09-10 Union Engineering A/S Removal of carbon dioxide from a feed gas
WO2009046721A1 (en) * 2007-10-12 2009-04-16 Union Engineering A/S Removal of carbon dioxide from a feed gas
EA018558B1 (en) * 2007-10-12 2013-08-30 Юнион Инджиниринг А/С Process and plant for removal of carbon dioxide from a feed gas
US8858906B2 (en) 2008-03-13 2014-10-14 Shell Oil Company Process for removal of carbon dioxide from a gas
US9222671B2 (en) 2008-10-14 2015-12-29 Exxonmobil Upstream Research Company Methods and systems for controlling the products of combustion
US9353940B2 (en) 2009-06-05 2016-05-31 Exxonmobil Upstream Research Company Combustor systems and combustion burners for combusting a fuel
US9903271B2 (en) 2010-07-02 2018-02-27 Exxonmobil Upstream Research Company Low emission triple-cycle power generation and CO2 separation systems and methods
US9732673B2 (en) 2010-07-02 2017-08-15 Exxonmobil Upstream Research Company Stoichiometric combustion with exhaust gas recirculation and direct contact cooler
US10570825B2 (en) 2010-07-02 2020-02-25 Exxonmobil Upstream Research Company Systems and methods for controlling combustion of a fuel
US9903316B2 (en) 2010-07-02 2018-02-27 Exxonmobil Upstream Research Company Stoichiometric combustion of enriched air with exhaust gas recirculation
US9732675B2 (en) 2010-07-02 2017-08-15 Exxonmobil Upstream Research Company Low emission power generation systems and methods
US9399950B2 (en) 2010-08-06 2016-07-26 Exxonmobil Upstream Research Company Systems and methods for exhaust gas extraction
US9903279B2 (en) 2010-08-06 2018-02-27 Exxonmobil Upstream Research Company Systems and methods for optimizing stoichiometric combustion
US10174682B2 (en) 2010-08-06 2019-01-08 Exxonmobil Upstream Research Company Systems and methods for optimizing stoichiometric combustion
CN103069130A (en) * 2010-08-06 2013-04-24 埃克森美孚上游研究公司 Systems and methods for optimizing stoichiometric combustion
WO2012076597A1 (en) 2010-12-08 2012-06-14 Shell Internationale Research Maatschappij B.V. Process for removing carbon dioxide from a gas stream
WO2012092980A1 (en) * 2011-01-07 2012-07-12 Statoil Petroleum As Process for removing acid gas from natural gas
WO2012104202A1 (en) * 2011-02-01 2012-08-09 Alstom Technology Ltd Combined cycle power plant with co2 capture plant
US9463417B2 (en) 2011-03-22 2016-10-11 Exxonmobil Upstream Research Company Low emission power generation systems and methods incorporating carbon dioxide separation
US9599021B2 (en) 2011-03-22 2017-03-21 Exxonmobil Upstream Research Company Systems and methods for controlling stoichiometric combustion in low emission turbine systems
US9670841B2 (en) 2011-03-22 2017-06-06 Exxonmobil Upstream Research Company Methods of varying low emission turbine gas recycle circuits and systems and apparatus related thereto
US9689309B2 (en) 2011-03-22 2017-06-27 Exxonmobil Upstream Research Company Systems and methods for carbon dioxide capture in low emission combined turbine systems
KR101400413B1 (en) * 2012-04-17 2014-05-27 현대건설주식회사 Seawater desalination process by use of imperfect combustion gas
WO2019016418A1 (en) 2017-07-21 2019-01-24 Universidad De Sevilla Aqueous composition for the separation of co2 and/or acid gases

Also Published As

Publication number Publication date
NO180520C (en) 1997-05-07
HK1012835A1 (en) 1999-08-06
NO940527L (en) 1995-08-16
DK0744987T3 (en) 1999-02-01
ES2118574T3 (en) 1998-09-16
CA2183374C (en) 2005-09-13
AU687171B2 (en) 1998-02-19
CA2183374A1 (en) 1995-08-17
JP3659970B2 (en) 2005-06-15
NO180520B (en) 1997-01-27
AU1826095A (en) 1995-08-29
US5832712A (en) 1998-11-10
JPH09509608A (en) 1997-09-30
DE69503036T2 (en) 1998-10-22
EP0744987A1 (en) 1996-12-04
NO940527D0 (en) 1994-02-15
DE69503036D1 (en) 1998-07-23
ATE167408T1 (en) 1998-07-15
EP0744987B1 (en) 1998-06-17

Similar Documents

Publication Publication Date Title
AU687171B2 (en) A method for removing and preventing emissions into the atmosphere of carbon dioxide (CO2) from exhaust gases from heat engines
Herzog et al. Feasibility, modeling and economics of sequestering power plant CO2 emissions in the deep ocean
US8043588B2 (en) Method and plant for removing carbon dioxide from flue gas
US7754102B2 (en) Method for reclaim of carbon dioxide and nitrogen from boiler flue gas
US7901487B2 (en) Regeneration of an aqueous solution from an acid gas absorption process by multistage flashing and stripping
JP6186650B2 (en) Low emission power generation system and method including carbon dioxide separation system
CA2598094C (en) Process and apparatus for converting hydrogen sulfide into hydrogen and sulfur
JP5134578B2 (en) CO2 recovery apparatus and method
CA2984020A1 (en) Method for utilization of the inner energy of an aquifer fluid in a geothermal plant
KR20100022971A (en) Method and absorbent composition for recovering a gaseous component from a gas stream
MX2013009836A (en) Methods of varying low emission turbine gas recycle circuits and systems and apparatus related thereto.
JP2005532157A (en) Improved diversion method and apparatus
CA2865103C (en) Method and system for separating and destroying sour and acid gas
GB2434330A (en) Removal of CO2 from flue gas
EP2668994A1 (en) Integrated CO2 phase changing absorbent for CO2 separation system
CA2717051C (en) Thermal power plant with co2 sequestration
US8506680B2 (en) Reclamation of gaseous substances from boiler flue gas for oil recovery
JP7028600B2 (en) Methane production system and methane production method
AU708792B2 (en) A method for removing and preventing emissions into the atmosphere of carbon dioxide (CO2) from exhaust gases from heat engines
WO2004026445A1 (en) Method and plant for separation of co2 from the exhaust from combustion of carbonaceous material
CA1069274A (en) Process for the generation of electric power
CA2754084A1 (en) Process and apparatus for the treatment of flue gases
Ezhova et al. Modern methods for removing carbon dioxide from flue gases emitted by thermal power stations
Mathieu Near zero emission power plants as future CO 2 control technologies
WO2024054119A1 (en) Carbon capture for gas turbines

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU JP KE KG KP KR KZ LK LR LT LU LV MD MG MN MW MX NL NO NZ PL PT RO RU SD SE SI SK TJ TT UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2183374

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1995910020

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08693170

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1995910020

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995910020

Country of ref document: EP