WO1994026456A1 - Plasma arc welding apparatus and welding method using the same - Google Patents

Plasma arc welding apparatus and welding method using the same Download PDF

Info

Publication number
WO1994026456A1
WO1994026456A1 PCT/JP1994/000745 JP9400745W WO9426456A1 WO 1994026456 A1 WO1994026456 A1 WO 1994026456A1 JP 9400745 W JP9400745 W JP 9400745W WO 9426456 A1 WO9426456 A1 WO 9426456A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
torch
tip
arc welding
plasma torch
Prior art date
Application number
PCT/JP1994/000745
Other languages
English (en)
French (fr)
Inventor
Hiroshi Takada
Masamitsu Kitahashi
Kunio Horiai
Iwao Kurokawa
Mikio Minonishi
Original Assignee
Kabushiki Kaisha Komatsu Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP4085893U external-priority patent/JPH079571U/ja
Application filed by Kabushiki Kaisha Komatsu Seisakusho filed Critical Kabushiki Kaisha Komatsu Seisakusho
Priority to EP94914593A priority Critical patent/EP0698441A4/en
Priority to US08/537,913 priority patent/US5728991A/en
Publication of WO1994026456A1 publication Critical patent/WO1994026456A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding

Definitions

  • the present invention relates to a plasma arc welding apparatus for lap welding a plurality of sheet materials and a welding method using the same.
  • this conventional arc spot welding apparatus includes an arc spot welding machine a having a base attached to an arm of a welding robot (not shown) and a welding torch c at a tip, and An air cylinder device c is attached to a via an arm b, moves integrally with the welding machine a, and has a pressing member f attached to a tip thereof. Then, the welding torch d of the arc spot welding machine a is set at a predetermined distance (standoff) from the front member e so as to face the front plate e, and then the air cylinder device c is operated.
  • the front plate e is pressed by the pressing member f to eliminate the gap between the front plate e and the back plate g, and the two plates e and g are welded by the welding torch a.
  • h is a stand which supports the back side plate material g.
  • the welding torch d is set at a predetermined position, and then the air cylinder device c is operated, and the front side plate material e is pressed by the pressing member f. Since the plate is pushed by the gap between the two plates e and g, the distance (stand-off) between the tip of the welding torch d and the front plate e as the member to be welded is shifted from that at the time of setting.
  • the welding torch d must be set at a position where the gap between the two sheets e and g is anticipated, and the adjustment and control are troublesome, and the front side sheet e is not deformed as expected.
  • the arc spot welding was performed at unintended intervals, and the required strength could not be obtained.
  • the conventional plasma arc welding equipment there is a plasma torch designed to be manually held by an operator.
  • This type of plasma torch has a plasma nozzle at the tip as shown in Fig. 2.
  • the grip handle k is fixed to the side of the torch body j.
  • the adjustment and holding of the distance (stand-off) from the tip of the nozzle i to the member to be welded is performed by visual inspection by the operator. It was done by. That is, it is one of the most important conditions in plasma arc welding, and the adjustment and holding of the stand-off, whose optimum value differs depending on the material and the thickness of the material to be welded, have been performed artificially. Therefore, with the above-mentioned conventional plasma torch, stable welding could not be performed without considerable skill.
  • an object of the present invention is to provide a device in which a plasma torch is supported by a welding robot, even when a front plate is pushed to eliminate a gap between the front plate and a back plate.
  • a plasma torch is attached to the plasma torch, and a tip thereof is located between a tip of the plasma torch and a workpiece.
  • a plasma arc welding apparatus comprising: a gap holding member, wherein a welding is performed by pressing a tip of the gap holding member against a material to be welded.
  • the robot or the welding robot is used. Even when the material to be welded is artificially pushed on the distal end side of the gap holding member to eliminate the gap, the stand-off, which is the distance between the tip of the plasma torch and the material to be welded, does not change. Spot welding by plasma arc can be performed with a constant stand-off. And, since the stand-off can be made constant, the setting operation of the plasma torch at a predetermined position by a welding robot or the like can be facilitated.
  • the stand-off can be arbitrarily changed according to the welding conditions, so that the work can be performed with the optimum stand-off for all materials and plate thicknesses.
  • a moving means for pressing the gap holding member against the material to be welded is provided.
  • the spacing member is a torch holder which is screwed to the plasma torch so as to be able to advance and retreat in the axial direction, and the torch holder is attached to an arm of a welding robot. Then, a moving device may be interposed between the torch holder and the arm. Further, the tip of the torch holder may have a cylindrical shape surrounding the tip of the plasma torch, and a hole or a notch for venting gas may be formed in a peripheral wall of the tip of the torch holder.
  • the spacing member is a case surrounding the plasma torch, and the case is attached to an arm of the welding robot.
  • the distance between the case mounting portion and the tip of the plasma torch is extendable and contractable, and the tip of the plasma torch is axially moved relative to the case by a moving device fixed to the case. You may.
  • a hole or notch for venting gas may be formed in the peripheral wall at the tip end of the case.
  • the spacing member is an annular spacer attached to a tip of the plasma torch, and a grip handle is fixed to the plasma torch.
  • the axial support frame formed on the stirrer is fitted slidably in the axial direction on a bracket fixed to the tip of the plasma torch, and fits into the axial long hole of the support frame.
  • the support frame is moved forward by a fixing screw that is fitted and screwed to the bracket. It may be fixed to the bracket so that the position in the axial direction can be adjusted.
  • a hole or a notch for venting gas may be formed in the peripheral wall of the stirrer.
  • the spacing member is a case surrounding the plasma torch, and a handle is fixed to the case.
  • the handle may be two.
  • the distance between the case mounting portion and the tip of the plasma torch is extendable and contractable, and the tip of the plasma torch is axially moved relative to the case by a moving device fixed to the case. You may do it.
  • a hole or notch for venting gas may be formed in the peripheral wall at the tip of the case.
  • the spacing member is a protective cap attached to a front end of the plasma torch, and the plasma torch is attached to an arm of a welding robot. Then, a moving device may be interposed between the plasma torch and the arm.
  • the protection cap may have a cylindrical shape surrounding the tip of the plasma torch, and a gas vent hole or notch may be formed in a peripheral wall of the tip of the protection cap.
  • an interlock circuit for preventing electric shock is provided between the plasma torch and the operation power supply.
  • a welding start switch included in the interlock circuit may be provided on the handle.
  • an automatic stand-off control circuit is connected to the moving device. According to this configuration, the stand-off control can be performed very easily.
  • a torch moving switch included in the automatic stand-off control circuit may be provided on the handle.
  • an interlock circuit for preventing electric shock is provided between the plasma torch and the operation power supply, and an automatic stand-off control circuit is connected to the moving device.
  • a welding start switch included in the interlock circuit and a torch moving switch included in the automatic stand-off control circuit may be provided on the handle.
  • the distance maintaining member is provided by using a plasma arc welding apparatus that includes a plasma torch and a spacing member that is attached to a base of the plasma torch and has a distal end located between the distal end of the plasma torch and the workpiece.
  • the present invention provides a plasma arc welding method in which welding is performed by pressing the tip of a workpiece against a workpiece.
  • FIG. 1 is a schematic view showing an example of a conventional plasma arc welding apparatus.
  • FIG. 2 is a schematic view showing another example of a conventional plasma arc welding apparatus.
  • FIG. 3 is a perspective view of a first embodiment of the plasma arc welding apparatus of the present invention.
  • FIG. 4 is a view showing a state where the plasma torch of the first embodiment is mounted on a welding robot.
  • FIG. 5 is a partially cutaway front view showing the torch holding device of the first embodiment.
  • 6A and 6B are perspective views each showing an example of the distal end of the torch holder of the first embodiment.
  • FIG. 7 is a diagram showing a schematic sequence of spot welding according to the above embodiment.
  • FIG. 8 is a sectional view of a second embodiment of the plasma arc welding apparatus of the present invention.
  • 9A and 9B are graphs showing an example in which the standoff is changed during welding in the second embodiment.
  • FIG. 10 is a side view of a third embodiment of the plasma arc welding apparatus according to the present invention.
  • FIG. 11 is a view in the direction of arrow A in FIG. 10.
  • FIG. 12 is a partially broken side view showing the configuration of the spacer portion of the third embodiment.
  • FIG. 13 is a sectional view of a fourth embodiment of the plasma arc welding apparatus according to the present invention.
  • FIG. 14 is a sectional view of a fifth embodiment of the plasma arc welding apparatus according to the present invention.
  • FIG. 15 is a side view of a sixth embodiment of the plasma arc welding apparatus according to the present invention.
  • FIG. 16 is a cross-sectional view showing the structure for attaching the protective cap to the tip of the plasma torch in the sixth embodiment.
  • FIG. 17 is a schematic diagram showing a clamped state of a material to be welded by the interlock device employed in the third to fifth embodiments.
  • FIG. 18 is an interlock circuit diagram of the interlock device.
  • FIG. 19 is a flowchart showing the flow of the entire welding work including the operation by the interlock circuit.
  • FIG. 20 is an automatic stand-off control circuit diagram employed in the second, fourth, and fifth embodiments.
  • FIG. 21 is a flowchart of the automatic stand-off control. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 3 to 6B show a first embodiment of the plasma arc welding apparatus according to the present invention.
  • reference numeral 2 denotes a power supply unit
  • 3 denotes a control unit having a built-in high-frequency unit.
  • the power supply unit 2 has a workpiece 4 clamped through a cable 4 having a built-in electric wire
  • a control unit 3 has a gas pipe and a gas pipe.
  • Plasma torch 7 is connected via torch cable 6 with built-in electric wire Five
  • Reference numeral 8 denotes a gas cylinder connected to the control unit 3 via a gas pipe 23.
  • the plasma torch 7 is used by being attached to a torch holding device 11 fixed to the tip of an arm 10 of an articulated welding port bot 9.
  • the coupling structure between the holding device 11 and the plasma torch 7 is as shown in FIG. 5, and a bracket 12 attached to the tip of the arm 10 is attached to the torch holding device via an air cylinder device 13. 14 is installed.
  • the plasma torch 7 is screwed to the torch holder 14 and attached so as to be able to advance and retreat in the axial direction.
  • the air cylinder device 13 is not necessarily an essential device, but may be only the torch holder 14.
  • the tip of the torch holder 14 projects outward in the axial direction from the tip of the plasma torch 7, that is, is located between the tip of the plasma torch 7 and the material to be welded. It has a cylindrical shape surrounding the tip.
  • the torch holder 14 is a spacing member for holding or adjusting the stand-off.
  • a notch 15 or a hole 16 for degassing is provided at the tip of the torch holder 14.
  • the torch holder 14 is made of an electrically insulating material.
  • Only the tip of the torch holder 14 is made of an electrically insulating material. You may.
  • the distance between the tip of the torch holder 14 and the tip of the plasma torch 7 Set the handoff L to the optimal value.
  • the arm 10 of the welding robot 9 is operated to move the tip of the torch holder 14 of the holding device 11 onto the welding point of the front plate 17.
  • the air cylinder 13 is actuated to move the torch holder 14 downward in the axial direction, the tip of the torch holder 14 is brought into contact with the front plate 17, and the front plate 17 is further pushed by the gap S. To bring both plates 17 and 18 into close contact.
  • the stand-off L does not change. Therefore, the stand-off L at the time of welding is always constant regardless of the size of the gap S between the two plates 17 and 18.
  • Fig. 7 shows a schematic sequence of spot welding two plates 17 and 18 after the two plates 17 and 18 are brought into close contact with each other by the above operation.
  • the sequence is as follows. It is on the street.
  • a plasma arc 19 is ejected from the plasma torch 7 to heat the front plate 17 which is closer to the plasma torch 7 of the two plates 17 and 18 stacked by the arc heat. Then, a molten pool 20 is formed on the front side plate 17.
  • the molten pool 20 is kept in a state of not dripping due to its own surface tension effect, and the molten pool 20 is brought into contact with the back plate 18 by the pressure of the plasma arc 19.
  • the back plate 18 is sufficiently heated and melted by heat conduction to reach the back of the back plate 18.
  • FIG. 7 used in the above description shows that there is a large gap between the two plate members 17 and 18, the gap is actually formed by pressing the torch holding device 11 of the torch holding device 11. Is small enough.
  • the front side plate 17 is moved to the tip of the torch holder 14.
  • the stand-off L which is the distance between the tip of the plasma torch 7 and the front plate 17 does not change, and the plasma is maintained at a constant stand-off L at all times. Spot welding with arc 19 can be performed. Further, since the stand-off L can be made constant, the setting operation of the plasma torch 7 at a predetermined position by the welding robot 9 can be facilitated.
  • FIG. 8 shows a second embodiment, which includes a case 21 fixed to the base of the plasma torch 7 so as to surround the plasma torch 7.
  • the tip of the shaft can be freely moved in the axial direction, and the stand-off L can be changed freely within a certain range.
  • the case 21 is a spacing member for holding or adjusting the stand-off. That is, a portion 7a between the tip and the base of the plasma torch 7 is axially extendable and contractable, and an air cylinder device 22 is provided inside a case 21 having a tubular portion 21a at the tip.
  • the cylinder portion 22 a of the air cylinder device 22 is fixed to the case 21 side, and the cylinder portion 22 b of the air cylinder device 22 is fixed to the distal end side of the plasma torch 7.
  • the tip of the plasma torch 7 moves in the axial direction relatively to the case 21, so that the stand-off L can be controlled.
  • case 21 is attached to the arm 10 of the welding robot 9, and a gas vent hole or notch 15 is formed in the peripheral wall of the cylindrical portion 21a at the tip.
  • the stand-off L may be changed over time as necessary during welding, for example, as shown in FIGS. 9A and 9B. This is mainly to change the diameter of the weld nugget and to prevent solidification cracking when spot welding is performed. Thus, the stand-off L can be arbitrarily changed according to the welding conditions.
  • reference numeral 31 denotes a plasma torch.
  • a plasma nozzle 32 is provided at a front end of the plasma torch 31.
  • An electromagnetically shielded and gas-shielded gas is provided at a base end of the plasma torch 31.
  • a flexible torch cable 33 with a built-in tube and electric wire has been derived.
  • a handle 34 is fixedly attached to the outer surface of the plasma torch 31, and a welding start switch 35 is provided on the handle 34.
  • the welding start switch 35 is embedded in the handle 34 and the wire connected to it is passed through the inside of the torch cable 33 and brassed. It is wired to the control device for the Zuma power supply.
  • the plasma torch 31 and the screws 36 used for the assembly, the handle 34 and the welding switch 35 are all made of an electrical insulator.
  • a pair of brackets 38, 38 are fixed to the tip of the plasma torch 31 so as to be located on both sides of the nozzle cap 37 surrounding the plasma nozzle 32.
  • the pair of brackets 38, 38 are formed with axial guide grooves 38a, 38a, respectively, and screw holes 39, 38 are provided in the middle of the inner grooves 38, 38. There are 39.
  • the nozzle cap 37 surrounding the plasma nozzle 32 is also electrically insulated from the electrode and the plasma nozzle 32 by an insulating ring (not shown) inside the nozzle cap 37.
  • Reference numeral 40 denotes an annular spacer positioned on the tip side of the plasma nozzle 32.On both sides in the diametrical direction, the guide grooves 38a and 38a of the brackets 38 and 38 extend in the axial direction.
  • the supporting frames 41, 41 are slidably fitted to the projections. These support frames 4 1 and 4 1 are provided with slots 4 2 and 4 2 in the axial direction, and screws 4 3 and 4 3 that fit into the slots 4 2 and 4 2 are screw holes 3 9 respectively. , 3 9
  • the position of the spacer 40 in the axial direction is adjusted within a range in which the elongated hole 42 and the screw 43 allow sliding of the support frame 41, and the screw 43 is tightened.
  • the bracket is fixed to the bracket 38 at the position. That is, in the case of the present embodiment, the spacer 40 is a spacing member for holding or adjusting the stand-off.
  • the tip of the spacer 40 is perpendicular to the axis of the plasma nozzle 32. There is a notch 4 4 through which the hole comes out.
  • the material of the spacer 40 is copper, brass, stainless steel, mild steel, silver, aluminum, or ceramic.
  • the material of the support frames 41, 41 is copper, silver, brass, stainless steel, mild steel, or aluminum.
  • the gripper 4 is used to hold the spacer.
  • the plasma nozzle 32 is always opposed to the workpiece 45 at right angles.
  • the stand-off at this time is ensured by the spacer 40. Therefore, even a non-skilled person can always keep the stand-off constant.
  • the stand-off can be arbitrarily changed by loosening the screw 43 to change the fixing position of the spacer 40.
  • the plasma gas from the plasma nozzle 32 is blown onto the workpiece 45, but the plasma gas is discharged outward from the notch 44 provided on the end face of the spacer 40, so that the plasma gas is discharged. No rebound to nozzle 32 side.
  • FIG. 13 shows a fourth embodiment in which the stand-off can be adjusted by a cylinder device.
  • the plasma torch 50 is surrounded by the plasma torch 50.
  • a case 51 fixed to the base of 50 is provided so that the tip of the plasma torch 50 can be moved in the axial direction with respect to the case 51, and the stand-off L can be freely changed within a certain range.
  • the case 51 serves as a spacing member for holding or adjusting the stand-off.
  • a portion 50a between the tip and the base of the plasma torch 50 is axially expandable and contractable, and a cylinder 53 in which a piston rod 52 is fixed to the case 51 is mounted in the case 51.
  • the plasma torch 50 is provided in parallel with the plasma torch 50, and the plasma torch 50 is fixed to a side surface of the cylinder 53 via a mounting base 54 and a band 55.
  • Reference numerals 53a and 53b denote struts for setting the stroke of the cylinder 53, and one of them is position-adjustable from the outside.
  • a spacer 40 for setting the stand-off of the plasma nozzle 32 similar to that of the first embodiment is formed in the body.
  • the cylinder 53 is connected to an unillustrated pneumatic source via an electromagnetic valve 56.
  • a grip handle 34 is fixed to the outer surface of the case 51, and a welding start switch 35 is provided on the grip handle 34.
  • the electric wire surrounded by the welding start switch 35 is wired to the control device of the plasma power supply as in the third embodiment.
  • the automatic welding sequence is started by the operation of the welding start switch 35, and after a predetermined time, the plasma torch 50 is moved in the axial direction by the cylinder 53, and the predetermined start is performed. It is adjusted to default.
  • FIG. 14 shows a fifth embodiment, which has a configuration in which one grip handle is additionally provided in addition to the configuration of the fourth embodiment. That is, the internal structure of the case 51 is the same as that of the second embodiment, and the main grip 57 and the subgrip 58 are located on the outer surface of the case 51 in the axial direction. It is fixed by shifting. Also, a welding start switch 35 is provided on the main handle 57, and a single movement for switching the solenoid valve 56 on the sub handle 58 to extend and retract the cylinder 53. A switch 59 is provided.
  • the plasma torch 50 is moved in the axial direction via the cylinder 53, and the stand-off between the plasma torch 50 and the tip of the spacer 40 is adjusted. Is done. It is to be noted that a plurality of cylinders 53 having different strokes can be selectively operated to control stand-off in multiple stages.
  • FIG. 15 shows a sixth embodiment in which a protective cap 74 is fixed to the tip of a plasma torch 70, in which case the protective cap 74 keeps the stand-off constant. It is an interval maintaining member. That is, the tip of the protective cap 74 is located between the tip of the plasma torch 70 and the workpiece.
  • a holding device 71 is fixed to the tip of the arm 10 of the welding robot 9, and a plasma torch 70 is fixed to the holding device 71 via a bracket 72.
  • An air cylinder device 73 is built in the holding device 71, and the air torch 70 is moved in the axial direction via the bracket 72 by the air cylinder device 73. .
  • the plasma torch 70 may be driven by fixing the plasma tongue 70 directly to the air cylinder device 73 without going through the bracket 72.
  • FIG 16 shows the installation of the protective cap 74 on the tip of the plasma torch 70 Shows the structure.
  • the tip of the plasma torch 70 includes an electrode 80, a first nozzle 81 surrounding the electrode 80, and a first nozzle 81 surrounding the first nozzle 81 and having a tip of the first nozzle 81.
  • W is used as the material of the electrode tip 83.
  • a protective cap 74 is fixed to the tip of the shield 85 so as to surround the second nozzle 82.
  • the protective cap 74 may be made of a conductive material.It can withstand the effects of heat and pressure on the material to be welded. If you consider the strength, sera Mi try material, eg S i a 1 2 0 3, S i 3 N 4 Hitoshigamochi or arbitrary.
  • the structure for fixing the protection cap 74 to the shield portion 85 may be a detachable structure such as a screwed structure or a screwed structure. Further, a hole 87 or a notch for venting gas is formed in the peripheral wall of the tip of the protection cap 74.
  • the two workpieces 45a and 45b to be welded are clamped by at least two sets of workpiece clampers 60 and 61.
  • the interlock cables 62 and 63 are connected to the both workpiece clampers 60 and 61, respectively.
  • the interlock cable 62 of the workpiece clamper 60 is long enough not to greatly exceed the working range of the plasma torch 31 or 50 for the workpieces 45a and 45b. This is plasm Connected to the torch 31 or 50.
  • the two interlock cables 62 and 63 are connected to an interface circuit shown in FIG.
  • one interlock cable 62 is connected to the operation power supply via the second normally closed contact 65 opened when the second relay 64 is turned on, and the other interlock cable 63 Is connected to an operation power supply via a second normally closed contact 65 and a first relay 66. Then, in parallel with both interlock cables 62 and 63, the parallel connection that is closed by turning on the welding start switch 35 and the first and second relays 66 and 64, respectively.
  • a circuit consisting of the first and second normally open contacts 67 and 68 and the second relay 64 is connected.
  • the first and second normally open contacts 67, 68 are open when the workpieces 45a, 45b are not clamped by the workpiece clampers 60, 61. Even if the welding start switch 35 is turned on, plasma arc welding does not start even if the welding start switch 35 is turned on, and accidents such as electric shock due to careless turning on of the welding start switch 35 can be prevented.
  • the first relay 66 becomes 0 N, whereby the first normally open contact 67 is closed. Only in this state, the welding start switch 35 starts welding by ⁇ N of the welding start switch 35. Becomes possible. In this state, since the plasma torch 31 or 50 is connected to one of the workpiece clampers 60 via one interlock cable 62, the plasma torch 31 or 50 is connected. Is the material to be welded 45 a, This means that it is positioned in the vicinity of 45b, which confirms the work start state.
  • the welding start switch 35 becomes 0 N
  • the second relay 64 is actuated, the second normally open contact 68 is closed, and the second relay 64 is self-held, The second normally closed contacts 65, 65 connected to the workpiece clampers 61, 62 are opened, and thereafter the welding start switch
  • the plasma welding operation is performed by the ON, 0FF of 35.
  • the present invention is not limited to this embodiment, and it is not limited to this embodiment.
  • a load cell a proximity switch, a press switch, etc.
  • the sensor 40 may be attached to detect that the spacer 40 has come into contact with or to some extent approached the workpieces 45a and 45b.
  • FIG. 19 is a flowchart showing the flow of the entire welding work including the operation by the above interlock circuit.
  • FIG. 20 shows an automatic stand-off control circuit employed in the second, fourth and fifth embodiments.
  • the torch raising timer relay TIM 1 and the torch lowering timer relay TIMI 2 operate, and a torch raising command is issued after a predetermined time. .
  • the torch movement switch 59 When the torch movement switch 59 is turned ON, the torch rises due to the torch movement priority. And with this, the torch lift valve is activated Then, the torch up position lamp 70 lights up.
  • the torch raising position lamp 70 is provided at a position where the plasma torch 7 or 50 can be seen.
  • Figure 21 shows a flowchart showing this operation.
  • the stand-off can be easily adjusted, and work can be performed with the optimum stand-off for workpieces of all materials and thicknesses.
  • the plasma arc welding apparatus and the welding method using the same according to the present invention are extremely useful for overlapping and welding a plurality of sheets.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Description

5
明細書 プラズマアーク溶接装置及びそれを用いた溶接方法 技術分野
この発明は、 複数の板材を重ね合わせ溶接するためのプラズマ アーク溶接装置及びそれを用いた溶接方法に関するものである。 背景技術
アークを用いて、 重ね合わせた 2枚の板材をスポッ ト溶接する溶接 装置として、 特開昭 5 8 一 1 1 6 9 8 1号公報に示されたアークス ポッ ト溶接装置がある。
この従来のアークスポッ 卜溶接装置は、 図 1に示すように、 基端が 図示しない溶接ロボッ トのアームに取付けられ且つ先端に溶接トー チ cが設けられたアークスポッ ト溶接機 a と、 該溶接機 aにアーム bを介して取り付けられていて該溶接機 a と一体に動く と共に先端 に押圧部材 f が取り付けられたエアシ リ ンダ装置 c とが設けてあ る。 そして、 アークスポッ ト溶接機 aの溶接トーチ dを表側板材 e に対向するようにして該表側部材 eから所定の間隔 (スタ ン ドォ フ) の位置にセッ 卜 してから、 エアシリ ンダ装置 cを作動して押圧 部材 f にて表側板材 eを押圧して表側板材 e と裏側板材 gとの間の 隙間を排除して、 溶接トーチ aにより両板材 e , gを溶接するよう にしている。 なお、 hは裏側板材 gを支持する台である。
上記従来の技術においては、 溶接トーチ dを所定の位置にセッ 卜 し てからエアシリ ンダ装置 cを作動して押圧部材 f にて表側板材 eを 両板材 e , g間の隙間分だけ押動するため、 溶接トーチ dの先端と 被溶接部材である表側板材 e との間隔 (スタ ン ドオフ) がセッ ト時 に対してずれてしまう。
このため、 溶接トーチ dを両板材 e , gの隙間分だけあらかじめ見 込んだ位置にセッ ト しなければならず、 その調節, 制御がやっかい であると共に、 思惑通りに表側板材 eが変形しない場合は不本意な 間隔でアークスポッ ト溶接が行なわれて、 所定の強度が得られない という問題があった。
上記従来技術は、 アークスポッ 卜溶接装置の場合を示しているが、 プラズマスアーク溶接装置においても同様な問題がある。
また、 従来のプラズマアーク溶接装置の一つとして、 作業者が手で もつて作業するようにしたプラズマ トーチがあるが、 この種プラズ マ トーチは、 図 2に示すよ うに、 先端にプラズマノズル i を有する トーチ本体 j の側面に握り柄 kが固着された構成となっている。 上記従来のプラズマ トーチでは、 プラズマノズル aがトーチ本体 b と一体になつていたことにより、 ノズル i の先端から被溶接部材ま での距離 (スタ ン ドオフ) の調節及び保持は、 作業者の目測により 行われていた。 即ち、 プラズマアーク溶接における最も重要な条件 の一つであって、 被溶接材の材質, 板厚によっても最適値が異なる スタ ン ドオフの調節及び保持が人為的に行われていた。 したがつ て、 上記従来のプラズマ トーチでは、 かなりの熟練者でないと安定 した溶接を行なう ことができなかった。
そこで、 本発明の目的は、 上記のことに鑑み、 溶接ロボッ 卜にプ ラズマ トーチが支持されている装置において表側板材を押動して裏 側板材との間の隙間を排除したときにおいても、 作業者が手でもつ - 3 - て作業するようにしたプラズマ トーチにおいても、 プラズマ トーチ の先端と表側板材との間隔であるスタ ン ドオフを常に一定に保つこ とができ、 またこのスタ ン ドオフを容易に調節することができて、 あらゆる材質, 板厚の被溶接材に対して最適なスタン ドオフで作業 を行なうことができるプラズマ溶接装置及びそれを用いた溶接方法 を提供することを目的とするものである。 発明の開示
上記の目的を達成するために、 本発明の第一の構成によれば、 プラズマ トーチと、 該プラズマ トーチに取り付けられ且つその先 端が該プラズマ トーチの先端と被溶接材との間に位置する間隔保持 部材とを含み、 該間隔保持部材の先端を被溶接材に押しつけて溶接 を行うようにしたプラズマアーク溶接装置が提供される。
上記構成によれば、 被溶接材同志の間に隙間がある場合に、 ブラ ズマ トーチの先端と被溶接材との間隔 (スタ ン ドオフ) の設定が完 了してから、 溶接ロボッ 卜でまたは人為的に間隔保持部材の先端側 で被溶接材を押動して上記隙間を排除したときにおいても、 プラズ マ トーチの先端と被溶接材との間隔であるスタ ン ドオフが変ること がなく、 常時一定のスタ ン ドオフにてプラズマアークによるスポッ ト溶接を行なう ことができる。 そして、 スタ ン ドオフを一定にする ことができることにより、 溶接ロボッ ト等によるプラズマ トーチの 所定位置へのセッ 卜動作を容易にすることができる。
そして、 上記構成に加えて、 前記プラズマ トーチの先端に対する 前記間隔保持部材の先端の軸方向の相対位置が調節可能であること が望ま しい。 この構成によれば、 スタン ドオフを溶接条件にあわせて任意に変 えることができるので、 あらゆる材質, 板厚の被溶接材に対して最 適なスタン ドオフで作業を行なう ことができる
さらに、 好ま しく は、 前記間隔保持部材を被溶接材に押しつける 移動手段を備えている。
また、 前記間隔保持部材が前記プラズマ トーチに軸方向に進退可 能に螺合する トーチ保持具であって、 該トーチ保持具が溶接ロボッ 卜のアームに取り付けられている。 そして、 前記 トーチ保持具と前 記アームとの間に移動装置が介在せしめられていても良い。 また、 前記トーチ保持具の先端が前記プラズマ トーチの先端を囲む筒状の ものであり、 前記トーチ保持具の先端周壁にガス抜き用の孔または 切り欠きを形成してもよい。
また、 好ま しく は、 前記間隔保持部材が前記プラズマ トーチを囲 むケースであって、 該ケースが溶接ロボッ 卜のアームに取り付けら れている。 そして、 前記プラズマ トーチのケース取付部と先端との 間が伸縮自在であり、 前記ケースに固定された移動装置により前記 プラズマ トーチの先端部を前記ケースに対して軸方向に相対移動せ しめるようにしてもよい。 また、 前記ケースの先端周壁にガス抜き 用の孔または切り欠きを形成しても良い。
また、 好ま しく は、 前記間隔保持部材が、 前記プラズマ トーチの 先端に取り付けられた環状のスぺーサであって、 前記プラズマ ト一 チに握り柄が固着されている。 そして、 前記スぺ一ザに形成された 軸方向の支持枠が前記プラズマ トーチの先端に固着されたブラケッ トに軸方向に摺動可能に嵌合し、 前記支持枠の軸方向の長孔に嵌合 し且つ前記ブラケッ トに螺着される固定ネジにより前記支持枠が前 記ブラケッ 卜に軸方向の位置調整可能に固定されるようにしても良 い。 また、 前記スぺ一ザの周壁にガス抜き用の孔または切り欠きを 形成しても良い。
また、 好ま しく は、 前記間隔保持部材が前記プラズマ トーチを囲 むケースであって、 該ケースに握り柄が固着されている。 そして、 前記握り柄が 2本であっても良い。 また、 前記プラズマ トーチの ケース取付部と先端との間が伸縮自在であり、 前記ケースに固定さ れた移動装置により前記プラズマ トーチの先端部を前記ケースに対 して軸方向に相対移動せしめるようにしても良い。 また、 前記ケー スの先端周壁にガス抜き用の孔または切り欠きを形成しても良い。 また、 好ま しく は、 前記間隔保持部材が前記プラズマ トーチの先 端に取り付けられた保護キャ ップであて、 該プラズマ トーチが溶接 ロボッ 卜のアームに取り付けられている。 そ して、 前記プラズマ トーチと前記アームとの間に移動装置が介在せしめられていても良 い。 また、 前記保護キヤ ップがプラズマ トーチの先端を囲む筒状の ものであり、 前記保護キヤ ップの先端周壁にガス抜き用の孔または 切り欠きを形成しても良い。
また、 好ま しく は、 前記プラズマ トーチと操作電源との間に感電 防止用のイ ンタロック回路を設けている。
この構成によれば、 パイロッ トアークにより作業者が不用意に感 電することが防止される。
そして、 上記の場合、 前記イ ンタロ ッ ク回路に含まれる溶接ス ター トスィ ッチを前記握り柄に設けても良い。
また、 好ま しく は、 前記移動装置に自動スタ ン ドオフ制御回路を 接続している。 この構成によれば、 極めて容易にスタ ン ドオフの制御を行う こと ができる。
そして、 上記の場合、 前記自動スタ ン ドオフ制御回路に含まれる トーチ移動スィ ツチを前記握り柄に設けても良い。
また、 好ま しく は、 前記プラズマ トーチと操作電源との間に感電 防止用のイ ンタロ ッ ク回路を設け、 前記移動装置に自動スタ ン ドォ フ制御回路を接続している。 そして、 前記イ ンタロッ ク回路に含ま れる溶接スター トスィ ッチと、 前記自動スタ ン ドオフ制御回路に含 まれる トーチ移動スィ ツチとを前記握り柄に設けても良い。
また、 本発明の第二の構成によれば、
プラズマ トーチと、 該プラズマ トーチの基部に取り付けられ且つ その先端が該プラズマ トーチの先端と被溶接材との間に位置する間 隔保持部材とを含むプラズマアーク溶接装置を用い、 該間隔保持部 材の先端を被溶接材に押しつけて溶接を行うように したプラズマ アーク溶接方法が提供される。
そして、 上記構成に加えて、 溶接前に前記プラズマ トーチの先端 に対する前記間隔保持部材の先端の軸方向の相対位置を調節するよ うにするのが好ま しい。 さらに、 上記構成に加えて、 溶接後も前記 プラズマ トーチの先端に対する前記間隔保持部材の先端の軸方向の 相対位置を調節するのが好ま しい。 図面の簡単な説明
本発明は、 以下の詳細な説明及び本発明の実施例を示す添付図面 により、 より良く理解されるものとなろう。 なお、 添付図面に示す 実施例は、 発明を特定することを意図するものではなく 、 単に説明 及び理解を容易とするものである。
図中、
図 1 は、 従来のプラズマアーク溶接装置の一例を示す概略図であ る。
図 2は、 従来のプラズマアーク溶接装置の他の例を示す概略図であ る。
図 3は、 本発明のプラズマアーク溶接装置の第 1実施例の斜視図 である。
図 4は、 上記第 1実施例のプラズマ トーチを溶接ロボッ 卜に装着 した状態を示す図である。
図 5は、 上記第 1実施例の トーチ保持装置を示す一部破断正面図 である。
図 6 A及び図 6 Bは、 それぞれ上記第 1実施例の トーチ保持具の 先端部の例を示す斜視図である。
図 7は、 上記実施例によるスポッ ト溶接の概略的なシーケンスを 示す図である。
図 8は、 本発明のプラズマアーク溶接装置の第 2実施例の断面図で ある。
図 9 A及び図 9 Bは、 上記第 2実施例において溶接中にスタン ドォ フを変える例を示すグラフである。
図 1 0は、 本発明のプラズマアーク溶接装置の第 3実施例の側面 図である。
図 1 1 は、 図 1 0の A方向矢視図である。
図 1 2は、 上記第 3実施例のスぺーサ部分の構成を示す一部破断 側面図である。 図 1 3は、 本発明のブラズマアーク溶接装置の第 4実施例の断面図 である。
図 1 4は、 本発明のブラズマアーク溶接装置の第 5実施例の断面図 である。
図 1 5は、 本発明のブラズマアーク溶接装置の第 6実施例の側面図 である。
図 1 6は、 上記第 6実施例のプラズマ トーチ先端部への保護キヤッ プの取付構造を示すの断面図である。
図 1 7は、 上記第 3乃至第 5実施例に採用されるィンタロック装置 による被溶接材のクランプ状態を示す概略図である。
図 1 8は、 上記イ ンタロッ ク装置のイ ンタロ ッ ク回路図である。 図 1 9は、 上記インタロック回路による作動を含む溶接作業全体の 流れを示すフローチャー トである。
図 2 0は、 上記第 2 , 第 4及び第 5実施例に採用される自動スタ ン ドオフ制御回路図である。
図 2 1 は、 上記自動スタ ン ドオフ制御のフローチャー トである。 発明を実施するための好適な態様
以下に、 本発明の好適実施例によるプラズマアーク溶接装置及び それを使用する方法を添付図面を参照しながら説明する。
図 3乃至図 6 Bは本発明によるプラズマアーク溶接装置の第 1実施 例を示している。 図 3において、 2は電源部、 3は高周波ユニッ ト を内蔵した制御部であり、 電源部 2に電線を内蔵したケーブル 4を 介して被溶接材クランプ 5が、 また制御部 3にガス管及び電線を内 蔵した トーチケーブル 6を介してプラズマ トーチ 7がそれぞれ接続 5
- - されている。 また、 8はガス管 2 3を介して制御部 3に接続された ガスボンベである。
上記プラズマ トーチ 7は、 図 4に示すように、 多関節型の溶接口 ボッ ト 9のアーム 1 0の先端部に固着した トーチ保持装置 1 1 に取 付けて用いるようになつている。
上記保持装置 1 1 とプラズマ トーチ 7 との結合構造は、 図 5に示す ようになつていて、 アーム 1 0 の先端に取付けられるブラケ ッ ト 1 2にエアシリ ンダ装置 1 3を介して トーチ保持具 1 4が取付けて ある。 そして、 この トーチ保持具 1 4にプラズマ トーチ 7が螺合し て軸方向に進退可能に取付けられている。
なお、 エアシ リ ンダ装置 1 3 は必ずしも必須な装置ではな く 、 トーチ保持具 1 4だけでもよい。
トーチ保持具 1 4の先端部は、 プラズマ トーチ 7の先端部より軸 方向において外側に突出している即ちプラズマ トーチ 7の先端部と 被溶接材との間に位置しており、 かつプラズマ トーチ 7の先端を囲 繞する筒状のものとなっている。 そして、 このプラズマ トーチ 7を 軸方向に進退せしめることによりプラズマ トーチ 7の先端から トー チ保持具 1 4の先端までの距離、 すなわちスタン ドオフ Lは調節で きるようになつている。 即ち、 本実施例では トーチ保持具 1 4がス タン ドオフを保持しまたは調節するための間隔保持部材となってい る。 また、 この トーチ保持具 1 4の先端部には、 図 6 Aまたは図 6 Bに示すように、 ガス抜き用の切り欠き 1 5または孔 1 6が設け てある。 この トーチ保持具 1 4は、 電気的絶縁材料にて構成されて いる。
なお、 トーチ保持具 1 4の先端部だけを電気的絶縁材料にて構成し てもよい。
上記第 1実施例の作用を以下に説明する。
図 5に示すように隙間 Sだけ離間して対向する表側板材 1 7と裏側 板材 1 8をスポッ ト溶接するには、 まずトーチ保持具 1 4の先端と プラズマ トーチ 7の先端との間隔即ちスタ ン ドオフ Lを最適な値に 設定する。 次に、 溶接ロボッ ト 9のアーム 1 0を作動して、 保持装 置 1 1の トーチ保持具 1 4の先端を表側板材 1 7の溶接ポイ ン ト上 に移動させる。 次に、 エアシリ ンダ 1 3を作動して トーチ保持具 1 4を軸方向において下側に移動させ、 その先端を表側板材 1 7に 接触させ、 さらに表側板材 1 7を隙間 S分だけ押動して両板 1 7 , 1 8を密着させる。 このとき、 トーチ保持具 1 4 と共にプラズマ トーチ 7 もこれと一体に移動するので、 スタン ドオフ Lは変化しな い。 従って、 両板材 1 7 , 1 8間の隙間 Sの大きさに関係なく、 溶 接時におけるスタン ドオフ Lは常に一定になる。
尚、 この実施例ではエアシリ ンダ装置 1 3にて板材即ち被溶接材 を押し付ける場合を説明したが、 トーチ保持具 1 4だけの場合で は、 溶接ロボッ ト 9のアーム 1 0にて押し付けて兩板材 1 7, 1 8 を密着させる。
図 7 は上記作用にて両板材 1 7 , 1 8を密着させた後、 兩板材 1 7 , 1 8をスポッ ト溶接する場合の概略的なシーケ ンスを示すも のであり、 該シーケンスは以下の通りである。
( 1 ) プラズマ トーチ 7からプラズマアーク 1 9を噴出して、 その アーク熱によって重ねた 2枚の板材 1 7 , 1 8のうちプラズマ 卜一 チ 7に近い方である表側板材 1 7を加熱し、 この表側板材 1 7に溶 融プール 2 0を形成する。 ( 2 ) この溶融プール 2 0はそれ自身の表面張力作用にて垂れ落ち ない状態に保持されており、 該溶融プール 2 0をプラズマアーク 1 9の圧力で裏側板材 1 8に接触させる。
( 3 ) 熱伝導によって、 裏側板材 1 8を十分に加熱溶融させて溶け 込みをこの裏側板材 1 8の裏側まで到達させる。
( 4 ) プラズマアーク 1 9をス ト ップして溶接を終了させる。 なお、 上記説明に用いた図 7において両板材 1 7, 1 8間に大きな 隙間があるように示したが、 実際は トーチ保持装置 1 1 の トーチ保 持具 1 4 による押し付けによ り、 この隙間は十分小さ く なつてい る。
以上のように、 表側部材 1 7 と裏側部材 1 8 との間に隙間 Sがある 場合に、 溶接ロボッ 卜 9 によるセッ 卜が完了 してから、 表側板材 1 7を トーチ保持具 1 4の先端で押動して上記隙間 Sを排除したと きにおいても、 プラズマ トーチ 7の先端と表側板材 1 7 との間隔で あるスタン ドオフ Lが変ることがなく、 常時一定のスタ ン ドオフ L にてプラズマアーク 1 9 によるスポッ ト溶接を行なう こ とができ る。 そして、 スタ ン ドオフ Lを一定にする こ とができる こ とによ り、 溶接ロボッ ト 9によるプラズマ トーチ 7の所定位置へのセッ ト 動作を容易にすることができる。
図 8は、 第 2実施例を示しており、 これはプラズマ トーチ 7を囲む ようにしてプラズマ トーチ 7の基部に固定されたケース 2 1 を備え ており、 該ケース 2 1 に対してプラズマ トーチ 7の先端を軸方向に 移動自在にし、 スタン ドオフ Lをある範囲内において自由に変える ことができるようにしたものである。 即ち、 該ケース 2 1がスタン ドオフを保持しまたは調節するための間隔保持部材となっている。 すなわち、 プラズマ トーチ 7の先端と基部の間の部分 7 aが軸方 向に伸縮自在であると共に、 先端に筒状部分 2 1 aを設けたケース 2 1 の内側にエアシリ ンダ装置 2 2が設けられていて、 該エアシリ ンダ装置 2 2 の ロ ツ ド部 2 2 a がケース 2 1 側に、 シ リ ンダ部 2 2 bがプラズマ トーチ 7 の先端側にそれぞれ固着してあり、 この エアシリ ンダ装置 2 2を作動することによりプラズマ トーチ 7の先 端がケース 2 1 に対して相対的に軸方向に移動してスタン ドオフ L が制御できるようになつている。
さらに、 ケース 2 1 は溶接ロボッ ト 9のアーム 1 0に取り付けら れており、 その先端の筒状部分 2 1 aの周壁にガス抜き用の孔また は切り欠き 1 5が形成されている。
なお、 スタン ドオフ Lは、 例えば図 9 A及び図 9 Bに示したよう に、 溶接中に必要に応じて時間の経過に従って変えることがある。 これは、 主として溶接ナゲッ ト径を変えたり、 スポッ ト溶接したと きの凝固割れを防止するためである。 このように、 スタ ン ドオフ L を溶接条件にあわせて任意に変えることができる。
図 1 0乃至図 1 2は第 3実施例を示している。
図中、 3 1 はプラズマ トーチであり、 このプラズマ トーチ 3 1の先 端部にはプラズマノ ズル 3 2が設けてあり、 またプラズマ トーチ 3 1 の基端部には電磁的にシールドされ且つガス管及び電線が内蔵 された可撓性を有する トーチケーブル 3 3が導出されている。 そし て、 このプラズマ トーチ 3 1 の外側面には握り柄 3 4が固着してあ り、 この握り柄 3 4に溶接スター トスィ ッチ 3 5が設けてある。 こ の溶接スター トスィ ッチ 3 5は握り柄 3 4に埋め込まれており、 か つそれに接続された電線は トーチケーブル 3 3の内部を通ってブラ ズマ電源の制御装置まで配線されている。
尚、 上記プラズマ トーチ 3 1及びこの組立にに用いるねじ 3 6、 さ らにハン ドル 3 4及び溶接スィ ツチ 3 5の全てが電気的絶縁物で構 成されている。
上記プラズマノズル 3 2を囲むノズルキヤップ 3 7の両側方に位置 するように して、 一対のブラケッ ト 3 8 , 3 8がプラズマ トーチ 3 1の先端に固着されている。 該一対のブラケッ ト 3 8 , 3 8には それぞれ軸方向の案内溝 3 8 a , 3 8 aが形成されており、 該両案 内溝 3 8 , 3 8の中間部にねじ孔 3 9 , 3 9が設けてある。 また、 このプラズマノズル 3 2を囲むノズルキヤ ップ 3 7 も、 その内部の 図示しない絶縁リ ングによつて電極やプラズマノズル 3 2 と電気的 に絶縁されている。
4 0は上記プラズマノズル 3 2の先端側に位置する環状のスぺーサ であり、 その直径方向両側には上記両ブラケッ ト 3 8 , 3 8の案内 溝 3 8 a , 3 8 aに軸方向に摺動自在に嵌合する支持枠 4 1 , 4 1 が突設してある。 この両支持枠 4 1 , 4 1 には軸方向の長孔 4 2 , 4 2が設けてあり、 該長孔 4 2 , 4 2に嵌合するねじ 4 3 , 4 3が それぞれねじ孔 3 9 , 3 9に螺合している。 そして、 スぺーサ 4 0 は、 この長孔 4 2 とねじ 4 3が支持枠 4 1 の摺動を許容する範囲内 で軸方向の位置が調整され、 ねじ 4 3を締め込むことによりその位 置にてブラケッ ト 3 8に固着されるようになっている。 即ち、 本実 施例の場合、 スぺーサ 4 0がスタン ドオフを保持しまたは調節する ための間隔保持部材となつている。
また、 スぺーサ 4 0の先端面はプラズマノズル 3 2の軸心に対し て直角になっており、 またこの先端面には放射方向にプラズマガス が抜けるための切欠き 4 4が設けてある。
尚、 スぺ一サ 4 0の材質は、 銅、 真鍮、 ステンレス、 軟鋼、 銀、 ァ ルミ二ゥム、 またはセラ ミ ッ クのいずれかである。 また、 支持枠 4 1 , 4 1の材質は、 銅、 銀、 真鍮、 ステンレス、 軟鋼、 またはァ ルミニゥムのいずれかである。
本実施例によるプラズマアーク溶接は、 握り柄 4を持ってスぺーサ
4 0を被溶接材 4 5に押しつけながら移動して、 または固定して行 なう。
このとき、 スぺーサ 4 0の先端面がプラズマノズル 3 2の軸心と直 角になつているので、 プラズマノズル 3 2を常に被溶接材 4 5に対 して直角に対向させる。 そして、 このときのスタン ドオフはスぺー サ 4 0によって一定に確保される。 従って、 熟練者でなくても、 常 にスタ ン ドオフを一定に保つことができる。
尚、 このスぺ一サ 4 0の固定位置をねじ 4 3を緩めて変えること により、 上記スタ ン ドオフを任意に変えることもできる。
また、 プラズマノズル 3 2からのプラズマガスは被溶接材 4 5に 吹きつけられるが、 該プラズマガスはスぺーサ 4 0の端面に設けた 切欠き 4 4より外方へ放出されるので、 プラズマノズル 3 2側へは ねかえることがない。
図 1 3は、 第 4実施例を示しており、 これは、 スタン ドオフをシリ ンダ装置によ り調節可能にしたものである。
本実施例は、 プラズマ トーチ 5 0を囲むようにしてプラズマ トーチ
5 0の基部に固定されたケース 5 1 を備えており、 該ケース 5 1 に 対してプラズマ トーチ 5 0の先端を軸方向に移動自在にし、 スタ ン ドオフ Lをある範囲内において自由に変えることができるようにし 56 P T
- 15 - たものである。 即ち、 該ケース 5 1がスタ ン ドオフを保持しまたは 調節するための間隔保持部材となつている。
すなわち、 プラズマ トーチ 5 0の先端と基部の間の部分 5 0 aが 軸方向に伸縮自在であると共に、 ケース 5 1 内にはピス ト ンロッ ド 5 2をケース 5 1 に固着したシリ ンダ 5 3がプラズマ トーチ 5 0 と 平行に設けてあり、 このシリ ンダ 5 3の側面に取付台 5 4及びバン ド 5 5を介してプラズマ トーチ 5 0が固着されている。
5 3 a , 5 3 bは、 上記シリ ンダ 5 3のス トロークを設定するス ト ツバであり、 その一方は外部から位置調節可能になっている。 ケース 5 1 の先端部には、 第 1 の実施例と同様のプラズマノ ズル 3 2のスタン ドオフを設定するスぺーサ 4 0がー体に形成されてい る。 上記シリ ンダ 5 3は、 電磁バルブ 5 6を介して図示しない空圧 源に接続されている。
上記ケース 5 1 の外側面には握り柄 3 4が固着してあり、 この握り 柄 3 4に溶接スター トスィ ッチ 3 5が設けてある。 この溶接スター トスイ ッチ 3 5に接繞された電線は、 上記第 3実施例と同様に、 プ ラズマ電源の制御装置まで配線されている。
この実施例によれば、 溶接スター トスィ ッチ 3 5の操作により、 自 動溶接シーケンスが開始され、 所定時間後に、 シリ ンダ 5 3により プラズマ トーチ 5 0が軸方向に移動せしめられ、 所定のスター ドォ フに調節される。
図 1 4は第 5実施例を示しており、 これは上記第 4実施例の構成に 加え、 さらに握り柄を 1本増設した構成を有している。 すなわち、 ケース 5 1 の内部の構造は第 2実施例と同様であ り、 上記ケース 5 1 の外側面には主握り柄 5 7 と副握り柄 5 8 とが軸方向に位置を ずらせて固着してある。 そ して、 主握り柄 5 7 に溶接スター トス イ ッチ 3 5が設けてあり、 副握り柄 5 8に電磁バルブ 5 6を切換え てシリ ンダ 5 3を伸縮作動させるための 卜一チ移動スィ ツチ 5 9が 設けてある。
この実施例によれば、 主, 副の握り柄 5 7 , 5 8を持つことにより 両手で操作できる。 そして、 トーチ移動スィ ッチ 5 9の操作によ り、 シリ ンダ 5 3を介してプラズマ トーチ 5 0は軸方向に移動され て、 スぺーサ 4 0の先端との間のスタ ン ドオフが調節される。 なお、 上記シリ ンダ 5 3として、 ス トロークの異なるものを複数用 いてそれらのうちのいずれか選択的に作動させることにより、 多段 階にスタ ン ドオフを制御することができる。
図 1 5は、 第 6実施例を示しており、 これはをプラズマ トーチ 7 0の先端に保護キヤップ 7 4を固着したものであって、 この場合 保護キャップ 7 4がスタ ン ドオフを一定に保持する間隔保持部材と なっている。 即ち、 保護キャ ップ 7 4の先端がプラズマ トーチ 7 0 の先端と被溶接材との間に位置している。 また、 溶接ロボッ ト 9の アーム 1 0の先端に保持装置 7 1が固定され、 該保持装置 7 1 にブ ラケッ ト 7 2を介してプラズマ トーチ 7 0が固定されている。 そし て、 保持装置 7 1 内にはエアシリ ンダ装置 7 3が内蔵されており、 このエアシリ ンダ装置 7 3によりブラケッ ト 7 2を介してプラズマ トーチ 7 0を軸方向に移動させるようになつている。
なお、 ブラケッ ト 7 2を介さずに直接エアシ リ ンダ装置 7 3にプ ラズマ ト一チ 7 0を固定してプラズマ トーチ 7 0を駆動するように しても良い。
図 1 6はプラズマ トーチ 7 0の先端への保護キャ ップ 7 4の取付 構造を示している。 プラズマ トーチ 7 0 の先端部は、 電極部 8 0 と、 該電極部 8 0を囲む第 1 ノズル部 8 1 と、 該第 1 ノズル部 8 1 を囲み且つ先端が該第 1 ノ ズル部 8 1 に固着された第 2 ノ ズル部 8 2 と、 該第 2ノズル部 8 2を囲み且つ該第 2 ノズル部 8 2に電気 的絶縁材 8 6を介して固着されたシールド部 8 5からなり、 電極先 端部 8 3の材料に Wを使用している。 そして、 第 2 ノズル部 8 2を 囲むようにしてシールド部 8 5の先端に保護キャ ップ 7 4が固着さ れている。 第 2ノズル部 8 2 とシールド部 8 5が電気的に絶縁され ているので、 保護キャップ 7 4は導電性の材料から構成しても良い 力 熱による影響や被溶接材への押しつけに耐え得る強度を考慮す ると、 セラ ミ ツクス材料、 例えば S i A 1 20 3, S i 3 N 4等が望 ま しい。
なお、 シール ド部 8 5への保護キャ ップ 7 4の固定構造と して は、 螺合構造ゃネジ止め構造等着脱可能な構造でも良い。 また、 保 護キャ ップ 7 4の先端周壁にガス抜き用の孔 8 7または切り欠きが 形成されている。
次に、 上記第 3乃至第 5実施例に採用されるプラズマ トーチの感電 防止用のイ ンタロック装置について説明する。
図 1 7に示すように、 溶接しょう とする 2つの被溶接材 4 5 a , 4 5 bは、 少なく とも 2組の被溶接材クラ ンパ 6 0 , 6 1 にてクラ ンプされるようになつているおり、 この両被溶接材クラ ンパ 6 0 , 6 1 にイ ンタロ ッ クケーブル 6 2 , 6 3が接続されている。 そ し て、 一方の被溶接材クラ ンパ 6 0のイ ンタロックケーブル 6 2は、 被溶接材 4 5 a , 4 5 bに対するプラズマ トーチ 3 1 または 5 0の 作業範囲を大きく越えない程度の長さになっていて、 これがプラズ マ トーチ 3 1 または 5 0に接続されている。
上記両イ ンタロックケーブル 6 2 , 6 3は、 図 1 8に示すイ ンタ 口 ック回路に接続されている。
すなわち、 一方のイ ンタロックケーブル 6 2は、 第 2 リ レー 6 4の O Nで開となる第 2常閉接点 6 5を介して操作電源に接続され、 且 つ他方のイ ンタロックケーブル 6 3は、 第 2常閉接点 6 5 と、 その ほかに第 1 リ レ一 6 6を介して操作電源に接続されている。 そ し て、 両イ ンタロックケーブル 6 2 , 6 3 と並列に、 溶接スター トス イ ッチ 3 5 と第 1 , 第 2 リ レー 6 6 , 6 4の O Nでそれぞれ閉とな る並列接続の第 1 , 第 2常開接点 6 7 , 6 8 と第 2 リ レー 6 4 とか らなる回路が接続されている。
この構成において、 両被溶接材クラ ンパ 6 0, 6 1 による被溶接 材 4 5 a , 4 5 bのクラ ンプのない状態では、 第 1 , 第 2常開接点 6 7 , 6 8は開となったままなので、 仮に溶接スター トスィ ッチ 3 5を O Nにしてもプラズマアーク溶接はスター 卜せず、 不用意な 溶接スター トスィ ッチ 3 5の O Nによる感電等の事故を防止でき る。
一方、 両被溶接材クラ ンパ 6 0 , 6 1にて被溶接材 4 5 a , 4 5 b をクラ ンプすると、 両被溶接材クラ ンパ 6 0, 6 1 間が被溶接材 4 5 a , 4 5 bを介して導通されて第 1 リ レー 6 6が 0 Nとなり、 これにより第 1常開接点 6 7が閉となり、 この状態ではじめて溶接 スター トスィ ツチ 3 5の〇 Nによる溶接スター 卜が可能になる。 ま た、 この状態では、 プラズマ トーチ 3 1 または 5 0は一方のイ ンタ ロックケーブル 6 2を介して一方の被溶接材クラ ンパ 6 0に接続さ れているので、 プラズマ トーチ 3 1 または 5 0は被溶接材 4 5 a, 4 5 bの近傍に位置せしめられていることになり、 これにより作業 開始状態が確認されたことになる。
次に、 溶接スター トスィッチ 3 5が 0 Nになると、 第 2 リ レー 6 4 が作動して第 2常開接点 6 8が閉となって該第 2 リ レー 6 4が自己 保持されると共に、 被溶接材クランパ 6 1 , 6 2に接続された両第 2常閉接点 6 5 , 6 5が開となり、 以後は溶接スター 卜スィ ッチ
3 5の O N , 0 F Fによりプラズマ溶接作業がなされる。
なお、 上記実施例では、 プラズマ トーチ 3 1 または 5 0をイ ンタ ロックケーブル 6 2にて被溶接材クラ ンパ 6 0に接続することによ り、 クランプ時においてプラズマ トーチ 3 1 または 5 0が被溶接材
4 5 a , 4 5 bの近傍に位置されていることを確認するようにした 、 この実施例にかぎるものではなく、 例えばスぺーサ 4 0 にロー ドセルや近接スィ ツチ, プレツ シヤ スイ ツチ等のセンサを取付け て、 このスぺーサ 4 0が被溶接材 4 5 a , 4 5 b に接触したり、 あ る程度近づいたことを検出するようにしてもよい。
図 1 9は、 上記イ ンタロック回路による作動を含む溶接作業全体 の流れを示すフローチヤ一トである。
また、 図 2 0は上記第 2 , 第 4及び第 5実施例に採用される自動ス タ ン ドオフ制御回路を示している。
この回路によれば、 溶接スター トスィ ッチ 3 5を O Nにすること により トーチ上昇タイマー リ レ一 T I M 1 と トーチ下降タイマ リ レー T I M I 2が作動して所定の時間後に トーチ上昇指令が出され る。
トーチ移動スィ ッチ 5 9を O Nにすると、 トーチ移動優先により、 トーチ上昇となる。 そして、 これと共に、 トーチ上昇バルブが作動 し、 トーチ上昇位置ランプ 7 0が点灯する。 なお、 この トーチ上昇 位置ランプ 7 0は、 プラズマ トーチ 7または 5 0のよ く見える位置 に設けてある。
この作動を示すフローチャー トを図 2 1 に示す。
かく して、 スタン ドオフが容易に調節できて、 あらゆる材質、 板厚 のワークに対して最適なスタ ン ドオフで作業を行なう こ とができ る。
なお、 本発明は例示的な実施例について説明したが、 開示した実 施例に関して、 本発明の要旨及び範囲を逸脱することなく、 種々の 変更、 省略、 追加が可能であるこ とは、 当業者において自明であ る。 従って、 本発明は、 上記の実施例に限定されるものではなく、 請求の範囲に記載された要素によって規定される範囲及びその均等 範囲を包含するものとして理解されなければならない。 産業上の利用可能性
以上のように、 本発明に係るプラズマアーク溶接装置及びそれを 用いた溶接方法は、 複数の板材を重ね合わせて溶接するために極め て有用である。

Claims

請求の範囲
1 . プラズマ トーチと、 該プラズマ トーチに取り付けられ且つその 先端が該プラズマ トーチの先端と被溶接材との間に位置する間隔保 持部材とを含み、 該間隔保持部材の先端を被溶接材に押しつけて溶 接を行うようにしたプラズマアーク溶接装置。
2 . 前記プラズマ トーチの先端に対する前記間隔保持部材の先端の 軸方向の相対位置が調節可能であることを特徴とする請求の範囲第 1項に記載のプラズマアーク溶接装置。
3 . 前記間隔保持部材を被溶接材に押しつける移動手段を備えてい ることを特徴とする請求の範囲第 1項または第 2項に記載のプラズ マアーク溶接装置。
4 . 前記間隔保持部材が前記プラズマ トーチに軸方向に進退可能に 螺合する トーチ保持具であって、 該トーチ保持具が溶接ロボッ 卜の アームに取り付けられていることを特徴とする請求の範囲第 1項乃 至第 3項のいずれかに記載のプラズマアーク溶接装置。
5 . 前記トーチ保持具と前記アームとの間に移動装置が介在せしめ られていることを特徴とする請求の範囲第 4項に記載のプラズマ アーク溶接装置。
6 . 前記 トーチ保持具が前記プラズマ トーチの先端を囲む筒状のも のであり、 前記 トーチ保持具の先端周壁にガス抜き用の孔または切 り欠きを形成したことを特徴とする請求の範囲第 4項または第 5項 に記載のプラズマアーク溶接装置。
7 . 前記間隔保持部材が前記プラズマ トーチを囲むケースであつ て、 該ケースが溶接ロボッ 卜のアームに取り付けられていることを 特徴とする請求の範囲第 1項乃至第 3項のいずれかに記載のブラズ マアーク溶接装置。
8 . 前記プラズマ トーチのケース取付部と先端との間が伸縮自在で あり、 前記ケースに固定された移動装置により前記プラズマ トーチ の先端部を前記ケースに対して軸方向に相対移動せしめるようにし たことを特徴とする請求の範囲第 7項に記載のプラズマアーク溶接 装置。
9 . 前記ケースの先端周壁にガス抜き用の孔または切り欠きを形成 したことを特徴とする請求の範囲第 7項または第 8項に記載のブラ ズマアーク溶接装置。
1 0 . 前記間隔保持部材が、 前記プラズマ トーチの先端に取り付け られた環状のスぺーサであって、 前記プラズマ トーチに握り柄が固 着されていることを特徴とする請求の範囲第 1項または第 2項に記 載のプラズマアーク溶接装置。
1 1 . 前記スぺ一ザに形成された支持枠が前記プラズマ トーチの先 端に固着されたブラケッ 卜に軸方向に摺動可能に嵌合し、 前記支持 枠の軸方向の長孔に嵌合し且つ前記ブラケッ トに螺着される固定ネ ジにより前記支持枠が前記ブラケッ 卜に軸方向の位置調整可能に固 定されるこ とを特徴とする請求の範囲第 1 0項に記載のプラズマ アーク溶接装置。
1 2 . 前記スぺーザの周壁にガス抜き用の孔または切り欠きを形成 したことを特徴とする請求の範囲第 1 0項または第 1 1項に記載の プラズマアーク溶接装置。
1 3 . 前記間隔保持部材が前記プラズマ トーチを囲むケースであつ て、 該ケースに握り柄が固着されていることを特徴とする請求の範 囲第 1項乃至第 3項のいずれかに記載のプラズマアーク溶接装置。
1 4 . 前記握り柄が 2本であることを特徴とする請求の範囲第 1 3 項に記載のプラズマアーク溶接装置。
1 5 . 前記プラズマ トーチのケース取付部と先端との間が伸縮自在 であり、 前記ケースに固定された移動装置により前記プラズマ トー チの先端部を前記ケースに対して軸方向に相対移動せしめるように したことを特徴とする請求の範囲第 1 3項または第 1 4項に記載の プラズマアーク溶接装置。
1 6 . 前記ケースの先端周壁にガス抜き用の孔または切り欠きを形 成したことを特徴とする請求の範囲第 1 3項乃至第 1 5項のいずれ かに記載のプラズマアーク溶接装置。
1 7 . 前記間隔保持部材が前記プラズマ トーチの先端に取り付けら れた保護キャ ップであって、 該プラズマ トーチが溶接ロボッ 卜の アームに取り付けられていることを特徴とする請求の範囲第 1項乃 至第 3項に記載のプラズマアーク溶接装置。
1 8 . 前記プラズマ トーチと前記アームとの間に移動装置が介在せ しめられていることを特徴とする請求の範囲第 1 7項に記載のブラ ズマアーク溶接装置。
1 9 . 前記保護キヤップが前記プラズマ トーチの先端を囲む筒状の ものであり、 前記保護キヤ ップの先端周壁にガス抜き用の孔または 切り欠きを形成したことを特徴とする請求の範囲第 1 7項または第 1 8項に記載のプラズマアーク溶接装置。
2 0 . 前記プラズマ トーチと操作電源との間に感電防止用のイ ンタ ロ ッ ク回路を設けたこ とを特徴とする請求の範囲第 1 0項乃至第 1 6項のいずれかに記載のプラズマアーク溶接装置。
2 1 . 前記イ ンタロック回路に含まれる溶接スター トスィ ッチを前 記握り柄に設けたことを特徴とする請求の範囲第 2 0項に記載のプ ラズマアーク溶接装置。
2 2 . 前記移動装置に自動スタ ン ドオフ制御回路を接続したことを 特徴とする請求の範囲第 5項, 第 6項, 第 8項, 第 9項, 第 1 3項 乃至第 1 6のいずれかに記載のプラズマアーク溶接装置。
2 3 . 前記自動スタ ン ドオフ制御回路に含まれる トーチ移動スイ ツ チを前記握り柄に設けたことを特徴とする請求の範囲第 2 2項に記 載のプラズマアーク溶接装置。
2 4 . 前記プラズマ トーチと操作電源との間に感電防止用のイ ンタ ロ ッ ク回路を設け、 前記移動装置に自動スタ ン ドオフ制御回路を接 続したことをたことを特徴とする請求の範囲第 1 3項乃至第 1 6項 のいずれかに記載のプラズマアーク溶接装置。
2 5 . 前記イ ンタロック回路に含まれる溶接スター トスィ ッチと、 前記自動スタ ン ドオフ制御回路に含まれる トーチ移動スィ ッチとを 前記握り柄に設けたことを特徴とする請求の範囲第 2 4項に記載の プラズマアーク溶接装置。
2 6 . プラズマ トーチと、 該プラズマ トーチの基部に取り付けられ 且つその先端が該プラズマ トーチの先端と被溶接材との間に位置す る間隔保持部材とを含むプラズマアーク溶接装置を用い、 該間隔保 持部材の先端を被溶接材に押しっけて溶接を行うようにしたプラズ マアーク溶接方法。
2 7 . 溶接前に前記ブラズマ トーチの先端に対する前記間隔保持部 材の先端の軸方向の相対位置を調節するようにしたことを特徴とす る請求の範囲第 2 6項に記載のプラズマアーク溶接方法。
2 8 . 溶接後も前記プラズマ トーチの先端に対する前記間隔保持部 材の先端の軸方向の相対位置を調節するようにしたことを特徴とす る請求の範囲第 2 6項に記載のプラズマアーク溶接方法。
PCT/JP1994/000745 1993-05-07 1994-05-06 Plasma arc welding apparatus and welding method using the same WO1994026456A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP94914593A EP0698441A4 (en) 1993-05-07 1994-05-06 PLASMA ARC WELDING APPARATUS AND METHOD
US08/537,913 US5728991A (en) 1993-05-07 1994-05-06 Plasma arc welding apparatus and welding method using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP5/106345 1993-05-07
JP10634593 1993-05-07
JP4085893U JPH079571U (ja) 1993-07-27 1993-07-27 プラズマアーク溶接用のプラズマトーチ
JP5/40858U 1993-07-27

Publications (1)

Publication Number Publication Date
WO1994026456A1 true WO1994026456A1 (en) 1994-11-24

Family

ID=26380376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/000745 WO1994026456A1 (en) 1993-05-07 1994-05-06 Plasma arc welding apparatus and welding method using the same

Country Status (3)

Country Link
US (1) US5728991A (ja)
EP (1) EP0698441A4 (ja)
WO (1) WO1994026456A1 (ja)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998034752A1 (fr) * 1997-02-05 1998-08-13 Komatsu Ltd. Procede et dispositif de soudage au plasma
DE60019617T2 (de) * 1999-08-06 2006-03-02 International Aluminium Holdings Ltd. Vorrichtung und verfahren zum schweissen
DE10018231C1 (de) * 2000-04-12 2001-10-18 Nelson Bolzenschweis Technik G Bolzenschweißverfahren und Bolzenschweißvorrichtung, insbesondere für das Bolzenschweißen ohne Stützfuß
GB0010684D0 (en) * 2000-05-03 2000-06-28 Int Aluminium Holdings Ltd Adhesive curing apparatus and method
US6703581B2 (en) 2001-02-27 2004-03-09 Thermal Dynamics Corporation Contact start plasma torch
US6973600B2 (en) 2002-02-01 2005-12-06 Adc Dsl Systems, Inc. Bit error rate tester
US9104195B2 (en) 2006-12-20 2015-08-11 Lincoln Global, Inc. Welding job sequencer
US9937577B2 (en) 2006-12-20 2018-04-10 Lincoln Global, Inc. System for a welding sequencer
US10994358B2 (en) 2006-12-20 2021-05-04 Lincoln Global, Inc. System and method for creating or modifying a welding sequence based on non-real world weld data
AT504721B1 (de) * 2007-01-11 2011-02-15 Sbi Produktion Techn Anlagen Gmbh Verfahren zum plasma-punktschweissen von oberflächenvergüteten werkstücken und plasma-brenner
AT507021B1 (de) * 2008-07-04 2010-04-15 Fronius Int Gmbh Vorrichtung zur simulation eines schweissprozesses
US9280913B2 (en) 2009-07-10 2016-03-08 Lincoln Global, Inc. Systems and methods providing enhanced education and training in a virtual reality environment
US9330575B2 (en) 2008-08-21 2016-05-03 Lincoln Global, Inc. Tablet-based welding simulator
US8911237B2 (en) 2008-08-21 2014-12-16 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup
US8884177B2 (en) 2009-11-13 2014-11-11 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US8851896B2 (en) 2008-08-21 2014-10-07 Lincoln Global, Inc. Virtual reality GTAW and pipe welding simulator and setup
US8915740B2 (en) * 2008-08-21 2014-12-23 Lincoln Global, Inc. Virtual reality pipe welding simulator
US9196169B2 (en) 2008-08-21 2015-11-24 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9318026B2 (en) 2008-08-21 2016-04-19 Lincoln Global, Inc. Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment
US9483959B2 (en) * 2008-08-21 2016-11-01 Lincoln Global, Inc. Welding simulator
US8834168B2 (en) 2008-08-21 2014-09-16 Lincoln Global, Inc. System and method providing combined virtual reality arc welding and three-dimensional (3D) viewing
US8747116B2 (en) * 2008-08-21 2014-06-10 Lincoln Global, Inc. System and method providing arc welding training in a real-time simulated virtual reality environment using real-time weld puddle feedback
TWI380743B (en) * 2008-12-12 2012-12-21 Ind Tech Res Inst Casing and jet type plasma system
JP4580022B2 (ja) * 2009-02-27 2010-11-10 ファナック株式会社 ワイヤ放電加工機
US8274013B2 (en) 2009-03-09 2012-09-25 Lincoln Global, Inc. System for tracking and analyzing welding activity
CN201455527U (zh) * 2009-06-30 2010-05-12 武汉法利普纳泽切割系统有限公司 等离子垂直切割枪防碰撞装置
US9221117B2 (en) 2009-07-08 2015-12-29 Lincoln Global, Inc. System for characterizing manual welding operations
US9230449B2 (en) 2009-07-08 2016-01-05 Lincoln Global, Inc. Welding training system
US9773429B2 (en) 2009-07-08 2017-09-26 Lincoln Global, Inc. System and method for manual welder training
US10748447B2 (en) 2013-05-24 2020-08-18 Lincoln Global, Inc. Systems and methods providing a computerized eyewear device to aid in welding
US9011154B2 (en) 2009-07-10 2015-04-21 Lincoln Global, Inc. Virtual welding system
US8569655B2 (en) 2009-10-13 2013-10-29 Lincoln Global, Inc. Welding helmet with integral user interface
US9468988B2 (en) 2009-11-13 2016-10-18 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US8569646B2 (en) 2009-11-13 2013-10-29 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US20160093233A1 (en) 2012-07-06 2016-03-31 Lincoln Global, Inc. System for characterizing manual welding operations on pipe and other curved structures
US9767712B2 (en) 2012-07-10 2017-09-19 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup
US20140183167A1 (en) * 2012-12-28 2014-07-03 Hyundai Motor Company Welding device for panel sheets and welding method for the same
US10930174B2 (en) 2013-05-24 2021-02-23 Lincoln Global, Inc. Systems and methods providing a computerized eyewear device to aid in welding
US20150072323A1 (en) 2013-09-11 2015-03-12 Lincoln Global, Inc. Learning management system for a real-time simulated virtual reality welding training environment
US10083627B2 (en) 2013-11-05 2018-09-25 Lincoln Global, Inc. Virtual reality and real welding training system and method
US9836987B2 (en) 2014-02-14 2017-12-05 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup
EP3112079A4 (en) * 2014-02-24 2017-03-15 Howon Co. Ltd. Hybrid welder
CN106233358A (zh) 2014-06-02 2016-12-14 林肯环球股份有限公司 用于人工焊工培训的系统和方法
DE102015121252A1 (de) * 2015-12-07 2017-06-08 Plasmatreat Gmbh Vorrichtung zur Erzeugung eines atmosphärischen Plasmastrahls und Verfahren zur Behandlung der Oberfläche eines Werkstücks
EP3319066A1 (en) 2016-11-04 2018-05-09 Lincoln Global, Inc. Magnetic frequency selection for electromagnetic position tracking
US20180130226A1 (en) 2016-11-07 2018-05-10 Lincoln Global, Inc. System and method for calibrating a welding trainer
US10913125B2 (en) 2016-11-07 2021-02-09 Lincoln Global, Inc. Welding system providing visual and audio cues to a welding helmet with a display
US10997872B2 (en) 2017-06-01 2021-05-04 Lincoln Global, Inc. Spring-loaded tip assembly to support simulated shielded metal arc welding
US11557223B2 (en) 2018-04-19 2023-01-17 Lincoln Global, Inc. Modular and reconfigurable chassis for simulated welding training
US11475792B2 (en) 2018-04-19 2022-10-18 Lincoln Global, Inc. Welding simulator with dual-user configuration
TR202011860A2 (tr) * 2020-07-27 2020-10-21 Isse Uluslararasi Ticaret Ve Lazer Teknolojileri Sanayi Ltd Sirketi Lazer kesi̇m maki̇neleri̇ i̇çi̇n sac baski aparati

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564351B2 (ja) * 1977-03-30 1981-01-29
JPS5728674A (en) * 1980-05-14 1982-02-16 Union Carbide Canada Ltd Cutter
JPH0235412Y2 (ja) * 1985-09-12 1990-09-26
JPH039902Y2 (ja) * 1986-07-11 1991-03-12

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3233075A (en) * 1963-07-18 1966-02-01 Welding Research Inc Fusion welding method and apparatus
US3851864A (en) * 1973-06-26 1974-12-03 Lukens Steel Co Apparatus and process for suppression of noise and fumes generated by plasma-arc cutting operation
JPS58116981A (ja) * 1981-12-28 1983-07-12 Toyota Motor Corp ア−クスポツト溶接装置
US4664587A (en) * 1984-07-16 1987-05-12 General Electric Company Robotics tool carrier assembly
DE8715217U1 (de) * 1987-11-16 1988-01-07 Werner GmbH Schweißapparate u. Gerätebau, 8011 Kirchheim Schweißbrenner für das Plasmaschweißen
US4891489A (en) * 1988-11-03 1990-01-02 Allegheny Ludlum Corporation Shield cup protector apparatus for plasma arc torch
US5147997A (en) * 1991-06-21 1992-09-15 Delaware Capital Formation, Inc. Stand-off cup for torch
US5550344A (en) * 1994-10-14 1996-08-27 The Esab Group, Inc. Mounting apparatus for a cutting torch having soft touch height control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564351B2 (ja) * 1977-03-30 1981-01-29
JPS5728674A (en) * 1980-05-14 1982-02-16 Union Carbide Canada Ltd Cutter
JPH0235412Y2 (ja) * 1985-09-12 1990-09-26
JPH039902Y2 (ja) * 1986-07-11 1991-03-12

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0698441A4 *

Also Published As

Publication number Publication date
US5728991A (en) 1998-03-17
EP0698441A4 (en) 1996-05-08
EP0698441A1 (en) 1996-02-28

Similar Documents

Publication Publication Date Title
WO1994026456A1 (en) Plasma arc welding apparatus and welding method using the same
EP2379271B1 (en) Double wire gmaw welding torch assembly and process
JP6648162B2 (ja) Tig溶接装置
JPS6163368A (ja) 被覆ア−ク溶接棒用溶接条件自動設定方法
US4956540A (en) Arc spot welding apparatus
CN111872527A (zh) 一种自动螺柱焊枪
CN110116262B (zh) 一种焊接工装设备
US7091440B2 (en) Spot welding assembly
US3172992A (en) Air cooled arc welding nozzle assembly
US6884958B2 (en) Welding torch having integral collet and collet body and method of operating same
JP3473709B2 (ja) プラズマ溶接装置
WO2004050289A1 (en) Resistance welder multi-purpose attachment
JP2009056495A (ja) スポット溶接電極
JP2666556B2 (ja) 溶接装置
US20070012670A1 (en) Welding device and welding torch
JPH079571U (ja) プラズマアーク溶接用のプラズマトーチ
CN212350730U (zh) 一种防碰撞保护装置及含有该装置的自动螺柱焊枪
CN218109751U (zh) 一种精密点焊辅助装置
JPS6154517B2 (ja)
JP2647978B2 (ja) パイプ溶接装置
JP2904459B2 (ja) プラズマト−チ
JPH0214854Y2 (ja)
JP3986645B2 (ja) ガス溶接機用クランプ
JPH06223Y2 (ja) 形鋼のプラズマアーク切断用案内治具
KR960002991Y1 (ko) 점용접 장치

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08537913

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1994914593

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1994914593

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1994914593

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1994914593

Country of ref document: EP