JPH04258505A - Driving control device for hydraulic construction machine - Google Patents

Driving control device for hydraulic construction machine

Info

Publication number
JPH04258505A
JPH04258505A JP3060921A JP6092191A JPH04258505A JP H04258505 A JPH04258505 A JP H04258505A JP 3060921 A JP3060921 A JP 3060921A JP 6092191 A JP6092191 A JP 6092191A JP H04258505 A JPH04258505 A JP H04258505A
Authority
JP
Japan
Prior art keywords
rotation speed
hydraulic pump
discharge pressure
hydraulic
target rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3060921A
Other languages
Japanese (ja)
Other versions
JP2608997B2 (en
Inventor
Akira Tatsumi
辰巳 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP3060921A priority Critical patent/JP2608997B2/en
Publication of JPH04258505A publication Critical patent/JPH04258505A/en
Application granted granted Critical
Publication of JP2608997B2 publication Critical patent/JP2608997B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • F15B2211/20553Type of pump variable capacity with pilot circuit, e.g. for controlling a swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/25Pressure control functions
    • F15B2211/253Pressure margin control, e.g. pump pressure in relation to load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50536Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using unloading valves controlling the supply pressure by diverting fluid to the return line

Abstract

PURPOSE:To accurately judge if flow rate is lacking or not for precise rotation number control at all the time and to improve responsiveness at control. CONSTITUTION:In a driving control device for hydraulic construction machine which can carry out load sensing control for holding a discharge pressure of a variable capacity hydraulic pump driven by a prime mover higher than a load pressure of a hydraulic actuator by a certain differential pressure, when a discharge pressure of a hydraulic pump 1 detected by a discharge pressure detecting means 52 is more than a predetermined value, and when the differential pressure detected by a differential pressure detecting means 54 is less than a predetermined value even if the discharge pressure is less than the predetermined value, a rotation number correcting means 100 makes correction so that a target rotation number becomes higher than the target rotation number set by a target rotation number setting means 81.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ホイール式油圧ショベ
ルなどの油圧建設機械に用いられる駆動制御装置に関し
、負荷に応じて原動機の回転数を制御して燃料消費率を
改善したものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive control device used in hydraulic construction machinery such as wheeled hydraulic excavators, and more particularly to a drive control device that improves fuel consumption by controlling the rotational speed of a prime mover depending on the load.

【0002】0002

【従来の技術】本出願人は、原動機により駆動される可
変容量油圧ポンプからの吐出油により油圧アクチュエー
タを駆動する油圧建設機械の駆動制御装置として、以下
の■,■に示すものを先に提案している。
[Prior Art] The present applicant previously proposed the following items 1 and 2 as a drive control device for hydraulic construction machinery that drives a hydraulic actuator using oil discharged from a variable displacement hydraulic pump driven by a prime mover. are doing.

【0003】■上記油圧アクチュエータの負荷を検出し
、その負荷が所定値以上になると、ポンプ流量が不足し
ていると判断して原動機の回転数を上昇させ、ポンプ流
量を増加する(特開昭63−167042号公報)。 これによれば、軽負荷時も重負荷時も所望の作業速度を
維持しつつ燃料消費量が最も有利な状態で運転が可能と
なる。
[0003] The load on the hydraulic actuator is detected, and when the load exceeds a predetermined value, it is determined that the pump flow rate is insufficient, and the rotation speed of the prime mover is increased to increase the pump flow rate. 63-167042). According to this, it is possible to operate in a state where fuel consumption is most advantageous while maintaining a desired working speed both under light load and heavy load.

【0004】■ロードセンシングシステムを採用するも
のにおいて、可変容量油圧ポンプの吐出圧力とアクチュ
エータの最大負荷圧力との差圧(LS差圧)が所定値以
下になると流量不足と判断して原動機の回転数を上昇さ
せ、ポンプ流量を増加する。あるいは油圧ポンプの押除
け容積と、油圧ポンプの吐出圧力に基づいて演算される
最大可能押除け容積との偏差が所定値以下になると、流
量不足と判断して原動機の回転数を上昇させ、上述と同
様にポンプ流量を増加する(特願平1−318486号
明細書中)。これによれば、■と同様に軽負荷時も重負
荷時も燃料消費量が最も有利な状態で運転することがで
きる。
[0004] In devices that employ a load sensing system, if the differential pressure between the discharge pressure of the variable displacement hydraulic pump and the maximum load pressure of the actuator (LS differential pressure) falls below a predetermined value, it is determined that the flow is insufficient and the rotation of the prime mover is stopped. increase the pump flow rate. Alternatively, if the deviation between the displacement volume of the hydraulic pump and the maximum possible displacement volume calculated based on the discharge pressure of the hydraulic pump becomes less than a predetermined value, it is determined that the flow rate is insufficient, and the rotation speed of the prime mover is increased, as described above. Similarly, the pump flow rate is increased (as described in Japanese Patent Application No. 1-318486). According to this, similarly to (2), the vehicle can be operated in a state where the fuel consumption is most advantageous both under light load and heavy load.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た■,■の装置には、以下に示すような問題点がそれぞ
れある。すなわち■の装置では、例えば可変容量油圧ポ
ンプの吐出圧力を検出してアクチュエータの負荷圧の高
低を判断するようにすると、油圧ポンプの吐出圧力が低
いときに複数のアクチュエータを駆動する場合(例えば
走行中にブームやアームを低速で駆動するような場合)
のように低圧にも拘らず要求流量が多いときには流量不
足を判定できず、原動機回転数をアップさせてポンプ流
量を増加させることができない。
[Problems to be Solved by the Invention] However, the above-mentioned devices (1) and (3) each have the following problems. In other words, in the device (2), for example, if the discharge pressure of a variable displacement hydraulic pump is detected and the load pressure of the actuator is determined, it is possible to drive multiple actuators when the discharge pressure of the hydraulic pump is low (for example, when driving (When driving the boom or arm at low speed during operation)
When the required flow rate is large despite the low pressure, as in the example shown in FIG.

【0006】一方、■の装置では、LS差圧あるいは油
圧ポンプの押除け容積と最大可能押除け容積との偏差に
より流量不足か否かを判定しているので、上述したよう
に低圧時に要求流量が大きいために流量不足となった場
合でもその判定が行え、上記■の問題は解消できるが、
LS差圧による制御では、LS差圧の検出値の変動が大
きいため、ハンチングを防止するためにフィルタをかけ
て所定時間のLS差圧の平均値をとり、その値に基づい
てポンプ流量を制御する必要があるので、上述した■の
制御と比べて応答性が悪い。また傾転角偏差による制御
でも、油圧ポンプの吐出圧力により最大可能押除け容積
を求める工程と、傾転角偏差を求める工程とが必要であ
るので応答性が悪い。
On the other hand, in the device (2), it is determined whether or not the flow rate is insufficient based on the LS differential pressure or the deviation between the displacement volume of the hydraulic pump and the maximum possible displacement volume. Even if the flow rate is insufficient due to a large value, this can be determined, and the above problem (■) can be resolved.
In control using LS differential pressure, since the detected value of the LS differential pressure fluctuates greatly, a filter is applied to prevent hunting, and the average value of the LS differential pressure over a predetermined period of time is taken, and the pump flow rate is controlled based on that value. Therefore, the response is poorer than the control (2) described above. Furthermore, control using the tilting angle deviation also requires a step of determining the maximum possible displacement volume based on the discharge pressure of the hydraulic pump, and a step of determining the tilting angle deviation, resulting in poor responsiveness.

【0007】本発明の目的は、いかなる場合でも流量不
足か否かの判定を正確に行って回転数制御が的確に行え
るとともに、制御時の応答性を改善した油圧建設機械の
駆動制御装置を提供することにある。
An object of the present invention is to provide a drive control device for hydraulic construction machinery that can accurately determine whether or not there is a flow shortage in any case and accurately control the rotation speed, and that improves responsiveness during control. It's about doing.

【0008】[0008]

【課題を解決するための手段】一実施例を示す図1〜図
4に対応付けて説明すると、請求項1の発明は、原動機
27によって駆動される可変容量油圧ポンプ1と、この
油圧ポンプ1からの吐出油により駆動される少なくとも
1つの油圧アクチュエータ4,21と、油圧アクチュエ
ータ4,21に供給される圧油の流量を制御する制御弁
2,20と、油圧ポンプ1の吐出圧力と油圧アクチュエ
ータ4,21の負荷圧力との差圧を検出する差圧検出手
段54と、検出された差圧に基づいて、油圧ポンプ1の
吐出圧力を油圧アクチュエータ4,21の負荷圧力より
も一定の差圧だけ高く保持するよう油圧ポンプ1の押除
け容積を制御するロードセンシング制御手段61と、操
作手段57aの操作に応じて原動機27の目標回転数を
設定する目標回転数設定手段81と、油圧ポンプ1の吐
出圧力を検出する吐出圧検出手段52と、検出された吐
出圧力に基づいて、不足流量を補うべく上記設定された
目標回転数に補正を加える回転数補正手段100と、補
正された目標回転数となるように原動機27を制御する
原動機制御手段28,88とを備えた油圧建設機械の駆
動制御装置に適用される。そして、回転数補正手段10
0を次のように構成することにより上記問題点を解決す
る。すなわち回転数補正手段100は、上記検出された
油圧ポンプ1の吐出圧力が所定値以上のとき、およびこ
の吐出圧力が所定値未満であっても検出された差圧が所
定値以下のときには、目標回転数設定手段81にて設定
された目標回転数よりも高い目標回転数となるよう補正
を加える。また請求項2の発明は、上述した可変容量油
圧ポンプ1と、油圧アクチュエータ4,21と、制御弁
2,20と、目標回転数設定手段81と、吐出圧検出手
段52と、回転数補正手段100’(図6)と、原動機
制御手段28,88とを備えた油圧建設機械の駆動制御
装置に適用される。そして、油圧ポンプ1の吐出圧力に
応じた最大押除け容積の制限値を演算する演算手段91
とを備え、前記回転数補正手段100’を次のように構
成することにより上記問題点を解決する。すなわち回転
数補正手段100’は、検出された油圧ポンプ1の吐出
圧力が所定値以上のとき、およびこの吐出圧力が所定値
未満であっても油圧ポンプ1の押除け容積と上記演算さ
れた最大押除け容積の制限値との偏差が所定値以下のと
きには、目標回転数設定手段81にて設定された目標回
転数よりも高い目標回転数となるよう補正を加える。
[Means for Solving the Problems] To explain in conjunction with FIGS. 1 to 4 showing one embodiment, the invention of claim 1 provides a variable displacement hydraulic pump 1 driven by a prime mover 27, and a variable displacement hydraulic pump 1 driven by a prime mover 27. At least one hydraulic actuator 4, 21 driven by oil discharged from the hydraulic actuator 4, 21, control valves 2, 20 that control the flow rate of pressure oil supplied to the hydraulic actuators 4, 21, and the discharge pressure of the hydraulic pump 1 and the hydraulic actuator. The differential pressure detection means 54 detects the differential pressure between the load pressures of the hydraulic actuators 4 and 21, and the discharge pressure of the hydraulic pump 1 is set to a constant differential pressure than the load pressure of the hydraulic actuators 4 and 21 based on the detected differential pressure. load sensing control means 61 that controls the displacement volume of the hydraulic pump 1 so as to keep it as high as a discharge pressure detection means 52 that detects the discharge pressure of the engine; a rotation speed correction means 100 that corrects the set target rotation speed based on the detected discharge pressure in order to compensate for the insufficient flow rate; The present invention is applied to a drive control device for a hydraulic construction machine, which is equipped with prime mover control means 28 and 88 for controlling the prime mover 27 so that the number of prime movers 27 is the same as that of the prime mover 27. And rotation speed correction means 10
The above problem is solved by configuring 0 as follows. That is, when the detected discharge pressure of the hydraulic pump 1 is above a predetermined value, and even if the discharge pressure is less than the predetermined value, the detected differential pressure is below the predetermined value. Correction is made so that the target rotational speed is higher than the target rotational speed set by the rotational speed setting means 81. The invention of claim 2 also provides the variable displacement hydraulic pump 1, the hydraulic actuators 4 and 21, the control valves 2 and 20, the target rotation speed setting means 81, the discharge pressure detection means 52, and the rotation speed correction means. 100' (FIG. 6), and prime mover control means 28, 88. Then, calculation means 91 calculates a limit value of the maximum displacement volume according to the discharge pressure of the hydraulic pump 1.
The above problem is solved by configuring the rotation speed correcting means 100' as follows. That is, the rotation speed correction means 100' adjusts the displacement volume of the hydraulic pump 1 and the calculated maximum when the detected discharge pressure of the hydraulic pump 1 is equal to or higher than a predetermined value, and even when this discharge pressure is less than a predetermined value. When the deviation from the limit value of the displacement volume is less than or equal to a predetermined value, a correction is made so that the target rotation speed is higher than the target rotation speed set by the target rotation speed setting means 81.

【0009】[0009]

【作用】(1)請求項1の発明 回転数補正手段100は、検出された油圧ポンプ1の吐
出圧力が所定値以上のときには、目標回転数設定手段8
1にて設定された目標回転数よりも高い目標回転数とな
るよう補正を加える。すなわち油圧ポンプ1の吐出圧力
による回転数制御(上述した■の制御)が優先され、こ
れにより応答性を改善できる。また回転数補正手段10
0は、上記吐出圧力が所定値未満であっても、上記検出
された差圧が所定値以下のときには、同様に目標回転数
設定手段81にて設定された目標回転数よりも高い回転
数を目標回転数指令値として出力する。したがって、こ
の場合は■の制御が行われることになり、油圧ポンプの
吐出圧力が低いときに複数のアクチュエータを駆動する
場合でも流量不足を判定でき、原動機回転数をアップさ
せてポンプ流量を増加させることが可能となる。 (2)請求項2の発明 回転数補正手段100’は、検出された油圧ポンプ1の
吐出圧力が所定値以上のとき、およびこの吐出圧力が所
定値未満であっても油圧ポンプ1の押除け容積と演算さ
れた最大押除け容積の制限値との差が所定値以下のとき
には、目標回転数設定手段81にて設定された目標回転
数よりも高い回転数を目標回転数指令値として出力する
。これにより上述と同様の効果が得られる。
[Function] (1) When the detected discharge pressure of the hydraulic pump 1 is equal to or higher than a predetermined value, the rotation speed correction means 100 of the invention according to claim 1 adjusts the target rotation speed setting means 8 to the target rotation speed setting means 8.
Correction is made so that the target rotation speed is higher than the target rotation speed set in step 1. That is, priority is given to the rotation speed control based on the discharge pressure of the hydraulic pump 1 (the control in (2) described above), thereby improving responsiveness. Also, the rotation speed correction means 10
0 means that even if the discharge pressure is less than a predetermined value, when the detected differential pressure is below a predetermined value, the rotation speed is higher than the target rotation speed similarly set by the target rotation speed setting means 81. Output as target rotation speed command value. Therefore, in this case, control (■) will be performed, and even when driving multiple actuators when the discharge pressure of the hydraulic pump is low, it can be determined that the flow rate is insufficient, and the prime mover rotation speed will be increased to increase the pump flow rate. becomes possible. (2) The rotational speed correcting means 100' according to claim 2 is configured to prevent the hydraulic pump 1 from being pushed when the detected discharge pressure of the hydraulic pump 1 is equal to or higher than a predetermined value, and even when this discharge pressure is less than a predetermined value. When the difference between the volume and the calculated maximum displacement limit value is less than a predetermined value, a rotation speed higher than the target rotation speed set by the target rotation speed setting means 81 is output as a target rotation speed command value. . This provides the same effect as described above.

【0010】なお、本発明の構成を説明する上記課題を
解決するための手段と作用の項では、本発明を分かり易
くするために実施例の図を用いたが、これにより本発明
が実施例に限定されるものではない。
[0010] In the section of means and effects for solving the above-mentioned problems that explains the structure of the present invention, figures of embodiments are used to make the present invention easier to understand. It is not limited to.

【0011】[0011]

【実施例】−第1の実施例− 図1〜図5により本発明の一実施例を説明する。図2は
油圧ショベルの駆動制御装置の全体構成を示す図、図3
はその一部分を拡大して示す図であり、1はエンジン(
原動機)27により駆動される可変容量油圧ポンプであ
る。エンジン27の回転数は、ガバナ27aのガバナレ
バー27bをパルスモータ28により回動することによ
り制御される。そして、そのエンジン回転数に応じた可
変容量油圧ポンプ1の吐出油が走行用制御弁2を介して
油圧モータ4に導かれるとともに、作業用制御弁20を
介して作業用油圧シリンダ21に導かれる。
[Embodiment] - First Embodiment - An embodiment of the present invention will be explained with reference to FIGS. 1 to 5. FIG. Figure 2 is a diagram showing the overall configuration of the drive control device of a hydraulic excavator, and Figure 3
is a diagram showing a part of the enlarged view, and 1 is the engine (
This is a variable displacement hydraulic pump driven by a prime mover) 27. The rotation speed of the engine 27 is controlled by rotating the governor lever 27b of the governor 27a with the pulse motor 28. The oil discharged from the variable displacement hydraulic pump 1 according to the engine rotational speed is guided to the hydraulic motor 4 via the travel control valve 2, and is also guided to the working hydraulic cylinder 21 via the working control valve 20. .

【0012】今、例えば前後進切換弁8を前進(F位置
)に切換えパイロット弁6のペダル6aを操作すると、
油圧ポンプ5からの吐出油がパイロット式制御弁2のパ
イロットポート2aに導かれ、この制御弁2がパイロッ
ト油圧に応じたストローク量で切換わる。これにより、
可変容量油圧ポンプ1からの吐出油が管路91,圧力補
償弁23,制御弁2を経て油圧モータ4に供給され車両
が走行する。車両の速度は走行ペダル6aの踏込量に依
存する。
Now, for example, if the forward/reverse switching valve 8 is moved forward (position F) and the pedal 6a of the pilot valve 6 is operated,
Discharged oil from the hydraulic pump 5 is guided to the pilot port 2a of the pilot type control valve 2, and the control valve 2 is switched at a stroke amount depending on the pilot oil pressure. This results in
The oil discharged from the variable displacement hydraulic pump 1 is supplied to the hydraulic motor 4 through the pipe line 91, the pressure compensation valve 23, and the control valve 2, and the vehicle runs. The speed of the vehicle depends on the amount of depression of the travel pedal 6a.

【0013】走行中にペダル6aを離すとパイロット弁
6が圧油を遮断しその出口ポートがタンク10と連通さ
れる。この結果、パイロットポート2aに作用していた
圧油が前後進切換弁8、スローリターン弁7、パイロッ
ト弁6を介してタンク10に戻る。このとき、スローリ
ターン弁7の絞り7aにより戻り油が絞られるからパイ
ロット式制御弁2は徐々に中立位置に切換わりながら車
両が徐々に減速されていく。
When the pedal 6a is released while the vehicle is running, the pilot valve 6 shuts off the pressure oil and its outlet port is communicated with the tank 10. As a result, the pressure oil acting on the pilot port 2a returns to the tank 10 via the forward/reverse switching valve 8, the slow return valve 7, and the pilot valve 6. At this time, since the return oil is throttled by the throttle 7a of the slow return valve 7, the pilot type control valve 2 is gradually switched to the neutral position and the vehicle is gradually decelerated.

【0014】また作業レバー58を操作すると、その操
作量に応じて減圧弁59で減圧された圧力により油圧パ
イロット式の作業用制御弁20が切換わり、油圧ポンプ
1からの吐出油が管路92,圧力補償弁24および制御
弁20を介して作業用油圧シリンダ21に導かれ、油圧
シリンダ21の伸縮によりブームなどの作業用アタッチ
メントが昇降する。ここで、圧力補償弁23,24は、
油圧モータ4と油圧シリンダ21の作動を独立に補償さ
せ、これらにそれぞれの負荷圧よりも所定圧だけ高い圧
力を油圧ポンプ1から供給させるようにするものである
When the work lever 58 is operated, the hydraulic pilot type work control valve 20 is switched by the pressure reduced by the pressure reducing valve 59 according to the amount of operation, and the oil discharged from the hydraulic pump 1 is transferred to the pipe 92. , a pressure compensation valve 24 and a control valve 20 to a working hydraulic cylinder 21, and as the hydraulic cylinder 21 expands and contracts, a working attachment such as a boom moves up and down. Here, the pressure compensation valves 23 and 24 are
The operations of the hydraulic motor 4 and the hydraulic cylinder 21 are compensated for independently, and the hydraulic pump 1 supplies a pressure higher than the load pressure of each of them by a predetermined pressure.

【0015】可変容量油圧ポンプ1の傾転角、すなわち
押除け容積は、傾転角制御装置40により制御される。 傾転角制御装置40は、エンジン27により駆動される
油圧ポンプ41と、一対の電磁弁42,43と、電磁弁
42,43の切換に応じて油圧ポンプ41からの圧油に
よりピストン位置が制御されるサーボシリンダ44とか
ら成り、サーボシリンダ44のピストン位置に応じて油
圧ポンプ1の傾転角が制御される。ここで、一対の電磁
弁42,43はコントローラ50により切換制御される
The tilting angle, ie, the displacement volume, of the variable displacement hydraulic pump 1 is controlled by a tilting angle control device 40. The tilting angle control device 40 includes a hydraulic pump 41 driven by an engine 27, a pair of electromagnetic valves 42 and 43, and a piston position controlled by pressure oil from the hydraulic pump 41 according to switching of the electromagnetic valves 42 and 43. The tilting angle of the hydraulic pump 1 is controlled according to the piston position of the servo cylinder 44. Here, the pair of solenoid valves 42 and 43 are switched and controlled by a controller 50.

【0016】51は、油圧ポンプ1の傾転角θsを検出
する傾転角センサ、52は油圧ポンプ1の吐出圧力Pp
を検出する圧力センサ、53はエンジン27の回転数N
rを検出する回転数センサ、54は、油圧ポンプ1の吐
出圧力とアクチュエータの最大負荷圧力(油圧モータ4
の負荷圧力と油圧シリンダ21の負荷圧力のうち大きい
方の値であり、シャトル弁29にて選択されたものであ
る)との差圧、つまりLS差圧ΔPLSを検出する差圧
センサである。また、55はガバナレバー27bの回動
量Nθを検出するポテンショメ−タであり、これらの各
センサの検出結果はコントローラ50に入力される。5
7は、燃料レバー57aの手動操作に応じた目標回転数
Xを指令する回転数設定装置であり、その指令信号もコ
ントローラ50に入力される。
Reference numeral 51 denotes a tilting angle sensor for detecting a tilting angle θs of the hydraulic pump 1; 52 denotes a discharge pressure Pp of the hydraulic pump 1;
A pressure sensor 53 detects the rotation speed N of the engine 27.
A rotation speed sensor 54 detects the discharge pressure of the hydraulic pump 1 and the maximum load pressure of the actuator (hydraulic motor 4
This is a differential pressure sensor that detects the differential pressure between the load pressure of the hydraulic cylinder 21 and the load pressure of the hydraulic cylinder 21, which is the larger value selected by the shuttle valve 29, that is, the LS differential pressure ΔPLS. Further, 55 is a potentiometer that detects the amount of rotation Nθ of the governor lever 27b, and the detection results of each of these sensors are input to the controller 50. 5
Reference numeral 7 denotes a rotation speed setting device that commands a target rotation speed X according to manual operation of the fuel lever 57a, and the command signal is also input to the controller 50.

【0017】コントローラ50は、図4に示すような第
1の制御回路部60を有し、この制御回路部60は、ロ
ードセンシング制御部(以下、LS制御部)61と、ト
ルク制御部62と、選択部63と、サーボ制御部64と
から成る。LS制御部61は、目標差圧ΔPLSRと、
差圧センサ54で検出されたLS差圧ΔPLSとの偏差
Δ(PLS)を演算し、この偏差Δ(PLS)から目標
値の変化量ΔθLを演算し、これを積分してロードセン
シング制御のための目標ポンプ傾転角θLを求めて出力
する。
The controller 50 has a first control circuit section 60 as shown in FIG. , a selection section 63, and a servo control section 64. The LS control unit 61 sets a target differential pressure ΔPLSR,
The deviation Δ(PLS) from the LS differential pressure ΔPLS detected by the differential pressure sensor 54 is calculated, the amount of change ΔθL of the target value is calculated from this deviation Δ(PLS), and this is integrated for load sensing control. The target pump tilt angle θL is determined and output.

【0018】トルク制御部62は、回転数センサ53で
検出されたエンジン回転数Nrと、ポテンショメ−タ5
5で検出されたガバナレバー位置Nθとの偏差ΔTを演
算してスピードセンシングを行い、この偏差ΔTからエ
ンジンストールを防止するための目標トルクTpoを演
算し、この目標トルクTpoに圧力センサ52で検出さ
れたポンプ吐出圧力Ppの逆数を乗じて傾転角演算を行
い、その値θpsに一時遅れ要素のフィルタをかけて入
力トルク制限制御のための目標ポンプ傾転角θTを求め
る。
The torque control section 62 controls the engine rotation speed Nr detected by the rotation speed sensor 53 and the potentiometer 5.
Speed sensing is performed by calculating the deviation ΔT from the governor lever position Nθ detected in step 5, and a target torque Tpo for preventing engine stall is calculated from this deviation ΔT. A tilting angle is calculated by multiplying the pump discharge pressure Pp by the reciprocal of the pump discharge pressure Pp, and the value θps is filtered by a temporary delay element to obtain a target pump tilting angle θT for input torque limiting control.

【0019】選択部63は、上記2つの目標傾転角θL
,θTのうち小さい方の値を選択してサーボ制御部64
に出力する。サ−ボ制御部64は、選択された傾転角指
令値θrと、傾転角センサ51により検出した傾転角フ
ィ−ドバック値θsとを比較し、ポンプ傾転角θsが傾
転角指令値θrに一致するよう傾転角制御装置40を制
御する。
The selection unit 63 selects the two target tilt angles θL.
, θT is selected and the servo control unit 64
Output to. The servo control unit 64 compares the selected tilting angle command value θr with the tilting angle feedback value θs detected by the tilting angle sensor 51, and determines that the pump tilting angle θs is determined by the tilting angle command value θs. The tilt angle control device 40 is controlled so as to match the value θr.

【0020】ここで、上記ロードセンシング制御によれ
ば、LS差圧が一定値になるように可変容量油圧ポンプ
1の押除け容積(以下、傾転角ともいう)が制御され、
上記ポンプ圧がロードセンシング圧よりも所定の目標値
だけ高く保持されるので、ポンプ吐出流量が制御弁2ま
たは20の要求流量になるようにポンプ傾転角が制御さ
れ、余分な流量を吐出することがなく絞り損失による無
駄がなくなり燃費および操作性の向上が図れる。また入
力トルク制限制御によれば、油圧ポンプ1のトルクがエ
ンジン27の出力トルクの範囲内に保持され、エンジン
27に過負荷が作用するのが防止される。
Here, according to the load sensing control described above, the displacement volume (hereinafter also referred to as tilt angle) of the variable displacement hydraulic pump 1 is controlled so that the LS differential pressure becomes a constant value,
Since the pump pressure is maintained higher than the load sensing pressure by a predetermined target value, the pump tilting angle is controlled so that the pump discharge flow rate becomes the required flow rate of the control valve 2 or 20, and the excess flow rate is discharged. This eliminates waste due to throttling loss and improves fuel efficiency and operability. Further, according to the input torque limit control, the torque of the hydraulic pump 1 is maintained within the range of the output torque of the engine 27, and overload on the engine 27 is prevented.

【0021】一方、コントローラ50は、図1に示す第
2の制御回路部80を有している。第2の制御回路部8
0において、81は目標回転数演算部であり、回転数設
定装置57の燃料レバー57aの変位量Xに相当する信
号から変位量Xに応じた目標回転数Nxを決定する。変
位量Xと目標回転数Nxとは、変位量Xが増加するに従
って目標回転数Nxがアイドル回転数Niから直線的に
増加する関係に設定されている。
On the other hand, the controller 50 has a second control circuit section 80 shown in FIG. Second control circuit section 8
0, 81 is a target rotation speed calculation unit, which determines a target rotation speed Nx according to the displacement amount X from a signal corresponding to the displacement amount X of the fuel lever 57a of the rotation speed setting device 57. The displacement amount X and the target rotational speed Nx are set in a relationship such that as the displacement amount X increases, the target rotational speed Nx increases linearly from the idle rotational speed Ni.

【0022】82は第1の補正回転数演算部であり、圧
力センサ52の出力である油圧ポンプ1の吐出圧力Pp
に応じて図示の特性から補正回転数αの増分値Δαを求
める。この特性によれば、吐出圧力Ppが第1の所定値
Pp1以下の範囲では上記増分値Δαが負となり、吐出
圧力Ppが、第1の所定値Pp1より大きい第2の所定
値Pp2以上の範囲では増分値Δαが正となり、それ以
外の範囲、すなわちPp1<Pp<Pp2では増分値Δ
αは零となる。この第1の補正回転数演算部82で求め
られた補正回転数αの増分値Δαは、前回の制御サイク
ルで求められた補正回転数αに加算部85で加算され、
新たな補正回転数αとされる。
Reference numeral 82 denotes a first corrected rotation speed calculating section, which calculates the discharge pressure Pp of the hydraulic pump 1 which is the output of the pressure sensor 52.
The increment value Δα of the corrected rotational speed α is determined from the characteristics shown in the figure in accordance with the above. According to this characteristic, the above-mentioned increment value Δα becomes negative in a range where the discharge pressure Pp is less than or equal to the first predetermined value Pp1, and in a range where the discharge pressure Pp is greater than or equal to the second predetermined value Pp2 which is greater than the first predetermined value Pp1. In this case, the increment value Δα becomes positive, and in other ranges, that is, Pp1<Pp<Pp2, the increment value Δα becomes positive.
α becomes zero. The increment value Δα of the corrected rotational speed α obtained by the first corrected rotational speed calculating section 82 is added to the corrected rotational speed α obtained in the previous control cycle by an adding section 85,
It is set as a new corrected rotation speed α.

【0023】83は第2の補正回転数演算部であり、こ
の第2の補正回転数演算部83には、上記差圧センサ5
4により検出されたLS差圧ΔPLSがフィルタ89を
介して入力され、このLS差圧ΔPLSに応じて図示の
特性から補正回転数αの増分Δαを求める。ここで、上
述したように差圧センサ54により検出されるLS差圧
ΔPLSは、短時間のうちに大きく変動するので、ハン
チングを防止するために上記フィルタ89により所定時
間の平均値を求めてその値を用いるようにしている。な
お、上記吐出圧力Ppの検出値は比較的安定しているの
で、このようなフィルタを用いる必要はない。この第2
の補正回転数演算部83の特性によれば、LS差圧ΔP
LSが目標差圧ΔPLSR以上の範囲では補正回転数α
の増分値Δαは負となり、LS差圧ΔPLSが目標差圧
ΔPLSRΔ以下の範囲では、上記増分値Δαは正とな
り、かつLS差圧ΔPLSの減少に従って増分値Δαが
増加する。
Reference numeral 83 denotes a second correction rotation speed calculation section, and this second correction rotation speed calculation section 83 includes the differential pressure sensor 5.
The LS differential pressure ΔPLS detected by 4 is inputted via the filter 89, and the increment Δα of the corrected rotational speed α is determined from the characteristics shown in the figure in accordance with the LS differential pressure ΔPLS. Here, as mentioned above, the LS differential pressure ΔPLS detected by the differential pressure sensor 54 fluctuates greatly in a short period of time, so in order to prevent hunting, the filter 89 calculates the average value over a predetermined period of time. I am trying to use the value. Note that since the detected value of the discharge pressure Pp is relatively stable, there is no need to use such a filter. This second
According to the characteristics of the corrected rotation speed calculation unit 83, the LS differential pressure ΔP
In the range where LS is greater than the target differential pressure ΔPLSR, the corrected rotation speed α
The increment value Δα becomes negative, and in the range where the LS differential pressure ΔPLS is equal to or less than the target differential pressure ΔPLSRΔ, the increment value Δα becomes positive, and the increment value Δα increases as the LS differential pressure ΔPLS decreases.

【0024】第2の補正回転数演算部83で求められた
補正回転数αの増分値Δαは、スイッチ84を介して加
算部86に入力可能とされる。スイッチ84は、上記第
1の補正回転数演算部82で求められた増分値Δαが零
のときにのみオンし、このスイッチ84がオンのときに
のみ第2の補正回転数演算部83の出力Δαが加算部8
6で補正回転数αに加算される。加算部86の出力は上
記加算部85で加算され、加算部85の出力は加算部8
7で上記目標回転数Nxに加算され、目標回転数指令値
Nyとされる。ここで、各制御特性にヒステリシスを設
けたり、補正回転数αの増分値Δαを求めてそれを前回
の補正回転数αに加算するようにしたのは、ハンチング
を防止するためである。
The increment value Δα of the corrected rotational speed α obtained by the second corrected rotational speed calculation section 83 can be input to the addition section 86 via a switch 84 . The switch 84 is turned on only when the increment value Δα determined by the first corrected rotation speed calculation section 82 is zero, and the output of the second correction rotation speed calculation section 83 is turned on only when this switch 84 is on. Δα is the adder 8
6 is added to the corrected rotation speed α. The output of the adder 86 is added by the adder 85, and the output of the adder 85 is added by the adder 85.
7, it is added to the target rotation speed Nx, and is set as the target rotation speed command value Ny. Here, the reason why each control characteristic is provided with hysteresis and the increment value Δα of the corrected rotational speed α is determined and added to the previous corrected rotational speed α is to prevent hunting.

【0025】上記目標回転数指令値Nyはサ−ボ制御部
88でポテンショメ−タ55により検出したガバナレバ
ー27bの変位量Nθの信号と比較され、図5に示す手
順にしたがって両者が一致するようパルスモータ28が
制御される。
The target rotational speed command value Ny is compared with the signal of the displacement Nθ of the governor lever 27b detected by the potentiometer 55 in the servo control section 88, and the two are made to match according to the procedure shown in FIG. Pulse motor 28 is controlled.

【0026】図5において、まずステップS21で目標
回転数指令値Nyとガバナレバー変位量Nθとをそれぞ
れ読み込み、ステップS22に進む。ステップS22で
は、Nθ−Nyの結果を回転数差Aとしてメモリに格納
し、ステップS23において、予め定めた基準回転数差
Kを用いて、|A|≧Kか否かを判定する。肯定される
とステップS24に進み、回転数差A>0か否かを判定
し、A>0ならばガバナレバ−変位量Nθが目標回転数
指令値Nyよりも大きい、つまり制御回転数が目標回転
数よりも高いから、エンジン回転数を下げるためステッ
プS25でモータ逆転を指令する信号をパルスモータ2
8に出力する。これによりパルスモータ28が逆転しエ
ンジン27の回転数が低下する。
In FIG. 5, first, in step S21, the target rotational speed command value Ny and the governor lever displacement amount Nθ are respectively read, and the process proceeds to step S22. In step S22, the result of Nθ-Ny is stored in the memory as the rotational speed difference A, and in step S23, it is determined whether |A|≧K using a predetermined reference rotational speed difference K. If affirmative, the process proceeds to step S24, where it is determined whether the rotation speed difference A>0 or not. If A>0, the governor lever displacement amount Nθ is larger than the target rotation speed command value Ny, that is, the control rotation speed is the target rotation. Since the number of revolutions is higher than the number of revolutions, a signal instructing the motor to reverse rotation is sent to the pulse motor 2 in step S25 in order to lower the engine revolution speed.
Output to 8. As a result, the pulse motor 28 rotates in reverse, and the rotational speed of the engine 27 decreases.

【0027】一方、A≦0ならばガバナレバ−変位量N
θが目標回転数指令値Nyよりも小さい、つまり制御回
転数が目標回転数よりも低いから、エンジン回転数を上
げるためステップS26でモータ正転を指令する信号を
出力する。これにより、パルスモータ28が正転し、エ
ンジン27の回転数が上昇する。ステップS23が否定
されるとステップS27に進んでモータ停止信号を出力
し、これによりエンジン27の回転数が一定値に保持さ
れる。ステップS25〜S27を実行すると始めに戻る
On the other hand, if A≦0, the governor lever displacement amount N
Since θ is smaller than the target rotational speed command value Ny, that is, the control rotational speed is lower than the target rotational speed, a signal instructing normal rotation of the motor is output in step S26 in order to increase the engine rotational speed. As a result, the pulse motor 28 rotates normally, and the rotational speed of the engine 27 increases. If step S23 is negative, the process proceeds to step S27, where a motor stop signal is output, thereby maintaining the rotational speed of the engine 27 at a constant value. After steps S25 to S27 are executed, the process returns to the beginning.

【0028】以上の構成において、圧力センサ52にて
検出された油圧ポンプ1の吐出圧力Ppが所定値Pp2
(図1)以上(Pp≧Pp2)のときには、第1の補正
回転数演算部82で得られる補正回転数αの増分値Δα
が+側となり、このΔαが加算された補正回転数αが目
標回転数演算部81にて設定された目標回転数Nxに加
算される。したがって、補正回転数αの分だけ目標回転
数指令値Nyが目標回転数Nxよりも高くなり、エンジ
ン27の実際の回転数もそれに応じて上昇し、油圧ポン
プ1の吐出流量が増加する。またPp1<Pp<Pp2
のときには補正回転数αの増分値Δαは零となり、Pp
≦Pp1のときには、Δαは−側となるので、Pp<P
p2のときには、目標回転数指令値Nyは目標回転数N
x以下となる。すなわちこの制御によれば、油圧ポンプ
1の要求流量に応じて実際のポンプ流量が制御され、軽
負荷時も重負荷時も所望の作業速度を維持しつつ燃料消
費量が最も有利な状態で運転が可能となる。ここで、油
圧ポンプ1の吐出圧力Ppに基づくこの制御では、ハン
チングを防止するためのフィルタが不要なので、応答性
がよいという効果がある。
In the above configuration, the discharge pressure Pp of the hydraulic pump 1 detected by the pressure sensor 52 is a predetermined value Pp2.
(FIG. 1) When Pp≧Pp2, the increment value Δα of the corrected rotational speed α obtained by the first corrected rotational speed calculating section 82
is on the + side, and the corrected rotation speed α to which this Δα is added is added to the target rotation speed Nx set by the target rotation speed calculating section 81. Therefore, the target rotational speed command value Ny becomes higher than the target rotational speed Nx by the corrected rotational speed α, the actual rotational speed of the engine 27 increases accordingly, and the discharge flow rate of the hydraulic pump 1 increases. Also, Pp1<Pp<Pp2
When , the increment value Δα of the corrected rotation speed α becomes zero, and Pp
When ≦Pp1, Δα is on the − side, so Pp<P
At the time of p2, the target rotation speed command value Ny is the target rotation speed N
It will be less than or equal to x. In other words, according to this control, the actual pump flow rate is controlled according to the required flow rate of the hydraulic pump 1, and the operation is performed in a state where the fuel consumption is most advantageous while maintaining the desired working speed under both light and heavy loads. becomes possible. Here, this control based on the discharge pressure Pp of the hydraulic pump 1 does not require a filter to prevent hunting, so it has the effect of good responsiveness.

【0029】一方、第1の補正回転数演算部82で得ら
れる補正回転数αの増分値Δαが零のときにはスイッチ
84がオンするので、第2の補正回転数演算部83で得
られる増分値Δαが加算部86で補正回転数αに加算さ
れる。そしてこの増分値Δαは、LS差圧ΔPLSが目
標差圧ΔPLSR以下の範囲では正となるので、この場
合は目標回転数指令値Nyが目標回転数Nxよりも高く
なり、エンジン27の実際の回転数もそれに応じて上昇
し、油圧ポンプ1の吐出流量が増加する。
On the other hand, when the increment value Δα of the corrected rotation speed α obtained by the first correction rotation speed calculation unit 82 is zero, the switch 84 is turned on, so that the increment value obtained by the second correction rotation speed calculation unit 83 Δα is added to the corrected rotation speed α by an adding section 86. Since this increment value Δα is positive in the range where the LS differential pressure ΔPLS is equal to or less than the target differential pressure ΔPLSR, in this case, the target rotation speed command value Ny becomes higher than the target rotation speed Nx, and the actual rotation of the engine 27 The number also increases accordingly, and the discharge flow rate of the hydraulic pump 1 increases.

【0030】すなわち以上によれば、吐出圧力Ppによ
る制御が優先されるので、通常は応答性がよく速やかに
エンジン回転数を上昇させることができる。また例えば
油圧ポンプ1の吐出圧力が低いときに複数のアクチュエ
ータを駆動する場合のように、低圧にも拘らず要求流量
が多いときには、吐出圧力Ppを用いる上記第1の目標
回転数演算部81による制御では流量不足を判定できな
いが、LS差圧ΔPLSを用いる第2の補正回転数演算
部83で流量不足を判定でき、応答性は悪いながらも油
圧ポンプ1の吐出流量を要求量まで増加することが可能
となる。
That is, according to the above, since priority is given to control based on the discharge pressure Pp, the engine speed can normally be increased quickly with good responsiveness. Further, when the required flow rate is large despite the low pressure, such as when driving a plurality of actuators when the discharge pressure of the hydraulic pump 1 is low, the first target rotation speed calculation section 81 using the discharge pressure Pp Although the control cannot determine whether the flow is insufficient, the second correction rotation speed calculation unit 83 that uses the LS differential pressure ΔPLS can determine the insufficient flow, and the discharge flow of the hydraulic pump 1 can be increased to the required amount, although the responsiveness is poor. becomes possible.

【0031】以上の実施例の構成において、油圧モータ
4および作業用油圧シリンダ21が油圧アクチュエータ
を、LS制御部61がロードセンシング制御手段を、燃
料レバー57aが操作手段を、目標回転数演算部81が
目標回転数設定手段を、第1,第2の補正回転数演算部
82,83,スイッチ84および加算部85〜87が回
転数補正手段100を、パルスモータ28およびサーボ
制御部88が原動機制御手段を、圧力センサ52が吐出
圧検出手段を、差圧センサ54が差圧検出手段をそれぞ
れ構成する。
In the configuration of the above embodiment, the hydraulic motor 4 and working hydraulic cylinder 21 act as a hydraulic actuator, the LS control section 61 acts as a load sensing control means, the fuel lever 57a acts as an operating means, and the target rotation speed calculation section 81 acts as a control means. is the target rotation speed setting means, the first and second corrected rotation speed calculating sections 82, 83, the switch 84 and the addition sections 85 to 87 are the rotation speed correction means 100, and the pulse motor 28 and the servo control section 88 are the prime mover control unit. The pressure sensor 52 constitutes a discharge pressure detection means, and the differential pressure sensor 54 constitutes a differential pressure detection means.

【0032】−第2の実施例− 図6により本発明の第2の実施例を説明する。図6は上
記図1に相当する図であり、図1と同様な箇所には同一
の符号を付してある。本実施例における第2の制御回路
部90には、上記第2の補正回転数演算部83に代えて
、傾転角演算部91と、加算部92と、第2の補正回転
数演算部93が設けられている。傾転角演算部91は、
油圧ポンプの吐出圧力Ppを入力し、この吐出圧力Pp
に応じた油圧ポンプ1の最大傾転角(最大押除け容積)
の制限値θpを求める。この特性によれば、吐出圧力P
pが小さいほど最大傾転角の制限値θpが大きくなるよ
うになっている。
-Second Embodiment- A second embodiment of the present invention will be explained with reference to FIG. FIG. 6 is a diagram corresponding to FIG. 1 described above, and parts similar to those in FIG. 1 are given the same reference numerals. The second control circuit section 90 in this embodiment includes a tilt angle calculation section 91, an addition section 92, and a second correction rotation speed calculation section 93 instead of the second correction rotation speed calculation section 83. is provided. The tilt angle calculation unit 91 is
Input the discharge pressure Pp of the hydraulic pump, and
Maximum tilt angle of hydraulic pump 1 according to (maximum displacement volume)
Find the limit value θp. According to this characteristic, the discharge pressure P
The smaller p is, the larger the maximum tilt angle limit value θp becomes.

【0033】加算部92では、この制限値θpと、上記
傾転角センサ51により検出されたポンプ傾転角θsと
の偏差Δθ(=θp−θs)が求められ、第2の補正回
転数演算部93では、この偏差Δθに応じて図示の特性
から補正回転数αの増分値Δαが求められる。この特性
によれば、上記偏差Δθが所定値Δθ0以上の範囲では
補正回転数αの増分値Δαは負となり、偏差Δθが所定
値Δθ0以下の範囲では、上記増分値Δαは正となり、
かつ偏差Δθの減少に従って増分値Δαが増加する。そ
して、求められた増分値Δαは、上述と同様にスイッチ
84がオンのときにのみ加算部86で補正回転数αに加
算される。
The adding section 92 calculates the deviation Δθ (=θp−θs) between this limit value θp and the pump tilting angle θs detected by the tilting angle sensor 51, and performs a second correction rotation speed calculation. In a section 93, an increment value Δα of the corrected rotational speed α is determined from the illustrated characteristics in accordance with this deviation Δθ. According to this characteristic, in a range where the deviation Δθ is greater than or equal to a predetermined value Δθ0, the increment value Δα of the corrected rotation speed α is negative, and in a range where the deviation Δθ is less than or equal to the predetermined value Δθ0, the increment value Δα is positive.
The increment value Δα increases as the deviation Δθ decreases. Then, the determined increment value Δα is added to the corrected rotational speed α by the adding section 86 only when the switch 84 is on, as described above.

【0034】ここで、上記最大傾転角の制限値θpとポ
ンプ傾転角θsとの偏差Δθを用いる本制御では、吐出
圧力Ppから制限値θpを求める工程および偏差Δθを
求める工程が必要であるので、吐出圧力Ppによる制御
(第1の補正回転数演算部82)と比べて応答性が悪い
が、低圧時に要求流量が大きいために流量不足となった
場合でもその流量不足を判定することができる。
Here, in this control using the deviation Δθ between the limit value θp of the maximum tilting angle and the pump tilting angle θs, a step of determining the limit value θp from the discharge pressure Pp and a step of determining the deviation Δθ are required. Therefore, the response is poor compared to the control based on the discharge pressure Pp (first corrected rotational speed calculation section 82), but even if the required flow rate is large at low pressure and the flow rate is insufficient, it is possible to determine whether the flow rate is insufficient. Can be done.

【0035】以上の構成において、検出された油圧ポン
プ1の吐出圧力Ppが所定値Pp2(図1)以上(Pp
≧Pp2)のときには、上述と同様に第1の補正回転数
演算部82で得られる値補正回転数αの増分値Δαが+
側となり、目標回転数指令値Nyが目標回転数Nxより
も高くなる。したがってエンジン27の実際の回転数も
それに応じて高くなり油圧ポンプ1の吐出流量を速やか
に増加させことができる。
In the above configuration, the detected discharge pressure Pp of the hydraulic pump 1 is equal to or higher than the predetermined value Pp2 (FIG. 1) (Pp
≧Pp2), the increment value Δα of the value corrected rotation speed α obtained by the first correction rotation speed calculating section 82 is +
side, and the target rotational speed command value Ny becomes higher than the target rotational speed Nx. Therefore, the actual rotational speed of the engine 27 increases accordingly, and the discharge flow rate of the hydraulic pump 1 can be rapidly increased.

【0036】また第1の補正回転数演算部82で得られ
る補正回転数αの増分値Δαが零のときにはスイッチ8
4がオンするので、第2の補正回転数演算部93で得ら
れる増分値Δαが加算部86で補正回転数αに加算され
る。そしてこの増分値Δαは、傾転角演算部91で得ら
れた最大傾転角の制限値θpと、上記傾転角センサ51
により検出されたポンプ傾転角θsとの偏差Δθが所定
値Δθ0以下の範囲では正となるので、目標回転数指令
値Nyが目標回転数演算部81にて設定された目標回転
数Nxよりも高くなり、油圧ポンプ1の吐出流量が増加
する。
Further, when the increment value Δα of the corrected rotational speed α obtained by the first corrected rotational speed calculating section 82 is zero, the switch 8
4 is turned on, the increment value Δα obtained by the second correction rotation speed calculating section 93 is added to the correction rotation speed α by the addition section 86. This increment value Δα is determined by the maximum tilt angle limit value θp obtained by the tilt angle calculation section 91 and the tilt angle sensor 51.
Since the deviation Δθ from the pump tilt angle θs detected by is positive in the range below the predetermined value Δθ0, the target rotation speed command value Ny is lower than the target rotation speed Nx set by the target rotation speed calculation section 81. The discharge flow rate of the hydraulic pump 1 increases.

【0037】すなわち本実施例によれば、第1の実施例
と同様に吐出圧力Ppによる制御が優先されるので、通
常は応答性がよく速やかにエンジン回転数を上昇させる
ことができる。また例えば油圧ポンプ1の吐出圧力が低
いときに複数のアクチュエータを駆動する場合のように
、低圧にも拘らず要求流量が多いときには、上記傾転角
偏差Δθを用いる第2の補正回転数演算部93で流量不
足を判定でき、応答性は悪いながらも油圧ポンプ1の吐
出流量を要求量まで増加することが可能となる。
That is, according to this embodiment, as in the first embodiment, priority is given to control based on the discharge pressure Pp, and therefore the engine speed can normally be increased quickly with good responsiveness. Furthermore, when the required flow rate is large despite the low pressure, such as when driving a plurality of actuators when the discharge pressure of the hydraulic pump 1 is low, the second correction rotation speed calculation section that uses the tilt angle deviation Δθ is used. 93, it is possible to determine whether the flow rate is insufficient, and it becomes possible to increase the discharge flow rate of the hydraulic pump 1 to the required amount, although the responsiveness is poor.

【0038】以上の実施例の構成において、傾転角演算
部91が演算手段を、第1および第2の補正回転数演算
部82,93,スイッチ84および加算部85〜87が
回転数補正手段100’をそれぞれ構成する。
In the configuration of the above embodiment, the tilt angle calculation section 91 serves as the calculation means, and the first and second correction rotation speed calculation sections 82, 93, the switch 84, and the addition sections 85 to 87 serve as the rotation speed correction means. 100' respectively.

【0039】なお以上では、燃料レバーの操作量に応じ
てエンジン回転数を制御する例を示したが、操作手段は
燃料レバーに限定されず、例えば走行ペダル操作量に応
じてエンジン回転数を制御するものにも本発明を適用で
きる。また油圧ショベル以外の油圧建設機械にも本発明
を同様に適用できる。さらに第2の実施例では、傾転角
センサ51にて検出された傾転θsから偏差Δθを演算
したが、このθsの代りに第3図のθL(LS目標傾転
)を用いてもよい。
Although the above example shows an example in which the engine speed is controlled according to the amount of operation of the fuel lever, the operating means is not limited to the fuel lever, and for example, the engine speed can be controlled according to the amount of operation of the travel pedal. The present invention can also be applied to those that do. Further, the present invention can be similarly applied to hydraulic construction machines other than hydraulic excavators. Further, in the second embodiment, the deviation Δθ was calculated from the tilt θs detected by the tilt angle sensor 51, but θL (LS target tilt) in FIG. 3 may be used instead of this θs. .

【0040】[0040]

【発明の効果】請求項1の発明によれば、ロードセンシ
ング制御を行うものにおいて、油圧ポンプの吐出圧力が
所定値以上のとき、およびこの吐出圧力が所定値未満で
あってもLS差圧が所定値以下のときには、操作手段の
操作に応じて設定された目標回転数よりも高い回転数を
目標回転数指令値とするようにしたので、制御時の応答
性を改善されるとともに、いかなる場合でも流量不足か
否かの判定を正確に行って回転数制御が的確に行うこと
ができる。請求項2の発明によれば、油圧ポンプの吐出
圧力が所定値以上のとき、およびこの吐出圧力が所定値
未満であっても油圧ポンプの押除け容積と最大可能押除
け容積との差が所定値以下のときには、上記目標回転数
よりも高い回転数を目標回転数指令値とするようにした
ので、上述と同様の効果が得られる。
According to the invention of claim 1, in a device that performs load sensing control, when the discharge pressure of the hydraulic pump is equal to or higher than a predetermined value, and even when this discharge pressure is less than a predetermined value, the LS differential pressure is When the rotation speed is below a predetermined value, the target rotation speed command value is set to a rotation speed higher than the target rotation speed set according to the operation of the operating means, so responsiveness during control is improved, and in any case However, it is possible to accurately determine whether the flow rate is insufficient and to control the rotation speed accurately. According to the invention of claim 2, when the discharge pressure of the hydraulic pump is equal to or higher than a predetermined value, and even when this discharge pressure is less than a predetermined value, the difference between the displacement volume of the hydraulic pump and the maximum possible displacement volume is a predetermined value. Since the target rotation speed command value is set to a rotation speed higher than the target rotation speed when the rotation speed is less than the target rotation speed, the same effect as described above can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】第1の実施例に係るエンジン制御回路部のブロ
ック図である。
FIG. 1 is a block diagram of an engine control circuit section according to a first embodiment.

【図2】油圧建設機械の駆動制御装置の全体構成を示す
図である。
FIG. 2 is a diagram showing the overall configuration of a drive control device for hydraulic construction machinery.

【図3】図2の一部分を拡大して示す図である。FIG. 3 is an enlarged view of a portion of FIG. 2;

【図4】ポンプ制御回路部のブロック図である。FIG. 4 is a block diagram of a pump control circuit section.

【図5】エンジン回転数制御の手順を示すフローチャー
トである。
FIG. 5 is a flowchart showing a procedure for engine speed control.

【図6】第2の実施例に係るエンジン制御回路部のブロ
ック図である。
FIG. 6 is a block diagram of an engine control circuit section according to a second embodiment.

【符号の説明】[Explanation of symbols]

1  可変容量油圧ポンプ 2  走行用制御弁 4  走行用油圧モータ 6  パイロット弁 6a  走行ペダル 8  前後進切換弁 20  作業用制御弁 21  作業用シリンダ 27  エンジン(原動機) 28  パルスモータ 40  傾転制御装置 50  コントローラ 51  傾転角センサ 52  圧力センサ 53  回転数センサ 54  差圧センサ 55  ポテンショメ−タ 57  回転数設定装置 57a  燃料レバー 60  第1の制御回路部 61  LS制御部 62  トルク制御部 63  選択部 64  サ−ボ制御部 80,90  第2の制御回路部 81  目標回転数演算部 82  第1の補正回転数演算部 83,93  第2の補正回転数演算部84  スイッ
チ 85〜87  加算部 88  サーボ制御部 91  傾転角演算部 92  加算部 100,100’  回転数補正手段
1 Variable capacity hydraulic pump 2 Traveling control valve 4 Traveling hydraulic motor 6 Pilot valve 6a Traveling pedal 8 Forward/backward switching valve 20 Working control valve 21 Working cylinder 27 Engine (prime mover) 28 Pulse motor 40 Tilt control device 50 Controller 51 Tilt angle sensor 52 Pressure sensor 53 Rotation speed sensor 54 Differential pressure sensor 55 Potentiometer 57 Rotation speed setting device 57a Fuel lever 60 First control circuit section 61 LS control section 62 Torque control section 63 Selection section 64 Service Bo control section 80, 90 Second control circuit section 81 Target rotation speed calculation section 82 First correction rotation speed calculation section 83, 93 Second correction rotation speed calculation section 84 Switches 85 to 87 Addition section 88 Servo control section 91 Tilt angle calculation section 92 Addition section 100, 100' Rotation speed correction means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  原動機によって駆動される可変容量油
圧ポンプと、この油圧ポンプからの吐出油により駆動さ
れる少なくとも1つの油圧アクチュエータと、前記油圧
アクチュエータに供給される圧油の流量を制御する制御
弁と、前記油圧ポンプの吐出圧力と前記油圧アクチュエ
ータの負荷圧力との差圧を検出する差圧検出手段と、前
記検出された差圧に基づいて、前記油圧ポンプの吐出圧
力を前記油圧アクチュエータの負荷圧力よりも一定の差
圧だけ高く保持するよう前記油圧ポンプの押除け容積を
制御するロードセンシング制御手段と、操作手段の操作
に応じて前記原動機の目標回転数を設定する目標回転数
設定手段と、前記油圧ポンプの吐出圧力を検出する吐出
圧検出手段と、前記検出された吐出圧力に基づいて、不
足流量を補うべく前記設定された目標回転数に補正を加
える回転数補正手段と、前記補正された目標回転数とな
るように前記原動機を制御する原動機制御手段とを備え
た油圧建設機械の駆動制御装置において、前記回転数補
正手段は、前記検出された油圧ポンプの吐出圧力が所定
値以上のとき、およびこの吐出圧力が所定値未満であっ
ても前記検出された差圧が所定値以下のときには、前記
目標回転数設定手段にて設定された目標回転数よりも高
い目標回転数となるよう補正を加えることを特徴とする
油圧建設機械の駆動制御装置。
1. A variable displacement hydraulic pump driven by a prime mover, at least one hydraulic actuator driven by oil discharged from the hydraulic pump, and a control valve that controls the flow rate of pressure oil supplied to the hydraulic actuator. a differential pressure detection means for detecting a differential pressure between the discharge pressure of the hydraulic pump and the load pressure of the hydraulic actuator; load sensing control means for controlling the displacement of the hydraulic pump so as to maintain it higher than the pressure by a certain differential pressure; and target rotation speed setting means for setting the target rotation speed of the prime mover in accordance with the operation of the operating means. , a discharge pressure detection means for detecting the discharge pressure of the hydraulic pump; a rotation speed correction means for correcting the set target rotation speed based on the detected discharge pressure in order to compensate for the insufficient flow rate; and the correction means. In the drive control device for hydraulic construction machinery, the drive control device for hydraulic construction machinery includes a prime mover control means for controlling the prime mover so as to achieve a target rotation speed, wherein the rotation speed correction means is configured to control the detected hydraulic pump discharge pressure to a predetermined value or higher. When, and even if this discharge pressure is less than a predetermined value, when the detected differential pressure is below a predetermined value, the target rotation speed becomes higher than the target rotation speed set by the target rotation speed setting means. A drive control device for hydraulic construction machinery, which is characterized by adding corrections such as:
【請求項2】  原動機によって駆動される可変容量油
圧ポンプと、この油圧ポンプからの吐出油により駆動さ
れる少なくとも1つの油圧アクチュエータと、前記油圧
アクチュエータに供給される圧油の流量を制御する制御
弁と、操作手段の操作に応じて前記原動機の目標回転数
を設定する目標回転数設定手段と、前記油圧ポンプの吐
出圧力を検出する吐出圧検出手段と、前記検出された吐
出圧力に基づいて、不足流量を補うべく前記設定された
目標回転数に補正を加える回転数補正手段と、前記補正
された目標回転数となるように前記原動機を制御する原
動機制御手段とを備えた油圧建設機械の駆動制御装置に
おいて、前記油圧ポンプの吐出圧力に応じた最大押除け
容積の制限値を演算する演算手段とを備え、前記回転数
補正手段は、前記検出された油圧ポンプの吐出圧力が所
定値以上のとき、およびこの吐出圧力が所定値未満であ
っても前記油圧ポンプの押除け容積と前記演算された最
大押除け容積の制限値との偏差が所定値以下のときには
、前記目標回転数設定手段にて設定された目標回転数よ
りも高い目標回転数となるよう補正を加えることを特徴
とする油圧建設機械の駆動制御装置。
2. A variable displacement hydraulic pump driven by a prime mover, at least one hydraulic actuator driven by oil discharged from the hydraulic pump, and a control valve that controls the flow rate of pressure oil supplied to the hydraulic actuator. a target rotation speed setting means for setting a target rotation speed of the prime mover in accordance with the operation of the operating means; a discharge pressure detection means for detecting the discharge pressure of the hydraulic pump; and based on the detected discharge pressure, Driving a hydraulic construction machine, comprising: rotation speed correction means for correcting the set target rotation speed to compensate for insufficient flow; and prime mover control means for controlling the prime mover so as to achieve the corrected target rotation speed. The control device includes a calculation means for calculating a maximum displacement limit value according to the discharge pressure of the hydraulic pump, and the rotation speed correction means is configured to calculate a limit value of the maximum displacement according to the discharge pressure of the hydraulic pump, and the rotation speed correction means is configured to calculate a limit value of the maximum displacement according to the discharge pressure of the hydraulic pump. and even if this discharge pressure is less than a predetermined value, when the deviation between the displacement volume of the hydraulic pump and the calculated maximum displacement limit value is equal to or less than a predetermined value, the target rotation speed setting means A drive control device for hydraulic construction machinery, characterized in that a correction is made so that the target rotational speed is higher than a target rotational speed set.
JP3060921A 1991-02-08 1991-02-08 Drive control device for hydraulic construction machinery Expired - Fee Related JP2608997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3060921A JP2608997B2 (en) 1991-02-08 1991-02-08 Drive control device for hydraulic construction machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3060921A JP2608997B2 (en) 1991-02-08 1991-02-08 Drive control device for hydraulic construction machinery

Publications (2)

Publication Number Publication Date
JPH04258505A true JPH04258505A (en) 1992-09-14
JP2608997B2 JP2608997B2 (en) 1997-05-14

Family

ID=13156337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3060921A Expired - Fee Related JP2608997B2 (en) 1991-02-08 1991-02-08 Drive control device for hydraulic construction machinery

Country Status (1)

Country Link
JP (1) JP2608997B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004150304A (en) * 2002-10-29 2004-05-27 Komatsu Ltd Controller of engine
WO2008087847A1 (en) * 2007-01-18 2008-07-24 Komatsu Ltd. Engine control device, and its control method
JP2012219653A (en) * 2011-04-05 2012-11-12 Sumitomo (Shi) Construction Machinery Co Ltd Construction machine and control method thereof
WO2013089230A1 (en) * 2011-12-16 2013-06-20 キャタピラー エス エー アール エル Hydraulic machinery
JP2014069616A (en) * 2012-09-27 2014-04-21 Kubota Corp Service car
US9776615B2 (en) 2012-09-24 2017-10-03 Kubota Corporation Vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112798A (en) * 1973-09-07 1976-01-31 Bbc Brown Boveri & Cie Ekishoseru oyobi sonoseiho
JPS5128800A (en) * 1974-09-04 1976-03-11 Tange F NENCHAKUTE EPUNONENCHAKUKI
JPS58184648U (en) * 1982-06-03 1983-12-08 中島 直 Molten metal gas analysis sampler
JPS5998347U (en) * 1982-12-23 1984-07-03 株式会社東芝 gas sampling device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112798A (en) * 1973-09-07 1976-01-31 Bbc Brown Boveri & Cie Ekishoseru oyobi sonoseiho
JPS5128800A (en) * 1974-09-04 1976-03-11 Tange F NENCHAKUTE EPUNONENCHAKUKI
JPS58184648U (en) * 1982-06-03 1983-12-08 中島 直 Molten metal gas analysis sampler
JPS5998347U (en) * 1982-12-23 1984-07-03 株式会社東芝 gas sampling device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004150304A (en) * 2002-10-29 2004-05-27 Komatsu Ltd Controller of engine
WO2008087847A1 (en) * 2007-01-18 2008-07-24 Komatsu Ltd. Engine control device, and its control method
US8640451B2 (en) 2007-01-18 2014-02-04 Komatsu Ltd. Engine control device, and its control method
JP2012219653A (en) * 2011-04-05 2012-11-12 Sumitomo (Shi) Construction Machinery Co Ltd Construction machine and control method thereof
WO2013089230A1 (en) * 2011-12-16 2013-06-20 キャタピラー エス エー アール エル Hydraulic machinery
JP2013124752A (en) * 2011-12-16 2013-06-24 Caterpillar Sarl Hydraulic working machine
CN104136782A (en) * 2011-12-16 2014-11-05 卡特彼勒Sarl公司 Hydraulic machinery
CN104136782B (en) * 2011-12-16 2016-03-30 卡特彼勒Sarl公司 Hydraulic machine
US9776615B2 (en) 2012-09-24 2017-10-03 Kubota Corporation Vehicle
JP2014069616A (en) * 2012-09-27 2014-04-21 Kubota Corp Service car

Also Published As

Publication number Publication date
JP2608997B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
JP3587957B2 (en) Engine control device for construction machinery
US5307631A (en) Hydraulic control apparatus for hydraulic construction machine
US5941155A (en) Hydraulic motor control system
US10329739B2 (en) Construction machine
JP2651079B2 (en) Hydraulic construction machinery
JP3316053B2 (en) Engine speed control device for hydraulic construction machinery
JP3708563B2 (en) Drive control device for hydraulic construction machine
JP3686324B2 (en) Hydraulic traveling vehicle
JP3316057B2 (en) Engine speed control device for hydraulic construction machinery
JP2608997B2 (en) Drive control device for hydraulic construction machinery
JP2735978B2 (en) Hydraulic construction machine torque control device
JP4376047B2 (en) Control equipment for hydraulic construction machinery
JP2677803B2 (en) Hydraulic drive
JPH0783084A (en) Hydraulic construction machine
JP2854898B2 (en) Drive control device for hydraulic construction machinery
JP2760706B2 (en) Hydraulic construction machine torque control device
JP2633095B2 (en) Hydraulic control equipment for hydraulic construction machinery
JP3308073B2 (en) Engine speed control device for hydraulic construction machinery
JP2872417B2 (en) Hydraulic control equipment for hydraulic construction machinery
JP3175992B2 (en) Control device for hydraulic drive machine
JP6619939B2 (en) Hydraulic drive system
JPH0510269A (en) Method for controlling absorption torque of variable displacement type hydraulic pump
JP3305801B2 (en) Control device for hydraulic drive machine
JP2749733B2 (en) Hydraulic control equipment for hydraulic construction machinery
JPH03267534A (en) Prime mover controller for construction machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees