WO1994013854A1 - Procede d'obtention d'une couche metallique - Google Patents

Procede d'obtention d'une couche metallique Download PDF

Info

Publication number
WO1994013854A1
WO1994013854A1 PCT/EP1993/002748 EP9302748W WO9413854A1 WO 1994013854 A1 WO1994013854 A1 WO 1994013854A1 EP 9302748 W EP9302748 W EP 9302748W WO 9413854 A1 WO9413854 A1 WO 9413854A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
chemical compound
radiation
argon
irradiation
Prior art date
Application number
PCT/EP1993/002748
Other languages
German (de)
English (en)
Inventor
Hilmar Esrom
Harald Reiss
Original Assignee
Heraeus Noblelight Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4241839A external-priority patent/DE4241839C2/de
Application filed by Heraeus Noblelight Gmbh filed Critical Heraeus Noblelight Gmbh
Priority to JP6513702A priority Critical patent/JPH07506876A/ja
Priority to EP93922919A priority patent/EP0626019A1/fr
Publication of WO1994013854A1 publication Critical patent/WO1994013854A1/fr

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/105Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by conversion of non-conductive material on or in the support into conductive material, e.g. by using an energy beam
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/048Coating on selected surface areas, e.g. using masks using irradiation by energy or particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Definitions

  • the invention relates to a method for the production of full-area or partial metallic layers according to the preamble of claim 1.
  • Such methods are used to produce conductor structures on substrates or to form metallic layers which should have a homogeneous structure.
  • a method for producing a metallic layer is known from EP-A 03 49 946.
  • the solution of an organometallic compound is applied to a substrate.
  • This film is then irradiated with UV radiation and the compound is converted into a metallic layer.
  • What cannot be achieved with this method is a layer with a very homogeneous structure and a very sharp edge structure.
  • the invention is based on the object of demonstrating a method by means of which metallic layers with a homogeneous structure can be deposited in sharply delimited areas of a substrate surface. This object is achieved by the features of claim 1.
  • a chemical compound which has at least one metallic component is first evaporated at 400 ° C. and supplied to the surface of a substrate by means of a carrier gas.
  • the substrate is heated to a temperature of . -196 ° C cooled. It is thereby achieved that the gaseous compound condenses on the surface of the substrate.
  • the chemical compound is adsorbed on the surface of the substrate.
  • Suitable chemical compounds for this purpose are organometallic compounds or metal alkyls. Because of the complex molecular structure, a specific adsorption takes place, in particular on polar adsorbent molecules, that is to say that not only dispersion interactions take place between adsorbate and adsorbent molecules, but also interactions due to permanent electrical moments.
  • the substrates used can have any geometry. They can be made from all materials that are temperature-resistant down to -200 ° C.
  • the substrate is cooled, for example, with liquid nitrogen. After the condensation of the chemical compound on the surface of the substrate, the surface is irradiated with incoherent UV radiation of a defined wavelength, the substrate being cooled further.
  • a UV high-power radiation is preferably used for this, which, depending on the gas filling, generates UV radiation with a wavelength between 60 nm and 320 nm.
  • a mask can be arranged between the radiation source and the surface of the substrate, which mask is provided with passages at predetermined locations. This means that the layer on the surface is only partially irradiated.
  • certain structures for example conductor tracks, with an amorphous structure and a very sharp edge structure can be formed on the substrate at predetermined locations.
  • a metallic layer is formed.
  • the non-irradiated areas can be removed.
  • the substrate is heated, for example, to the sublimation temperature of the layer.
  • the non-irradiated areas of the layer are evaporated. If this is not possible, the undecomposed areas of the layer are washed off.
  • the desired structures remain on the surface of the substrate, which are provided with extremely sharp edges and have a very high degree of homogeneity.
  • FIG. 2 shows the coated substrate according to FIG. 1.
  • the substrate 1 shows a flat substrate 1 on the surface IS of which a metallic layer is to be deposited.
  • the substrate is in the embodiment shown here made of aluminum oxide (AI2O3).
  • the metallic coating can also be formed on other substrates (not shown here) which are made of an organic or inorganic material which is resistant at least to temperatures of -200 ° C.
  • the substrate 1 is cooled to -196 ° C. before being coated with liquid nitrogen (not shown here).
  • a chemical compound with a metal component 2 in the form of an acetylacetonate or a metal alkyl is evaporated at about 440 ° C. and supplied to the surface of the substrate 1 with the aid of a carrier gas.
  • the vaporized compound condenses on the surface and is adsorbed there.
  • copper acetylacetonate is deposited on the surface.
  • the thickness of the deposited layer is selected so that the metallic layer 2M to be formed has a thickness between 0.5 and 50 nm after completion.
  • an organometallic compound whose metal component is palladium. It is also possible to use a metal alkyl which has Al, Ga, In, Si, Ge, Zn or Pb as the metallic component.
  • a UV high-power radiator 3 is arranged at a defined distance above the surface IS to be coated of the substrate.
  • the high-power radiator 3 consists of a discharge space (not shown here) which is delimited by a metal electrode (not shown here) and a dielectric (likewise not shown here) and is filled with a noble gas or gas mixture.
  • the dielectric and the second electrode lying on the surface of the dielectric facing away from the discharge space are transparent to the radiation generated by silent electrical discharge.
  • UV radiation with a wavelength between 60 and 100 nm or 107 and 165 nm can be generated.
  • a xenon gas filling allows the generation of UV radiation with a wavelength between 160 and 190 nm, the maximum being 172 nm.
  • UV radiation in the wavelength range between 180 to 200 nm and 240 to 250 nm can be generated.
  • the UV lamp can produce a UV wavelength of 300 to 320 nm. If the metallic layer 2M to be formed is to have a defined structure, there can be between the high-power radiator 3 and the surface IS of the substrate
  • a mask 4 can be arranged, which has passages 4D at those points at which a metallic layer is to be formed on the surface IS of the substrate 1.
  • the substrate 1 is kept at the minimum temperature of -196 ° C. both when the chemical compound 2 is deposited and when the deposited layer 2 is irradiated. If the layer 2 has decomposed, the cooling of the substrate 1 can be ended.
  • the areas of the layer 2 which are not decomposed during the irradiation through the mask 4 now have to be removed from the surface IS.
  • the substrate 1 can, for example, be heated to the sublimation temperature of the chemical compound if it is not made of a temperature-sensitive material. As a result, the areas of layer 2 that have not been decomposed sublimate. What remains in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Chemically Coating (AREA)

Abstract

L'invention se rapporte à un procédé d'obtention d'une couche métallique (2M) recouvrant totalement ou partiellement un substrat (1) constitué d'un matériau organique ou inorganique. La couche métallique (2M) est formée à partir d'un composé chimique présentant un composant métallique. Le composé est d'abord vaporisé, déposé par condensation sur la surface du substrat (1) et décomposé, par irradiation aux UV, pour produire une couche métallique (2M). En vue d'obtenir une homogénéité élevée de la couche métallique (2M) et de former une arête vive, on refroidit le substrat (1), pendant le dépôt du composé chimique et l'irradiation, à une température se situant dans la gamme cryogénique.
PCT/EP1993/002748 1992-12-11 1993-10-07 Procede d'obtention d'une couche metallique WO1994013854A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6513702A JPH07506876A (ja) 1992-12-11 1993-10-07 金属層を製造する方法
EP93922919A EP0626019A1 (fr) 1992-12-11 1993-10-07 Procede d'obtention d'une couche metallique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4241839.9 1992-12-11
DE4241839A DE4241839C2 (de) 1991-12-13 1992-12-11 Verfahren zur Herstellung von metallischen Schichten

Publications (1)

Publication Number Publication Date
WO1994013854A1 true WO1994013854A1 (fr) 1994-06-23

Family

ID=6475040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1993/002748 WO1994013854A1 (fr) 1992-12-11 1993-10-07 Procede d'obtention d'une couche metallique

Country Status (3)

Country Link
EP (1) EP0626019A1 (fr)
JP (1) JPH07506876A (fr)
WO (1) WO1994013854A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4325776A (en) * 1977-06-20 1982-04-20 Siemens Aktiengesellschaft Method for preparing coarse-crystal or single-crystal metal films
US4459823A (en) * 1983-03-30 1984-07-17 Sperry Corporation Rotating liquid nitrogen cooled substrate holder
EP0283311A2 (fr) * 1987-03-18 1988-09-21 Kabushiki Kaisha Toshiba Méthode et appareillage pour la formation d'une couche mince
EP0349946A1 (fr) * 1988-07-02 1990-01-10 Heraeus Noblelight GmbH Procédé de fabrication de couches métalliques

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4325776A (en) * 1977-06-20 1982-04-20 Siemens Aktiengesellschaft Method for preparing coarse-crystal or single-crystal metal films
US4459823A (en) * 1983-03-30 1984-07-17 Sperry Corporation Rotating liquid nitrogen cooled substrate holder
EP0283311A2 (fr) * 1987-03-18 1988-09-21 Kabushiki Kaisha Toshiba Méthode et appareillage pour la formation d'une couche mince
EP0349946A1 (fr) * 1988-07-02 1990-01-10 Heraeus Noblelight GmbH Procédé de fabrication de couches métalliques

Also Published As

Publication number Publication date
EP0626019A1 (fr) 1994-11-30
JPH07506876A (ja) 1995-07-27

Similar Documents

Publication Publication Date Title
DE4107756C2 (fr)
DE3016022A1 (de) Verfahren und einrichtung zur herstellung eines duennen, filmartigen belags durch bedampfung unter verwendung einer umschlossenen plasmaquelle
DE19544525C2 (de) Verfahren zur Wärmebehandlung eines Halbleiterkörpers
DE2601656C2 (de) Verfahren zum Herstellen eines hochohmigen Cermet-Schichtwiderstandes und Cermet-Schichtwiderstand
DE1931412A1 (de) Duennschichtwiderstaende und Verfahren zu ihrer Herstellung
DE3921600C1 (fr)
DE2046833B2 (de) Verfahren zur herstellung elektrisch isolierter halbleiterzonen
DE3003285C2 (fr)
DE2300813A1 (de) Verfahren zum niederschlagen von stickstoffdotiertem beta-tantal sowie eine beta-tantal-duennschicht aufweisender artikel
DE60021302T2 (de) Verfahren und Vorrichtung zur Behandlung eines Werkstoffes mit elektromagnetischer Strahlung in einer kontrollierten Atmosphäre
DE2220086C3 (de) Vorrichtung zur Aufbringung eines Materials
DE4034834A1 (de) Verfahren zur halterung metallischer schichten auf substraten
EP0402368B1 (fr) Procede cvd de depot d'une couche sur une structure electroconductrice a couche mince
DE3942472A1 (de) Beschichtungsverfahren
WO1994013854A1 (fr) Procede d'obtention d'une couche metallique
AT399347B (de) Verfahren zum herstellen von elektrisch leitfähigen polymer-metallverbindungen
DE4241839C2 (de) Verfahren zur Herstellung von metallischen Schichten
EP0492335A2 (fr) Procédé pour le traitement de surfaces
DE3442460A1 (de) Verfahren zur dotierung von halbleitermaterial
DE3925085C1 (fr)
EP0136364B1 (fr) Procédé et dispositif pour la déposition sélective et autoréglée de couches de métal et application de ce procédé
EP0318998B1 (fr) Procédé de production de couches thermiquement stables présentant une grande dureté et/ou des propriétés de faible friction
EP0958241A1 (fr) PROCEDE ET DISPOSITIF DE PRODUCTION DE FULLERENES ENDOEDRES STABLES DE STRUCTURE Z C x? OU x $m(G) 60
EP0493709A2 (fr) Procédé pour déposer une couche d'or sur la totalité ou une partie d'une surface
EP0686210B1 (fr) Couches formant barriere deposees par vaporisation sous vide utiles dans l'industrie de l'emballage et matiere a vaporiser sous vide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB IT NL

WWE Wipo information: entry into national phase

Ref document number: 1993922919

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1993922919

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1993922919

Country of ref document: EP