WO1995007941A1 - Procede de polymerisation d'olefine - Google Patents

Procede de polymerisation d'olefine Download PDF

Info

Publication number
WO1995007941A1
WO1995007941A1 PCT/EP1994/003119 EP9403119W WO9507941A1 WO 1995007941 A1 WO1995007941 A1 WO 1995007941A1 EP 9403119 W EP9403119 W EP 9403119W WO 9507941 A1 WO9507941 A1 WO 9507941A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
catalyst
aluminum alkyl
scavenger
polymerisation
Prior art date
Application number
PCT/EP1994/003119
Other languages
English (en)
Inventor
Norbert Baron
Bernard Jean Folie
Howard William Turner
Original Assignee
Exxon Chemical Patents Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Chemical Patents Inc. filed Critical Exxon Chemical Patents Inc.
Publication of WO1995007941A1 publication Critical patent/WO1995007941A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/619Component covered by group C08F4/60 containing a transition metal-carbon bond
    • C08F4/61908Component covered by group C08F4/60 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/619Component covered by group C08F4/60 containing a transition metal-carbon bond
    • C08F4/61912Component covered by group C08F4/60 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/619Component covered by group C08F4/60 containing a transition metal-carbon bond
    • C08F4/6192Component covered by group C08F4/60 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring

Definitions

  • the invention relates to olefin polymerisation processes, particularly those using bulky ancillary ligand transition metal catalysts components and especially solution, slurry or high pressure polymerisation processes for making ethylene homo- and co-polymers.
  • the term "bulky ancillary ligand transition metal catalyst component” refers to compounds having hydrocarbyl or hetero-ato containing groups bonded to the transition metal.
  • the phrase “bulky ancillary ligand” refers to ligands which have a stable bond with the metal and are generally inert to the polymerisation reaction mechanism.
  • the ligand groups may include cyclopentadienyl groups which are mono or polynuclear or amido groups.
  • the components include metallocenes.
  • the cyclopentadienyl groups may have one or more carbon atoms replaced by other atoms such as hetero atoms e.g. phosphorus.
  • etallocene is used herein to indicate compounds having ⁇ -bonds linking a moiety to a transition metal.
  • the moiety may include a five-membered ring of a cyclopentadienyl type. One or two such ⁇ -bonds may be present in the compound.
  • copolymer is used herein to indicate polymers derived of two or more copolymerisable monomers and so includes terpoly ers etc.
  • olefin is used herein generically to include all components containing a double bond active for addition polymerisation including linear and cyclic olefins such as styrene , vinyl compounds and poly-enes. Background of the invention
  • EP 277 003 (Exxon) and 277 004 disclose the use of bulky anions as cocatalysts with metallocene cations in olefin solution polymerisation and in high pressure polymerisation (cf. Example 32 of EP 277 003) .
  • EP 427 697 (Fina) proposes use of an aluminum alkyl ; US 5 153 157 (Exxon) similarly uses an organometallic compound.
  • EP 436 399 (Idemitsu Kosan) uses hybrid catalysts in order to produce broad molecular weight distributions.
  • EP 481 480 (Idemitsu Kosan) proposes use of a small amount of an organo aluminum compound with a metallocene catalyst system in making propylene based oligomers.
  • EP 485 820 and EP 485 822 (Hoechst) disclose mixed catalyst systems for the preparation of polypropylene which employ both alumoxane and bulky anions.
  • EP 504 418 discloses in Example 45 the combined use of bulky anion and alumoxane cocatalysts in the preparation of ethylene norbornene copolymers in solution at low temperatures and low pressures.
  • EP 505 973 uses related catalyst systems for styrene polymerisation.
  • EP 513 380 (Idemitsu Kosan) uses related catalyst systems for syndiotactic polymerisation.
  • organo-aluminum compounds as co-catalysts is well known in connection with classical heterogeneous TiCl 3 based olefin polymerisation catalysis.
  • organo-aluminum compounds as scavengers to remove catalyst poisons is also known.
  • EP 206 794 (Exxon)
  • triethyl aluminum was used as a scavenger in Example 7; whilst in Example 4 discusses the use of methyl alumoxane injected in Example 1 for a scavenging function.
  • EP 423 100 (Fina) mentions bulky non-coordinating anions and alumoxanes, see column 10. In that passage it is stated that "alumoxane ... need not, and preferably is not, used in carrying out the present invention where " etc.
  • the reference to “alumoxane” is to alumoxane as a cocatalyst. Continuous processes are not disclosed.
  • Column 11 goes on to say : "Alumoxanes usually are not employed in the present invention with cationic metallocenes and if they are used they are used in amounts well below the aforementioned range preferably providing an Al/Me ratio of no more than 10 and preferably no more than 1.”
  • EP 423 100 includes no examples.
  • WO 93/14132 discloses a polymerisation process for monocyclopentadienyl compounds and bulky anions using alumoxanes as scavengers.
  • Page 4 indicates use of C ⁇ to C 4 alkylalumoxanes but there is no specific disclosure of tertiary carbon containing alkyl groups; nor is there an indication of the amount of unreacted aluminum alkyl.
  • Methylalumoxane is preferred; commercially practised preparation methods therefore contain significant levels of unreacted triraethylaluminum which can only be removed by special measures not described in WO 93/14132.
  • the build up of volatile poison materials may influence the process efficiency and stability.
  • a partially hydrolysed aluminum alkyl material oligomer as a scavenger in an olefin polymerisation process, said material containing less than 20 % by Al on the basis of total Al-content of unreacted aluminum alkyl, preferably less than 15 %, especially less than 10 %.
  • Use as a scavenger can be recognised by the effect of the oligomer introduction and by the manner of its introduction to the olefin polymerisation process. Possible ways of determining the percentage of unreacted aluminum alkyl are indicated in the Examples.
  • the aluminum alkyl contains an alkyl group with at least two carbon atoms and has substantially no co-catalytic activity, preferably having an alkyl group containing a tertiary carbon atom.
  • Such oligomers can be prepared in one-step hydrolysis processes to give low levels of unreacted aluminum alkyls, yet form effective scavengers. Generally their cocatalytic activity is low under prevailing process conditions.
  • the material is used in conjunction with an olefin catalyst system comprising a bulky ancillary ligand transition metal component and a bulky anion component .
  • the material is used in a process involving a recycle of non-reacted polymerisation diluents including monomers and/or inert materials.
  • the material is used as a scavenger by adding it to a catalyst system (prior to the introduction of the catalyst system to a polymerisation reactor) and/or separately to a polymerisation reactor feed before or after the introduction of the feed to the reactor.
  • the material is used in a polymerisation process performed at a pressure of at least 100 bar preferably at from 500 bar to 3000 bar.
  • the invention can permit effective scavenging over a prolonged period of continuous reaction as few volatiles build up which disrupt or reduce the efficiency of polymerisation.
  • a continuous process for olefin polymerisation including injecting as catalyst a reaction product of a bulky ancillary ligand transition metal component and a bulky anion precursor into a reactor, feeding monomer to the reactor and withdrawing polymer therefrom in which there is additionally added as a scavenger an oligomer of a partially hydrolysed aluminum alkyl oligomer containing less than 20 % by Al of unreacted aluminum alkyl, preferably less than 10 %.
  • a continuous process for olefin polymerisation including injecting as catalyst a bulky ancillary ligand transition metal component and a bulky anion precursor or a reaction product thereof into a reactor, feeding monomer to the reactor-polymerising monomer at from 100 to 300°C at up to 3000 bar in the reactor and withdrawing polymer from reactor in which there is additionally added as a scavenger an oligomer of a partially hydrolysed aluminum alkyl oligomer.
  • the scavenger should be introduced in such a way that it has sufficient opportunity to react with impurities in the monomer feed , in any solvent used or in the catalyst supplied .
  • the scavenger may be fed in more than one place to deal with any residual killer for example in a high pressure recycle stream or impurities created by the catalyst formation reaction.
  • the scavenger should preferably not be combined with the catalyst until the bulky ligand transition metal component and the bulky anion precursor have had opportunity to react.
  • the scavenger may be introduced to a reactor into which the catalyst components are added separately for catalyst formation in situ during polymerisation. It is believed that, in use, these high molecular weight hydrolysed components react with any impurities. In this way products are formed which precipitate out with the polymer in the separation process and which do not remain volatile , even at high pressure and/or temperatures, and
  • the alumoxane may be derived from a wide variety of aluminum alkyls.
  • the mol ratio of the transition metal component and the cocatalyst is from 1:10 to 10:1, preferably from 1:1 to 3:1.
  • the mol ratio of aluminum in the scavenger to the transition metal in the transition metal component is from 1:1 to 500:1, preferably from 2:1 to 50:1.
  • the partially hydrolysed aluminum alkyl contains less than 20 % by Al of unreacted aluminum alkyl, preferably less than 10 %.
  • the presence of unreacted aluminum alkyls may be disadvantageous in that there is a risk that they accumulate in the reactor system because of their volatility and hence start to interact with the polymerisation reaction, particularly with transition metal components which are chemically less stable .
  • the amount of unreacted aluminum alkyl can be reduced and the molecular weight increased if required by performing additional hydrolysis , preferably by the slow addition of water under carefully controlled conditions . This can be useful particularly with lower alkyl derived oligomers.
  • the aluminum alkyl precursor has an alkyl group with from 2 to 20 carbon atoms.
  • the aluminum alkyl precursor may be of the general formula AIR 3 wherein each R may be the same or different, at least one R is a hydrocarbyl group such as an alkyl, aryl, arylalkyl, alkylaryl or alicyclic (cyclo-aliphatic) group.
  • R's may be a halogen such as chloride or be alkoxy, anyloxy, arylalkyloxy, alkylanyloxy or alicyclic oxy groups.
  • the hydrocarbyl group is a C 2 to C 2 ⁇ group, especially a group with a tertiary carbon atom such as iso-butyl which imparts good solubility in organic solvents to the resultant alumoxane.
  • methyl alumoxane is preferably not used. Its use might lead to a broadening of the molecular weight distribution if it enters into the polymerisation reaction because it may perform a cocatalyst role.
  • oligomers derived from aluminum alkyl precursors with alkyl groups having more than 2 carbon atoms may be hydrolysis continued until all or almost all aluminum alkyls have hydrolysed without undue overhydrolysis and formation of Al(OH) 3 .
  • Such oligomers have a relatively high molecular weight and the alumoxane contains only a low portion of volatile, unreacted starting materials.
  • the alumoxane species generally identified as the most effective cocatalyst, methylalumoxane, is not the preferred component in the invention.
  • Higher alumoxanes derived from AIR 3 where R 2 > 2 or 3 may permit higher polymerisation temperatures and are less volatile and less prone to yield breakdown products which remain in the reactor system.
  • the alumoxane has a molecular weight in excess of 800, preferably in excess of 1600, especially 2000. It may also have sufficient hydrocarbyl functionality to be easily removed with the polymer. In this way the alumoxane residue (or its reaction product with poisons) does not accumulate in a continuous polymerisation process and is removed as part of the polymer from the system, permitting stable polymerisation in prolonged continuous runs (e.g. more than 24 hours) .
  • the bulky anion and alumoxane act highly synergistically in terms of the productivity based on total metal. Alumoxane other than methylalumoxane are fairly inefficient cocatalysts ; the bulky anion is in theory highly efficient but it is poison sensitive .
  • the bulky ancillary ligand transition metal component is preferably a neutral four cordinate compound, reactable in the presence of the cocatalyst to the + 1 state.
  • the transition metal may be a Group 3 to 10 transition metal such as titanium, zirconium, hafnium, vanadium, tungsten etc.
  • the preferred structure is [L] [L 1 ] M (X) (X) where L and L' are the bulky ligands and X is a monovalent leaving group.
  • the ligands and leaving groups may be bridged between the ligands and/or between the leaving groups or the ligand and leaving group may be bridged.
  • the total number of bulky ligands and leaving groups may vary from one upwards, consistent with the metal oxidation state.
  • the bulky ligand is a cyclopentadienyl group so that the component is a metallocene.
  • the metallocene may have the general formula (1) (LS)ZX ! X 2 wherein Z is a Group 3 to a Group 10 transition metal preferably zirconium, hafnium or titanium; X ⁇ is a leaving group which may be an anionic ligand reactable with a non-coordinating anion; X 2 is hydride or a hydrocarbyl or hetero radical; and (LS) is a ligand system comprised of one or more, suitably 2 and possibly 3, ancillary ligands sufficient to complete the coordination number of Z.
  • (X) Whilst (X) is described as a leaving group, it may be reacted and transformed into a group which is separated from the neutral compound when a cation in the +1 state is formed. Only one of the groups may leave; a remaining X groups may be part of the cation formed.
  • the bulky anion precursor may be any one of those described in the patent literature in EP 277004 and 277003 (Exxon), in EP 418044, EP 495375 (Dow) and in EP 426637 (Fina) .
  • the precursor may be formed into an anion by any of the methods described in the art ranging from ion exchange methods using ammonium salts and proton donation or silver salt reaction right up to abstraction of a group from the transition metal component to form the anion.
  • the precursor for the cation may be formed by an alkylation step which may be performed in situ in the polymerisation reactor, e.g. by using a suitable aluminum alkyl provided it does not significantly poison the catalyst under the prevailing conditions.
  • the term "bulky anion precursor” refers to a compound which by a suitable ion exchange, redox or abstraction reaction form a "bulky anion” which is a single coordination complex having a plurality of lipophilic radicals covalently coordinated to and shielding a central charge bearing metal or metalloid atom.
  • the bulky anion should be stable relative to the cation under ambient conditions before infection, that is to say not react for example by transfer of a fragment thereof, so as to form a neutral reaction product.
  • the bulky anion should not coordinate to the cation formed by the metallocene so as to block olefin monomer access and should be sufficiently labile to permit olefin insertion in polymerisation conditions.
  • the bulky anion may be represented by the following general formula: [ (M-) m+ Q ⁇ Q 2 ...Qn_ ⁇ wherein M' is a metal or metalloid selected from the Groups subtended by Groups V-B to V-A of the Periodic Table of the Elements, i.e.
  • B is Group III-A metal, preferably boron, in a valence state of 3;
  • Ar i and Ar 2 are the same or different aromatic or substituted-aromatic hydrocarbon radicals preferably containing from 6 to 20 carbon atoms and may be linked to each other through a stable bridging group;
  • X 3 and X 4 are radicals selected, independently, from the group consisting of hydride radicals and halide radicals, hydrocarbyl radicals containing preferably from 1 to 20 carbon atoms, substituted-hydrocarbyl radicals preferably wherein one or more of the hydrogen atoms is replaced by a halogen atom, containing from 1 to 20 carbon atoms, hydrocarbyl-substituted metal (organo- metalloid) radicals wherein preferably each hydrocarbyl substitution contains from 1 to 20 carbon atoms said metal is preferably selected from Group IV-A of the Periodic Table of the Elements and the like.
  • the bulky anion precursor contains at least one, generally two or three substituted phenyl groups bonded to a boron atom or a multi boron compound in which the boron or other metalloid atom is shielded by bulky group and not reactive with the transition metal component.
  • the polymerisation processes to which the invention applies are continuous. Continuous processes need to be stable so that polymer of particular properties can be obtained. Often using monomer streams or other materials introduced contain potential poisoning impurities. Whilst metallocene based catalyst systems permit high activities they tend to be prone to reduction of the activities resulting from poisons.
  • the catalyst is unsupported and preferably the polymer and monomer are in a homogeneous medium.
  • the reaction temperature is from 100 to 300°C preferably from 150 to 280°C.
  • the scavenger compound of the invention may be particularly useful in improving the process.
  • the invention is especially applicable to a high pressure process at a pressure of from 50 (fifty) to 3000 bar , preferably from 500 to 2500 bar , where the conversion on each pass is limited and there is a high need to avoid accumulation of poisons and scavengers in order to obtain stable process conditions.
  • the process may be high pressure polymerisation in a homogeneous single phase or in two-phases, with or without unreactive diluents at pressures and temperatures generally above the polymer melting point. If appropriate the catalyst system may be added in a dissolved, homogeneous state. Such processes may be performed adiabatically.
  • the process may also be a solution process with catalyst dissolved or a slurry process with the catalyst on a support suspended in a polymerisation reaction diluent.
  • the high pressure process may include a catalyst killing step particularly if significant amounts of active catalyst remain after polymerisation.
  • the volatile killer may be water but could be another compound having a low molecular weight, having a reactive 0,N or S moiety such as C0 2 , CO, NH 3 , S0 2 , S0 3 , N 2 0 alohols, diols, triols, ethers, aldehydes, ketones carboxylic acid and diacids, their anhydrides or esters, amines, amides or imides or hydrogen peroxide or alkyl hydroperoxide or a non-volatile component which decomposes to the above volatile compounds. Less than a stoichiometric amount of killer (killer/TM mole ratio around 0.1) may be used.
  • a reactive 0,N or S moiety such as C0 2 , CO, NH 3 , S0 2 , S0 3 , N 2 0 alohols, diols, triols, ethers, aldehydes, ketones carboxylic acid and diacids, their an
  • the alumoxane scavenger present according to the invention interacts in catalyst killing. Killer added, either volatile (i.e. water) or non ⁇ volatile (i.e. PPG) , may react preferentially with the alumoxane.
  • the alumoxane may be itself deactivated (see WO 92/14766) .
  • the process is performed overall in such a way as to provide a productivity in g PE per gram of bulky non-coordinating anion of at least 50.000, preferably at least 100.000, especially at least 150.000.
  • the invention is illustrated by the Examples.
  • TM refers to the transition metal component which is a precursor of the metallocene cation ;
  • activator refers to the precursor or the bulky, non-coordinating anion which is cocatalytically active and is referred to by the abbreviation CC.
  • the high pressure experiments were performed in adiabatic, stirred, autoclave reactor having a catalyst mixing vessel connected by a metering pump to the top of the autoclave, a separating system including a high pressure separator for separating unreacted materials from polymeric materials, and a recycle system for passing unreacted materials past a cooler and compressor back to the top of the autoclave together with fresh monomer for replacing consumed monomer.
  • a separating system including a high pressure separator for separating unreacted materials from polymeric materials, and a recycle system for passing unreacted materials past a cooler and compressor back to the top of the autoclave together with fresh monomer for replacing consumed monomer.
  • still active catalyst can be deactivated before a separation and compression stage by addition of suitable killer materials such as water. All the tests were at 1300 bar.
  • a polymerisation process was performed using dimethylsilyl (bis-tetrahydroindenyl) zirconium dimethyl, hereinafter referred to as TM1, and a bulky anion cocatalyst, a dimethyl aniline ammonium salt of tetrakis perfluorotetraphenyl boron, hereinafter referred to as CC1.
  • TM1 dimethylsilyl (bis-tetrahydroindenyl) zirconium dimethyl
  • CC1 dimethyl aniline ammonium salt of tetrakis perfluorotetraphenyl boron
  • IBAO a hydrolysis product of tri- isobutylaluminum
  • the IBAO has an average cryoscopically determined mol wt of 1770, and contained 5 mol % of residual tri-isobutylaluminum (TIBA) .
  • TIBA residual tri-isobutylaluminum
  • TM 2 and CCl Dimethylsilyl(bis-indenyl) hafniumdimethyl referred to herein as TM 2 and CCl were used as catalyst. At a feed gas temperature of 30°C and a reactor temperature of 245 °C the reaction was unstable, and the reaction temperature could not brought less than 210°C, all this accompanied by very low productivity.
  • Example was as Example 3 but IBAO intoluene was added to the catalyst vessel whereafter the pre-reacted TM2 and CCl reaction product was added.
  • the reaction temperature remained controllable down to a temperature of about 170°C; the catalyst productivity became measurable; and an 80°C exotherm could be reached in the reactor leading to high conversions of monomer in the autoclave.
  • the use of IBAO also permitted use of lower TM2/CC1 ratio.
  • Example 4 This was as Example 4 but post-hydrolysed methylalumoxane was used as a scavenger. A good temperature control and similar catalyst productivities were obtained. However, compared with Example 4 a lower bottom reactor temperature resulted.
  • TM3 dimethylsilyl (tetra ethylcyclopentadienyl) (tert-butylamide)titanium dimethyl
  • MAO methylalumoxane
  • the TM3/CC1 ratio was 1.8 and the A1/TM3 mole ratio was 25.
  • the catalyst was hydrolysed slightly on-line at a H 2 0/A1 mole ratio of 0.32.
  • the top reactor temperature was varied.
  • the reaction could not be run without MAO.
  • the low levels of MAO are not normally associated with catalytic activity.
  • the cat flow rate immediately ceased to rise and stabilised to give a catalyst productivity of 55 k gr PE/gr of CCl.
  • the catalyst concentration was then doubled.
  • the catalyst consumption then was such as to give a productivity of 105 k gr PE/g CCl at a TM3:CC1 mole ratio of 2.75.
  • the molecular weight was around 40 MI and the wt% C4 incorporated was 22%.
  • the metallocene does not appear easily deactivated by H 2 0.
  • Aluminoxanes are good poison scavengers for the catalyst system.
  • Total Al content can be determined by titration.
  • the amount of unreacted aluminum alkyl can be determined by a separate test as set out for example in:

Abstract

L'invention se rapporte à l'utilisation d'un matériau à base d'alkyle d'aluminium partiellement hydrolysé sous forme oligomère, comme épurateur, dans un procédé de polymérisation d'oléfine, ce matériau contenant moins de 20% d'alkyle d'aluminium n'ayant pas participé à la réaction par rapport au contenu total d'Al, de préférence moins de 15%, et tout particulièrement moins de 10%.
PCT/EP1994/003119 1993-09-17 1994-09-16 Procede de polymerisation d'olefine WO1995007941A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9319340.7 1993-09-17
GB939319340A GB9319340D0 (en) 1993-09-17 1993-09-17 Olefin polymersisation process

Publications (1)

Publication Number Publication Date
WO1995007941A1 true WO1995007941A1 (fr) 1995-03-23

Family

ID=10742194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1994/003119 WO1995007941A1 (fr) 1993-09-17 1994-09-16 Procede de polymerisation d'olefine

Country Status (2)

Country Link
GB (1) GB9319340D0 (fr)
WO (1) WO1995007941A1 (fr)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5767208A (en) * 1995-10-20 1998-06-16 Exxon Chemical Patents Inc. High temperature olefin polymerization process
US5811379A (en) * 1996-06-17 1998-09-22 Exxon Chemical Patents Inc. Polymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such polymers and additives and use thereof (PT-1267)
US6066603A (en) * 1996-06-17 2000-05-23 Exxon Chemical Patents Inc. Polar monomer containing copolymers derived from olefins useful as lubricant and useful as lubricant and fuel oil additivies process for preparation of such copolymers and additives and use thereof
US6172015B1 (en) 1997-07-21 2001-01-09 Exxon Chemical Patents, Inc Polar monomer containing copolymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such copolymers and additives and use thereof
US6403773B1 (en) 1998-09-30 2002-06-11 Exxon Mobil Chemical Patents Inc. Cationic group 3 catalyst system
US6475946B1 (en) 1999-10-22 2002-11-05 Exxonmobil Chemical Patents Inc. Olefin polymerization catalysis with aryl substituted carbenium cationic complexes
US6476164B1 (en) 1999-10-22 2002-11-05 Exxonmobil Chemical Patents Inc. Carbenium cationic complexes suitable for polymerization catalysts
US6486088B1 (en) 1998-10-23 2002-11-26 Exxonmobil Chemical Patents Inc. High activity carbenium-activated polymerization catalysts
US6489480B2 (en) 1999-12-09 2002-12-03 Exxonmobil Chemical Patents Inc. Group-15 cationic compounds for olefin polymerization catalysts
WO2003000740A2 (fr) 2001-06-20 2003-01-03 Exxonmobil Chemical Patents Inc. Polyolefines formees au moyen d'un catalyseur, comprenant un anion non coordonnant, et articles renfermant ces polyolefines
US6562920B2 (en) 1999-12-20 2003-05-13 Exxonmobil Chemical Patents Inc. Processes for the preparation polyolefin resins using supported ionic catalysts
US6627723B2 (en) 1999-12-22 2003-09-30 Exxonmobil Chemical Patents Inc. Adhesive alpha-olefin inter-polymers
US6809209B2 (en) 2000-04-07 2004-10-26 Exxonmobil Chemical Patents Inc. Nitrogen-containing group-13 anionic compounds for olefin polymerization
US6822057B2 (en) 1999-12-09 2004-11-23 Exxon Mobil Chemical Patents Inc. Olefin polymerization catalysts derived from Group-15 cationic compounds and processes using them
WO2005118605A1 (fr) 2004-05-26 2005-12-15 Exxonmobil Chemical Patents, Inc. Composes metalliques de transition pour la polymerisation d'olefines et l'oligomerisation
US7067603B1 (en) 1999-12-22 2006-06-27 Exxonmobil Chemical Patents Inc. Adhesive alpha-olefin inter-polymers
WO2007070041A1 (fr) 2005-12-14 2007-06-21 Exxonmobil Chemical Patents Inc. Composés de métallocènes substitués par un halogène pour la polymérisation d'oléfines
EP0906344B2 (fr) 1996-06-17 2009-02-18 ExxonMobil Chemical Patents Inc. Procedes de polymerisation a pression elevee a systemes de catalyseur a base de metal de transition retardee
US7528222B1 (en) 2008-01-15 2009-05-05 Exxonmobil Chemical Patents Inc. Olefin polymerization process
EP2112173A1 (fr) 2008-04-16 2009-10-28 ExxonMobil Chemical Patents Inc. Composés catalytiques et leur utilisation
WO2011079042A2 (fr) 2009-12-24 2011-06-30 Exxonmobil Chemical Patents Inc. Procédé de production d'huiles de base synthétiques inédites
WO2011087692A2 (fr) 2009-12-23 2011-07-21 Invista Technologies S.A R.L. Articles élastiques comprenant une fibre élastique de polyoléfine
WO2011087693A2 (fr) 2009-12-23 2011-07-21 Invista Technologies S.A R.1. Fibre élastique contenant un additif anti-collant
WO2011087695A2 (fr) 2009-12-23 2011-07-21 Invista Technologies S.A R.L. Fibre élastique polyoléfinique
WO2011087729A2 (fr) 2010-01-14 2011-07-21 Exxonmobil Chemical Patents Inc. Procédés et appareils de finissage et de conditionnement de polymères
WO2011087728A2 (fr) 2010-01-14 2011-07-21 Exxonmobil Chemical Patents Inc. Procédés et appareils pour réaliser une polymérisation en solution en continu
WO2011087731A1 (fr) 2010-01-14 2011-07-21 Exxonmobil Chemical Patents Inc. Procédés et appareil pour la polymérisation en solution en continu
EP2368896A1 (fr) 2010-03-01 2011-09-28 ExxonMobil Chemical Patents Inc. Composé de métal de transition à base de mono-indenyl et polymérisation au moyen de celui-ci
US20130253126A1 (en) * 2010-12-03 2013-09-26 Dow Global Technologies Llc Processes to prepare ethylene-based polymer compositions
WO2015073132A1 (fr) 2013-10-31 2015-05-21 Exxonmobil Chemical Patents Inc. Procédés et appareil pour la polymérisation en solution en continu
WO2015073157A1 (fr) 2013-11-15 2015-05-21 Exxonmobil Chemical Patents Inc. Procédé pour produire des polymères à partir de complexes de métaux de transition pyridyldiamido et utilisation de ces polymères
US9102773B2 (en) 2013-02-06 2015-08-11 Exxonmobil Chemical Patents Inc. Process for controlling molecular weight of polyolefins prepared using pyridyl diamide catalyst systems
EP2953984A4 (fr) * 2013-02-06 2016-07-06 Exxonmobil Chem Patents Inc Procédé de contrôle du poids moléculaire des polyoléfines préparées à l'aide de systèmes de catalyseurs pyridyldiamido
WO2016171810A1 (fr) 2015-04-20 2016-10-27 Exxonmobil Chemical Patents Inc. Systèmes catalytiques supportés et procédés d'utilisation associés
WO2016171809A1 (fr) 2015-04-20 2016-10-27 Exxonmobil Chemical Patents Inc. Systèmes catalytiques supportés et procédés d'utilisation associés
WO2018022263A1 (fr) 2016-07-29 2018-02-01 Exxonmobil Chemical Patents Inc. Procédés de polymérisation utilisant des agents de refroidissement polyhydriques de poids moléculaire élevé
WO2018044395A1 (fr) 2016-08-31 2018-03-08 Exxonmobil Chemical Patents Inc. Échangeur de chaleur spiralé, comme préchauffeur dans des procédés de dévolatilisation de polymères
US10041190B2 (en) 2009-12-23 2018-08-07 Invista North America S.A.R.L. Fabric including polyolefin elastic fiber
WO2018151903A1 (fr) 2017-02-20 2018-08-23 Exxonmobil Chemical Patents Inc. Systèmes catalytiques supportés et leurs procédés d'utilisation
WO2019027587A1 (fr) 2017-08-04 2019-02-07 Exxonmobil Chemical Patents Inc. Compositions de polyéthylène et films préparés à partir de celles-ci
WO2019027585A1 (fr) 2017-08-04 2019-02-07 Exxonmobil Chemical Patents Inc. Catalyseurs mixtes comprenant des hafnocènes non pontés avec des fractions -ch2-sime3
WO2019027605A1 (fr) 2017-08-04 2019-02-07 Exxonmobil Chemical Patents Inc. Films fabriqués à partir de compositions de polyéthylène et procédés pour les fabriquer
RU2684272C2 (ru) * 2014-04-28 2019-04-05 Базелл Полиолефин Гмбх Способы управления подачей алкила алюминия в технологический процесс суспензионной полимеризации
WO2019108977A1 (fr) 2017-12-01 2019-06-06 Exxonmobil Chemical Patents Inc. Systèmes de catalyseur et procédés de polymérisation pour leur utilisation
WO2019108327A1 (fr) 2017-12-01 2019-06-06 Exxonmobil Chemical Patents Inc. Films comprenant une composition de polyéthylène
WO2019162760A1 (fr) 2018-02-05 2019-08-29 Exxonmobil Chemical Patents Inc. A Corporation Of State Of Delaware Aptitude au traitement améliorée de lldpe par addition de polyéthylène haute densité de masse moléculaire ultra-élevée
WO2019173598A1 (fr) 2018-03-08 2019-09-12 Exxonmobil Chemical Patents Inc. Copolymères linéaires d'éthylène et de propylène en tant que modificateurs de viscosité
WO2019173605A1 (fr) 2018-03-08 2019-09-12 Exxonmobil Chemical Patents Inc. Copolymères d'éthylène-propylène ramifiés à utiliser en tant que modificateurs de viscosité à économie de carburant améliorée
WO2019246069A1 (fr) 2018-06-19 2019-12-26 Exxonmobil Chemical Patents Inc. Compositions de polyéthylène et films préparés à partir de celles-ci
WO2020060745A1 (fr) 2018-09-19 2020-03-26 Exxonmobil Chemical Patents Inc. Procédés de dévolatilisation
WO2020167399A1 (fr) 2019-02-11 2020-08-20 Exxonmobil Chemical Patents Inc. Procédés de polymérisation biphasiques et polyoléfines à base d'éthylène obtenues par ces derniers
WO2021041406A1 (fr) 2019-08-27 2021-03-04 Chevron Oronite Company Llc Copolymères d'éthylène et utilisation en tant que modificateurs de viscosité
WO2021126443A2 (fr) 2019-12-17 2021-06-24 Exxonmobil Chemical Patents Inc. Procédé de polymérisation en solution pour fabriquer une ramification à longue chaîne de polyéthylène haute densité
WO2021222016A2 (fr) 2020-05-01 2021-11-04 Exxonmobil Chemical Patents Inc. Polyéthylène linéaire basse densité pour applications de film
WO2021222280A2 (fr) 2020-05-01 2021-11-04 Exxonmobil Chemical Patents Inc. Polyéthylène linéaire de faible densité pour applications de film
WO2022076216A1 (fr) 2020-10-08 2022-04-14 Exxonmobil Chemical Patents Inc. Systèmes catalyseurs supportés et leurs procédés d'utilisation
WO2023097161A1 (fr) 2021-11-23 2023-06-01 Exxonmobil Chemical Patents Inc. Installations et procédés pour la formation de polymères

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0513380A1 (fr) * 1990-11-30 1992-11-19 Idemitsu Kosan Company Limited Procede de production de polymere olefinique
WO1993014132A1 (fr) * 1992-01-06 1993-07-22 The Dow Chemical Company Composition de catalyseur amelioree

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0513380A1 (fr) * 1990-11-30 1992-11-19 Idemitsu Kosan Company Limited Procede de production de polymere olefinique
WO1993014132A1 (fr) * 1992-01-06 1993-07-22 The Dow Chemical Company Composition de catalyseur amelioree

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5907021A (en) * 1995-10-20 1999-05-25 Exxon Chemical Patents Inc. High temperature olefin polymerization process
US5767208A (en) * 1995-10-20 1998-06-16 Exxon Chemical Patents Inc. High temperature olefin polymerization process
EP0906344B2 (fr) 1996-06-17 2009-02-18 ExxonMobil Chemical Patents Inc. Procedes de polymerisation a pression elevee a systemes de catalyseur a base de metal de transition retardee
US5811379A (en) * 1996-06-17 1998-09-22 Exxon Chemical Patents Inc. Polymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such polymers and additives and use thereof (PT-1267)
US6066603A (en) * 1996-06-17 2000-05-23 Exxon Chemical Patents Inc. Polar monomer containing copolymers derived from olefins useful as lubricant and useful as lubricant and fuel oil additivies process for preparation of such copolymers and additives and use thereof
US6468948B1 (en) 1996-06-17 2002-10-22 Infineum Usa L.P. Polymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such polymers and additives and use thereof (PT-1267)
US6172015B1 (en) 1997-07-21 2001-01-09 Exxon Chemical Patents, Inc Polar monomer containing copolymers derived from olefins useful as lubricant and fuel oil additives, processes for preparation of such copolymers and additives and use thereof
US6403773B1 (en) 1998-09-30 2002-06-11 Exxon Mobil Chemical Patents Inc. Cationic group 3 catalyst system
US6677441B2 (en) 1998-09-30 2004-01-13 Exxonmobil Chemical Patents Inc. Cationic group 3 catalyst system
US6984722B2 (en) 1998-09-30 2006-01-10 Exxonmobil Chemical Patents Inc. Cationic group 3 catalyst system
US6486088B1 (en) 1998-10-23 2002-11-26 Exxonmobil Chemical Patents Inc. High activity carbenium-activated polymerization catalysts
US6562919B2 (en) 1998-10-23 2003-05-13 Exxonmobil Chemical Patents Inc. High activity carbenium-activated polymerization catalysts
US6806220B2 (en) 1998-10-23 2004-10-19 Exxonmobil Chemical Patents Inc. High activity carbenium-activated polymerization catalysts
US6476164B1 (en) 1999-10-22 2002-11-05 Exxonmobil Chemical Patents Inc. Carbenium cationic complexes suitable for polymerization catalysts
US6475946B1 (en) 1999-10-22 2002-11-05 Exxonmobil Chemical Patents Inc. Olefin polymerization catalysis with aryl substituted carbenium cationic complexes
US6838411B2 (en) 1999-10-22 2005-01-04 Exxonmobil Chemical Patents Inc. Olefin polymerization catalysis with aryl substituted carbenium cationic complexes
US6489480B2 (en) 1999-12-09 2002-12-03 Exxonmobil Chemical Patents Inc. Group-15 cationic compounds for olefin polymerization catalysts
US6822057B2 (en) 1999-12-09 2004-11-23 Exxon Mobil Chemical Patents Inc. Olefin polymerization catalysts derived from Group-15 cationic compounds and processes using them
US6590055B2 (en) 1999-12-20 2003-07-08 Exxonmobil Chemical Patents Inc. Electrical devices from polymer resins prepared with ionic catalysts
US7163993B2 (en) 1999-12-20 2007-01-16 Exxonmobil Chemical Patents Inc. Electrical devices from polymer resins prepared with ionic catalysts
US6562920B2 (en) 1999-12-20 2003-05-13 Exxonmobil Chemical Patents Inc. Processes for the preparation polyolefin resins using supported ionic catalysts
US6627723B2 (en) 1999-12-22 2003-09-30 Exxonmobil Chemical Patents Inc. Adhesive alpha-olefin inter-polymers
US7067603B1 (en) 1999-12-22 2006-06-27 Exxonmobil Chemical Patents Inc. Adhesive alpha-olefin inter-polymers
EP2045304A2 (fr) 1999-12-22 2009-04-08 ExxonMobil Chemical Patents Inc. Compositions adhésives à base de polypropylène
US7521507B2 (en) 1999-12-22 2009-04-21 Exxonmobil Chemical Patents Inc. Polypropylene-based adhesive compositions
US6809209B2 (en) 2000-04-07 2004-10-26 Exxonmobil Chemical Patents Inc. Nitrogen-containing group-13 anionic compounds for olefin polymerization
WO2003000740A2 (fr) 2001-06-20 2003-01-03 Exxonmobil Chemical Patents Inc. Polyolefines formees au moyen d'un catalyseur, comprenant un anion non coordonnant, et articles renfermant ces polyolefines
WO2005118605A1 (fr) 2004-05-26 2005-12-15 Exxonmobil Chemical Patents, Inc. Composes metalliques de transition pour la polymerisation d'olefines et l'oligomerisation
WO2007070041A1 (fr) 2005-12-14 2007-06-21 Exxonmobil Chemical Patents Inc. Composés de métallocènes substitués par un halogène pour la polymérisation d'oléfines
US7528222B1 (en) 2008-01-15 2009-05-05 Exxonmobil Chemical Patents Inc. Olefin polymerization process
EP2112173A1 (fr) 2008-04-16 2009-10-28 ExxonMobil Chemical Patents Inc. Composés catalytiques et leur utilisation
WO2011087695A2 (fr) 2009-12-23 2011-07-21 Invista Technologies S.A R.L. Fibre élastique polyoléfinique
WO2011087692A2 (fr) 2009-12-23 2011-07-21 Invista Technologies S.A R.L. Articles élastiques comprenant une fibre élastique de polyoléfine
WO2011087693A2 (fr) 2009-12-23 2011-07-21 Invista Technologies S.A R.1. Fibre élastique contenant un additif anti-collant
US10039855B2 (en) 2009-12-23 2018-08-07 Invista North America S.A.R.L. Elastic fiber containing an anti-tack additive
US10041190B2 (en) 2009-12-23 2018-08-07 Invista North America S.A.R.L. Fabric including polyolefin elastic fiber
WO2011079042A2 (fr) 2009-12-24 2011-06-30 Exxonmobil Chemical Patents Inc. Procédé de production d'huiles de base synthétiques inédites
WO2011087729A2 (fr) 2010-01-14 2011-07-21 Exxonmobil Chemical Patents Inc. Procédés et appareils de finissage et de conditionnement de polymères
WO2011087731A1 (fr) 2010-01-14 2011-07-21 Exxonmobil Chemical Patents Inc. Procédés et appareil pour la polymérisation en solution en continu
WO2011087728A2 (fr) 2010-01-14 2011-07-21 Exxonmobil Chemical Patents Inc. Procédés et appareils pour réaliser une polymérisation en solution en continu
EP2368896A1 (fr) 2010-03-01 2011-09-28 ExxonMobil Chemical Patents Inc. Composé de métal de transition à base de mono-indenyl et polymérisation au moyen de celui-ci
US20130253126A1 (en) * 2010-12-03 2013-09-26 Dow Global Technologies Llc Processes to prepare ethylene-based polymer compositions
US9045628B2 (en) * 2010-12-03 2015-06-02 Dow Global Technologies Llc Processes to prepare ethylene-based polymer compositions
US9102773B2 (en) 2013-02-06 2015-08-11 Exxonmobil Chemical Patents Inc. Process for controlling molecular weight of polyolefins prepared using pyridyl diamide catalyst systems
EP2953984A4 (fr) * 2013-02-06 2016-07-06 Exxonmobil Chem Patents Inc Procédé de contrôle du poids moléculaire des polyoléfines préparées à l'aide de systèmes de catalyseurs pyridyldiamido
WO2015073132A1 (fr) 2013-10-31 2015-05-21 Exxonmobil Chemical Patents Inc. Procédés et appareil pour la polymérisation en solution en continu
WO2015073157A1 (fr) 2013-11-15 2015-05-21 Exxonmobil Chemical Patents Inc. Procédé pour produire des polymères à partir de complexes de métaux de transition pyridyldiamido et utilisation de ces polymères
RU2684272C2 (ru) * 2014-04-28 2019-04-05 Базелл Полиолефин Гмбх Способы управления подачей алкила алюминия в технологический процесс суспензионной полимеризации
WO2016172197A1 (fr) 2015-04-20 2016-10-27 Exxonmobil Chemical Patents Inc. Polyéthylène haute densité multimodal et à large distribution de poids moléculaire
WO2016171809A1 (fr) 2015-04-20 2016-10-27 Exxonmobil Chemical Patents Inc. Systèmes catalytiques supportés et procédés d'utilisation associés
WO2016171810A1 (fr) 2015-04-20 2016-10-27 Exxonmobil Chemical Patents Inc. Systèmes catalytiques supportés et procédés d'utilisation associés
WO2018022263A1 (fr) 2016-07-29 2018-02-01 Exxonmobil Chemical Patents Inc. Procédés de polymérisation utilisant des agents de refroidissement polyhydriques de poids moléculaire élevé
WO2018044395A1 (fr) 2016-08-31 2018-03-08 Exxonmobil Chemical Patents Inc. Échangeur de chaleur spiralé, comme préchauffeur dans des procédés de dévolatilisation de polymères
WO2018151903A1 (fr) 2017-02-20 2018-08-23 Exxonmobil Chemical Patents Inc. Systèmes catalytiques supportés et leurs procédés d'utilisation
WO2019027587A1 (fr) 2017-08-04 2019-02-07 Exxonmobil Chemical Patents Inc. Compositions de polyéthylène et films préparés à partir de celles-ci
WO2019027585A1 (fr) 2017-08-04 2019-02-07 Exxonmobil Chemical Patents Inc. Catalyseurs mixtes comprenant des hafnocènes non pontés avec des fractions -ch2-sime3
WO2019027605A1 (fr) 2017-08-04 2019-02-07 Exxonmobil Chemical Patents Inc. Films fabriqués à partir de compositions de polyéthylène et procédés pour les fabriquer
WO2019108977A1 (fr) 2017-12-01 2019-06-06 Exxonmobil Chemical Patents Inc. Systèmes de catalyseur et procédés de polymérisation pour leur utilisation
WO2019108327A1 (fr) 2017-12-01 2019-06-06 Exxonmobil Chemical Patents Inc. Films comprenant une composition de polyéthylène
WO2019162760A1 (fr) 2018-02-05 2019-08-29 Exxonmobil Chemical Patents Inc. A Corporation Of State Of Delaware Aptitude au traitement améliorée de lldpe par addition de polyéthylène haute densité de masse moléculaire ultra-élevée
WO2019173598A1 (fr) 2018-03-08 2019-09-12 Exxonmobil Chemical Patents Inc. Copolymères linéaires d'éthylène et de propylène en tant que modificateurs de viscosité
WO2019173605A1 (fr) 2018-03-08 2019-09-12 Exxonmobil Chemical Patents Inc. Copolymères d'éthylène-propylène ramifiés à utiliser en tant que modificateurs de viscosité à économie de carburant améliorée
WO2019246069A1 (fr) 2018-06-19 2019-12-26 Exxonmobil Chemical Patents Inc. Compositions de polyéthylène et films préparés à partir de celles-ci
WO2020060745A1 (fr) 2018-09-19 2020-03-26 Exxonmobil Chemical Patents Inc. Procédés de dévolatilisation
WO2020167399A1 (fr) 2019-02-11 2020-08-20 Exxonmobil Chemical Patents Inc. Procédés de polymérisation biphasiques et polyoléfines à base d'éthylène obtenues par ces derniers
WO2021041406A1 (fr) 2019-08-27 2021-03-04 Chevron Oronite Company Llc Copolymères d'éthylène et utilisation en tant que modificateurs de viscosité
WO2021126443A2 (fr) 2019-12-17 2021-06-24 Exxonmobil Chemical Patents Inc. Procédé de polymérisation en solution pour fabriquer une ramification à longue chaîne de polyéthylène haute densité
WO2021222016A2 (fr) 2020-05-01 2021-11-04 Exxonmobil Chemical Patents Inc. Polyéthylène linéaire basse densité pour applications de film
WO2021222280A2 (fr) 2020-05-01 2021-11-04 Exxonmobil Chemical Patents Inc. Polyéthylène linéaire de faible densité pour applications de film
WO2022076216A1 (fr) 2020-10-08 2022-04-14 Exxonmobil Chemical Patents Inc. Systèmes catalyseurs supportés et leurs procédés d'utilisation
WO2023097161A1 (fr) 2021-11-23 2023-06-01 Exxonmobil Chemical Patents Inc. Installations et procédés pour la formation de polymères

Also Published As

Publication number Publication date
GB9319340D0 (en) 1993-11-03

Similar Documents

Publication Publication Date Title
WO1995007941A1 (fr) Procede de polymerisation d'olefine
US5907021A (en) High temperature olefin polymerization process
US5414180A (en) Organo-aluminoxy product and use
JP4553985B2 (ja) 高温オレフィン重合方法
Eshuis et al. Catalytic olefin ougomerization and polymerization with cationic group IV metal complexes [Cp2∗ MMe (THT)]+[BPh4]−, M= Ti, Zr and Hf
Chien et al. Zirconocenium cation catalysis of propene polymerization
EP1728795A1 (fr) Produit de polymethylaluminoxane, son procede de production, catalyseur de polymerisation et procede de polymerisation d'olefine
US6300438B1 (en) Hafnium transition metal catalyst compounds, catalyst systems and their use in a polymerization process
US6184171B1 (en) Supported bidentate and tridentate catalyst compositions and olefin polymerization using same
AU4583699A (en) Production of half-sandwich substituted catalyst precursors
US4199476A (en) Olefin polymerization catalyst
US6300439B1 (en) Group 15 containing transition metal catalyst compounds, catalyst systems and their use in a polymerization process
EP0726271B1 (fr) Produit organoaluminoxy, systèmes catalitiques, leur préparation et utilisation
US20060009350A1 (en) Cyclometallated catalysts
JPH05132520A (ja) エチレンの単独重合及び共重合用触媒の固体成分
US20070293710A1 (en) Catalyst For Olefin Polymerization Including Phenoxy Ligand And Method Of (Co) Polymerization Of Olefin Using Same
US7332551B2 (en) Partially fluorinated naphthyl-based borates
JP2003513165A (ja) オレフィン重合用の活性をもった二配座または三配座不均一担持触媒
EP1063244A2 (fr) Procédé de polymérisation en solution à haute température
KR100530796B1 (ko) 아릴옥시기가 포함된 올레핀 중합용 지글러-나타 촉매 및이를 이용한 올레핀 중합방법
CA2423246A1 (fr) Systemes de catalyseurs supportes
EP1042376B1 (fr) Procede de polymerisation d'ethylene dans un milieu reactionnel liquide
KR100193152B1 (ko) 2핵 헤테로 메탈로센 촉매와 그 제조 방법
JPH04266891A (ja) 新規なメチルイソブチルアルモキサン
Götz et al. Investigations on ternary metallocene‐based catalyst systems

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase