WO1995003492A1 - Apparatus and method for automatically compensating for dead zone of a hydraulically driven machine - Google Patents

Apparatus and method for automatically compensating for dead zone of a hydraulically driven machine Download PDF

Info

Publication number
WO1995003492A1
WO1995003492A1 PCT/JP1994/001177 JP9401177W WO9503492A1 WO 1995003492 A1 WO1995003492 A1 WO 1995003492A1 JP 9401177 W JP9401177 W JP 9401177W WO 9503492 A1 WO9503492 A1 WO 9503492A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
dead zone
pump
switching valve
hydraulically driven
Prior art date
Application number
PCT/JP1994/001177
Other languages
French (fr)
Japanese (ja)
Inventor
Seiji Kamada
Original Assignee
Kabushiki Kaisha Komatsu Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Komatsu Seisakusho filed Critical Kabushiki Kaisha Komatsu Seisakusho
Publication of WO1995003492A1 publication Critical patent/WO1995003492A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function

Definitions

  • the present invention relates to a dead zone automatic correction device for a hydraulically driven machine that automatically corrects an output value of a start-up operation when a hydraulically driven machine such as a hydraulic excavator or a crane is automatically controlled by an electromagnetic valve or the like, and a dead zone thereof. It relates to an automatic correction method. Background technology
  • a dead zone or the like required for control is determined in advance by nonlinear characteristics and is corrected.
  • a dead zone or the like required for control is determined in advance by nonlinear characteristics and is corrected.
  • Dynamic characteristics identification method for manipulators Transactions of the Society of Instrument and Control Engineers, Vol. 22, N.sub.06, P.63-64.43, JAPAN
  • the torque of the motor is gradually increased from the stationary state of Piyre, and the torque when the motor starts to move in the plus or minus direction is determined from each joint angle sensor signal. That is, the output of the actuator is gradually increased, and the variation of the start value is automatically detected due to a change in the signal of the actuator rotation angle sensor.
  • the slope of the increase in the output command to the actuator is made extremely small, and a slight change in the posture of the work equipment is detected.
  • the present invention has been made to solve the above-mentioned drawbacks of the prior art, and is intended for a hydraulically driven machine, in particular, a working machine, a turning machine, a traveling machine, and the like of a construction machine such as a hydraulic shovel and a crane. It is an object of the present invention to provide a dead zone automatic correction device and a dead zone automatic correction method for a hydraulically driven machine that automatically, easily and accurately detect and correct the output value of the start of operation during control. Aim.
  • the detecting means for detecting the dead zone of the flow control means is a pressure detecting means for detecting the pressure acting on the actuator or the pump.
  • the judgment means for judging the dead zone amount is an automatic dead zone correction device for a hydraulically driven machine, which is a dead zone judging unit for judging the dead zone amount of the flow rate control means based on signals from the pressure detection means and the operation amount command means.
  • the flow rate control means includes a closed center type switching valve and a pressure compensation valve.
  • the closed center type switching valve may be provided with a restrictor that sets a differential pressure between the pump port and the cylinder port to a predetermined value during operation.
  • At least one pressure detecting means is provided between the switching valve and the actuator or between the pump and the switching valve.
  • the storage means for storing the dead zone amount determined by the dead zone determination means is a non-volatile memory in which a record remains even when the power supply is erased.
  • the pressure detecting means such as a pressure sensor is used to determine the dead zone
  • the change command value (angle 0 b) can be reduced as shown in FIG. This makes it possible to detect the flow command value, which is a dead zone, with almost no movement of the work equipment. Moreover, a large change (Hb) can be obtained even if the change command value is small, so that the accuracy of determining the dead zone is improved.
  • construction machines In the case of hydraulically driven machines such as hydraulic machines, even if there is a large variation in the performance of hydraulic equipment such as hydraulically operated valves and electromagnetic proportional pressure control valves, the dead zone is automatically corrected.
  • the predetermined threshold value for starting the movement of the actuator that is set in advance is a predetermined threshold value based on the pressure
  • the detected value is the oil transmission from the pump to the actuator for a night.
  • This is a method of automatically correcting a dead zone of a hydraulically driven machine, which is a detection value based on the side pressure, or the oil discharge side pressure between the tank and the tank.
  • the flow rate control means is a switching valve of a closed center type and having a predetermined pressure difference between the pump circuit and the cylinder circuit during operation, and the predetermined threshold value based on the pressure is: This is a predetermined pressure difference.
  • the flow control means is an open center type switching valve
  • the predetermined threshold value based on the pressure is a predetermined threshold value between a pressure acting on the pump during operation and a pressure acting on the actuator during non-operation.
  • the pressure difference is obtained.
  • the predetermined threshold value and the detection value based on the pressure are obtained, and these are compared and determined to control the dead zone, so that the same operational effects as those of the first invention can be obtained.
  • the same advantageous effects can be obtained in a hydraulically driven machine in which the flow control means uses a closed center type switching valve or an open center type switching valve.
  • FIG. 1 is an explanatory diagram of a dead zone automatic correction device for a hydraulic drive machine according to a first embodiment of the present invention
  • FIG. 2 is a detailed description of a control device of a dead zone automatic correction device for a hydraulic drive machine according to the present invention
  • Fig. 3 is a flowchart showing the operation of the first embodiment
  • Fig. 4 is a chart showing the relationship between the spool movement amount and the spool opening area of the metering advance circuit for explaining the first embodiment.
  • FIG. 6 is a schematic explanatory view of a working device having a plurality of cylinders in one embodiment
  • FIG. 6 is a chart showing a relationship between a spool movement amount and a spool opening area of a meter leading circuit for explaining the first embodiment
  • 7 is an explanatory view of a device for automatically correcting a dead zone of a hydraulically driven machine according to a second embodiment of the present invention
  • FIG. 8 is a chart showing the relationship between the spool operation amount and the pressure of the second embodiment
  • FIG. 10 is an explanatory view of a dead zone automatic correction device of a hydraulically driven machine according to a third embodiment
  • FIG. 10 is a table showing a relationship between a spool operation amount and pressure of the third embodiment
  • FIG. 11 is a pressure sensor according to the present invention.
  • FIG. 1 is a block diagram of a first embodiment of an automatic dead zone detecting device for a hydraulically driven machine according to the present invention, in which a variable displacement hydraulic pump 2 (hereinafter referred to as a variable pump 2) is driven by a driving device 1 such as an engine. Is driven, and the pressure oil from the variable pump 2 enters a closed center type switching valve 10 connected by a pipe 3.
  • the switching valve 10 is constituted by a spool valve (not shown), a spool is inserted into the valve body in a pivotally tight manner, and springs 11 are provided on both end surfaces of the spool. This switching valve 10 holds the spool at the neutral position when normal operation is not performed.
  • pilot chambers 13, 14 for sliding the spool in proportion to the oil pressure are provided.
  • Pilot chambers 13 and 14 are connected to electromagnetic proportional pressure control valves 15 and 16 (hereinafter referred to as electromagnetic pressure valves 15 and 16) by piping, respectively.
  • the electromagnetic pressure valves 15 and 16 are connected to the control device 50, and in normal operation, a command from the control device 50 which receives a signal corresponding to the operation amount of the operation lever device (not shown) is provided. To Accordingly, the pressure from the fixed displacement pump 4 is controlled and sent to the pilot chambers 13 and 14.
  • the switching valve 10 is connected to the operating lever device via the electromagnetic pressure valves 15 and 16 and the control device 50.
  • the spool valve of the switching valve 10 moves in response to a command corresponding to the operation amount of the operation lever device.
  • the pressure oil from the variable pump 2 is sent to the cylinder (actuator) 31 of the working device 30 via the pipes 21 and 22 connected to the switching valve 10 '.
  • return oil from the cylinder 31 is returned to the tank 5 via the pipes 21 and 22.
  • Pressure sensors (pressure detecting means) 23 and 24 are provided in these pipes 21 and 22 to measure the pressure acting on the cylinder 31 and output the pressure signal to the control device 5 as a pressure signal. Sent to 0.
  • the working device 30 includes a cylinder 31, an arm 32, a baguette 33, links 34, 35, and a boom 37 (see FIG. 5).
  • One end of the cylinder 31 is connected to the arm 32, and the cylinder rod 31a at the other end of the cylinder 31 is connected to the baguette 33 via the links 34, 35. ing.
  • the baguette 33 is rotated to perform operations such as excavation and earth removal. Further, a predetermined holding pressure for holding the baguette 33 and the links 34, 35, etc. is applied to the cylinder 31 in a normal work or maintenance state.
  • FIG. 5 shows a schematic explanatory diagram of a working device provided with a boom 37 and a boom cylinder 31A in addition to FIG.
  • the boom cylinder 31A, the variable pump 2, and the control unit 51 are connected in parallel by a hydraulic circuit, piping, and the like, similarly to the cylinder 31 in FIG.
  • the main components are a switching valve 10 A, a pilot chamber 13 A, 14 A, a solenoid pressure valve 15 A, 16 A, and a pressure sensor 23 A, 24 A. .
  • pressure compensating valves 25 and 26 are disposed between the switching valve 10 and the cylinder 31.
  • these pressure compensating valves 25 and 26 are connected to the respective cylinders 31 and 31A. Regardless of the magnitude of the load, the flow according to each operation command is controlled to be distributed to the cylinders 31 and 31A.
  • the switching valve 10 sends the pressure oil of the variable pump 2 to each of the cylinders 31 and 31A, and the pressure applied to the pressure compensation valves 25 and 26 to the check valve 27.
  • the servo valve 2a of the variable pump 2 To the servo valve 2a of the variable pump 2, and discharges the variable pump 2 so that the discharge pressure of the variable pump 2 becomes a predetermined pressure with respect to the pressure applied to the pressure compensation valves 25 and 26. Controlling the amount.
  • the pressure compensating valves 25 and 26 attached to each cylinder and the servo valve 2 a of the variable pump '2 are used.
  • the unload valve 6 has the highest pressure acting on each cylinder, either the check valve 27 of the switching valve 10 or the check valve (not shown) of the switching valve 1OA. Therefore, it is guided and acted as pilot pressure.
  • the unload valve 6 disposed on the pipe 3 from the variable pump 2 unloads the pressure applied to the variable pump 2 to a predetermined low pressure when the switching valve 10 is neutral, and is higher than the load during operation.
  • the pressure corresponding to the load is sent to the cylinder 31 while maintaining a predetermined pressure difference.
  • the control device 50 includes a control unit 51 including a controller and the like, and a dead zone detection start switch 52. As shown in FIG. 2, the control unit 51 compares the AZD converter 51 a that converts the signals from the pressure sensors (pressure detecting means) 23 and 24 with the initial value storage unit 51 b, Unit 51 c, an output adder 51 d, a DZA converter 51 e for converting a signal from the output adder 51 d, and a dead zone position storage unit comprising a non-volatile memory for storing a dead zone position. 5 and 5 are provided.
  • Non-volatile memory includes EE PROM (ROM that can be electrically erased and written), NV-RAM (abbreviation of nonvolatile RAM, integrated type of EE PROM and RAM), and dead zone information such as IC power supply. You can use a memory member.
  • EE PROM ROM that can be electrically erased and written
  • NV-RAM abbreviation of nonvolatile RAM, integrated type of EE PROM and RAM
  • dead zone information such as IC power supply. You can use a memory member.
  • the control unit 51 serving as a dead zone determining means receives a stop signal from the dead zone detection start switch 52 and receives a pressure sensor disposed between the switching valve 10 and the tilt back side of the cylinder 31.
  • the pressure signal of 3 is input via the AZD converter 51a and stored in the initial value memory 51b as the pressure initial value P0 (step 1551).
  • the stored initial pressure value P 0 is a static holding pressure for the cylinder 31 to hold its own weight of the baguette 33.
  • a flow command at a level at which the work machine does not move is sent to the electromagnetic pressure valves 15 and 16 for the flow control means.
  • the microcurrent command I is output via the DZA converter 51e to the electromagnetic pressure valve 16 that operates the baggage 33 on the tilt side (step 1522).
  • the detected pressure P from the pressure sensor 23 is converted into an AZD and input (step 1553).
  • the spool By increasing the current command I, the spool starts to open, the discharge oil of the variable pump 2 flows into the cylinder 31, the cylinder pressure rises above the holding pressure, and the cylinder 31 starts to move. However, the detected pressure P becomes larger than the initial pressure value P0. That is, when gradually increasing the current command value I, the difference between the serial Sunda pressure P and the pressure initial value P o is, first predetermined pressure threshold ⁇ P (e.g., 5 K g Z cm 2) Yue The current command value at that time is the dead band current value of the hydraulic circuit to be obtained.
  • first predetermined pressure threshold ⁇ P e.g., 5 K g Z cm 2 Yue
  • the current command value at that time is the dead band current value of the hydraulic circuit to be obtained.
  • Step 154 it is determined whether or not the difference between the detected pressure P and the initial pressure value P 0 is larger than a predetermined pressure threshold ⁇ ⁇ (step 154). If the difference is not large, the current The value obtained by adding the predetermined minute current ⁇ I to the output current command I is defined as a new current command I.Steps 15 and subsequent steps are performed until the pressure difference becomes larger than the predetermined pressure threshold ⁇ ⁇ . repeat. If this difference exceeds a predetermined pressure threshold value ⁇ P, it is determined that the spool has opened, and the current value I at that time is set as the dead zone current of the switching valve 10 (step 1555). When the dead zone current value can be detected, the command to the electromagnetic pressure valve 16 is returned to zero. Step 1 5 6) ⁇ Finish.
  • the pressure threshold ⁇ ⁇ may be set by testing in advance how the cylinder pressure fluctuates when the bucket 33 moves from the predetermined posture to the tiltback side.
  • the side flowing into the cylinder from the pump (hereinafter referred to as the meter-in side m) returns from the cylinder to the tank side (hereinafter referred to as the meter side).
  • the meter side the side flowing into the cylinder from the pump
  • the tank side hereinafter referred to as the meter side.
  • the dead zone current value may be determined by measuring the pressure not on the meter-in side ma but on the meter-out side na.
  • the pressure is detected by the pressure sensor 124 on the meter-out side na, and The example may be performed similarly.
  • the cylinder 31 is set to the maximum pushing side as the initial posture of the work machine, and the high pressure is confined in advance to the cylinder bottom side, which is the meter-out side. From this state, the detection of the dead zone current is performed. Good to start. That is, the meter-out side opens before the meter-in side opens, and the closing pressure is instantaneously released to the tank 5, so that the detected pressure P greatly changes instantaneously, and good detection becomes possible.
  • the pressure sensor 23 is detected at the moment of opening. Since the signals of (1) and (2) greatly change, detection can be performed with a low-precision pressure sensor. In addition, the amount of increase in the current command value to the electromagnetic pressure valves 15 and 16 per unit time is not affected by the response delay of the switching valve 10 even if it is extremely small.
  • the dead zone current value can be detected as described above. Further, in the above-described bucket dead zone detection example, the following may be performed.
  • the control unit 51 sends a signal for the baggage 33. Sends a command to the electromagnetic pressure valve 15 or 16. With this command, the baguette cylinder 31 is automatically pressed in advance to the most pushed position or the most retracted position. As a result, at the start of the detection, the posture becomes a predetermined posture, and it becomes possible to set a somewhat large closing pressure.
  • the above-described closing pressure is released immediately before the bucket 33 starts to move, so that the dead zone can be accurately detected. .
  • the measurement posture is automatically obtained and the detection work becomes easy.
  • the cylinder 31 it is determined whether or not the cylinder 31 has reached the above-mentioned predetermined posture by detecting the cylinder pressure and continuously issuing a command from the electromagnetic pressure valve 15 or 16 until the cylinder pressure becomes the relief pressure. Operation is good. In particular, it is effective to automatically generate the confining pressure in the cylinder as the initial posture when detecting from the confining pressure change on the meter port side.
  • the automatic dead zone correction device and the dead zone automatic correction method for the hydraulic drive machine according to the present embodiment are as described above. Therefore, in construction machinery, etc., even if there is a large variation in the performance of hydraulic equipment such as switching valves, the dead zone area is automatically detected, reducing the amount of sunset lag and following hydraulic equipment in multiple operations. Operability is also improved, and operability is improved. In addition, if the mode that performs automatic dead zone correction is selected and activated from normal manual operation, the dead zone area is automatically corrected, making it easy to adjust the dead zone position for each unit after the vehicle is assembled. In addition, the adjustment time will be shortened and the maintainability will be improved. In addition, since the dead zone can be adjusted with a low-cost, low-precision pressure sensor, high reliability can be obtained even for machines with high vibration, such as construction equipment.
  • FIG. 7 is an explanatory diagram of a second embodiment of a dead zone automatic correction device for a hydraulic drive machine.
  • a pressure sensor 61 serving as a pressure detecting means is disposed in a pipe 3 between the variable pump 2 and a closed center type switching valve 110. Pump discharge pressure is It is sent to the control device 50 as a discharge pressure signal 61 a from the force sensor 61.
  • a spool is pivotally inserted into the valve body (not shown) in the switching valve 110, and a panel 11 and proportional solenoids 112, 113 are provided on both end surfaces of the spool.
  • the spool is normally held in the neutral position SO when no operation is performed.
  • the proportional solenoids 112, 113 are connected to the controller 50.
  • the switching valve 110 is in the neutral position SO, and the variable pump 2 is loaded with a predetermined pressure Pa by the operation of the unload valve 6 (set pressure of the panel 6a).
  • the variable pump 2 discharges a predetermined small oil amount with a small loss horsepower by the servo valve 2a.
  • the spool is opened at the operating positions SI and S2 of the switching valve 110, and in this state, the pressure between the spool and the pressure relief valves 25 and 26 (hereinafter referred to as LS pressure) is increased.
  • the unload valve 6 and the pump servo valve 2a are reached via the check valve 27.
  • the discharge pressure of the variable pump 2 is controlled to be higher than the LS pressure by a predetermined pressure (the action of the throttle W of the switching valve 110 having a variable throttle function).
  • the discharge rate of the variable pump 2 is ⁇ ⁇ , which increases the LS pressure at the same time.
  • the oil released to the tank is automatically throttled by the LS pressure, so that at the same time as the spool is opened, the pump discharge pressure rises above the cylinder pressure. Before the spool is opened, the pump discharge pressure is maintained at a constant unload pressure because the LS pressure does not act on the unload valve 6 and the pump servo valve 2a.
  • the dead zone determination means receives a start signal from the dead zone detection start switch 52, and uses the pressure sensor 61 to perform AZD conversion using the predetermined pressure Pa of the unload valve 6 as a pressure signal. It is input via the pressure vessel 51a (see Fig. 2) and stored in the initial value memory 51b (see Fig. 2) as the pressure initial value Pa (equivalent to the chip 151 in Fig. 3).
  • the current command I is gradually increased, the spool starts to open, the discharge oil of the variable pump 2 reaches the unload valve 6 via the check valve 27, and the pump discharge pressure rises between the spool opening and the At the same time, the pressure rises above the cylinder pressure P nc.
  • a predetermined pressure threshold ⁇ ⁇ for example, SK g Z cm 2
  • the value be the dead band current value of the hydraulic circuit (corresponding to step 1555 in FIG. 3).
  • FIG. 9 is an explanatory view of a device for automatically detecting a dead zone of a hydraulically driven machine according to the third embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • a spool is pivotally inserted into a valve body (not shown) of the open center type switching valve 210, and springs 11 are disposed on both end surfaces of the spool. This switching valve 210 holds the spool at the neutral position when normal operation is not performed.
  • the oil discharged from the pump 202 enters the switching valve 210 from the pipe 3, and at the neutral position, passes through the spool via the spool 2 and the relief valve 2 1 2 (normally about SK g Z cm After passing through ⁇ set in the second position, return to tank 5. At this time, pressure Pa is acting on pump 202. Also, piping 3 from pump 202 is A main relief valve 21 and a pressure sensor 61 are provided.
  • the operation in such a configuration will be described with reference to FIG. 9 and FIG.
  • the initial pressure value Pnc of the holding pressure acting on the cylinder 31 is stored in the initial value storage device 51b (see Fig. 2) (corresponding to step 151 in Fig. 3).
  • As the holding pressure a value obtained by a test or a value at the time when the work machine is operated to be in the initial posture is used.
  • the spool starts to open, and the pressure of the discharge oil increases in accordance with the opening. That is, the discharge oil pressure of the pump 202 is as shown in FIG. Ascend as shown in 0.
  • a predetermined pressure threshold ⁇ P for example, 5 kg / cm 2
  • Hydraulic oil that can easily and accurately detect and correct the dead zone in the evening, improve the followability of hydraulic equipment in complex operations, etc., and improve operability, operability, and maintainability.
  • the present invention is useful as an automatic dead zone detecting device for a driving machine and a method for automatically detecting the dead zone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

An apparatus and method for automatically compensating for a dead zone of a hydraulically driven machine which is capable of easily and precisely detecting a dead zone of an actuator for compensation and improving the trackability, operability, drivability and maintainability of hydraulic equipment. To this end, a detecting means for detecting a dead zone of a flow rate controlling means (10) consists of pressure detecting means (23, 24) for detecting a pressure acting on an actuator (31) or a pump (2), and a judging means for judging the amount of a dead zone consists of a dead zone judging means (50) for judging the dead zone amount of the flow rate controlling means (10) by a signal from the pressure detecting means (23, 24) and a control input instructing means.

Description

明 細 書 油圧駆動機械の不感帯自動捕正装置およびその不感帯自動捕正方法 技 術 分 野  Description Automatic dead zone detection device for hydraulically driven machines and automatic dead zone detection method
本発明は、 油圧ショベル、 クレーン等油圧駆動機械を、 電磁弁等により自動制 御する際に、 ァ'クチユエ一夕の動き出しの出力値を自動補正する油圧駆動機械の 不感帯自動補正装置およびその不感帯自動補正方法に関する。 背 景 技 術  The present invention relates to a dead zone automatic correction device for a hydraulically driven machine that automatically corrects an output value of a start-up operation when a hydraulically driven machine such as a hydraulic excavator or a crane is automatically controlled by an electromagnetic valve or the like, and a dead zone thereof. It relates to an automatic correction method. Background technology
従来、 建設機械等の油圧駆動機械において、 作業機、 走行、 旋回等の油圧ァク チユエ一夕を電気信号により制御する場合は、 操作レバー等を操作して、 電磁比 例圧力制御弁により方向切換弁を切り替え、 油圧源よりの圧油をァクチユエ一夕 に送り、 ァクチユエ一夕を作動させ、 作業機等の作業装置により作業を行ってい る。 この作業時に、 操作レバーを動かしても、 一定値以上の信号を得ないとァク チユエ一夕が作動しない領域、 即ち不感帯領域がある。 この不感帯領域は、 電磁 比例圧力制御弁の発生圧力のバラツキ、 方向切換弁のメインスプールの摺動抵抗 等のバラツキ、 ポンプ吐出量等の油圧機器の性能のバラツキ等により生じている 。 これらのバラツキにより、 不感帯領域は、 一台の中でも、 上げ、 下げ作業でバ ラツキを生じ、 さらに、 各生産台数毎にも作業装置にバラツキが生じている。 こ のため、 高精度の自動制御をおこなう必要があるときには、 一台、 一台、 車体の 組立後に不惑帯位置を調べておき、 ァクチユエ一夕の制御指令値に、 前記一台毎 に異なる不感帯分を加算し、 加算した値を制御指令値とする必要がある。  Conventionally, in hydraulically driven machines such as construction machines, when controlling hydraulic equipment such as work equipment, traveling, turning, etc. by an electric signal, the operating lever etc. is operated and the direction is controlled by an electromagnetic proportional pressure control valve. The changeover valve is switched, the hydraulic oil from the hydraulic source is sent to the factory, the factory is operated, and work is performed by working equipment such as work equipment. During this operation, there is a region where the actuator will not operate unless a signal exceeding a certain value is obtained even if the operation lever is moved, that is, a dead zone. This dead zone is caused by variations in the pressure generated by the electromagnetic proportional pressure control valve, variations in the sliding resistance of the main spool of the directional control valve, and variations in the performance of hydraulic equipment such as the pump discharge amount. Due to these variations, in the dead zone, there are variations in the lifting and lowering operations of a single unit, and in addition, there is variation in the working equipment for each unit of production. For this reason, when it is necessary to perform high-precision automatic control, the position of the dead zone is checked after assembling one unit, one unit, and the car body, and the dead band that differs for each unit It is necessary to add the minute and the added value to be the control command value.
この油圧駆動機械の不感帯を自動検出する従来技術として、 油圧駆動部への指 令を徐々に上げていきながら、 作業機等の回転変化角が一定値を越えたことを検 出して自動捕正するものが知られている (例えば、 日本特開平 4 - 1 4 9 6 0 4 号公報参照) 。 しかし、 上記従来の各関節角度センサによる不感帯領域を判断する方法では、 図 1 2に示すように、 関節が動きはじめて暫く してからの検出 (R点) で、 しか も、 高精度に不感帯を検出するためには、 角度の変位の変化量 H aが少ないとこ ろで、 不感帯領域を判断する必要があり、 困難である。 また、 判断する精度を向 上するために、 変化の指令値 (角度 0 a ) を大きくすると、 操作量に対する変化 H aが大きくなり微調整が困難になるという問題がある。 As a conventional technique for automatically detecting the dead zone of the hydraulic drive machine, while gradually increasing the command to the hydraulic drive unit, it is automatically detected by detecting that the rotation change angle of the work equipment etc. exceeds a certain value. (See, for example, Japanese Patent Application Laid-Open No. 4-149604). However, in the conventional method of determining the dead zone using the joint angle sensors described above, as shown in Fig. 12, the detection (R point) is performed a short time after the joint starts moving, and the dead zone is detected with high accuracy. For detection, it is necessary to judge the dead zone region when the change amount Ha of the angular displacement is small, which is difficult. In addition, if the change command value (angle 0a) is increased in order to improve the accuracy of the judgment, there is a problem that the change Ha with respect to the operation amount becomes large and fine adjustment becomes difficult.
一方、 近年の建設機械では、.作業性の向上、 操作性の容易化のために、 油圧回 路にクローズドセンタ · ロー ドセンシングシステムが採用され始めている。 この システムでは、 'ァクチユエ一タ側の負荷圧が、 ロー ドセンシング圧と して、 バル ブの開口前にポンプに伝わり、 ポンプ圧が自動的に負荷圧以上に上昇するので、 前述の不惑帯も、 ァクチユエ一夕の負荷に全く依存せずに一定となる。 近年は、 特に、 このシステムを利用して、 直線掘削、 法面掘削等作業機の高精度軌跡制御 等の自動化が進みつつある。 同時に、 前記システムを含め、 初心者でも容易に自 動で行えるように、 工場出荷時に不感帯領域を検出して、 その値に基づいて動作 指令を補正するようなことが望まれている。  On the other hand, in construction machinery in recent years, closed center load sensing systems have begun to be used in hydraulic circuits in order to improve workability and facilitate operability. In this system, the load pressure on the actuator side is transmitted to the pump as load sensing pressure before the valve opens, and the pump pressure automatically rises above the load pressure. Also, it becomes constant without depending on the load of the night. In recent years, in particular, using this system, automation such as high-precision trajectory control of working machines such as straight line excavation and slope excavation has been progressing. At the same time, it is desired to detect a dead zone at the time of factory shipment and to correct the operation command based on the value so that even a beginner including the above system can easily and automatically perform the operation.
別の従来技術として、 ロボッ ト等の軌跡制御を行う装置においては、 制御に必 要な不感帯等は、 非線形な特性を予め定め、 捕正しておく ことが行われている。 例えば、 " マニピュレータの動特性同定法 (計測自動制御学会論文集、 V o L 2 2、 N 0 6、 P 6 3 7〜6 4 3、 J A P A N ) " に示されているように、 各マ二 ピユレ一夕の静止状態から、 モータのトルクを徐々に上げていき、 プラス又はマ ィナス方向に動き始めたときのトルクを、 各関節角度センサ信号から判断すると いう方法が知られている。 すなわち、 ァクチユエ一夕の出力を徐々に上げていき 、 ァクチユエ一夕回転角度センサの信号が変化したことで、 動き出し値のバラッ キを自動捕正している。 しかも、 高精度の動き出しを判断するために、 ァクチュ エー夕への出力指令増加の傾きを極めて小さく し、 かつ、 作業機の姿勢の僅かな 変化を検出している。  As another conventional technique, in a device that performs trajectory control of a robot or the like, a dead zone or the like required for control is determined in advance by nonlinear characteristics and is corrected. For example, as shown in "Dynamic characteristics identification method for manipulators (Transactions of the Society of Instrument and Control Engineers, Vol. 22, N.sub.06, P.63-64.43, JAPAN)" There is a known method in which the torque of the motor is gradually increased from the stationary state of Piyre, and the torque when the motor starts to move in the plus or minus direction is determined from each joint angle sensor signal. That is, the output of the actuator is gradually increased, and the variation of the start value is automatically detected due to a change in the signal of the actuator rotation angle sensor. In addition, in order to determine the start of movement with high accuracy, the slope of the increase in the output command to the actuator is made extremely small, and a slight change in the posture of the work equipment is detected.
しかし、 かかる従来方法は、 出力の変化を小さくすればするほど変化量も小さ くなり、 ロボッ ト等に用いられるエンコーダのような高精度の角度センサが必要 となり、 装置が高価になる問題を生ずる。 また、 特に振動が多い建設機械等の機 械では、 高精度の角度センサを用いると、 振動により角度センサが壊れるなど、 信頼性が低下するという問題も生ずる。 発 明 の 開 示 However, in such a conventional method, the smaller the change in output, the smaller the amount of change. This requires a high-precision angle sensor such as an encoder used for a robot or the like, which causes a problem that the device becomes expensive. In addition, in the case of a machine such as a construction machine that generates a lot of vibration, if a high-precision angle sensor is used, there is a problem that the angle sensor is broken due to vibration and reliability is reduced. Disclosure of the invention
本発明は、 かかる従来技術の欠点を解消するためになされたもので、 油圧駆動 機械、 特には、 油圧ショベル、 ク レーン等建設機械の作業機、 旋回、 走行等を対 象とし、 それらの自動制御を行う際、 ァクチユエ一夕の動き出しの出力値を自動 的に、 容^に、 かつ、 精度良く検出して補正する油圧駆動機械の不感帯自動補正 装置およびその不感帯自動補正方法を提供することを目的とする。  The present invention has been made to solve the above-mentioned drawbacks of the prior art, and is intended for a hydraulically driven machine, in particular, a working machine, a turning machine, a traveling machine, and the like of a construction machine such as a hydraulic shovel and a crane. It is an object of the present invention to provide a dead zone automatic correction device and a dead zone automatic correction method for a hydraulically driven machine that automatically, easily and accurately detect and correct the output value of the start of operation during control. Aim.
この目的を達成するため、 本発明に係る第 1の発明においては、 流量制御手段 の不感帯を検出するための検出手段は、 ァクチユエ一夕又はポンプに作用する圧 力を検出する圧力検出手段であり、 不感帯量を判断する判断手段は、 前記圧力検 出手段および操作量指令手段からの信号により流量制御手段の不感帯量を判断す る不感帯判断手段である油圧駆動機械の不感帯自動補正装置である。 また、 前記 流量制御手段は、 クローズドセンタ形式の切換弁と圧力捕償弁とからなる。 この クローズドセンタ形式の切換弁には、 操作時にポンプポ一卜とシリ ンダポートと の差圧を所定の値とする絞りが配設されても良い。 さらに、 前記圧力検出手段の 配設は、 切換弁とァクチユエ一夕との間、 又は、 ポンプと切換弁との間に、 少な く とも一個配設される。 更には、 不感帯判断手段により判断された前記不感帯量 の記憶手段が、 電源を消去しても記録が残る不揮発メモリ一である。  In order to achieve this object, in the first invention according to the present invention, the detecting means for detecting the dead zone of the flow control means is a pressure detecting means for detecting the pressure acting on the actuator or the pump. The judgment means for judging the dead zone amount is an automatic dead zone correction device for a hydraulically driven machine, which is a dead zone judging unit for judging the dead zone amount of the flow rate control means based on signals from the pressure detection means and the operation amount command means. The flow rate control means includes a closed center type switching valve and a pressure compensation valve. The closed center type switching valve may be provided with a restrictor that sets a differential pressure between the pump port and the cylinder port to a predetermined value during operation. Further, at least one pressure detecting means is provided between the switching valve and the actuator or between the pump and the switching valve. Further, the storage means for storing the dead zone amount determined by the dead zone determination means is a non-volatile memory in which a record remains even when the power supply is erased.
かかる構成によれば、 不感帯領域を判断するのに、 圧力センサー等の圧力検出 手段を用いているので、 図 1 1に示すように、 変化の指令値 (角度 0 b ) を小さ くすることが可能となり、 作業装置をほとんど動かさずに、 不感帯となる流量指 令値を検出することができる。 しかも、 変化の指令値が小さくても、 大きな変化 ( H b ) が得られるので、 不感帯領域を判断する精度が向上する。 特に、 建設機 械等の油圧駆動機械において、 油圧操作弁、 電磁比例圧力制御弁等の油圧機器の 性能に大きなバラツキがある場合でも、 不感帯領域が自動的に補正されるので、 自動制御でブーム、 アーム等を複合操作する際に、 複数のァクチユエ一タを、 夕 ィムラグや飛び出しを生じることなく、 同時に協調した動きをさせることもでき る。 これらにより、 上述の直線掘削、 法面掘削等の作業においては、 掘削の平面 度の精度が良くなるとともに、 振動が多い建設機械でも、 高い信頼性が得られる 。 さらに、 車体の組立後に行う一台毎の不感帯位置の検出作業が容易になるとと もに、 高精度の角度センサの替わりに、 安価で低精度な圧力センサを使用するこ とにより、 簡単な構成で高精度の不感帯領域の検出ができる。 According to such a configuration, since the pressure detecting means such as a pressure sensor is used to determine the dead zone, the change command value (angle 0 b) can be reduced as shown in FIG. This makes it possible to detect the flow command value, which is a dead zone, with almost no movement of the work equipment. Moreover, a large change (Hb) can be obtained even if the change command value is small, so that the accuracy of determining the dead zone is improved. In particular, construction machines In the case of hydraulically driven machines such as hydraulic machines, even if there is a large variation in the performance of hydraulic equipment such as hydraulically operated valves and electromagnetic proportional pressure control valves, the dead zone is automatically corrected. When performing multiple operations, multiple factories can be made to cooperate with each other at the same time, without causing lag or jumping out. As a result, in the above-described operations such as the straight excavation and the slope excavation, the accuracy of the excavation flatness is improved, and high reliability is obtained even for a construction machine having much vibration. In addition, the work of detecting the dead zone position of each vehicle after assembling the vehicle becomes easy, and a simple configuration can be achieved by using an inexpensive and low-precision pressure sensor instead of a high-precision angle sensor. Thus, the dead zone can be detected with high accuracy.
第 2の発明においては、 予め設定されてなるァクチユエ一夕の動き出しとなる 所定のしきい値は、 圧力に基づく所定のしきい値であり、 検出値は、 ポンプから ァクチユエ一夕間の送油側圧力、 又はァクチユエ一夕からタンク間の排油側圧力 、 に基づく検出値である油圧駆動機械の不感帯自動補正方法である。 また、 流量 制御手段は、 クローズドセンタ形式で、 かつ、 操作時にポンプ回路とシリ ンダ回 路との間に所定の圧力差を有する切換弁であり、 前記圧力に基づく所定のしきい 値は、 前記所定の圧力差である。 さらに、 流量制御手段は、 オープンセンタ形式 の切換弁であり、 前記圧力に基づく所定のしきい値は、 操作時にポンプに作用す る圧力と非操作時にァクチユエ一夕に作用する圧力との所定の圧力差である。 かかる構成によれば、 圧力に基づいてなる所定のしきい値及び検出値を求め、 これらを比較判断して不感帯領域を制御するので、 第 1の発明と同様な作用効果 が得られる。 また、 流量制御手段が、 クローズドセンタ形式の切換弁、 或いはォ ープンセンタ形式の切換弁を使用する油圧駆動機械においても、 同様に良好な作 用効果が得られる。 図面の簡単な説明  In the second invention, the predetermined threshold value for starting the movement of the actuator that is set in advance is a predetermined threshold value based on the pressure, and the detected value is the oil transmission from the pump to the actuator for a night. This is a method of automatically correcting a dead zone of a hydraulically driven machine, which is a detection value based on the side pressure, or the oil discharge side pressure between the tank and the tank. Further, the flow rate control means is a switching valve of a closed center type and having a predetermined pressure difference between the pump circuit and the cylinder circuit during operation, and the predetermined threshold value based on the pressure is: This is a predetermined pressure difference. Further, the flow control means is an open center type switching valve, and the predetermined threshold value based on the pressure is a predetermined threshold value between a pressure acting on the pump during operation and a pressure acting on the actuator during non-operation. The pressure difference. According to such a configuration, the predetermined threshold value and the detection value based on the pressure are obtained, and these are compared and determined to control the dead zone, so that the same operational effects as those of the first invention can be obtained. Further, the same advantageous effects can be obtained in a hydraulically driven machine in which the flow control means uses a closed center type switching valve or an open center type switching valve. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明に係る第 1実施例の油圧駆動機械の不感帯自動捕正装置の説明図 、 図 2は本発明に係る油圧駆動機械の不感帯自動補正装置の制御装置の詳細説明 図、 図 3は第 1実施例の作動に関するフローチャー ト、 図 4は第 1実施例を説明 するためのメータィン先行回路のスプール移動量とスプール開口面積との関係を 示す図表、 図 5は第 1実施例で複数のシリ ンダを備える作業装置での概要説明図 、 図 6は第 1実施例を説明するためのメータァゥ 卜先行回路のスプール移動量と スプール開口面積との関係を示す図表、 図 7は本発明に係る第 2実施例の油圧駆 動機械の不感帯自動補正装置の説明図、 図 8は第 2実施例のスプール操作量と圧 力との関係を示す図表、 図 9ば本発明に係る第 3実施例の油圧駆動機械の不感帯 自動補正装置の説明図、 図 1 0は第 3実施例のスプール操作量と圧力との関係を 示す図表、 図 1 1 は本発明に係る圧力センサー使用における変化の指令値と圧力 の変化量との関係を示す図表、 図 1 2は従来技術に係る角度センサ使用における 変化の指令値と角度の変化量との関係を示す図表である。 発明を実施するための最良の形態 FIG. 1 is an explanatory diagram of a dead zone automatic correction device for a hydraulic drive machine according to a first embodiment of the present invention, and FIG. 2 is a detailed description of a control device of a dead zone automatic correction device for a hydraulic drive machine according to the present invention. Fig. 3 is a flowchart showing the operation of the first embodiment. Fig. 4 is a chart showing the relationship between the spool movement amount and the spool opening area of the metering advance circuit for explaining the first embodiment. FIG. 6 is a schematic explanatory view of a working device having a plurality of cylinders in one embodiment, and FIG. 6 is a chart showing a relationship between a spool movement amount and a spool opening area of a meter leading circuit for explaining the first embodiment; 7 is an explanatory view of a device for automatically correcting a dead zone of a hydraulically driven machine according to a second embodiment of the present invention, FIG. 8 is a chart showing the relationship between the spool operation amount and the pressure of the second embodiment, and FIG. FIG. 10 is an explanatory view of a dead zone automatic correction device of a hydraulically driven machine according to a third embodiment, FIG. 10 is a table showing a relationship between a spool operation amount and pressure of the third embodiment, and FIG. 11 is a pressure sensor according to the present invention. Relationship between command value of change in use and amount of change in pressure Table showing, 1 2 is a table showing the relation between the command value and the angle of the change amount of the change in the angle sensor used in accordance with the prior art. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係る油圧駆動機械の不感帯自動捕正装置およびその不感帯自動補正方 法について、 好ましい実施例を添付図面に従って以下に詳述する。  DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a dead zone automatic correction device and a dead zone automatic correction method for a hydraulic drive machine according to the present invention will be described below in detail with reference to the accompanying drawings.
図 1は、 本発明の油圧駆動機械の不感帯自動捕正装置の第 1実施例の構成図で あって、 エンジン等の駆動装置 1により可変容量型油圧ポンプ 2 (以下、 可変ポ ンプ 2という) が駆動され、 この可変ポンプ 2からの圧油が、 配管 3で結ばれて いるクローズドセンタ形式の切換弁 1 0に入る。 切換弁 1 0は、 図示しないスプ ール弁で構成され、 バルブボディーの中にスプールが枢密に揷入され、 かつ、 ス プールの両端面部にはバネ 1 1が配設されている。 この切換弁 1 0は、 通常の操 作がされない時には、 中立位置にスプールを保持している。 ま.た、 スプールの両 端部には、 スプールを油圧に比例して摺動させるパイロッ ト室 1 3、 1 4が配設 されている。 パイロッ ト室 1 3、 1 4は、 それぞれ配管により、 電磁比例圧力制 御弁 1 5、 1 6 (以下、 電磁圧力弁 1 5、 1 6という) に接続されている。 また 、 電磁圧力弁 1 5、 1 6は、 制御装置 5 0に接続され、 通常作業時には、 操作レ バー装置 (図示せず) の操作量に応じた信号を受けた制御装置 5 0からの指令に 応じて、 固定容量型ポンプ 4からの圧力を制御し、 パイロッ ト室 1 3、 1 4に送 つている。 FIG. 1 is a block diagram of a first embodiment of an automatic dead zone detecting device for a hydraulically driven machine according to the present invention, in which a variable displacement hydraulic pump 2 (hereinafter referred to as a variable pump 2) is driven by a driving device 1 such as an engine. Is driven, and the pressure oil from the variable pump 2 enters a closed center type switching valve 10 connected by a pipe 3. The switching valve 10 is constituted by a spool valve (not shown), a spool is inserted into the valve body in a pivotally tight manner, and springs 11 are provided on both end surfaces of the spool. This switching valve 10 holds the spool at the neutral position when normal operation is not performed. At both ends of the spool, pilot chambers 13, 14 for sliding the spool in proportion to the oil pressure are provided. Pilot chambers 13 and 14 are connected to electromagnetic proportional pressure control valves 15 and 16 (hereinafter referred to as electromagnetic pressure valves 15 and 16) by piping, respectively. Also, the electromagnetic pressure valves 15 and 16 are connected to the control device 50, and in normal operation, a command from the control device 50 which receives a signal corresponding to the operation amount of the operation lever device (not shown) is provided. To Accordingly, the pressure from the fixed displacement pump 4 is controlled and sent to the pilot chambers 13 and 14.
切換弁 1 0 は、 電磁圧力弁 1 5、 1 6、 および制御装置 5 0を介して操作レバ 一装置に接続されている。 この切換弁 1 0のスプール弁は、 操作レバー装置の操 作量に応じた指令を受けて移動する。 この移動により、 可変ポンプ 2からの圧油 を、 切換弁 1 0 'に接続された配管 2 1、 2 2を経て、 作業装置 3 0のシリ ンダ ( ァクチユエ一タ) 3 1 に送油するとと もに、 シリ ンダ 3 1からの戻り油を、 配管 2 1、 2 2を経てタンク 5に戻している。 これら配管 2 1、 2 2 には、 圧力セン サー (圧力検出手段) 2 3、 2 4が配設され、 シリ ンダ 3 1 に作用する圧力を測 定し、 '圧力信号と して制御装置 5 0に送っている。  The switching valve 10 is connected to the operating lever device via the electromagnetic pressure valves 15 and 16 and the control device 50. The spool valve of the switching valve 10 moves in response to a command corresponding to the operation amount of the operation lever device. With this movement, the pressure oil from the variable pump 2 is sent to the cylinder (actuator) 31 of the working device 30 via the pipes 21 and 22 connected to the switching valve 10 '. In particular, return oil from the cylinder 31 is returned to the tank 5 via the pipes 21 and 22. Pressure sensors (pressure detecting means) 23 and 24 are provided in these pipes 21 and 22 to measure the pressure acting on the cylinder 31 and output the pressure signal to the control device 5 as a pressure signal. Sent to 0.
作業装置 3 0 は、 シリ ンダ 3 1 と、 アーム 3 2 と、 バゲッ ト 3 3 と、 リ ンク 3 4、 3 5、 ブーム 3 7 (図 5参照) 等から構成される。 シリ ンダ 3 1 の一端はァ ーム 3 2に、 また、 シリ ンダ 3 1の他端のシリ ンダロッ ド 3 1 aはリ ンク 3 4、 3 5を介してバゲッ ト 3 3に、 それぞれ連結されている。 そして、 切換弁 1 0か らの油の給排出により、 バゲッ ト 3 3を回動して、 掘削、 排土等の作業を行う。 また、 シリ ンダ 3 1 には、 通常の作業あるいは整備状態では、 バゲッ ト 3 3 と、 リ ンク 3 4、 3 5等を保持する所定の保持圧力が作用している。  The working device 30 includes a cylinder 31, an arm 32, a baguette 33, links 34, 35, and a boom 37 (see FIG. 5). One end of the cylinder 31 is connected to the arm 32, and the cylinder rod 31a at the other end of the cylinder 31 is connected to the baguette 33 via the links 34, 35. ing. Then, by the supply and discharge of oil from the switching valve 10, the baguette 33 is rotated to perform operations such as excavation and earth removal. Further, a predetermined holding pressure for holding the baguette 33 and the links 34, 35, etc. is applied to the cylinder 31 in a normal work or maintenance state.
なお、 上記例では、 作業装置 3 0のシリ ンダ、 リ ンクは数を限定して説明して いるが、 更に複数のシリ ンダ、 リ ンクより構成されても良い。 一例と して、 図 1 に対し、 さ らにブーム 3 7、 ブーム用シリ ンダ 3 1 Aを備える作業装置での概要 説明図を、 図 5 に示す。 このブーム用シリ ンダ 3 1 A、 可変ポンプ 2及び制御部 5 1 は、 図 1のシリ ンダ 3 1 と同様に油圧回路、 配管等で並列に接続されている 。 主要な部品と しては、 切換弁 1 0 A、 パイロッ ト室 1 3 A、 1 4 A、 電磁圧力 弁 1 5 A、 1 6 A並びに圧力センサー 2 3 A、 2 4 Aが備えられている。  In the above example, the number of the cylinders and links of the working device 30 is limited, but the working device 30 may be composed of a plurality of cylinders and links. As an example, FIG. 5 shows a schematic explanatory diagram of a working device provided with a boom 37 and a boom cylinder 31A in addition to FIG. The boom cylinder 31A, the variable pump 2, and the control unit 51 are connected in parallel by a hydraulic circuit, piping, and the like, similarly to the cylinder 31 in FIG. The main components are a switching valve 10 A, a pilot chamber 13 A, 14 A, a solenoid pressure valve 15 A, 16 A, and a pressure sensor 23 A, 24 A. .
次に、 図 1 において、 切換弁 1 0 とシリ ンダ 3 1 との間には圧力補償弁 2 5、 2 6が配設される。 この圧力補償弁 2 5、 2 6 は、 2つ以上のシリ ンダ 3 1、 3 1 A (図 5参照) を同時に操作した場合には、 それぞれのシリ ンダ 3 1、 3 1 A の負荷の大小にかかわらず、 各操作指令に応じた流量がシリ ンダ 3 1、 3 1 Aに 分配されるように制御している。 また、 切換弁 1 0は、 可変ポンプ 2の圧油を各 シリ ンダ 3 1、 3 1 Aに送るとと もに、 圧力捕償弁 2 5、 2 6にかかる圧力をチ ヱック弁 2 7を介して可変ポンプ 2のサーボ弁 2 aに送り、 可変ポンプ 2の吐出 圧が、 圧力捕償弁 2 5、 2 6にかかる圧力に対して所定の圧力となるように、 可 変ポンプ 2の吐出量を制御している。 なお、 上記で複数の切換弁 1 0、 1 0 A ( 図 5参照) を用いた場合において、 各シリ ンダに付設された圧力補償弁 2 5、 2 6、 可変ポンプ' 2のサーボ弁 2 a、 あるいはアンロードバルブ 6には、 各シリ ン ダに作用する圧力の中で最高の圧力が、 切換弁 1 0のチェック弁 2 7或いは切換 弁 1 O Aのチヱック弁 (図示せず) のいずれかから、 パイロッ 卜圧力として導か れて作用している。 Next, in FIG. 1, pressure compensating valves 25 and 26 are disposed between the switching valve 10 and the cylinder 31. When two or more cylinders 31 and 31A (see Fig. 5) are operated simultaneously, these pressure compensating valves 25 and 26 are connected to the respective cylinders 31 and 31A. Regardless of the magnitude of the load, the flow according to each operation command is controlled to be distributed to the cylinders 31 and 31A. Further, the switching valve 10 sends the pressure oil of the variable pump 2 to each of the cylinders 31 and 31A, and the pressure applied to the pressure compensation valves 25 and 26 to the check valve 27. To the servo valve 2a of the variable pump 2, and discharges the variable pump 2 so that the discharge pressure of the variable pump 2 becomes a predetermined pressure with respect to the pressure applied to the pressure compensation valves 25 and 26. Controlling the amount. In the case where a plurality of switching valves 10 and 10 A (see FIG. 5) are used in the above, the pressure compensating valves 25 and 26 attached to each cylinder and the servo valve 2 a of the variable pump '2 are used. Or the unload valve 6 has the highest pressure acting on each cylinder, either the check valve 27 of the switching valve 10 or the check valve (not shown) of the switching valve 1OA. Therefore, it is guided and acted as pilot pressure.
可変ポンプ 2からの配管 3に配設されるアンロードバルブ 6は、 切換弁 1 0が 、 中立時には、 可変ポンプ 2にかかる圧力を所定の低い圧力にアンロードし、 操 作時には、 負荷より高い所定の圧力差を保持しながら、 負荷に応じた圧力をシリ ンダ 3 1に送っている。  The unload valve 6 disposed on the pipe 3 from the variable pump 2 unloads the pressure applied to the variable pump 2 to a predetermined low pressure when the switching valve 10 is neutral, and is higher than the load during operation. The pressure corresponding to the load is sent to the cylinder 31 while maintaining a predetermined pressure difference.
制御装置 5 0は、 コン トロ一ラ等からなる制御部 5 1 と、 不感帯検出開始スィ ツチ 5 2とが配設されている。 制御部 5 1は、 図 2に示すように、 圧力センサー (圧力検出手段) 2 3、 2 4からの信号を変換する AZD変換器 5 1 aと、 初期 値記憶器 5 1 bと、 比較判断器 5 1 cと、 出力加算器 5 1 dと、 この出力加算器 5 1 dからの信号を変換する DZA変換器 5 1 eと、 不感帯位置を記憶する不揮 発メモリからなる不感帯位置記憶器 5 5とを備えている。 なお、 不揮発メモリと しては、 E E PROM (電気的に消去書込み可能な ROM) 、 NV-RAM (不 揮発 RAMの略、 E E PROMと RAMとの一体型) 、 I C力一ド等の不感帯記 憶部材を使用して良い。  The control device 50 includes a control unit 51 including a controller and the like, and a dead zone detection start switch 52. As shown in FIG. 2, the control unit 51 compares the AZD converter 51 a that converts the signals from the pressure sensors (pressure detecting means) 23 and 24 with the initial value storage unit 51 b, Unit 51 c, an output adder 51 d, a DZA converter 51 e for converting a signal from the output adder 51 d, and a dead zone position storage unit comprising a non-volatile memory for storing a dead zone position. 5 and 5 are provided. Non-volatile memory includes EE PROM (ROM that can be electrically erased and written), NV-RAM (abbreviation of nonvolatile RAM, integrated type of EE PROM and RAM), and dead zone information such as IC power supply. You can use a memory member.
かかる構成において、 作動について詳述する。 一例として、 シリ ンダ 3 1 と切 換弁 1 0との間に圧力センサー 2 3、 2 4を配置し、 不感帯電流を検出する場合 について説明する。 以下では検出例として、 バゲッ ト 3 3をチルトバック (シリ ンダロッ ド 3 1 aを引き込み) 側に動かすための不惑帯電流 (バケツ ト 3 3がチ ルト側へ丁度動き始める時の電磁圧力弁 1 5、 1 6への電流指令値) の検出方法 について、 図 1〜図 3に基づき説明する。 In such a configuration, the operation will be described in detail. As an example, a case where pressure sensors 23 and 24 are disposed between the cylinder 31 and the switching valve 10 to detect a dead zone current will be described. In the following, as an example of detection, baguette 33 is tilted back Detect the dead band current to move to the side (the current command value to the electromagnetic pressure valves 15 and 16 when the bucket 33 just starts to move to the tilt side). This will be described with reference to FIGS.
不感帯判断手段となる制御部 5 1では、 不感帯検出開始スィツチ 5 2からのス 夕一ト信号を受けて、 切換弁 1 0とシリ ンダ 3 1のチルトバック側との間に設置 された圧力センサー 2 3の圧力信号を、 A Z D変換器 5 1 aを経て入力し、 圧力 初期値 P 0として初期値記憶器 5 1 bに記憶させる (ステップ 1 5 1 ) 。 ここで 、 記憶された圧力初期値 P 0は、 シリ ンダ 3 1がバゲッ ト 3 3の自重を保持する ための静的な保持圧である。  The control unit 51 serving as a dead zone determining means receives a stop signal from the dead zone detection start switch 52 and receives a pressure sensor disposed between the switching valve 10 and the tilt back side of the cylinder 31. 23 The pressure signal of 3 is input via the AZD converter 51a and stored in the initial value memory 51b as the pressure initial value P0 (step 1551). Here, the stored initial pressure value P 0 is a static holding pressure for the cylinder 31 to hold its own weight of the baguette 33.
続いて、 流量制御手段に対して作業機が動かないレベルの流量指令を電磁圧力 弁 1 5、 1 6に送る。 本検出例では、 バゲッ ト 3 3をチルト側に操作する電磁圧 力弁 1 6に対して、 D Z A変換器 5 1 eを経て微小電流指令 Iを出力する (ステ ップ 1 5 2 ) 。 また、 前記圧力センサー 2 3からの検出圧力 Pを A Z D変換して 入力する (ステップ 1 5 3 ) 。  Subsequently, a flow command at a level at which the work machine does not move is sent to the electromagnetic pressure valves 15 and 16 for the flow control means. In this detection example, the microcurrent command I is output via the DZA converter 51e to the electromagnetic pressure valve 16 that operates the baggage 33 on the tilt side (step 1522). Also, the detected pressure P from the pressure sensor 23 is converted into an AZD and input (step 1553).
上記電流指令 Iを増加させることにより、 スプールが開き始め、 可変ポンプ 2 の吐出油がシリ ンダ 3 1に流入し、 シリ ンダ圧力は保持圧を越えて上昇し、 シリ ンダ 3 1が動きだすことから、 検出圧 Pは圧力初期値 P 0よりも大きくなってい く。 即ち、 電流指令値 Iを徐々に増加させた時に、 シリ ンダ圧力 Pと圧力初期値 P oとの差が、 初めて所定の圧力しきい値厶 P (例えば、 5 K g Z c m 2 ) を越 えた時の電流指令値が、 求める油圧回路の不感帯電流値となる。 By increasing the current command I, the spool starts to open, the discharge oil of the variable pump 2 flows into the cylinder 31, the cylinder pressure rises above the holding pressure, and the cylinder 31 starts to move. However, the detected pressure P becomes larger than the initial pressure value P0. That is, when gradually increasing the current command value I, the difference between the serial Sunda pressure P and the pressure initial value P o is, first predetermined pressure threshold厶P (e.g., 5 K g Z cm 2) Yue The current command value at that time is the dead band current value of the hydraulic circuit to be obtained.
そこで、 検出圧 Pと圧力初期値 P 0との差が、 所定の圧力しきい値 Δ Ρより大 きいか否かを判定し (ステツプ 1 5 4 ) 、 前記の差が大きくない場合は、 現在出 力している電流指令 I に所定の微小電流 Δ I を加算した値を、 新たな電流指令 I とし、 圧力差が所定の圧力しきい値 Δ Ρより大きくなるまで、 ステップ 1 5 2以 降を繰り返す。 この差が所定の圧力しきい値 Δ Pを越えれば、 スプールが開いた と判断し、 その時の電流値 Iを切換弁 1 0の不感帯電流とする (ステップ 1 5 5 ) 。 不感帯電流値が検出できた時点で電磁圧力弁 1 6への指令をゼロに戻し (ス テツプ 1 5 6 ) ·、 終了する。 ここで、 圧力しきい値 Δ Ρとしては、 バケツ ト 3 3 が所定の姿勢からチルトバック側に動く時にシリ ンダ圧力がどう変動するかを予 めテス トして、 設定すれば良い。 Therefore, it is determined whether or not the difference between the detected pressure P and the initial pressure value P 0 is larger than a predetermined pressure threshold Δ Δ (step 154). If the difference is not large, the current The value obtained by adding the predetermined minute current ΔI to the output current command I is defined as a new current command I.Steps 15 and subsequent steps are performed until the pressure difference becomes larger than the predetermined pressure threshold Δ Δ. repeat. If this difference exceeds a predetermined pressure threshold value ΔP, it is determined that the spool has opened, and the current value I at that time is set as the dead zone current of the switching valve 10 (step 1555). When the dead zone current value can be detected, the command to the electromagnetic pressure valve 16 is returned to zero. Step 1 5 6) · Finish. Here, the pressure threshold Δ Δ may be set by testing in advance how the cylinder pressure fluctuates when the bucket 33 moves from the predetermined posture to the tiltback side.
次に、 図 4に示すスプール開口面積とスプール移動量との関係において、 ボン プからシリ ンダに流れ込む側 (以下、 メータイン側 mと言う) が、 シリ ンダから タンク側へ戻る側 (以下、 メータァゥ ト側 nと言う) より先に開口する油圧回路 の場合では、 上記実施例のように、 メータイン側 mの圧力の変化を検出して不感 帯電流値を判断すれば良い。 - また、 図 6に示すように、 メータァゥ 卜が先行する油圧回路では、 メータイン 側 m aではなく、 メータアウ ト側 n aで圧力を測定し、 不感帯電流値を判断すれ ば良い。 即ち、 上記実施例でメ一タァゥ ト先行回路の場合には、 ステップ 1 5 1 、 1 5 3において (図 3参照) 、 メータアウ ト側 n aの圧力センサ一 2 4により 圧力を検出し、 上記実施例を同様に行えば良い。 この場合は、 特に、 作業機の初 期姿勢としてシリ ンダ 3 1を最大押し出し側にして、 予めメータアウ ト側となる シリ ンダボトム側に高圧を閉じ込めた状態とし、 この状態から上記不感帯電流の 検出を開始すると良い。 即ち、 メータイ ン側が開く前にメータアウ ト側が開口し 、 閉じ込み圧が瞬時にタンク 5に開放されるため、 検出圧力 Pは一瞬に大きく変 化し、 良好な検出が可能となる。  Next, in the relationship between the spool opening area and the amount of spool movement shown in FIG. 4, the side flowing into the cylinder from the pump (hereinafter referred to as the meter-in side m) returns from the cylinder to the tank side (hereinafter referred to as the meter side). In the case of a hydraulic circuit that opens earlier than the above, it is sufficient to detect a change in pressure on the meter-in side m and determine the dead zone current value as in the above embodiment. -Further, as shown in FIG. 6, in the hydraulic circuit in which the meter valve precedes, the dead zone current value may be determined by measuring the pressure not on the meter-in side ma but on the meter-out side na. That is, in the case of the pre-measurement circuit in the above embodiment, in steps 151 and 153 (see FIG. 3), the pressure is detected by the pressure sensor 124 on the meter-out side na, and The example may be performed similarly. In this case, in particular, the cylinder 31 is set to the maximum pushing side as the initial posture of the work machine, and the high pressure is confined in advance to the cylinder bottom side, which is the meter-out side. From this state, the detection of the dead zone current is performed. Good to start. That is, the meter-out side opens before the meter-in side opens, and the closing pressure is instantaneously released to the tank 5, so that the detected pressure P greatly changes instantaneously, and good detection becomes possible.
即ち、 指令電流に対する応答時間遅れを有する (例えば建設機械) 油圧回路の 不感帯電流検出の際に、 メータァゥ ト側の閉じ込み圧力の変化を検出する上記方 法では、 開口の瞬間に圧力センサー 2 3、 2 4の信号が大きく変化するので、 低 精度の圧力センサ一で検出が可能である。 しかも、 電磁圧力弁 1 5、 1 6への電 流指令値の単位時間当たりの増加量は、 極めて小さく しても切換弁 1 0の応答遅 れの影響を受けないので、 高精度 (高分解能) の不感帯電流値の検出が可能であ さらに、 上記バケツ ト不感帯検出例において、 次の様にしてもよい。 まず、 不 感帯検出開始スィツチ 5 2を切り替えた時に、 制御部 5 1からバゲッ ト 3 3用の 電磁圧力弁 1 5又は 1 6に指令を送る。 この指令により、 バゲッ ト用シリ ンダ 3 1が自動的に最押し出し位置、 あるいは最引き込み位置に、 予め押しつける様に しておく。 これ.により、 検出開始時に、 所定の姿勢となり、 ある程度大きい閉じ 込み圧とすることが可能となる。 そして、 押し付け方向とは逆の方向にバケツ ト 3 3が動く指令を出して行く と、 バケツ ト 3 3が動き始める直前に、 前述の閉じ 込み圧が開放されるので、 不感帯検出が正確に行える。 また、 自動的に測定姿勢 が得られて検出作業が容易になる。 ここで、 シリ ンダ 3 1が上記所定の姿勢にな つたか、 否かは、 シリ ンダ圧力を検出し、 それがリ リーフ圧力になるまで、 電磁 圧力弁 1 5または 1 6から指令を出し続ける操作を行えは良い。 特に、 メータァ ゥ ト側の閉じ込み圧力変化から検出する場合に、 初期姿勢として、 自動的にシリ ンダに閉じ込み圧力を発生させておく方法は有効である。 That is, in the above-described method of detecting a change in the closing pressure on the meter gate side when detecting a dead zone current of a hydraulic circuit having a response time delay to a command current (for example, construction machinery), the pressure sensor 23 is detected at the moment of opening. Since the signals of (1) and (2) greatly change, detection can be performed with a low-precision pressure sensor. In addition, the amount of increase in the current command value to the electromagnetic pressure valves 15 and 16 per unit time is not affected by the response delay of the switching valve 10 even if it is extremely small. The dead zone current value can be detected as described above. Further, in the above-described bucket dead zone detection example, the following may be performed. First, when the dead zone detection start switch 52 is switched, the control unit 51 sends a signal for the baggage 33. Sends a command to the electromagnetic pressure valve 15 or 16. With this command, the baguette cylinder 31 is automatically pressed in advance to the most pushed position or the most retracted position. As a result, at the start of the detection, the posture becomes a predetermined posture, and it becomes possible to set a somewhat large closing pressure. When a command is issued to move the bucket 33 in the direction opposite to the pressing direction, the above-described closing pressure is released immediately before the bucket 33 starts to move, so that the dead zone can be accurately detected. . In addition, the measurement posture is automatically obtained and the detection work becomes easy. Here, it is determined whether or not the cylinder 31 has reached the above-mentioned predetermined posture by detecting the cylinder pressure and continuously issuing a command from the electromagnetic pressure valve 15 or 16 until the cylinder pressure becomes the relief pressure. Operation is good. In particular, it is effective to automatically generate the confining pressure in the cylinder as the initial posture when detecting from the confining pressure change on the meter port side.
本実施例の油圧駆動機械の不感帯自動補正装置およびその不感帯自動捕正方法 は、 上述したようにしてなる。 従って、 建設機械等において、 切換弁等油圧機器 の性能に大きな'バラツキがあっても、 不感帯領域が自動的に捕正されるので、 夕 ィムラグが少なくなり、 複合操作等での油圧機器の追随性も向上し、 操作がし易 く、 かつ、 運転性が向上する。 また、 通常のマニアル操作から不感帯自動補正を 行うモードを選択して作動させると、 自動的に不感帯領域が捕正されるために、 車体の組立後における一台毎の不感帯位置の調整作業が容易になるとともに、 調 整時間も短縮され整備性が向上する。 さらに、 安価で、 低い精度の圧力センサー により不感帯領域が調整できるので、 建設機械等の振動が多い機械でも、 高い信 頼性が得られる。  The automatic dead zone correction device and the dead zone automatic correction method for the hydraulic drive machine according to the present embodiment are as described above. Therefore, in construction machinery, etc., even if there is a large variation in the performance of hydraulic equipment such as switching valves, the dead zone area is automatically detected, reducing the amount of sunset lag and following hydraulic equipment in multiple operations. Operability is also improved, and operability is improved. In addition, if the mode that performs automatic dead zone correction is selected and activated from normal manual operation, the dead zone area is automatically corrected, making it easy to adjust the dead zone position for each unit after the vehicle is assembled. In addition, the adjustment time will be shortened and the maintainability will be improved. In addition, since the dead zone can be adjusted with a low-cost, low-precision pressure sensor, high reliability can be obtained even for machines with high vibration, such as construction equipment.
本発明に係わる油圧駆動機械の不感帯自動補正装置およびその不感帯自動補正 方法の第 2実施例について、 図面を参照して説明する。  A second embodiment of the apparatus for automatically correcting a dead zone of a hydraulically driven machine and the method for automatically correcting the dead zone according to the present invention will be described with reference to the drawings.
図 7は、 油圧駆動機械の不感帯自動補正装置の第 2実施例の説明図である。 な お、 第 1実施例と同一部品には同一符号を付して説明は省略する。 図 7において 、 可変ポンプ 2とクローズドセンタ形式の切換弁 1 1 0との間の配管 3には、 圧 力検出手段となる圧力センサー 6 1が配設されている。 ポンプの吐出圧力が、 圧 力センサー 6 1からの吐出圧力信号 6 1 aとして、 制御装置 5 0に送られている 。 切換弁 1 1 0には、 図示しないバルブボディーの中にスプールが枢密に揷入さ れ、 かつ、 スプールの両端面部にはパネ 1 1 と比例ソ レノイ ド 1 1 2、 1 1 3が 配設されており、 通常、 操作がされない時に、 中立位置 S O にスプールを保持し ている。 比例ソ レノイ ド 1 1 2、 1 1 3は、 制御装置 5 0に接続されている。 通常、 切換弁 1 1 0は中立位置 S O にあり、 かつ、 可変ポンプ 2にはアンロー ドバルブ 6 (パネ 6 aの設定圧力) の作動により、 所定の圧力 P aの負荷が掛か つてている。 この状態で、 可変ポンプ 2は、 サーボ弁 2 aにより損失馬力の少な い所定の少油量を吐出している。 切換弁 1 1 0の操作位置 S I 、 S 2 ではスプ一 ルが開口し、 この状態では、 スプールと圧力捕償弁 2 5、 2 6との間の圧力 (以 下、 L S圧という) 力く、 チェック弁 2 7を介して、 アンロードバルブ 6およびポ ンプサーボ弁 2 aに達する。 FIG. 7 is an explanatory diagram of a second embodiment of a dead zone automatic correction device for a hydraulic drive machine. The same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. In FIG. 7, a pressure sensor 61 serving as a pressure detecting means is disposed in a pipe 3 between the variable pump 2 and a closed center type switching valve 110. Pump discharge pressure is It is sent to the control device 50 as a discharge pressure signal 61 a from the force sensor 61. A spool is pivotally inserted into the valve body (not shown) in the switching valve 110, and a panel 11 and proportional solenoids 112, 113 are provided on both end surfaces of the spool. The spool is normally held in the neutral position SO when no operation is performed. The proportional solenoids 112, 113 are connected to the controller 50. Normally, the switching valve 110 is in the neutral position SO, and the variable pump 2 is loaded with a predetermined pressure Pa by the operation of the unload valve 6 (set pressure of the panel 6a). In this state, the variable pump 2 discharges a predetermined small oil amount with a small loss horsepower by the servo valve 2a. The spool is opened at the operating positions SI and S2 of the switching valve 110, and in this state, the pressure between the spool and the pressure relief valves 25 and 26 (hereinafter referred to as LS pressure) is increased. The unload valve 6 and the pump servo valve 2a are reached via the check valve 27.
ポンプサ一ボ弁 2 aでは、 可変ポンプ 2の吐出圧を前記 L S圧より所定の圧力 だけ高くなるように制御 (可変絞り機能を有する切換弁 1 1 0の絞り Wの作用) されているため、 可変ポンプ 2の吐出量が增ぇ、 これにより、 同時に L S圧を高 めていく。 また.、 アンロー ドバルブ 6では、 L S圧により、 タンクに逃がす油が 自動的に絞られるので、 スプール開口と同時に、 ポンプ吐出圧は、 シリ ンダ圧以 上に上昇する。 また、 スプール開口前は、 L S圧がアンロードバルブ 6及びボン プサーボ弁 2 aに働かないために、 ポンプ吐出圧は一定のアンロー ド圧に保持さ れている。  In the pump sump valve 2a, the discharge pressure of the variable pump 2 is controlled to be higher than the LS pressure by a predetermined pressure (the action of the throttle W of the switching valve 110 having a variable throttle function). The discharge rate of the variable pump 2 is 增 ぇ, which increases the LS pressure at the same time. Also, in the unload valve 6, the oil released to the tank is automatically throttled by the LS pressure, so that at the same time as the spool is opened, the pump discharge pressure rises above the cylinder pressure. Before the spool is opened, the pump discharge pressure is maintained at a constant unload pressure because the LS pressure does not act on the unload valve 6 and the pump servo valve 2a.
かかる上記構成において、 不感帯電流を検出する場合について説明する。 以下 では、 第 1実施例と異なる所を説明する。  A case in which a dead zone current is detected in the above configuration will be described. In the following, different points from the first embodiment will be described.
図 7及び図 8において、 不感帯判断手段では、 不感帯検出開始スィッチ 5 2か らのスタート信号を受けて、 圧力センサー 6 1により、 アンロードバルブ 6の所 定圧力 P aを圧力信号として、 A Z D変換器 5 1 a (図 2参照) を経て入力し、 圧力初期値 P aとして初期値記憶器 5 1 b (図 2参照) に記憶させる (図 3のス チップ 1 5 1 に'相当) 。 電流指令 I を漸次上昇させることによりスプールが開き始め、 可変ポンプ 2の 吐出油がチヱック弁 2 7を介してアンロードバルブ 6に達し、 ポンプ吐出圧は、 図 8に示すように、 スプール開口と同時に、 シリ ンダ圧 P n c以上に上昇する。 即ち、 ポンプ 2により上昇するポンプ吐出圧 P n dと圧力初期値 P aとの差が、 所定の圧力しきい値 Δ Ρ (例えば、 S K g Z c m 2 ) より、 初めて大きくなつた 時の電流指令値を、 油圧回路の不感帯電流値とする (図 3のステツプ 1 5 5に相 当) 。 これによ.り、 以上の第 2実施例においても、 第 1実施例と同様な効果が得 られる。 In FIGS. 7 and 8, the dead zone determination means receives a start signal from the dead zone detection start switch 52, and uses the pressure sensor 61 to perform AZD conversion using the predetermined pressure Pa of the unload valve 6 as a pressure signal. It is input via the pressure vessel 51a (see Fig. 2) and stored in the initial value memory 51b (see Fig. 2) as the pressure initial value Pa (equivalent to the chip 151 in Fig. 3). As the current command I is gradually increased, the spool starts to open, the discharge oil of the variable pump 2 reaches the unload valve 6 via the check valve 27, and the pump discharge pressure rises between the spool opening and the At the same time, the pressure rises above the cylinder pressure P nc. That is, the current command when the difference between the pump discharge pressure P nd increased by the pump 2 and the initial pressure value Pa becomes larger than a predetermined pressure threshold Δ Ρ (for example, SK g Z cm 2 ) for the first time. Let the value be the dead band current value of the hydraulic circuit (corresponding to step 1555 in FIG. 3). As a result, the same effects as in the first embodiment can be obtained in the second embodiment.
次に、 本発明に係わる油圧駆動機械の不感帯自動補正装置およびその不感帯自 動捕正方法の第 3実施例について、 図面を参照して説明する。  Next, a third embodiment of a device for automatically correcting a dead zone of a hydraulically driven machine and a method for automatically correcting the dead zone according to the present invention will be described with reference to the drawings.
図 9は、 第 3実施例の油圧駆動機械の不感帯自動捕正装置の説明図であるが、 第 1実施例と同一部品には同一符号を付して説明は省略する。 オープンセンタ形 式の切換弁 2 1 0には、 図示しないバルブボディーの中にスプールが枢密に挿入 され、 かつ、 スプールの両端面部にはバネ 1 1が配設されている。 この切換弁 2 1 0は、 通常の操作がされない時に、 中立位置にスプールを保持している。 ボン プ 2 0 2からの吐出油は、 配管 3から切換弁 2 1 0に入り、 中立位置時には、 ス プールを経て配管 2 1 1、 リ リーフ弁 2 1 2 (通常は、 約 S K g Z c m 2 位にセ ッ トされているゥ を通り、 タ ンク 5に戻る。 このとき、 ポンプ 2 0 2には圧力 P aが作用している。 また、 ポンプ 2 0 2からの配管 3には、 メインリ リーフ弁 2 1 3と、 圧力センサ一 6 1が配設されている。 FIG. 9 is an explanatory view of a device for automatically detecting a dead zone of a hydraulically driven machine according to the third embodiment. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. A spool is pivotally inserted into a valve body (not shown) of the open center type switching valve 210, and springs 11 are disposed on both end surfaces of the spool. This switching valve 210 holds the spool at the neutral position when normal operation is not performed. The oil discharged from the pump 202 enters the switching valve 210 from the pipe 3, and at the neutral position, passes through the spool via the spool 2 and the relief valve 2 1 2 (normally about SK g Z cm After passing through ゥ set in the second position, return to tank 5. At this time, pressure Pa is acting on pump 202. Also, piping 3 from pump 202 is A main relief valve 21 and a pressure sensor 61 are provided.
かかる構成における作動について、 図 9および図 1 0を参照して説明する。 シ リ ンダ 3 1に作用する保持圧の圧力初期値 P n cを、 初期値記憶器 5 1 b (図 2 参照) に記憶させる (図 3のステップ 1 5 1に相当) 。 この保持圧は、 テス トに より求めた値、 あるいは、 作業機を作動させて初期姿勢になるときの値等が用い られる。  The operation in such a configuration will be described with reference to FIG. 9 and FIG. The initial pressure value Pnc of the holding pressure acting on the cylinder 31 is stored in the initial value storage device 51b (see Fig. 2) (corresponding to step 151 in Fig. 3). As the holding pressure, a value obtained by a test or a value at the time when the work machine is operated to be in the initial posture is used.
次に、 電流指令 Iを漸次上昇させることによりスプールが開きはじめ、 その開 きに応じて吐出油の圧力が上昇する。 即ち、 ポンプ 2 0 2の吐出油圧力は、 図 1 0に示すように上昇する。 このポンプ吐出圧 P n eと圧力初期値 P n cとの差が 、 初めて所定の圧力しきい値 Δ P (例えば、 5 K g / c m 2 ) より小さくなつた 時、 その時の電流指令値を、 油圧回路の不感帯電流値とする (図 3のステップ 1 5 5に相当) 。 Next, by gradually increasing the current command I, the spool starts to open, and the pressure of the discharge oil increases in accordance with the opening. That is, the discharge oil pressure of the pump 202 is as shown in FIG. Ascend as shown in 0. When the difference between the pump discharge pressure P ne and the initial pressure value P nc becomes smaller than a predetermined pressure threshold ΔP (for example, 5 kg / cm 2 ) for the first time, the current command value at that time is set to the hydraulic pressure. Use the dead band current value of the circuit (corresponding to step 15.5 in Fig. 3).
以上の第 3実施例においても、 ァクチユエ一夕の動き出しの出力値 (不感帯) を自動的に、 容易に、 かつ、 精度良く求めて捕正することが可能となる。 産業上の利用可能性  Also in the third embodiment described above, it is possible to automatically and easily and accurately obtain and correct the output value (dead zone) of the start of the actuary. Industrial applicability
ァクチユエ一.夕の不感帯領域を容易に、 かつ、 精度良く検出して補正できると 共に、 複合操作等での油圧機器の追随性が向上し、 操作性、 運転性、 整備性が向 上できる油圧駆動機械の不感帯自動捕正装置およびその不感帯自動捕正方法とし て有用である。  Hydraulic oil that can easily and accurately detect and correct the dead zone in the evening, improve the followability of hydraulic equipment in complex operations, etc., and improve operability, operability, and maintainability. The present invention is useful as an automatic dead zone detecting device for a driving machine and a method for automatically detecting the dead zone.

Claims

請 求 の 範 囲 The scope of the claims
1 . ポンプを具備する油圧源からの油を流量制御して作業装置作動用ァクチユエ 一夕へ送ると共に、 前記ァクチユエ一夕への送油切換時の不感帯を有する方向切 換弁等の流量制御手段と、 前記流量制御手段の操作量を指令する操作量指令手段 と、 前記流量制御手段の不感帯を検出するための検出手段と、 前記検出手段から の信号に基づいて前記不感帯量を判断する判断手段とを備える油圧駆動機械の不 感帯自動捕正装置において、 前記検出手段は、 前記ァクチユエ一夕又は前記ボン プに作用する圧力を検出する圧力検出手段であり、 前記判断手段は、 前記圧力検 出手段および前記操作量指令手段からの信号により前記流量制御手段の前記不感 帯量を判断する不感帯判断手段であることを特徴とする油圧駆動機械の不感帯自 動補正装置。  1. Flow control means such as a direction switching valve having a dead zone at the time of oil supply switching to the work equipment, while controlling the flow rate of oil from a hydraulic source equipped with a pump and sending the oil to the work equipment operation equipment. An operation amount instructing unit for instructing an operation amount of the flow control unit; a detection unit for detecting a dead zone of the flow control unit; and a determination unit for determining the dead zone amount based on a signal from the detection unit. In the automatic dead band detecting apparatus for a hydraulically driven machine, the detecting unit is a pressure detecting unit that detects the pressure acting on the actuator or the pump, and the determining unit is configured to detect the pressure. A dead zone determining means for determining the dead zone amount of the flow control means based on signals from the control means and the operation amount command means. .
2 . 前記流量制御手段は、 クローズドセンタ形式の切換弁と圧力補償弁とからな ることを特徴とする請求の範囲 1記載の油圧駆動機械の不感帯自動補正装置。 2. The automatic dead zone correction apparatus for hydraulically driven machines according to claim 1, wherein said flow rate control means comprises a closed center type switching valve and a pressure compensating valve.
3 . 前記クローズドセンタ形式の切換弁には、 操作時にポンプポー卜とシリ ンダ ポートとの差圧を所定の値とする絞りが配設されていることを特徴とする請求の 範囲 2記載の油圧駆動機械の不感帯自動補正装置。 3. The hydraulic drive according to claim 2, wherein the closed center type switching valve is provided with a restrictor that sets a differential pressure between a pump port and a cylinder port to a predetermined value during operation. Automatic dead zone correction device for machines.
4 . 前記圧力検出手段の配設は、 前記切換弁と前記ァクチユエ一夕との間、 又は 、 前記ポンプと前記切換弁との間に、 少なく とも一個配設されることを特徴とす る請求の範囲 1〜 3のいずれか 1項に記載の油圧駆動機械の不感帯自動捕正装置 4. The arrangement of the pressure detecting means is characterized in that at least one pressure detecting means is disposed between the switching valve and the actuator or between the pump and the switching valve. The dead zone automatic detection device for a hydraulically driven machine according to any one of claims 1 to 3.
5 . 前記不感帯判断手段により判断された前記不感帯量の記憶手段が、 電源を消 去しても記録が残る不揮発メモリ一であることを特徴とする請求の範囲 1〜 4の いずれか 1項に記載の油圧駆動機械の不感帯自動補正装置。 5. The storage unit for storing the dead zone amount determined by the dead zone determination unit is a non-volatile memory that retains a record even when power is turned off. An automatic dead zone correction device for a hydraulically driven machine as described above.
6 . ポンプを具備する油圧源からの油を、 流量制御手段を介してァクチユエ一夕 に送り、 前記ァ.クチユエ一夕により作業装置を作動させる際に、 前記ァクチユエ 一夕の動き出しとなる所定のしきい値を予め設定し、 前記所定のしきい値と検出 値とを比較して判断しつつ不感帯領域を検出する油圧駆動機械の不感帯自動補正 方法において、 前記所定のしきい値は、 圧力に基づく所定のしきい値であり、 前 記検出値は、 前記ポンプから前記ァクチユエ一夕間の送油側圧力又は前記ァクチ ユエ一夕からタンク間の排油側圧力に基づく検出値であることを特徴とする油圧 駆動機械の不感帯自動捕正方法。 6. The oil from a hydraulic source equipped with a pump is sent to the actuator via the flow control means, and when the working device is operated by the actuator, a predetermined movement which causes the actuator to start moving. A threshold value is set in advance, and a dead zone automatic correction method of a hydraulically driven machine that detects a dead zone region while comparing and judging the predetermined threshold value with a detected value, wherein the predetermined threshold value is a pressure. A predetermined threshold value based on the pressure, and the detection value is a detection value based on an oil-feeding pressure between the pump and the actuator over a period of time or an oil-discharge pressure between the actuating and a tank over time. Characteristic method of automatic detection of dead zone of hydraulic drive machine.
7 . 前記流量制御手段は、 クローズドセンタ形式で、 かつ、 操作時にポンプ回路 とシリ ンダ回路との間に所定の圧力差を有する切換弁であり、 前記圧力に基づく 所定のしきい値は、 前記所定の圧力差であることを特徴とする請求の範囲 6記載 の油圧駆動機械の不感帯自動捕正方法。 7. The flow rate control means is a switching valve having a closed center type and having a predetermined pressure difference between a pump circuit and a cylinder circuit during operation, and the predetermined threshold value based on the pressure is 7. The method for automatically detecting a dead zone of a hydraulically driven machine according to claim 6, wherein the pressure difference is a predetermined pressure difference.
8 . 前記流量制御手段は、 オープンセンタ形式の切換弁であり、 前記圧力に基づ く所定のしきい値は、 操作時に前記ポンプに作用する圧力と非操作時に前記ァク チユエ一夕に作用する圧力との所定の圧力差であることを特徴とする請求の範囲 6記載の油圧駆動機械の不感帯自動補正方法。 8. The flow control means is an open center type switching valve, and the predetermined threshold value based on the pressure is a pressure acting on the pump during operation and a pressure acting on the pump when not operating. 7. The method for automatically correcting a dead zone of a hydraulically driven machine according to claim 6, wherein the pressure difference is a predetermined pressure difference from the pressure to be applied.
PCT/JP1994/001177 1993-07-21 1994-07-19 Apparatus and method for automatically compensating for dead zone of a hydraulically driven machine WO1995003492A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5201055A JPH0735105A (en) 1993-07-21 1993-07-21 Automatic dead zone corrector of hydraulic driving machine and method of automatic dead zone correction thereof
JP5/201055 1993-07-21

Publications (1)

Publication Number Publication Date
WO1995003492A1 true WO1995003492A1 (en) 1995-02-02

Family

ID=16434652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/001177 WO1995003492A1 (en) 1993-07-21 1994-07-19 Apparatus and method for automatically compensating for dead zone of a hydraulically driven machine

Country Status (2)

Country Link
JP (1) JPH0735105A (en)
WO (1) WO1995003492A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0791694A1 (en) * 1996-02-21 1997-08-27 Shin Caterpillar Mitsubishi Ltd. Apparatus and method for controlling a construction machine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3608900B2 (en) * 1997-03-10 2005-01-12 新キャタピラー三菱株式会社 Method and apparatus for controlling construction machine
JP3510114B2 (en) * 1998-07-15 2004-03-22 新キャタピラー三菱株式会社 Work machine control method and its control device
DE10040395A1 (en) * 1999-09-14 2001-03-22 Caterpillar Inc Hydraulic control system for improving pump response and dynamic match of pump and valve has control unit for controlling rate of change of cross-section of main flow control valve
US6651544B2 (en) * 2001-12-28 2003-11-25 Caterpillar Inc Controlling the deadband of a fluid system
JP4931048B2 (en) * 2006-07-31 2012-05-16 キャタピラー エス エー アール エル Control device for work machine
JP5447194B2 (en) * 2010-06-04 2014-03-19 トヨタ自動車株式会社 Control device for internal combustion engine
JP6650471B2 (en) * 2016-01-29 2020-02-19 株式会社小松製作所 Spool valve device for hydraulic cylinder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194011A (en) * 1986-02-21 1987-08-26 Hitachi Ltd Pressure control device
JPH01141203A (en) * 1987-11-25 1989-06-02 Hitachi Constr Mach Co Ltd Hydraulic driving device
JPH01203528A (en) * 1988-02-05 1989-08-16 Kobe Steel Ltd Method and apparatus for controlling turning of oil-pressure shovel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194011A (en) * 1986-02-21 1987-08-26 Hitachi Ltd Pressure control device
JPH01141203A (en) * 1987-11-25 1989-06-02 Hitachi Constr Mach Co Ltd Hydraulic driving device
JPH01203528A (en) * 1988-02-05 1989-08-16 Kobe Steel Ltd Method and apparatus for controlling turning of oil-pressure shovel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0791694A1 (en) * 1996-02-21 1997-08-27 Shin Caterpillar Mitsubishi Ltd. Apparatus and method for controlling a construction machine
US5826666A (en) * 1996-02-21 1998-10-27 Shin Caterpillar Mitsubishi, Ltd. Apparatus and method for controlling a contruction machine

Also Published As

Publication number Publication date
JPH0735105A (en) 1995-02-03

Similar Documents

Publication Publication Date Title
US6662705B2 (en) Electro-hydraulic valve control system and method
KR0145144B1 (en) Hydraulic drive for hydraulic work machine
KR100397516B1 (en) Method and device for controlling work machine
US5537819A (en) Hydraulic device for working machine
EP0965698B1 (en) Method and device for controlling construction machine
CN110520635B (en) Hydraulic drive system
EP0504415A1 (en) Control system of hydraulic pump
EP0900887A1 (en) Controller of construction machine
WO2013042484A1 (en) Hydraulic control device and hydraulic control method
EP0649988B1 (en) Driving controller of hydraulic machine
US20190024677A1 (en) Load-dependent hydraulic fluid flow control system
KR0152300B1 (en) Outlet flow control method for hydraulic pump
US5317871A (en) Circuit capable of varying pump discharge volume in closed center-load sensing system
WO2010068749A2 (en) System for controlling a hydraulic system
US20180252243A1 (en) Systems and methods for dynamic response on mobile machines
WO1995003492A1 (en) Apparatus and method for automatically compensating for dead zone of a hydraulically driven machine
KR20110054739A (en) Hydraulic pump control apparatus for construction machinery and hydraulic pump control method for the same
US11286647B2 (en) Electrohydraulic control device for construction machine and method thereof
CN112424483A (en) Construction machine
WO2009138558A1 (en) Method for determining dead zone of valve
JP4651907B2 (en) Method for controlling the dead zone of a fluid system
JP5275187B2 (en) Hydraulic circuit for construction machinery
JPH04285301A (en) Hydraulic circuit for improving work accuracy in load sensing system
JPH04258505A (en) Driving control device for hydraulic construction machine
JPH11229444A (en) Hydraulic controller for construction machinery and its hydraulic control method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase