WO1994002521A1 - Hydrogenated resin - Google Patents

Hydrogenated resin Download PDF

Info

Publication number
WO1994002521A1
WO1994002521A1 PCT/JP1993/001065 JP9301065W WO9402521A1 WO 1994002521 A1 WO1994002521 A1 WO 1994002521A1 JP 9301065 W JP9301065 W JP 9301065W WO 9402521 A1 WO9402521 A1 WO 9402521A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
monomer
repeating unit
parts
polymer
Prior art date
Application number
PCT/JP1993/001065
Other languages
French (fr)
Japanese (ja)
Inventor
Teiji Kohara
Toshihide Murakami
Masakazu Hashimoto
Tadao Natsuume
Original Assignee
Nippon Zeon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP28510492A external-priority patent/JP3235219B2/en
Priority claimed from JP28510792A external-priority patent/JPH06136057A/en
Priority claimed from JP28510592A external-priority patent/JP3277568B2/en
Application filed by Nippon Zeon Co., Ltd. filed Critical Nippon Zeon Co., Ltd.
Publication of WO1994002521A1 publication Critical patent/WO1994002521A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation

Definitions

  • the present invention relates to a hydrogenated resin, and more particularly, to a resin obtained by hydrogenating a polymer containing a linear addition polymerization type repeating unit of a cyclopentadiene monomer.
  • the hydrogenated resin of the present invention is excellent in transparency, light resistance, moisture resistance, low dielectric constant, low dielectric loss, chemical resistance, etc., and is particularly suitable for optical materials, medical polymer materials, electrical insulating materials, and electronic components. It is suitable as a material. Background art
  • polymethyl methacrylate-polycarbonate has been used as an optical polymer material, but the former has problems such as large water absorption and the latter has large birefringence of injection molded products. As a result, it is becoming increasingly difficult to respond to the demand for increasingly sophisticated optical polymer materials.
  • Polymer materials that have improved these disadvantages include, for example, hydrogenated ring-opening polymers of norbornene-based monomers and thermoplastic saturated polymers such as addition-type copolymers of norbornene-based monomers and ethylene.
  • the fact that the norbornene-based polymer has excellent characteristics as an optical disc substrate material has been disclosed in Japanese Patent Application Laid-Open Nos. Sho 60-26024, Sho 62-24826, Sho 62 This is disclosed in, for example, Japanese Patent Application Laid-Open No. 0-1688708, Japanese Patent Application Laid-Open No. S61-115912, and Japanese Patent Application Laid-Open No. 61-12816.
  • norbornene-based Polycyclic monomers such as tetracyclododecenes are used as monomers, but production of polycyclic monomers is not always easy.
  • polycyclic monomers are synthesized by an addition reaction of norbornenes and dicyclopentene (hereinafter, referred to as DCP) under heating, but are synthesized by the addition of cyclopentene (hereinafter, referred to as CPD) multimers. Since it contains many products, it is necessary to purify and separate it by distillation and the like, and it is difficult to purify and separate it. Therefore, polycyclic monomers, especially tetracyclododecene derivatives, are very expensive and not industrially advantageous.
  • T g glass transition temperature
  • the addition-type polymer had a Tg of 300 ° C. or higher and was inferior in moldability and could not be used for general purposes.
  • CPD is easily available as a C 5 fraction in the petrochemical industry, usually by a pressurized heat decomposes this what is stored as a DCP or more 1 8 0 ° C, obtained in high purity
  • Can be CPD is used as a tackifier by obtaining a linear addition polymer by a method such as cation polymerization (Ann., 447, 1110, 1926) Ind. En. Chem., 18, 38 1, 19 26; Polymer Chemistry, i_, 73, 1962; Polymer Chemistry, 56, 196 6; Japanese Unexamined Patent Publication No. 55-65220).
  • cation polymerization Ann., 447, 1110, 1926
  • the linear addition polymer of CPD contains many unsaturated bonds, it is extremely susceptible to air oxidation, its strength is deteriorated, it is difficult to melt, and its moldability is deteriorated.
  • addition polymers having a cycloalkane structure in the side chain are excellent in terms of low birefringence, heat resistance, and low moisture absorption. It has been known that it can be used as an optical material (JP-A-63-43910, JP-A-1-132603, etc.). However, these polymers have insufficient mechanical strength, so there is a problem in using them as general optical materials, and other specific uses have not been sufficiently studied. Disclosure of the invention
  • the objectives of the present invention are: 'transparency, light resistance, moisture resistance, low dielectric constant, low dielectric loss
  • An object of the present invention is to provide a resin material which is excellent in loss, chemical resistance, and the like, and is particularly suitable as an optical material, a medical polymer material, an electrical insulating material, an electronic component material and the like.
  • This hydrogenated resin is a linear addition-polymerized homopolymer of a cyclopentagen-based monomer or a linear addition-polymerized copolymer of a cyclopentagen-based monomer and a vinyl group-containing cyclic hydrocarbon monomer.
  • the present invention has been completed based on these findings.
  • the polymer is not limited to a homopolymer of a cyclopentadiene monomer, but may be a copolymer of a cyclopentadiene monomer and a monomer copolymerizable with the monomer. Good.
  • copolymer in particular, 10 to 50% by weight of a linear addition polymerization type repeating unit of a cyclopentadiene monomer and a linear addition polymerization of a vinyl group-containing cyclic hydrocarbon monomer Mold repeating unit 90 ⁇ 50 weight % Of a linear addition polymerization type repeating unit of a cyclopentene-based monomer and a linear addition polymerization type repeating unit of a norbornene-based monomer.
  • Copolymers containing 0 to 50% by weight are preferred, and as the hydrogenated resin, at least 90% of carbon-carbon double bonds in these copolymers are hydrogenated. The ones you like are preferred.
  • the cyclopentadiene monomer used in the present invention is CPD or an alkyl-substituted product thereof. Specific examples thereof include CPD, 1-methylcyclopentadiene, 2-methylcyclopentadiene, 2-ethylcyclopentadiene, 5-methylcyclopentadiene and 5,5-dimethylcyclopentene. These can be used alone or in combination of two or more. Copolymerizable monomers
  • the cyclopentadiene-based monomer can be used in combination with a monomer copolymerizable with the cyclopentadiene-based monomer.
  • Monomers copolymerizable with cyclopentene-based monomers include ethylene, propylene, isobutene, dipentene, limonene, vinylcyclohexene, 2-methyl-1-butene, and 2-methyl-1-butene.
  • ⁇ -olefins such as butene, isoprene, 1,3-pentadiene, furan, thiophene, etc .; ethylene oxide, propylene oxide, trimethylene oxide , Trioxane, dioxane, cyclohexene oxide, styrene oxide, epichlorohydrin, tetrahydro Cyclic ethers such as drofuran: vinyl ethers such as methyl vinyl ether and ethylvinyl ether; vinyl compounds containing heterocycles such as vinyl pyridine, N-vinyl carbazole, N-vinyl-2-pyrrolidone; cyclopentene, cyclohexene , Norbornadiene, 1,3-cyclohexadiene, and substituted products thereof, such as cyclic olefins; vinyl group-containing cyclic hydrocarbon monomers; norbornene monomers; and the like.
  • copolymerizable monomers are used within the range where the properties such as the heat resistance, flexibility, moldability, mechanical strength, etc. of the target hydrogenated resin are not substantially impaired, or these properties are improved. In order to improve them, they can be used singly or in combination of two or more kinds in a desired copolymerization ratio. Specifically, the copolymerization ratio should be selected within the range of 10 to 100% by weight of cyclopentagen-based monomer and 90 to 0% by weight of these copolymerizable monomers. Can be. Generally, when the proportion of the copolymerizable monomer other than the vinyl group-containing cyclic hydrocarbon monomer and the norbornene monomer is increased, the resulting hydrogenated resin becomes transparent, colorless, and low in complexity.
  • the monomer is generally used in a proportion of not more than 40% by weight, preferably not more than 25% by weight, more preferably not more than 10% by weight.
  • vinyl group-containing cyclic hydrocarbon-based monomers or norbornene-based monomers improve the Tg of the copolymer, and provide transparency, low birefringence, light resistance, moisture resistance, moldability, and mechanical properties. Used in a wide range to improve the heat resistance of hydrogenated resins without impairing mechanical strength, chemical resistance, etc.
  • Copolymers containing 90 to 10% by weight of repeating units of the type can be used.
  • a linear addition polymerization type repeating unit of a cyclopentadiene monomer and a linear addition polymerization type repeating unit of a vinyl group-containing cyclic hydrocarbon monomer or a norbornene monomer.
  • Copolymers containing 90 to 50% by weight of a unit are preferred because they can provide a hydrogenated resin having an excellent balance of heat resistance and other physical properties.
  • the monomer composition to be used is determined according to the reactivity of each monomer.
  • the cyclopentadiene monomer has high reactivity, so that the cyclopentadiene monomer is usually 5 to 90% by weight and the vinyl group-containing cyclic hydrocarbon monomer or the norbornene monomer 9 It is used in the range of 5 to 10% by weight.
  • the vinyl group-containing cyclic hydrocarbon-based monomer or norbornene-based monomer is usually at least 10% by weight, preferably at least 20% by weight, more preferably at least 3% by weight. Use 0% by weight or more.
  • 50 to 95% by weight of these monomers preferably 55 to 90% by weight, more preferably 60 to 80% by weight
  • the content of the cyclopentadiene monomer can be 5 to 50% by weight, preferably 10 to 45% by weight, and more preferably 20 to 40% by weight.
  • copolymerizable monomers such as ⁇ -olefin, conjugated gen, cyclic ether, vinyl ether, heterocycle-containing vinyl compound or cyclic olefin are combined with 40% of the entire monomer composition. Wt% or less, preferably 25 wt% or less, more preferably Alternatively, it may be used in a proportion of 10% by weight or less.
  • vinyl group-containing cyclic hydrogen monomer used in the present invention examples include vinyl cyclopentene monomers such as 4-vinylcyclopentene, 2-methyl-1-isopropenylcyclopentene, 4-vinylcyclopentane, and 4-vinylcyclopentane.
  • Vinyl-containing 5-membered hydrocarbon monomers such as pentane-based monomers such as pentane-based monomers such as isopropenylcyclopentane; 4-vinylcyclohexene, 4-vinylpropene-hexene,
  • 2-cyclohexene monomer such as 2-cyclohexene, 2-vinylcyclohexene, 2-cyclohexene such as 2-methylcyclohexene, etc.
  • These monomers can be used alone or in combination of two or more. Among them, a vinyl group-containing six-membered ring hydrocarbon-based monomer is preferred.
  • norbornene monomer examples include norbornene and derivatives thereof.
  • bicyclic monomers are preferred from the standpoint of availability.
  • these monomers are preferred as having a large number of rings, but if the heat resistance is excessively improved, it becomes difficult to perform melt molding. In such cases, a bicyclic compound is preferred.
  • the polymerization catalyst used for the polymerization of the monomer composition of the cross-opening pentadiene-based monomer or the cross-opening pen-nitrogen-based monomer and a monomer copolymerizable therewith is a linear addition
  • the copolymer is not particularly limited as long as it can be polymerized, and known cationic polymerization catalysts, living cation polymerization catalysts, Ziegler catalysts and the like can be used.
  • T i C l 4 Z l , 4 - bis (2-main butoxy one 2 one propyl) benzene, 2- Fuweniru 2-propanol, etc. are elevation Gerare, as the Ziegler catalyst, T i C l 4 such as a single E t 3 A l can be mentioned.
  • the amount of the polymerization catalyst used is usually in the range of 0.000001 to 1 times, preferably 0.00001 to 0.5 times, in molar ratio, relative to the monomer component.
  • the polymerization is usually carried out using a solvent.
  • the solvent include aromatic solvents such as benzene, toluene and xylene; hydrocarbon solvents such as pentane, hexane, heptane, octane, cyclopentane, cyclohexane, methylcyclohexane, and decalin; Halogenated hydrocarbons such as methyl, methylene chloride, 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,1,2—trichloroethylene
  • hydrocarbon solvents particularly cyclopentane, cyclohexane, methylcyclohexane, and decalin, are preferred because of their excellent solubility of the polymer.
  • the polymerization temperature is usually in the range from ⁇ 150 to 100 ° C., preferably from ⁇ 100 to 50 ° C., particularly preferably from 150 to 50 ° C. If the temperature is too high, it reacts violently, making it difficult to control the reaction and causing gelation. Or thermal deterioration. Also, if the temperature is too low, the reaction speed is slow and inefficient.
  • the polymer of a cyclopentene monomer used in the present invention is a polymer containing a linear addition polymerization type repeating unit represented by the following general formula (I) and / or ( ⁇ ). .
  • R 1 to R 6 each represent a hydrogen atom or an alkyl group.
  • R 7 to R 12 each represent a hydrogen atom or an alkyl group.
  • the alkyl group includes a carbon atom having 1 carbon atom such as a methyl group or an ethyl group. About 5 lower alkyl groups are preferred.
  • a polymer containing a linear addition polymerization type repeating unit of a cyclopentadiene monomer has an intrinsic viscosity [7?] Measured in toluene at 25 ° C of 0.1 to 10 dl / g, Preferably it is of 0.2 to 5 dl Z g, more preferably of 0.3 to 2 dl / g. If the intrinsic viscosity is too low, the mechanical strength of a molded product of a hydrogenated product of the polymer becomes low, If the limiting viscosity is too large, it becomes difficult for the hydrogenation reaction of the polymer to proceed smoothly. Further, since the polymer used in the present invention does not substantially contain a gel, it is soluble in a suitable solvent and can smoothly carry out a hydrogenation reaction.
  • the repeating unit represented by the general formula (I) is usually 20% by weight or more, preferably 30% by weight or more, and more preferably 40% by weight or more. is there.
  • the proportion of the repeating unit represented by the general formula (I) is determined by the polymerization catalyst, the polymerization solvent, and the like, and is substantially unaffected by the presence of the comonomer and the polymerization temperature.
  • R 13 to R 24 each represent a hydrogen atom or an alkyl group, and among them, R 16 to R 24 represent carbon atoms adjacent to each other and may form a double bond.
  • R 2 R 38 represents a hydrogen atom or an alkyl group, wherein R : 'R 38 represents carbon atoms adjacent to each other and may form a double bond.
  • R 39 to R 5 each represent a hydrogen atom or an alkyl group, and among them, R 42 to R 54 represent carbon atoms adjacent to each other and may form a double bond.
  • the alkyl group is preferably a lower alkyl group having about 1 to 5 carbon atoms, such as a methyl group or an ethyl group.
  • the linear addition polymerization type repeating unit of the vinyl group-containing cyclic hydrocarbon monomer is usually in the range of 10 to 90% by weight.
  • the linear addition polymerization type repeating unit of the vinyl group-containing cyclic hydrocarbon monomer is usually 50 to 90% by weight, preferably 55 to 80% by weight. % By weight, more preferably 60 to 70% by weight.
  • the remainder is a repeating unit represented by the general formula (I) and Z or ( ⁇ ⁇ ⁇ ).
  • a repeating unit derived from other copolymerizable monomers such as one-year-old refine, conjugated gen, cyclic ether, vinyl ether, heterocyclic vinyl compound or cyclic olefin may be used as a minor component. May be contained. Also 25 of this copolymer.
  • the intrinsic viscosity [7?] Measured in toluene of C is 0.1 to 10 d1 Zg, preferably 0.2 to 5 dl / g, more preferably 0.3 to 2 dl / g. .
  • linear addition polymerization type repeating unit of the vinyl group-containing hydrocarbon monomer If the linear addition polymerization type repeating unit of the vinyl group-containing hydrocarbon monomer is too large, the melting temperature becomes too high, so that melt molding becomes difficult or the mechanical strength decreases. If there are too many linear addition polymer-type repeating units of the cyclopentadiene monomer, heat resistance will be reduced.
  • the polymer of a cyclopentadiene monomer and a vinyl group-containing cyclic hydrocarbon monomer is a novel polymer, and in particular, is a linear addition-polymerized repeating unit of a cyclopentadiene monomer 10 to 50
  • a copolymer containing 50% by weight and 50 to 90% by weight of a linear addition polymerization type repeating unit of a vinyl group-containing cyclic hydrocarbon monomer has transparency and low birefringence without hydrogenation.
  • the hydrogenated product of the copolymer is superior in terms of properties, heat deterioration resistance, chemical resistance and the like.
  • repeating unit derived from the norbornene monomer examples include a linear addition polymerization type repeating unit represented by the following general formula (VI).
  • n 0, 1 or 2
  • R 55 to R 66 each represent a hydrogen atom, an alkyl group, an alkylidene group, an alkenyl group, an aromatic substituent or a polar substituent.
  • alkyl group alkylidene group, alkenyl group, aromatic substituent and polar substituent in the general formula (VI), those shown in the examples of the monomer can be exemplified.
  • the repeating unit of the linear addition polymerization type of the norbornene-based monomer is usually in the range of 10 to 90% by weight.
  • the repeating unit of the linear addition polymerization type of norbornene-based monomer is usually 50 to 90% by weight, preferably 55 to 80% by weight, More preferably, it is 60 to 70% by weight.
  • the remainder is a repeating unit represented by the general formula (I) and / or ( ⁇ ).
  • the intrinsic viscosity ["] of this copolymer measured in toluene at 25 ° C is from 0.1 to 10 dl Zg, preferably from 0.2 to 5 dl / g, more preferably from 0.2 to 5 dl / g. Is 0.3-2 dl / g.
  • the polymer of a cyclopentadiene-based monomer and a norbornene-based monomer is a novel polymer.
  • a linear addition-polymerized repeating unit of a cyclopentadiene-based monomer is 10 to 50% by weight.
  • a copolymer containing 50 to 90% by weight of a norbornene-based monomeric linear addition polymerization type repeating unit can have transparency, low birefringence, light resistance, and moisture resistance without hydrogenation. It excels in properties, moldability, mechanical strength, and chemical resistance, and can be used as optical materials, medical polymer materials, electrical insulating materials, electronic component materials, and so on.
  • the hydrogenated product of the copolymer is superior in terms of light deterioration resistance, heat deterioration resistance, chemical resistance and the like.
  • the hydrogenation catalyst can be used as long as it is generally used in hydrogenation of an orifice compound, for example, Wilkinson complex, cobalt acetate Z triethylaluminum, nickel acetyl Heterogeneous catalysts in which catalytic metals such as Nigel, Palladium, and Platinum are supported on acetonate Z triisobutylaluminum, diatomaceous earth, magnesium, alumina, synthetic zeolite, etc. among ', magnesia, active alumina, synthetic Zeorai pores bets was carrier volume 0. 5 cm 3 / g or more, favored properly is 0.
  • an orifice compound for example, Wilkinson complex, cobalt acetate Z triethylaluminum, nickel acetyl Heterogeneous catalysts in which catalytic metals such as Nigel, Palladium, and Platinum are supported on acetonate Z triisobutylaluminum, diatomaceous earth, magnesium, alumina, synthetic
  • a heterogeneous catalyst of 50 m 2 / g or more is desirable. These carriers adsorb transition metals and chlorine atoms derived from the polymerization catalyst. Further, if a heterogeneous catalyst having a particle size of 0.2 / m or more, that is, a catalyst substantially not containing a particle size of less than 0.2 // m is used, the filtration by filtration is difficult. It is preferable because the removal of the homogeneous catalyst is easy.
  • the particle size is too small, it is liable to leak at the time of filtration, and it is difficult to remove even by centrifugation, and the amount of transition metal atoms, which is a residue of the polymerization catalyst or the hydrogenation catalyst in the hydrogenated resin, increases.
  • filtration is performed using a filter with a small pore size to prevent leakage, clogging is likely to occur and work efficiency is poor.
  • the reactivity can be increased by adding a small amount of alcohol such as isopropyl alcohol.
  • the amount added is usually 0.5 to 5 parts by weight, preferably 1 to 3 parts by weight, per 100 parts by weight of the solution.
  • the hydrogenation reaction is usually performed in an inert organic solvent.
  • a hydrocarbon-based solvent is preferable, and among them, a cyclic hydrocarbon-based solvent having excellent solubility in the hydrogenated resin to be generated is particularly preferable.
  • Specific examples include aromatic hydrocarbons such as benzene and toluene, aliphatic hydrocarbons such as n-benzene and hexane, and cyclohexane and decalin.
  • Examples include halogenated hydrocarbons such as alicyclic hydrocarbons, methylene dichloride, and dichloroethane, and a mixture of two or more of these can be used.
  • the amount of the solvent used is usually 0.8 to 20 parts by weight, preferably 1 to 10 parts by weight based on 1 part by weight of the polymer.
  • the reaction may be the same as the polymerization reaction solvent, and the reaction may be performed by adding a hydrogenation catalyst or the like to the polymerization reaction solution as it is.
  • the temperature of the hydrogenation reaction is usually at least 100, preferably from 120 to 300 ° C, more preferably from 140 to 250 ° C. If the hydrogenation reaction temperature is too low, the hydrogenation reaction does not proceed easily, and the hydrogenation rate does not increase sufficiently. If the temperature is too high, the polymer will be thermally degraded and operation will be difficult.
  • Hydrogen pressure in the hydrogenation reaction is not particularly limited, usually, 1 0 to 20 0 kg / cm 2, preferably 2 0-1 5 0 1 5: 0 111 2, more preferably 3 0-1 0 0 a kg / cm 2.
  • the catalyst may be removed by a conventional method such as centrifugation or filtration.
  • the centrifugation method and the filtration method are not particularly limited as long as the used catalyst can be removed. Removal by filtration is preferred because it is simple and efficient. In the case of filtration, pressure filtration or suction filtration may be used. From the viewpoint of efficiency, it is preferable to use a filter aid such as diatomaceous earth or perlite.
  • An adsorbent for a transition metal atom derived from a polymerization catalyst such as the above-mentioned carrier for a hydrogenation catalyst may be used as a filter aid. (Hydrogenated resin)
  • the hydrogenation rate of the hydrogenated resin of the present invention is a rate at which the carbon-carbon double bond in the repeating unit is hydrogenated, and can be arbitrarily determined by changing the hydrogen pressure, the reaction temperature, the reaction time, the catalyst concentration, and the like. Can be adjusted.
  • the hydrogenation rate is at least 90%, preferably at least 95%, more preferably at least 99%.
  • the stability to air oxidation is not sufficient, and it is particularly difficult to maintain the colorless and transparent properties required for optical materials.
  • the repeating unit derived from a monomer other than the cyclopentadiene monomer is hydrogenated to substantially the same degree as the linear addition polymerization type repeating unit of the cyclopentadiene monomer.
  • the hydrogenation catalyst is changed from a combination catalyst of a transition metal compound and an alkyl metal compound.
  • the aromatic ring can be selectively left without hydrogenation. In that case, if the hydrogenation rate calculated excluding the unsaturated bond of the aromatic ring is within the above range, it can be used as the hydrogenated resin of the present invention.
  • the aromatic ring has stability to air oxidation, but when higher stability is required, it is preferable to hydrogenate the aromatic ring.
  • the hydrogenated resin of the present invention has a molecular weight range of 25 ° C., an intrinsic viscosity [] measured in toluene of 0.1 to 10 d 1 g, preferably 0.2 to 5 dl Z g. Preferably it is 0.3-2 dl / g. If the intrinsic viscosity of the hydrogenated resin is too small, the mechanical strength of the molded article will be low, and if the intrinsic viscosity is too large, the melt viscosity will be high and molding processing will be difficult.
  • the hydrogenated resin of the present invention is amorphous, transparent, low birefringent, and electrically insulating. It has excellent edge properties, usually has a Tg of 70 ° C or more, has low moisture absorption, has excellent electrical insulation properties, and has mechanical toughness.
  • a linear addition polymerization type repeating unit of a cyclopentadiene monomer is 10 to 50% by weight and a linear addition polymerization type repeating unit of a vinyl group-containing cyclic hydrocarbon monomer is 50 to 90%.
  • % By weight of a copolymer having a Tg of 90 ° C. or more and a mechanical strength of at least 550 kgf cm 2 in bending strength, preferably It is excellent at 600 kgf / cm 2 or more, and more preferably at 600 kgf / cm 2 or more.
  • a resin obtained by hydrogenating a copolymer containing styrene usually has a Tg of 120 ° C. or higher, and has excellent mechanical strength.
  • the hydrogenated resin of the present invention can be molded by a conventional molding method, for example, injection molding, extrusion molding, compression molding, cast molding, inflation molding, blow molding and the like.
  • additives may be added to the hydrogenated resin of the present invention, if desired.
  • the additives used include, for example, phenol-based antioxidants, antistatic agents, ultraviolet absorbers, rubbery polymers, petroleum resins, and heterogeneous thermoplastic resins.
  • fibrous fillers such as glass fiber and carbon fiber; and particulate fillers such as silica, alumina, talc, aluminum hydroxide, and calcium carbonate.
  • a leveling agent may be added to reduce the surface roughness.
  • a coating repelling agent such as a fluorine-based nonionic surfactant, a special acrylic resin-based leveling agent, or a silicone-based leveling agent is used. Among them, those having good compatibility with the solvent are preferred.
  • the required light transmittance is usually at least 40%, preferably at least 50%, measured in a wavelength range of 450 to 700 nm using a molded plate having a thickness of 2 mm. , More preferably 60% or more.
  • the light transmittance is usually 80% or more, preferably 85%, measured at a wavelength of 400 to 80 nm using a 1.2 mm thick molded plate. The above is more preferably at least 88%, particularly preferably at least 90%.
  • Additives also affect the electrical properties of the hydrogenated resin, and additives that do not have a charging fanning effect reduce electrical properties.
  • the volume resistivity is usually at least 10 16 Q cm, preferably at least 5 x 10 16 ⁇ cm
  • the dielectric constant is 10 2 H z, 1 0 6 H z , 1 0 9 3 or less at any of frequencies H z, preferably Is 2. 5 or less
  • the dielectric loss tangent, 1 0 2 H z, 1 0 6 H z, 1 0 9 H z of 1 0_ 3 or less at any frequency, favored properly is 7 x 1 0- 4 below Nori.
  • the hydrogenated resin of the present invention is useful in a wide range of fields as various molded articles including optical materials.
  • optical materials for example, optical materials; electrical insulating materials; medical polymer materials; electronic component applications such as photodetector windows; IC carrier tapes, shippers, IC trays, wafer carriers, and ultrapure water piping.
  • Parts processing equipment Structural materials and building materials such as windows, equipment parts, and housing; Automotive equipment such as bumpers, room mirrors, headlamp power, tail lamp covers, instrument panels; Speaker cones, speakers It can be used for various uses such as vibration devices, electric equipment such as microwave oven containers, films, sheets, and helmets.
  • the hydrogenated resin of the present invention has transparency, low birefringence, a glass transition temperature (T g) of 70 ° C. or higher, low hygroscopicity, and mechanical toughness.
  • T g glass transition temperature
  • it is useful as an optical material such as an optical disk, an optical lens, an optical card, an optical fiber, an optical mirror, a liquid crystal display element substrate, a light guide plate, a polarizing film, and a phase difference film.
  • the hydrogenated resin of the present invention has low adsorption of chemicals, particularly chemicals having polar groups such as alcohols, amines, esters, amides, ethers, carboxylic acids, and amino acids.
  • the resin solution is mixed with acidic water and pure It is used as a medical device because the residual amount of transition metal atoms and hydrogenation catalyst metal derived from the polymerization catalyst can be reduced to 1 ppm or less by repeatedly washing with water, etc. be able to
  • Medical equipment includes, for example, liquid, powder or solid drug containers such as liquid drug containers for injection, ampoules, prefilled syringes, infusion bags, solid drug containers, eye drops containers, and infusion containers; food containers Sampling test tubes, blood collection tubes, sample containers such as sample containers for blood tests; Medical instruments such as syringes; Sterile containers such as scalpels, medical instruments such as forceps, gauze, and contact lenses; Beakers, Petri dishes , Flasks, test tubes, centrifuge tubes, etc. ⁇ Analytical instruments; medical optical components such as plastic lenses for medical tests; medical infusion tubes, piping, joints, valves and other piping materials; denture bases, Examples include artificial hearts, artificial organs such as artificial roots, and parts thereof.
  • the hydrogenated CPD polymer of the present invention is useful in a wide range of fields as an electrical insulating material.
  • Infrared spectroscopy shows that the intrinsic skeleton [77] is the same skeletal structure as that of a known CPD polymer (polymer chemistry, 7, 734, 1962) with a limiting viscosity of 0.06 dl / g. It was found that the polymer was composed of linear addition polymerization type repeating units of CPD.
  • This hydrogenated resin was press-molded at 180 ° C, 2 mm thick, diameter
  • a colorless hydrogenated resin 25 parts by weight was obtained in the same manner as in Example 1 except that the polymer obtained in Reference Example 2 was used instead of the polymer obtained in Reference Example 1.
  • the absorptions at 3040 cm " 1 and 7500 cm- 1 were completely lost in the infrared spectroscopy spectrum, and the ⁇ -NMR spectrum was 5.6 ppm. It was confirmed that the absorption had completely disappeared, and the hydrogenation ratio was approximately 100%
  • the intrinsic viscosity was 0.76 d1 / g, and the glass transition temperature was 81 ° C.
  • the atomic weight of tungsten in the resin was less than 0.05 ppm (detection limit) and the atomic weight of nickel was less than 0.05 ppm. O lp pm (detection limit).
  • 100 mg of this hydrogenated resin was burned in a Doman combustor, absorbed in 5 ml of pure water, and analyzed by iontophoresis. The chlorine atom content was 0.02 ppm (detection limit).
  • injection molding (molding pressure: 350 tonnes, resin temperature: 225 C, mold temperature: 70 ° C), diameter: 20 Omm, height: 130 mm, average thickness: 3 mm
  • the test piece with a thickness of 2 mm is colorless and transparent, has a light transmittance of 90.3% or more at a wavelength of 400 to 8300 nm, a retardation value of 20 nm or less, and a turbidity of 0.1%. there were.
  • test piece was immersed in an aqueous sodium carbonate solution of PH9, hydrochloric acid of pH 4 and ethanol for 48 hours, and the appearance was observed, but there was no change, and there was no change in turbidity and light transmittance. .
  • test piece was cut into a 10 mm width, 20 g of the test piece was ultrasonically washed in distilled water for 20 minutes, and then dried at 40 ° C. for 10 hours. Next, this 200 g test piece was placed in a hard glass flask, and 200 g of distilled water was added. The bottle was covered with a hard glass lid and allowed to stand at 50 ° C for 24 hours to recover distilled water.
  • composition ratio between CPD and ⁇ -methylstyrene was calculated to be 95: 5 in molar ratio from the intensity ratio of ' ⁇ -NMR. Also, 1.3-1.8 p p'm, 1.8-2.2 p pm, 2.2-3.0 p D m Is 2.3.5: 1.3.7: 62.8, and the repeating unit represented by the general formula (I) in the linear addition polymerization type repeating unit of the CPD monomer is , 47% by weight.
  • the limiting viscosity of this hydrogenated resin was 0.47 d1 nog, and the glass transition temperature was 89 ° C.
  • the absorption at 3040 cm " ⁇ 750 cm- 1 and 695 cm- 1 completely disappeared, and the 'H-NMR spectrum also showed 6.4 to 7 lppm and 5.
  • the absorption at 6 ppm completely disappeared, and it was confirmed that almost 100% of hydrogen was added to both the phenyl group and the unsaturated group of the cyclopentene ring.
  • This hydrogenated resin was press-molded at 200 ° C. to produce a flat plate having a thickness of 2 mm and a diameter of 86 mm, and a disk having a thickness of 1.2 mm and a diameter of 12.5 cm.
  • the 2 mm-thick plate was colorless and transparent and tough.
  • the light transmittance was 90.4% or more for wavelengths of 400 to 830 nm, and the letter daneyon value was 20 nm or less.
  • the thickness 1. volume resistivity of the hydrogenation resin measured using a circular ⁇ of 2 mm is 5 X 1 0 16 ⁇ cm or more, the dielectric constant 1 0 2 H z, 1 0 6 H z and 1 0 9 in any of the frequency of the H z 2. 3 3 In, the dielectric loss tangent was also 1 0 2 H z, 1 0 6 H z and 1 0 9 5 X in any of the frequency of the H z 1 0 -4.
  • This hydrogenated resin was press-molded at 200 ° C. to form a flat plate having a thickness of 2 mm and a diameter of 86 mm, a circle having a thickness of 1.2 mm and a diameter of 12.5 cm.
  • the 2 mm-thick plate was colorless, transparent and tough, with a light transmittance of 90.3% or more in the range of 400 to 80 nm, and a letter decision value of 20 nm or less.
  • volume resistivity of this tree fat was measured using a circular plate of 2 mm is 5 X 1 0 16 ⁇ cm or more, the dielectric constant 1 0 2 H z, 1 0 6 H z and 1 0 9 H at 2.3 1 at any frequency z, Yuden loss tangent 1 0 2 H z, 1 0 6 H z and 1 0 s 4 can have you to any of the frequency of the H 2 X 1 0- Was 4 .
  • Example 10 Except that instead of 90 parts by weight of CPD and 10 parts by weight of na-methylstyrene, 50 parts by weight of CPD, 20 parts by weight of a 50% by weight solution of isobutylene in toluene and 40 parts by weight of styrene were used. In the same manner as in 3, a copolymer (69 parts by weight) was obtained.
  • the limiting viscosity of this hydrogenated resin is 0.5 d 1 ng and the glass transition temperature is 84. C.
  • the absorptions at 3040 cm- ⁇ 760 cm- 1 and 695 cm- 1 completely disappeared, and even in the 1 H-NMR spectrum, 6.4 ⁇ 7 lppm and The absorption at 5.6 ppm completely disappeared, confirming that almost 100% of hydrogen was added to both the phenyl group and the unsaturated group of the cyclopentene ring.
  • This hydrogenated resin was press-molded at 200 ° C. to produce a flat plate having a thickness of 2 mm and a diameter of 86 mm.
  • the plate was colorless, transparent and tough, had a light transmittance of 90.5% or more in the range of 400 to 830 nm, and a retardation value of 20 nm or less.
  • Example 4 50 parts by weight of this copolymer was dissolved in 540 parts by weight of cyclohexane, and 3.0 parts by weight of the nickel-supported nickel catalyst used in Example 1 was further dissolved. Then, 10 parts by weight of isopropyl alcohol was added, and hydrogenation was carried out in the same manner as in Example 4 to obtain 43 parts by weight of a hydrogenated resin.
  • This hydrogenated resin was press-molded at 200 ° C. to produce a flat plate having a thickness of 2 mm and a diameter of 86 mm.
  • the plate was colorless and transparent, and had a light transmittance of 90.5% or more at a wavelength of 400 to 80 nm and a retardation value of 2 Onm or less.
  • the intrinsic viscosity of this copolymer was 0.46 dl / g.
  • the composition ratio of CPD to norbornene was calculated to be 66:34 in molar ratio.
  • Example 4 60 parts by weight of this copolymer was dissolved in 540 parts by weight of cyclohexane, and 3.0 parts by weight of the alumina-supported Nigel catalyst used in Example 1 and 10 parts by weight of isopropyl alcohol were further dissolved. In addition, as in Example 4, To obtain 56 parts by weight of a hydrogenated resin.
  • the intrinsic viscosity of the hydrogenated resin was 0.46 d1 g, and the glass transition temperature was 16.5 ° C. In the infrared spectroscopy spectrum, the absorptions at 340 cm- 1 and 760 cm- 1 disappeared completely, and in the NMR spectrum the absorption at 5.6 ppm disappeared completely. It was confirmed that about 100% of the unsaturated group of the cyclopentene ring was hydrogenated.
  • This hydrogenated resin was press-molded at 200 to produce a flat plate having a thickness of 2 mm and a diameter of 86 mm, and a disk having a thickness of 1.2 mm and a diameter of 12.5 cm.
  • the 2 mm thick flat plate was colorless and transparent and tough, with a light transmittance of 90.5% or more at wavelengths of 400 to 830 nm and a retardation value of 20 nm or less.
  • volume resistivity of the resin was measured using a circular plate of 2 mm is 5 X 1 0 16 ⁇ cm or more, the dielectric constant 1 0 2 H z, 1 0 6 H z and 1 0 in 2.3 3 in any of the frequency of 9 H z, Yuden loss tangent 1 0 2 H z, 1 0 6 H z and 1 0 9 4 can have you to any frequency of the H z X 1 0- 4 Met.
  • a nitrogen-substituted glass reaction vessel was charged with 60 parts by weight of CPD, 40 parts by weight of ⁇ -methylstyrene, and 900 parts by weight of toluene, and cooled to 178 ° C. While stirring, 10 parts by weight of a 20% by weight toluene solution of boron trifluoride getyl ether complex was added, and the mixture was allowed to react at a temperature of not more than 75 ° C. for 5 hours. The reaction solution was put into 500 parts by weight of isopropyl alcohol with stirring, and the precipitated polymer was collected by filtration and dried under a reduced pressure of I mmHg or less for 24 hours to obtain 83 parts by weight of the polymer. A colorless linear addition polymerization type copolymer was obtained.
  • the intrinsic viscosity of the copolymer measured in toluene at 25 ° C. was 0.37 dl /.
  • a peak based on tons 28: 1 4: was observed at 5 7 intensity ratio. From the intensity ratio of the 'H-NMR spectrum, the composition ratio of CPD to styrene was calculated to be 65:35 in molar ratio.
  • This hydrogenated resin was pelletized in the same manner as in Reference Example 3 except that the resin temperature was set at 260 ° C.
  • Example 2 Using this pellet, injection molding (molding pressure: 350 tonnes, resin temperature: 26.5 ° C, mold temperature: 100 ° C) was performed, and a cylindrical transparent material was used as in Example 2. A container and a test piece with a thickness of 2 mm and a diameter of 86 mm were prepared.
  • the wavelength 400 to 8300 nm. At 90.7% or more, the transparency was good. The turbidity was measured to be 0.08%.
  • Example 2 As in Example 1, 300 ml of LB medium supplemented with 2% by weight of agar was placed in a molded container, and one of the test pieces was placed. C, steam sterilization was performed for 30 minutes.
  • the cells were kept at 37 ° C for 3 days, but no fungal growth was observed.
  • the appearance of the transparent container after the treatment was good, and no turbidity, cracking, or deformation due to heat was visually observed.
  • the turbidity measured after removing the LB medium solidified with agar from the test piece taken out of the container was 0.1%, and the total light transmittance was 89.8%.
  • distilled water As a control, 200 g of distilled water was placed in a hard glass flask, covered with a hard glass lid, steam-sterilized at 120 ° C for 1 hour, cooled to room temperature, and allowed to stand for 24 hours. After that, distilled water was collected.
  • the elution amount from the test piece was calculated from the difference between the two types of distilled water analysis results.
  • the boron atom elution amount was 0.5 ppm (detection limit) or less, and the nickel atom elution amount was 0.01 ppm. (Detection limit) or less, chlorine atom
  • the elution amount was less than 0.02 ppm (detection limit), and the total amount of organic carbon was less than 2 ppm (detection limit).
  • Example 1 As in Example 1, an eluate test was performed according to the Japanese Pharmacopoeia. The foaming disappeared within 3 minutes, the pH difference was -0.03, the ultraviolet absorption was 0.006, and the potassium permanganate reducing substance was 0.13 ml.
  • Example 3 60 polymer parts of the CPD polymer obtained in the same manner as in Reference Example 1 were dissolved in 540 polymer parts of cyclohexane, and 6 polymer parts of the same palladium catalyst used in Example 3 were added. ° C. The reaction was carried out at a hydrogen pressure of 50 kg / cm 2 for 15 hours. The hydrogenated resin was recovered in the same manner as in Example 3 to obtain 53 parts by weight of the hydrogenated resin.
  • the intrinsic viscosity of this hydrogenated resin was 0.53 d 1 g, and the glass transition temperature was 80 ° C. In the infrared spectrum, the absorptions at 3040 cm- 1 and 760 cm- 1 decreased in intensity but did not disappear, and — 5.6 ppm absorption did not completely disappear even in the NMR spectrum. The absorption intensity ratio of 5.6 111 to 1 to 3 ppm was observed at an intensity ratio of 5:95, and the hydrogenation rate was 81%.
  • the hydrogenated resin was pressed at 1 8 0 e C, thickness 2 mm, was prepared a plate having a diameter of 8 6 mm.
  • the board was tough, it was yellow and colored, and the outer periphery was strongly colored.
  • the light transmittance of the relatively light-colored portion at the inner periphery was 89.0%, and the retardation value was 28 nm or less.
  • the limiting viscosity of this hydrogenated resin was 0.07 d 1 g, and the glass transition temperature was 78 ° C. Absorption at 3040 cm- 1 and 760 cm- 1 completely disappeared in the infrared spectroscopy spectrum, and absorption at 5.6 ppm disappeared completely in the NMR spectrum, and the cyclopentene ring was unsaturated. It was confirmed that the group was almost 100% hydrogenated.
  • This polymer was press-molded at 180 to produce a flat plate having a thickness of 2 mm and a diameter of 86 mm, but it was very brittle and it was difficult to prepare the plate.
  • the precipitated copolymer was collected by filtration, washed with 300 parts by weight of methanol, dried at 50 V under a reduced pressure of 1 torr or less for 24 hours, and then subjected to 53 parts by weight of copolymer. A coalescence was obtained.
  • the composition ratio of styrene to CPD was 51:49 in molar ratio and 62:38 in weight ratio. Also, from the results of Reference Example 2, the weight ratio of the repeating unit represented by the general formula (I) and the repeating unit represented by the general formula ( ⁇ ) in this copolymer was 53:47. Is estimated.
  • the nickel catalyst was removed by filtration, and the reaction solution was poured into 2000 parts by weight of methanol while stirring, and the precipitated resin was collected by filtration. It was dried at 90 ° C. under a reduced pressure of 1 t 0 rr or less for 48 hours to obtain 44 parts by weight of a colorless hydrogenated resin.
  • the intrinsic viscosity of this hydrogenated resin is 0.52 dl / g and the glass transition The temperature was 105 ° C. Further, the infrared spectroscopic scan Bae-vector, the absorption of the 3040 cnr 1 7 5 0 cm- 1 and 6 9 5 cm- 1 disappeared completely, 6. in 'H- NMR spectra 4 to 7. LPPM and The absorption at 5.6 ppm completely disappeared, and it was confirmed that almost 100% of the phenyl group and the unsaturated group in the pentene ring of the mouth were hydrogenated.
  • the atomic weight of tungsten in the polymer was 0.05 ppm (detection limit) or less, and the atomic weight of nickel was 0.05 ppm. pm (detection limit).
  • 100 mg of this hydrogenated resin was burned in a Doman combustor, absorbed in 5 ml of pure water, and analyzed by iontophoresis. The chlorine atom weight was 0.02 ppm (detection limit). )
  • Test plate A was colorless and transparent, had a light transmittance of 90.1% or more at a wavelength of 400 to 80 nm, and a birefringence value of 25 nm or less.
  • the reaction solution was poured with stirring into 150 parts by weight of methanol mixed with 50 parts by weight of concentrated hydrochloric acid, and the precipitated polymer was collected by filtration and collected, and 300 parts by weight of methanol was added. After washing, it was dried at 50 ° C under a reduced pressure of 1 t0 rr or less for 24 hours to obtain 43 parts by weight of a copolymer.
  • the intrinsic viscosity of this copolymer was 0.43 d 1 / g.
  • the composition ratio of styrene: na-methylstyrene: CPD was 29:16:55 in molar ratio, and 35:22:43 in weight ratio. Also, from the results of Reference Example 5, the weight ratio of the repeating unit represented by the general formula (I) and the repeating unit represented by the general formula ( ⁇ ) in this copolymer is 47:53. Can be estimated.
  • Example 9 40 parts by weight of the copolymer obtained in Reference Example 6 was dissolved in 360 parts by weight of cyclohexane, and 2.4 parts by weight of the same nickel catalyst used in Example 9 and 8 parts by weight of isopropyl alcohol were used. And a hydrogenation reaction was carried out in the same manner as in Example 9. After completion of the reaction, coagulation, separation and drying were carried out in the same manner as in Example 9 to obtain 36 parts by weight of a colorless hydrogenated resin.
  • This hydrogenated resin was press-molded at 190 ° C., a test plate was prepared in the same manner as in Example 9, and the physical properties were measured.
  • Light transmittance is wavelength 400-830 nm In 9 0.1% or more, the birefringence value is 2 5 nm or less, a volume resistivity of 5 xl 0 16 Q cm or more, 1 0 2 H z, 1 0 6 H z and 1 0 9 H z frequency in any case, each of the dielectric constant and dielectric loss tangent 2.3 5,5 1 0 4, the bending strength was 7 1 0 kg Bruno cm 2.
  • this hydrogenated resin is suitable as an optical material and an electrical insulating material.
  • the intrinsic viscosity of this copolymer was 0.45 d 1.
  • composition ratio of styrene: 1-methyl-41-isoproveninolecyclohexene: CPD calculated from the H-NMR intensity ratio is 35: 8: 57 in molar ratio, and 43 in weight ratio: 1 3: 4 4
  • the weight ratio of the repeating unit represented by the general formula (I) and the repeating unit represented by the general formula ( ⁇ ) in the copolymer is 47:53. Can be estimated.
  • Example 9 30 parts by weight of the copolymer obtained in Reference Example 7 was dissolved in 70 parts by weight of cyclohexane, and 1.8 parts by weight of the same nickel catalyst as used in Example 9 and 6 parts by weight of isopropyl alcohol As in Example 9 To perform a hydrogenation reaction. After completion of the reaction, solidification, separation and drying were performed in the same manner as in Example 9 to obtain 26 parts by weight of a colorless hydrogenated resin.
  • the hydrogenated resin was pressed at 1 8 0 e C, prepared in the same manner as in test plate as in Example 9, was measuring physical properties.
  • Light transmittance wavelength from 400 to 830 nm with 9 0.2% or more, the birefringence value is 2 5 nm or less, a volume resistivity of 5 xl 0 16 Q cm or more, 1 0 2 H z, 1 0 6 H z and in any of the frequency of 1 0 9 H z, respectively the dielectric constant and dielectric loss tangent 2.3 5,5 1 0_ 4, the bending strength was 7 2 0 kgcm 2. This indicates that this hydrogenated resin is suitable as an optical material and an electrical insulating material.
  • styrene 100 parts by weight of styrene, 200 parts by weight of toluene and 0.01 part by weight of azoisobutyronitrile are placed in a reactor purged with nitrogen, heated to a temperature of 80 ° C with stirring, and reacted for 10 hours. I let it.
  • the resulting polymer solution was diluted by adding 500 parts by weight of toluene, and poured into 250 parts by weight of methanol with stirring, and the precipitated polymer was collected by filtration. It was dried at 70 ° C under a reduced pressure of 1 torr or less for 48 hours to obtain 92 parts by weight of polystyrene.
  • the intrinsic viscosity of this polystyrene was 0.74 d1 nog, and the glass transition temperature was 100 ° C.
  • This polystyrene (50 parts by weight) was dissolved in tetrahydrofuran (450 parts by weight), and the same alumina-supported Nigel catalyst used in Example 9 (5 parts by weight) was added. and at a hydrogen pressure of 5 0 k gZ 0 111 2 reacted 1 0 hours. After completion of the reaction, the nickel catalyst was removed by filtration, and the reaction solution was poured into 2000 parts by weight of methanol with stirring, and the precipitated polymer was collected by filtration. 9 0 was obtained e C in 1 t 0 rr dried 48 hours at a reduced pressure of not more than 4 1 part by weight colorless polystyrene Hydrogen additives.
  • This hydrogenated polystyrene was press-molded at 190 ° C., a test plate was prepared in the same manner as in Example 9, and the physical properties were measured.
  • the test plate has low mechanical strength, easy Re split, flexural strength was 4 0 0 k gZ cm 2.
  • Example 9 To 40 parts by weight of the hydrogenated resin obtained in Example 9 was added 0.02 parts by weight of an antioxidant (manufactured by Ciba-Gai Gi Co., Ltd., Irganox 100), and a twin-screw extruder (Toshiba Machine Co., Ltd.) Extruded at TEM-35B, screw diameter 35 mm, screw rotation speed 150 rpm, resin temperature 200 ° C).
  • an antioxidant manufactured by Ciba-Gai Gi Co., Ltd., Irganox 100
  • twin-screw extruder Toshiba Machine Co., Ltd.
  • test piece C having a diameter of 130 mm and a thickness of 1.2 mm and a cylindrical transparent container D having a diameter of 200 mm, a height of 130 mm and an average thickness of 3 mm were prepared.
  • Example 12 2% by weight agar was added to the LB medium, and the mixture was sterilized by steam at 121 ° C for 30 minutes to form a gel.
  • 300 ml of the container was molded in Example 12 It was placed in D, allowed to stand at room temperature for 6 hours, covered with aluminum foil, and sterilized by irradiating it with 25 kGy. The appearance of the container after the treatment was good, and no cloudiness, cracking, or deformation was observed. After that, the cells were incubated at 37 for 3 days, but no fungal growth was observed.
  • test plate E The test plate C formed in Example 12 was cut to a width of 10 mm, washed ultrasonically in distilled water for 20 minutes, and then dried at 40 ° C for 10 hours. This test plate is referred to as test plate E.
  • the test plate E was subjected to an elution test according to the Japanese Pharmacopoeia No. 12 Revised "Plastic Test Method for Infusion". Foam disappears within 3 minutes, pH difference is 0.01, UV absorbance is 0.004, potassium permanganate reducing substance 0.16 ml, suitable for medical use It was found to have properties.
  • Specimen C prepared in Example 12 was subjected to 70% nitric acid, phosphoric acid, hydrofluoric acid (hydrofluoric acid 7% by weight, nitric acid 42% by weight, water 51%), 37% hydrochloric acid, 30% diluted Sulfuric acid, concentrated sulfuric acid, 30% hydrogen peroxide aqueous solution, potassium hydroxide saturated aqueous solution, 29% ammonia water, acetone, isopropyl alcohol, trichloroethylene, 2.38% by weight tetramethylammonium
  • the specimens were immersed in an aqueous solution of Demoxide and an etching solution for aluminum (80% by weight of concentrated phosphoric acid, 5% by weight of nitric acid, 5% by weight of glacial acetic acid, and 10% by weight of water) for 5 minutes.
  • Specimen C swelled with trifluoroethylene and darkened with concentrated sulfuric acid, but was not affected by other chemicals, indicating good chemical resistance.
  • the polymer of the present invention had characteristics suitable as an electronic component processing equipment.
  • Example 15 ⁇ 70 parts by weight of the copolymer obtained in Reference Example 8 was dissolved in 60 parts by weight of cyclohexane, and a nickel catalyst supported on alumina (1 part by weight of catalyst, 35 parts by weight of nickel, 0.2 parts by weight of nickel oxide) Parts, pore volume 0.8 cm 3 / g.Specific surface area 300 m 2 / g) 3 parts by weight and 12 parts by weight of isopropyl alcohol are added, and in an autoclave, 230 ° C, hydrogen pressure 50 kg Z cm 2 For 5 hours. After completion of the reaction, the nickel catalyst was removed by filtration, and the reaction solution was poured into 280 parts by weight of methanol with stirring, and the precipitated polymer was collected by filtration. It was dried at 90 ° C. under a reduced pressure of 1 t 0 rr or less for 48 hours to obtain 65 parts by weight of a colorless hydrogenated resin.
  • the intrinsic viscosity of the hydrogenated resin was 0.45 d1 g, and the glass transition temperature was 199 ° C. Absorption at 340 cm- 1 and 750 cm- 1 disappeared completely in the infrared spectroscopy spectrum, and 5.6 ppm absorption also disappeared completely in the NMR-NMR spectrum However, it was confirmed that approximately 100% of the unsaturated group of the cyclopentene ring was hydrogenated.
  • the atomic weight of palladium in the hydrogenated resin was 0.05 ppm (detection limit) or less, and the atomic weight of nickel was 0%. O lp pm (detection limit).
  • 100 mg of this hydrogenated resin was burned in a Doman combustor, absorbed in 5 ml of pure water, and analyzed by ion chromatography. As a result, the chlorine atomic weight was 0.02 ppm (detection limit). It was below.
  • test plate having a diameter of 100 mm and a thickness of 1.2 mm and a cylindrical transparent container having a diameter of 200 mm, a height of 130 mm and an average thickness of 3 mm were prepared.
  • the test plate was colorless and transparent, and the light transmittance of the test plate having a thickness of 1.2 mm was 90.4% and the birefringence value was 25 nm or less.
  • Example 15 After leaving it at room temperature for 6 hours, it was covered with aluminum foil, and steam sterilized at 121 ° C for 30 minutes. The appearance of the container after the treatment was good, and no turbidity, cracking or deformation was observed. After the treatment, the cells were incubated at 37 for 3 days, but no fungal growth was observed.
  • Example 17 A 2 mm thick test plate formed in Example 15 was cut into a 10 mm width, used as a test piece, ultrasonically cleaned in distilled water for 20 minutes, and dried at 40 for 10 hours. The test piece was subjected to an elution test according to the Japanese Pharmacopoeia No. 12 Revised “Plastic Test Method for Infusion Solutions”. The bubbling disappeared within 3 minutes, the pH difference was -0.01, the ultraviolet absorption was 0.004, and the permanganate-reducing substance was 0.16 ml. This proved that this hydrogenated resin was suitable as medical equipment. [Example 17]
  • Example 16 The test specimen prepared in Example 16 was subjected to 70% nitric acid, phosphoric acid, hydrofluoric acid (hydrofluoric acid 7% by weight, nitric acid 42% by weight, water 51%), 37% hydrochloric acid, 30% diluted sulfuric acid , Concentrated sulfuric acid, 30% aqueous hydrogen peroxide, saturated aqueous solution of potassium hydroxide, 29% aqueous ammonia, acetate, isopropyl alcohol, trichloroethylene, 2.38% by weight tetramethylammonium The solution was immersed in an aqueous solution of oxide for oxide and an aluminum etchant (80% by weight of concentrated phosphoric acid, 5% by weight of nitric acid, 5% by weight of glacial acetic acid, and 10% of water) for 5 minutes. Although it swelled with ethylene at the trichloride and darkened the surface with concentrated sulfuric acid, it was not affected by other chemicals, indicating good chemical resistance.
  • the polymer was washed with 500 parts by weight of methanol and dried at 100 ° C. and 1 torr or less for 48 hours to obtain 320 parts by weight of a norbornene addition polymerization type polymer. .
  • the intrinsic viscosity of this polymer was 1.24 d 1, and the glass transition temperature was 300 ° C. or higher.
  • the polymer was heated and heated to 400 ° C. in nitrogen, but decomposition started without melting, and it could not be melt-molded.
  • the hydrogenated resin of the present invention does not contain a crosslinked gelled material, and is excellent in transparency, low birefringence, light resistance, moisture resistance, moldability, electrical insulation, mechanical strength, etc. It is suitable for the fields of materials, medical polymer materials, electrical insulation materials, and electronic component materials.

Abstract

A hydrogenated resin which is produced by hydrogenating a polymer containing repeating units of linear poly-addition type comprising cyclopentadiene monomer, wherein at least 90 % of the carbon-carbon double bonds in the repeating units are hydrogenated, and which has the limiting viscosity of 0.1-10 dl/g as measured in toluene at 25 °C. This resin does not contain cross-linked gel, is excellent in clarity, lightfastness, moisture resistance, moldability, mechanical strengths and chemical resistance, and has a low birefringence, thus being suitable as optical materials, medical polymer materials, electrical insulation materials, electronic component materials, and so forth.

Description

明 細 書 水素添加樹脂 技術分野  Description Hydrogenated resin Technical field
本発明は、 水素添加樹脂に関し、 さらに詳しく は、 シクロペンタ ジェン系単量体の線状付加重合型の繰り返し単位を含有する重合体 を水素添加した樹脂に関する。 本発明の水素添加樹脂は、 透明性、 耐光性、 耐湿性、 低誘電率、 低誘電損失、 耐薬品性などに優れ、 特 に、 光学材料、 医療用高分子材料、 電気絶縁材料、 電子部品材料な どとして好適である。 背景技術  The present invention relates to a hydrogenated resin, and more particularly, to a resin obtained by hydrogenating a polymer containing a linear addition polymerization type repeating unit of a cyclopentadiene monomer. The hydrogenated resin of the present invention is excellent in transparency, light resistance, moisture resistance, low dielectric constant, low dielectric loss, chemical resistance, etc., and is particularly suitable for optical materials, medical polymer materials, electrical insulating materials, and electronic components. It is suitable as a material. Background art
従来、 光学用高分子材料としてポリメタク リル酸メチルゃポリカー ボネー トなどが使用されてきたが、 前者は吸水性が大き く、 また後 者は射出成形品の複屈折が大きいなどの問題を抱えており、 ますま す高度化する光学用高分子材料に対する要求に応えることが困難に なってきている。  Hitherto, polymethyl methacrylate-polycarbonate has been used as an optical polymer material, but the former has problems such as large water absorption and the latter has large birefringence of injection molded products. As a result, it is becoming increasingly difficult to respond to the demand for increasingly sophisticated optical polymer materials.
これらの欠点を改良した高分子材料として、 例えば、 ノルボルネ ン系単量体の開環重合体水素添加物ゃノルボルネン系単量体とェチ レンとの付加型共重合体のような熱可塑性飽和ノルボルネン系重合 体が、 光ディ スク基板材料として優れた特徴を有することが、 特開 昭 6 0 - 2 6 0 2 4号、 特開昭 6 4 - 2 4 8 2 6号、 特開昭 6 0 — 1 6 8 7 0 8号、 特開昭 6 1 - 1 1 5 9 1 2号、 特開昭 6 1 - 1 2 0 8 1 6 号などに開示されている。  Polymer materials that have improved these disadvantages include, for example, hydrogenated ring-opening polymers of norbornene-based monomers and thermoplastic saturated polymers such as addition-type copolymers of norbornene-based monomers and ethylene. The fact that the norbornene-based polymer has excellent characteristics as an optical disc substrate material has been disclosed in Japanese Patent Application Laid-Open Nos. Sho 60-26024, Sho 62-24826, Sho 62 This is disclosed in, for example, Japanese Patent Application Laid-Open No. 0-1688708, Japanese Patent Application Laid-Open No. S61-115912, and Japanese Patent Application Laid-Open No. 61-12816.
しかしながら、 これらの従来技術では、 一般に、 ノルボルネン系 単量体と してテ トラシクロ ドデセン類のごとき多環単量体を使用 し ているが、 多環単量体類は、 製造が必ずしも容易ではない。 通常、 多環単量体類は、 ノルボルネン類とジシクロペン夕ジェン (以下、 D C Pという) とを加熱下に付加反応させて合成するが、 シクロべ ンタジェン (以下、 C P Dという) の多量体などの副生成物を多く 含むため、 蒸留等により精製分離する必要があり、 かつ、 その精製 分離が困難である。 そのため、 多環モノマー、 特にテ トラシクロ ド デセン誘導体は、 非常に高価であり、 工業的に有利でない。 また、 入手可能なモノマーの種類も限定されている。 それに対し、 二環体 のノルボルネン系単量体は、 低コス トで入手しやすいが、 その開環 重合体は、 ガラス転移温度 (T g) が低すぎて、 耐熱性に難がある 一方、 その付加型重合体は、 T gが 3 0 0 °C以上と高すぎて、 成型 加工性に劣り、 一般的な目的には使用できなかった。 However, in these prior arts, in general, norbornene-based Polycyclic monomers such as tetracyclododecenes are used as monomers, but production of polycyclic monomers is not always easy. Normally, polycyclic monomers are synthesized by an addition reaction of norbornenes and dicyclopentene (hereinafter, referred to as DCP) under heating, but are synthesized by the addition of cyclopentene (hereinafter, referred to as CPD) multimers. Since it contains many products, it is necessary to purify and separate it by distillation and the like, and it is difficult to purify and separate it. Therefore, polycyclic monomers, especially tetracyclododecene derivatives, are very expensive and not industrially advantageous. Also, the types of monomers available are limited. In contrast, bicyclic norbornene-based monomers are easily available at low cost, but their ring-opened polymers have too low a glass transition temperature (T g) and have poor heat resistance. The addition-type polymer had a Tg of 300 ° C. or higher and was inferior in moldability and could not be used for general purposes.
—方、 C P Dは、 石油化学工業において C5留分として入手が容易 であり、 通常、 D C Pとし貯蔵されているものを 1 8 0 °C以上に加 熱分解するこ とにより、 高純度で得られる。 C P Dは、 カチオン重 合させるなどの方法により、 線状付加重合体が得られ、 粘着性付与 剤と して用いられている (A n n. , 4 4 7 , 1 1 0 , 1 9 2 6 ; I n d . E n . C h e m. , 1 8 , 3 8 1 , 1 9 2 6 ; 高分子化 学, i_ , 7 3 4, 1 9 6 2 ;高分子化学, 5 6, 1 9 6 6 ; 特開昭 5 5 — 6 5 2 2 0号など) 。 しかし、 C P Dの線状付加重合 体は、 不飽和結合を多く含むため、 極めて空気酸化され易く、 強度 が劣化し、 溶融しに く くなり、 成形性が悪く なる。 - How, CPD is easily available as a C 5 fraction in the petrochemical industry, usually by a pressurized heat decomposes this what is stored as a DCP or more 1 8 0 ° C, obtained in high purity Can be CPD is used as a tackifier by obtaining a linear addition polymer by a method such as cation polymerization (Ann., 447, 1110, 1926) Ind. En. Chem., 18, 38 1, 19 26; Polymer Chemistry, i_, 73, 1962; Polymer Chemistry, 56, 196 6; Japanese Unexamined Patent Publication No. 55-65220). However, since the linear addition polymer of CPD contains many unsaturated bonds, it is extremely susceptible to air oxidation, its strength is deteriorated, it is difficult to melt, and its moldability is deteriorated.
C P Dの線状付加重合体は、 酸化を防ぐために、 酸化防止剤を多 量に添加すると、 色調劣化が改善されるが、 酸化防止剤がブリー ド するなどの問題があ'り、 例えば、 光学材料と して使用できるもので はなかった。 また、 この重合体を部分的に水素添加して、 耐酸化劣 化性を改善することも知られている (高分子化学, 7 3 4 , 1 9 6 2 ) が、 従来、 C P D類の重合体を水素添加することは容易 ではなく、 極限粘度 〔 7?〕 が 0. 0 6 d 1 g程度の低分子量のも のでさえ、 水素添加率 7 3 %程度のものが知られているにとどまつ ており、 例えば、 光学材料などに要求されるような安定性に優れた 重合体は知られていなかった。 When a large amount of an antioxidant is added to the CPD linear addition polymer to prevent oxidation, color tone deterioration is improved, but there are problems such as bleeding of the antioxidant. Can be used as a material There was no. It is also known that this polymer is partially hydrogenated to improve its oxidation resistance (Polymer Chemistry, 734, 1962). It is not easy to hydrogenate the coalescence, and even those with a low molecular weight of intrinsic viscosity [7?] Of about 0.06 d 1 g are known to have a hydrogenation rate of about 73%. Thus, for example, a polymer having excellent stability required for optical materials and the like has not been known.
最近、 遷移金属化合物とアルミ ノキサンとからなる重合触媒を用 いて、 比較的高分子のシクロォレフイ ンポリマーを得る方法が開発 されている (特開平 3— 2 0 5 4 0 8号公報) 。 この文献には、 ノ ルポルネ ン系単量体とシクロォレフィ ンを付加共重合することも示 されているが、 そのような具体例を示す実施例、 特にォレフィ ンと して C P Dを用いた例は開示されておらず、 ノルボルネン系単量体 と C P Dとを付加共重合することや、 その共重合体の水素添加物が どのような性質を有しているかは知られていなかった。  Recently, a method for obtaining a relatively high-molecular cycloolefin polymer using a polymerization catalyst comprising a transition metal compound and an aluminoxane has been developed (Japanese Unexamined Patent Publication No. 3-254048). This document also discloses that addition polymerization of a norpolene-based monomer and cycloolefin is carried out.Examples showing such specific examples, particularly examples using CPD as the orefin, are not described. It was not disclosed, and it was not known that addition copolymerization of a norbornene-based monomer and CPD was performed and what properties of a hydrogenated product of the copolymer had.
さらに、 ポリ ビニルシクロへキサン、 ポリスチレン、 ポリ ビニル シクロへキセン、 ポリ ビニルシクロペンテンなどの側鎖にシクロア ルカン構造を有する付加型重合体は、 低複屈折性、 耐熱性、 低吸湿 性などの点で優れており、 光学材料として使用できることが知られ ている (特開昭 6 3 — 4 3 9 1 0号公報、 特開平 1 — 1 3 2 6 0 3 号公報など) 。 しかし、 これらの重合体は、 機械的強度が十分でな いため、 一般の光学材料として用いるには問題があり、 また、 その 他の具体的用途の検討は十分になされていなかった。 発明の開示  Furthermore, addition polymers having a cycloalkane structure in the side chain, such as polyvinylcyclohexane, polystyrene, polyvinylcyclohexene, and polyvinylcyclopentene, are excellent in terms of low birefringence, heat resistance, and low moisture absorption. It has been known that it can be used as an optical material (JP-A-63-43910, JP-A-1-132603, etc.). However, these polymers have insufficient mechanical strength, so there is a problem in using them as general optical materials, and other specific uses have not been sufficiently studied. Disclosure of the invention
本発明の目的は、 '透明性、 耐光性、 耐湿性、 低誘電率、 低誘電損 失、 耐薬品性などに優れ、 特に、 光学材料、 医療用高分子材料、 電 気絶縁材料、 電子部品材料などと して好適な樹脂材料を提供するこ とにある。 The objectives of the present invention are: 'transparency, light resistance, moisture resistance, low dielectric constant, low dielectric loss An object of the present invention is to provide a resin material which is excellent in loss, chemical resistance, and the like, and is particularly suitable as an optical material, a medical polymer material, an electrical insulating material, an electronic component material and the like.
本発明者らは、 鋭意研究した結果、 シクロペンタジェン系単量体 の線状付加重合型の繰り返し単位を含有する重合体を水素添加した 樹脂を開発するこ とに成功した。 この水素添加樹脂は、 シクロペン タジェン系単量体の線状付加重合型単独重合体、 シクロペンタジェ ン系単量体とビニル基含有環状炭化水素単量体との線状付加重合型 共重合体、 シク ロペンタジェン系単量体とノルボルネン系単量体と の線状付加重合型共重合体などを水素添加した樹脂であり、 架橋し たゲル状化物を含まず、 透明性、 低複屈折性、 耐光性、 耐湿性、 成 形加工性、 機械的強度、 耐薬品性などに優れており、 光学材料、 医 療用高分子材料、 電気絶縁材料、 電子部品材料などと して好適であ る。 本発明は、 これらの知見に基づいて完成するに至ったものであ る。  As a result of intensive studies, the present inventors have succeeded in developing a resin obtained by hydrogenating a polymer containing a linear addition polymerization type repeating unit of a cyclopentadiene monomer. This hydrogenated resin is a linear addition-polymerized homopolymer of a cyclopentagen-based monomer or a linear addition-polymerized copolymer of a cyclopentagen-based monomer and a vinyl group-containing cyclic hydrocarbon monomer. It is a resin obtained by hydrogenating a linear addition-polymerized copolymer of cyclopentadiene-based monomer and norbornene-based monomer, etc., does not contain cross-linked gel, and has transparency, low birefringence, It has excellent light resistance, moisture resistance, moldability, mechanical strength, chemical resistance, etc., and is suitable as an optical material, medical polymer material, electrical insulating material, electronic component material, and the like. The present invention has been completed based on these findings.
かく して、 本発明によれば、 シクロペンタジェン系単量体の線状 付加重合型の繰り返し単位を含有する重合体を水素添加した樹脂で あって、 該繰り返し単位中の炭素一炭素二重結合の少な く とも 9 0 %が水素添加され、 かつ、 2 5での トルエン中で測定した極限粘度 〔 7?〕 力 0 . 1 〜 1 0 d 1 / gである水素添加樹脂が提供される。 前記重合体は、 シク ロペン夕ジェン系単量体の単独重合体だけでは なく、 シク ロペンタ ジェン系単量体と該単量体と共重合可能な単量 体との共重合体であってもよい。  Thus, according to the present invention, there is provided a resin obtained by hydrogenating a polymer containing a linear addition polymerization type repeating unit of a cyclopentadiene monomer, wherein the carbon-carbon double At least 90% of the bonds are hydrogenated and a hydrogenated resin with an intrinsic viscosity measured in toluene at 25 [7?] Force 0.1 to 10 d 1 / g is provided. . The polymer is not limited to a homopolymer of a cyclopentadiene monomer, but may be a copolymer of a cyclopentadiene monomer and a monomer copolymerizable with the monomer. Good.
前記共重合体と しては、 特に、 シク ロペンタジェン系単量体の線 状付加重合型の繰り返し単位 1 0〜 5 0重量%と、 ビニル基含有環 状炭化水素単量体の線状付加重合型の繰り返し単位 9 0〜 5 0重量 %とを含有する共重合体、 及びシクロペン夕ジェン系単量体の線状 付加重合型の繰り返し単位 1 0〜 5 0重量%と、 ノルボルネン系単 量体の線状付加重合型の繰り返し単位 9 0〜 5 0重量%とを含有す る共重合体が好ま しく、 そして、 水素添加樹脂と しては、 これらの 共重合体中の炭素一炭素二重結合の少なく とも 9 0 %が水素添加さ れたものが好ま しい。 As the copolymer, in particular, 10 to 50% by weight of a linear addition polymerization type repeating unit of a cyclopentadiene monomer and a linear addition polymerization of a vinyl group-containing cyclic hydrocarbon monomer Mold repeating unit 90 ~ 50 weight % Of a linear addition polymerization type repeating unit of a cyclopentene-based monomer and a linear addition polymerization type repeating unit of a norbornene-based monomer. Copolymers containing 0 to 50% by weight are preferred, and as the hydrogenated resin, at least 90% of carbon-carbon double bonds in these copolymers are hydrogenated. The ones you like are preferred.
以下、 本発明について詳述する。  Hereinafter, the present invention will be described in detail.
(単量体)  (Monomer)
シクロペンタジェン系単量体 Cyclopentadiene monomer
本発明で用いるシクロペンタジェン系単量体とは、 C P D及びそ のアルキル置換体であり、 具体例としては、 C P D、 1 ーメチルシ クロペンタジェン、 2 —メチルシクロペンタジェン、 2 —ェチルシ クロペンタ ジェン、 5 —メチルシクロペンタジェン、 5 , 5 —ジメ チルシクロペン夕ジェンなどが挙げられる。 これらは、 それぞれ単 独で、 あるいは 2種以上を組み合わせて使用することができる。 共重合可能な単量体  The cyclopentadiene monomer used in the present invention is CPD or an alkyl-substituted product thereof. Specific examples thereof include CPD, 1-methylcyclopentadiene, 2-methylcyclopentadiene, 2-ethylcyclopentadiene, 5-methylcyclopentadiene and 5,5-dimethylcyclopentene. These can be used alone or in combination of two or more. Copolymerizable monomers
シクロペンタジェン系単量体は、 シクロペンタジェン系単量体と 共重合可能な単量体と組み合わせて使用するこ とができる。  The cyclopentadiene-based monomer can be used in combination with a monomer copolymerizable with the cyclopentadiene-based monomer.
シクロペン夕ジェン系単量体と共重合可能な単量体と しては、 ェ チレン、 プロピレン、 イ ソブテン、 ジペンテン、 リモネン、 ビニル シク ロへキセン、 2 —メチルー 1 ーブテン、 2 —メチルー 1 一ペン テン、 4 ーメチル一 1 一ペンテンなどの α—ォレフィ ン ; ブタジェ ン、 イソプレン、 1 、 3 —ペンタジェン、 フラ ン、 チォフェンなど の共役ジェン ; エチレンォキサイ ド、 プロ ピレンォキサイ ド、 ト リ メチレンオキサイ ド、 ト リオキサン、 ジォキサン、 シク ロへキセン オキサイ ド、 スチレンオキサイ ド、 ェピク ロルヒ ドリ ン、 テ トラ ヒ ドロフラ ンなどの環状エーテル : メチルビニルエーテル、 ェチルビ ニルエーテルなどのビニルェ一テル ; ビニルピリ ジン、 N — ビニル カルバゾ一ル、 N— ビニルー 2 — ピロ リ ドンなどの複素環含有ビニ ル化合物 ; シクロペンテン、 シクロへキセン、 ノルボルナジェン、 1 , 3 —シクロへキサジェン、 及びこれらの置換体などの環状ォレ フィ ン ; ビニル基含有環状炭化水素系単量体 ; ノルボルネン系単量 体 ; などが挙げられる。 Monomers copolymerizable with cyclopentene-based monomers include ethylene, propylene, isobutene, dipentene, limonene, vinylcyclohexene, 2-methyl-1-butene, and 2-methyl-1-butene. Α-olefins such as butene, isoprene, 1,3-pentadiene, furan, thiophene, etc .; ethylene oxide, propylene oxide, trimethylene oxide , Trioxane, dioxane, cyclohexene oxide, styrene oxide, epichlorohydrin, tetrahydro Cyclic ethers such as drofuran: vinyl ethers such as methyl vinyl ether and ethylvinyl ether; vinyl compounds containing heterocycles such as vinyl pyridine, N-vinyl carbazole, N-vinyl-2-pyrrolidone; cyclopentene, cyclohexene , Norbornadiene, 1,3-cyclohexadiene, and substituted products thereof, such as cyclic olefins; vinyl group-containing cyclic hydrocarbon monomers; norbornene monomers; and the like.
これらの共重合可能な単量体は、 目的とする水素添加樹脂の耐熱 性、 柔軟性、 成形加工性、 機械的強度などの特性を実質的に損なわ ない範囲内において、 あるいは、 これらの特性を向上させるために、 それぞれ単独で、 あるいは 2種以上を組み合わせて、 所望の共重合 割合で適宜使用することができる。 具体的には、 シクロペンタジェ ン系単量体 1 0〜 1 0 0重量%と、 これらの共重合可能な単量体 9 0 〜0重量%の範囲内において、 共重合割合を選択することができる。 一般には、 ビニル基含有環状炭化水素系単量体及びノルボルネン 系単量体以外の共重合可能な単量体の使用割合が多く なると、 得ら れる水素添加樹脂の透明性、 無色性、 低複屈折性等が低下する。 そ こで、 共重合可能な単量体と して、 α —ォレフ ィ ン、 共役ジェン、 環状エーテル、 ビニルエーテル、 複素環含有ビニル化合物または環 状ォレフ ィ ンなどを使用する場合には、 これらの単量体は、 通常、 4 0重量%以下、 好ま しく は 2 5重量%以下、 より好ま しく は 1 0 重量%以下の割合で使用する。  These copolymerizable monomers are used within the range where the properties such as the heat resistance, flexibility, moldability, mechanical strength, etc. of the target hydrogenated resin are not substantially impaired, or these properties are improved. In order to improve them, they can be used singly or in combination of two or more kinds in a desired copolymerization ratio. Specifically, the copolymerization ratio should be selected within the range of 10 to 100% by weight of cyclopentagen-based monomer and 90 to 0% by weight of these copolymerizable monomers. Can be. Generally, when the proportion of the copolymerizable monomer other than the vinyl group-containing cyclic hydrocarbon monomer and the norbornene monomer is increased, the resulting hydrogenated resin becomes transparent, colorless, and low in complexity. Refractive properties etc. decrease. Therefore, when α-olefin, conjugated diene, cyclic ether, vinyl ether, heterocyclic vinyl compound, or cyclic olefin is used as the copolymerizable monomer, The monomer is generally used in a proportion of not more than 40% by weight, preferably not more than 25% by weight, more preferably not more than 10% by weight.
—方、 ビニル基含有環状炭化水素系単量体またはノルボルネン系 単量体は、 共重合体の T gを向上させ、 透明性、 低複屈折性、 耐光 性、 耐湿性、 成形加工性、 機械的強度、 耐薬品性などを損なう こ と なく、 水素添加樹脂の耐熱性を向上させるため、 広い範囲で使用す ることができる。 具体的には、 シク ロペンタジェン系単量体の線状 付加重合型の繰り返し単位 1 0〜 9 0重量%と、 ビニル基含有環状 炭化水素系単量体またはノルボルネン系単量体の線状付加重合型の 繰り返し単位 9 0〜 1 0重量%とを含有する共重合体を使用するこ とができる。 特に、 シク ロペンタジェン系単量体の線状付加重合型 の繰り返し単位 1 0〜 5 0重量%と、 ビニル基含有環状炭化水素系 単量体またはノルボルネン系単量体の線状付加重合型の繰り返し単 位 9 0〜 5 0重量%を含有する共重合体は、 耐熱性とその他の物性 のバラ ンスに優れた水素添加樹脂を与えることができるため好ま し い。 このような繰り返し単位を含有する共重合体を製造するには、 各単量体の反応性が相違するため、 各単量体の反応性に応じて使用 する単量体組成を定める。 一般に、 シクロペンタジェン系単量体の 反応性が高いので、 通常、 シク ロペンタジェン系単量体 5〜 9 0重 量%と、 ビニル基含有環状炭化水素系単量体またはノルボルネン系 単量体 9 5〜 1 0重量%の範囲内で使用する。 On the other hand, vinyl group-containing cyclic hydrocarbon-based monomers or norbornene-based monomers improve the Tg of the copolymer, and provide transparency, low birefringence, light resistance, moisture resistance, moldability, and mechanical properties. Used in a wide range to improve the heat resistance of hydrogenated resins without impairing mechanical strength, chemical resistance, etc. Can be Specifically, 10 to 90% by weight of a linear addition polymerization type repeating unit of a cyclopentadiene monomer and a linear addition polymerization of a vinyl group-containing cyclic hydrocarbon monomer or a norbornene monomer. Copolymers containing 90 to 10% by weight of repeating units of the type can be used. In particular, 10 to 50% by weight of a linear addition polymerization type repeating unit of a cyclopentadiene monomer and a linear addition polymerization type repeating unit of a vinyl group-containing cyclic hydrocarbon monomer or a norbornene monomer. Copolymers containing 90 to 50% by weight of a unit are preferred because they can provide a hydrogenated resin having an excellent balance of heat resistance and other physical properties. In order to produce a copolymer containing such a repeating unit, since the reactivity of each monomer is different, the monomer composition to be used is determined according to the reactivity of each monomer. In general, the cyclopentadiene monomer has high reactivity, so that the cyclopentadiene monomer is usually 5 to 90% by weight and the vinyl group-containing cyclic hydrocarbon monomer or the norbornene monomer 9 It is used in the range of 5 to 10% by weight.
したがって、 耐熱性が要求される用途においては、 ビニル基含有 環状炭化水素系単量体またはノルボルネン系単量体を通常 1 0重量 %以上、 好ま しく は 2 0重量%以上、 より好ま しく は 3 0重量%以 上使用する。 特に、 耐熱性が要求される用途においては、 これらの 単量体を 5 0〜 9 5重量%、 好ま しく は 5 5〜 9 0重量%、 より好 ましく は 6 0〜 8 0重量%、 シクロペンタジェン系単量体を 5〜 5 0 重量%、 好ま しく は 1 0〜 4 5重量%、 より好ま しく は 2 0〜 4 0 重量%とすることもできる。 この場合、 α —ォレフィ ン、 共役ジェ ン、 環状エーテル、 ビニルエーテル、 複素環含有ビニル化合物また は環状ォレフィ ンなどのその他の共重合可能な単量体を、 単量体組 成物全体の 4 0重量%以下、 好ま しく は 2 5重量%以下、 より好ま しく は 1 0重量%以下の割合で使用してもよい。 Therefore, in applications where heat resistance is required, the vinyl group-containing cyclic hydrocarbon-based monomer or norbornene-based monomer is usually at least 10% by weight, preferably at least 20% by weight, more preferably at least 3% by weight. Use 0% by weight or more. In particular, in applications where heat resistance is required, 50 to 95% by weight of these monomers, preferably 55 to 90% by weight, more preferably 60 to 80% by weight, The content of the cyclopentadiene monomer can be 5 to 50% by weight, preferably 10 to 45% by weight, and more preferably 20 to 40% by weight. In this case, other copolymerizable monomers such as α-olefin, conjugated gen, cyclic ether, vinyl ether, heterocycle-containing vinyl compound or cyclic olefin are combined with 40% of the entire monomer composition. Wt% or less, preferably 25 wt% or less, more preferably Alternatively, it may be used in a proportion of 10% by weight or less.
ビニル基含有環状炭化水素単量体 Vinyl group-containing cyclic hydrocarbon monomer
本発明で用いるビニル基含有環状水素単量体としては、 例えば、 4 ー ビニルシクロペンテン、 2 —メチル一 4 一イソプロぺニルシク 口ペンテンなどのビニルシク ロペンテン系単量体、 4 ー ビニルシク 口ペンタン、 4 一イソプロぺニルシク ロペンタ ンなどのビニルシク 口ペンタン系単量体などのビニル基含有五員環炭化水素系単量体 ; 4 一 ビニルシク口へキセン、 4 ーィ ソプロぺニルシク口へキセン、 Examples of the vinyl group-containing cyclic hydrogen monomer used in the present invention include vinyl cyclopentene monomers such as 4-vinylcyclopentene, 2-methyl-1-isopropenylcyclopentene, 4-vinylcyclopentane, and 4-vinylcyclopentane. Vinyl-containing 5-membered hydrocarbon monomers such as pentane-based monomers such as pentane-based monomers such as isopropenylcyclopentane; 4-vinylcyclohexene, 4-vinylpropene-hexene,
1 ーメチルー 4 ー ビニルシク ロへキセン、 1 —メチルー 4 —イソプ ロぺニルシクロへキセン、 2 —メチゾレー 4 —ベニノレシクロへキセン、1-methyl-4-vinylcyclohexene, 1-methyl-4-isopropenylcyclohexene, 2-methisolate 4-beninolecyclohexene,
2 —メチルー 4 —ィソプロベニルシク口へキセンなどのビニルシク 口へキセン系単量体、 4 ー ビニルシク ロへキセン、 2 —メチルー 4 ーィソプロベニルシク口へキサンなどのビニルシク口へキサン系単 量体、 スチレン、 α —メチルスチレン、 4 ーメチルスチレン、 2— メチルスチレン、 1 ー ビニルナフタ レン、 2 — ビニルナフタレン、 4 一フエニルスチレンなどのスチレン系単量体、 d —テルペン、 1 一テルペン、 ジテルペンなどのテルペン系単量体などのビニル基含 有六員環炭化水素系単量体 ; 4 —ビニルシクロヘプテン、 4 一イ ソ プロぺニルシクロヘプテンなどのビニルシクロヘプテン系単量体、 4 — ビニルシク ロヘプタン、 4 —イソプロぺニルシクロヘプタンな どのビニルシクロへプタン系単量体などのビニル基含有七員環炭化 水素系単量体などが挙げられる。 2-cyclohexene monomer such as 2-cyclohexene, 2-vinylcyclohexene, 2-cyclohexene such as 2-methylcyclohexene, etc. Hexane monomer, styrene, α-methylstyrene, 4-methylstyrene, 2-methylstyrene, 1-vinylnaphthalene, 2-vinylnaphthalene, 4-styrene monomer such as 4-phenylstyrene, d-terpene, 1 6-membered ring hydrocarbon monomer containing vinyl group such as terpene monomer such as mono-terpene and diterpene; vinyl cycloheptene such as 4-vinylcycloheptene and 4-isopropenylcycloheptene 7-membered ring containing vinyl group such as vinylcycloheptane monomer such as 4-monomer, 4-vinylcycloheptane, 4-isopropenylcycloheptane Examples include hydrocarbon monomers.
これらの単量体は、 それぞれ単独で、 あるいは 2種以上を組み合 わせて使用することができる。 中でもビニル基含有六員環炭化水素 系単量体が好ま しい。  These monomers can be used alone or in combination of two or more. Among them, a vinyl group-containing six-membered ring hydrocarbon-based monomer is preferred.
ノルボルネン 量体 本発明に用いるノルボルネン系単量体と しては、 ノルボルネン及 びその誘導体が挙げられ、 例えば、 2 —ノルボルネン、 5 -メチル — 2—ノノレボルネン、 5 , 5 — ジメチル一 2—ノノレボルネン、 5 — ェチル— 2 —ノルボルネン、 5 —ブチルノルボルネン、 5 —ェチリ デン— 2—ノルボルネン、 5—イソプロぺニルー 2—ノルボルネン、 5—メ トキシカルボ二ルー 2 —ノノレボルネン、 5 —シァノ ー 2—ノ ルボルネン、 5—メチルー 5 —メ トキシカルボ二ルー 2 —ノルボル ネン、 5—フエ二ルー 2—ノルボルネン、 5 —フエ二ルー 5—メチ ル一 2—ノルボルネン、 5—へキシルー 2—ノノレボルネン、 5—ォ クチルー 2 —ノノレボルネ ン、 5—ォクタデシルー 2—ノルボルネ ン などのノルボルネン、 そのアルキル、 アルキリデン、 アルケニルま たは芳香族置換誘導体、 そのハロゲン、 水酸基、 エステル基、 アル コキシ基、 シァノ基、 アミ ド基、 イ ミ ド基またはシリル基などの極 性基置換体 ; 1, 4 : 5 , 8— ジメ タノ ー 1 , 4 , 4 a , 5 , 6 , 7 , 8, 8 a—ォクタヒ ドロナフタレン、 6—メチルー 1 , 4 : 5 , 8—ジメ タノ ー 1, 4 , 4 a , 5, 6 , 7 , 8, 8 a—ォクタヒ ド ロナフタ レン、 6—ェチルー 1 , 4 : 5, 8— ジメ タノ 一 1, 4 , 4 a , 5 , 6 , 7, 8 , 8 a—ォクタ ヒ ドロナフタ レン、 6—ェチ リデン一 1 , 4 : 5 , 8—ジメ タノ ー 1 , 4 , 4 a , 5 , 6, 7, 8 , 8 a—ォクタ ヒ ドロナフタ レン、 6 —メチル一 6 —メ トキシカ ルボニルー 1 , 4 : 5 , 8—ジメ タノ 一 1 , 4, 4 a , 5 , 6, 7 , 8, 8 a—ォクタ ヒ ドロナフタ レン、 6 — シァノ 一 1 , 4 : 5 , 8 ー ジメ タノ 一 1 , 4 , 4 a , 5 , 6 , 7, 8 , 8 a—才クタ ヒ ドロ ナフタ レンなどのノルボルネンに一つ以上の C P Dが付加した形の 単量体、 その上記と同様の誘導体や置換体 ; D C P、 1, 4 : 5 , 8—ジメ タノ 一 1 , 2, 3, 4 , 4 a , 5 , 8, 8 a - 2 , 3 — シ クロペンタ ジエノナフタタ レン、 1 , 4 : 5, 1 0 : 6 , 9 — ト リ メ タノ 一 1 , 2 , 3 , 4, 4 a , 5 , 5 a, 6 , 9, 9 a, 1 0 , 1 0 a - ドデカ ヒ ドロー 2 , 3 -シク ロペンタジエノ アン トラセン、 2 , 3 —ジヒ ドロジシクロペンタジェンなどの C P Dの多量体であ る多環構造の単量体、 その上記と同様の誘導体や置換体 ; 1, 4 - メ タ ノ ー 1 , 4 , 4 a, 4 b, 5 , 8, 8 a , 9 a—ォク タ ヒ ドロ フルオレン、 5 , 8—メ タノ ー 1 , 2 , 3 , 4, 4 a , 5 , 8 , 8 a —ォクタヒ ドロ一 2, 3—シクロペンタジエノナフタレンなどの C P D とテ トラ ヒ ドロイ ンデンなどとの付加物、 その上記と同様の誘導体 や置換体 ; 等が挙げられる。 Norbornene monomer Examples of the norbornene-based monomer used in the present invention include norbornene and derivatives thereof. For example, 2-norbornene, 5-methyl-2-nonorebornene, 5,5-dimethyl-1-nonorebornene, and 5-ethyl- 2-norbornene, 5-butylnorbornene, 5-ethylidene-2-norbornene, 5-isopropenyl-2-norbornene, 5-methoxycarbonyl 2-norenobornene, 5-cyano-2-norbornene, 5-methyl-5 —Methoxycarbonol 2 —Norbornene, 5—Fenil 2—Norbornene, 5—Fenil 5—Methyl-1-Norbornene, 5—Hexyl 2-Nonorebornene, 5-Octyl-2—Nonorebornane, Norbornene, such as 5-octadecyl-2-norbornene, its alkyl, alkylidene, and alkenyl Or an aromatic substituted derivative, a polar group substituent such as a halogen, a hydroxyl group, an ester group, an alkoxy group, a cyano group, an amide group, an imido group or a silyl group; 1, 4: 5,8- Dimethano 1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6-methyl-1,4: 5,8-dimethano 1,4,4a, 5,6, 7, 8, 8a—Octahydronaphthalene, 6—Ethyl-1,4: 5,8—Dimetano-1,4,4a, 5,6,7,8,8a—Octahydronaphthalene, 6 —Ethylidene 1,4: 5,8—Dimethano 1,4,4a, 5,6,7,8,8a—Octahydronaphthalene, 6—Methyl-6—Methoxycarbonyl-1, 4: 5,8—Dimetano-1,4,4a, 5,6,7,8,8a—Octahydronaphthalene, 6—Syano-1,4: 5,8—Dimetano-1,4 , 4 a, 5, 6, 7, 8, 8 a Monomers in which one or more CPDs are added to norbornene, such as dronaphthalene, and derivatives or substitutes thereof as described above; DCP, 1,4: 5,8-dimethano-1,2,3, 4, 4 a, 5, 8, 8 a-2, 3 — Clopentadienonaphthaletalene, 1,4: 5,10: 6,9 — Trimethano-1,2,3,4,4a, 5,5a, 6,9,9a, 10,10 a-dodecahydro-2,3-cyclopentadienoanthracene, 2,3-dihydroxycyclopentadiene, etc., a monomer having a polycyclic structure which is a multimer of CPD, and derivatives or substitutes similar to the above. 1,4-metano-1,4,4a, 4b, 5,8,8a, 9a—octahydrofluorene, 5,8—methano1,2,3,4 Adducts of CPD, such as 1,2,3-cyclopentadienonaphthalene, etc. with 4,4-, 5,8,8a-octahydro-1,2-cyclopentadienonaphthalene, and derivatives and substituents similar to those described above; No.
これらの単量体は、 それぞれ単独で、 あるいは 2種以上を組み合 わせて使用することができる。 これらの中でも、 入手の容易性から は二環体の単量体が好ま しい。 また、 これらの単量体は、 耐熱性を 向上させる観点からは環数が多いほど好ま しいが、 あま り耐熱性を 向上させすぎると溶融成形が困難になるため、 水素添加樹脂を溶融 成形する場合には、 二環体程度が好ま しい。  These monomers can be used alone or in combination of two or more. Of these, bicyclic monomers are preferred from the standpoint of availability. In addition, from the viewpoint of improving heat resistance, these monomers are preferred as having a large number of rings, but if the heat resistance is excessively improved, it becomes difficult to perform melt molding. In such cases, a bicyclic compound is preferred.
(重合触媒)  (Polymerization catalyst)
本発明においてシク口ペンタジェン系単量体またはシク 口ペン夕 ジェン系単量体とこれと共重合重合可能な単量体との単量体組成物 の重合に用いる重合触媒は、 線状付加 (共) 重合できるものであれ ば特に限定されず、 公知のカチオン重合触媒、 リ ビングカチオン重 合触媒、 チーグラー触媒などが使用できる。  In the present invention, the polymerization catalyst used for the polymerization of the monomer composition of the cross-opening pentadiene-based monomer or the cross-opening pen-nitrogen-based monomer and a monomer copolymerizable therewith is a linear addition ( The copolymer is not particularly limited as long as it can be polymerized, and known cationic polymerization catalysts, living cation polymerization catalysts, Ziegler catalysts and the like can be used.
カチオン重合触媒としては、 A 1 C 13、 A 1 B r3、 B F3、 B C 13、 BF3 * OE "、 T i C l" T i B r4、 Fe C l 3、 F e C l 2、 SnC "、 S n C l 4、 T i C l4/C l 3CCOOH、 S n C 14 /C l 3C COOH、 WC 16、 M o C 15などのハロゲン化金属 ; P d ( C H3 C N) 2 C 12 4025 1 As the cationic polymerization catalyst, A 1 C 1 3, A 1 B r 3, BF 3, BC 1 3, BF 3 * OE ", T i C l" T i B r 4, Fe C l 3, F e C l 2, SnC ", S n C l 4, T i C l 4 / C l 3 CCOOH, a metal halide such S n C 1 4 / C l 3 C COOH, WC 1 6, M o C 1 5; P d (CH 3 CN) 2 C 1 2 4025 1
11  11
、 P d (C6H5 C N) 2 C 12、 P d (C H3 C N) 4 (B F4) 2などの P d触媒 ; H C 1、 H F、 H B r、 H2 S 04、 H3 B 03、 H C 1 04 , P d (C 6 H 5 CN) 2 C 1 2, P d (CH 3 CN) 4 (BF 4) P d catalysts such as 2; HC 1, HF, HB r, H 2 S 0 4, H 3 B 0 3 , HC 1 0 4
、 CH3 C O OH、 C 13 C C 00 Hなどの水素酸 ; などが挙げられ、 ルイス酸と開始剤化合物を併用する リ ビングカチオン重合触媒と し ては、 T i C l4Z2—メ トキシー 2—フエニルプロパン、 T i C l 4 , CH 3 CO OH, C 1 3 CC 00 H hydrogen acid and the like; and the like, in a re-interleaving the cationic polymerization catalyst used in combination with a Lewis acid initiator compound, T i C l 4 Z2- main Tokishi 2—Phenylpropane, T i Cl 4
Z t—ブタノール、 T i C l4Z l , 4 — ビス ( 2—メ トキシ一 2 一プロピル) ベンゼン、 2—フヱニルー 2—プロパノールなどが挙 げられ、 チーグラー触媒としては、 T i C l 4一 E t3A l などが挙げ られる。 Z t-butanol, T i C l 4 Z l , 4 - bis (2-main butoxy one 2 one propyl) benzene, 2- Fuweniru 2-propanol, etc. are elevation Gerare, as the Ziegler catalyst, T i C l 4 such as a single E t 3 A l can be mentioned.
重合触媒の使用量は、 単量体成分に対し、 モル比で、 通常 0. 000001 〜 1倍、 好ま しく は 0. 0 0 0 1〜0. 5倍の範囲である。  The amount of the polymerization catalyst used is usually in the range of 0.000001 to 1 times, preferably 0.00001 to 0.5 times, in molar ratio, relative to the monomer component.
(重合反応溶媒)  (Polymerization reaction solvent)
重合は、 通常、 溶媒を使用して行れる。 溶媒としては、 ベンゼン、 トルエン、 キシレンなどの芳香族系溶媒 ; ペンタン、 へキサン、 へ プタン、 オクタン、 シクロペンタン、 シクロへキサン、 メ チルシク 口へキサン、 デカ リ ンなどの炭化水素系溶媒 ; 塩化メチル、 塩化メ チレン、 1 , 2—ジクロロェタン、 1 , 1 , 1 一 ト リ クロロェタン、 1, 1 , 2 — ト リ ク ロロェタン、 1 , 1 , 2 — ト リ クロロエチレン などのハロゲン化炭化水素系溶媒 ; などが挙げられ、 これらの中で も、 炭化水素系溶媒、 特に、 シク ロペンタン、 シクロへキサン、 メ チルシク ロへキサン、 デカ リ ンが重合ポリマーの溶解性に優れるの で、 好ま しい。  The polymerization is usually carried out using a solvent. Examples of the solvent include aromatic solvents such as benzene, toluene and xylene; hydrocarbon solvents such as pentane, hexane, heptane, octane, cyclopentane, cyclohexane, methylcyclohexane, and decalin; Halogenated hydrocarbons such as methyl, methylene chloride, 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,1,2—trichloroethylene And hydrocarbon solvents, particularly cyclopentane, cyclohexane, methylcyclohexane, and decalin, are preferred because of their excellent solubility of the polymer.
(重合温度)  (Polymerization temperature)
重合温度は、 通常、 — 1 5 0〜 1 0 0 °C、 好ま しく は— 1 0 0〜 5 0 °C、 特に好ま しく は一 5 0〜 5 0 °Cの範囲で行う。 温度が高す ぎると激しく反応するため、 反応の制御が困難であり、 ゲル化の原 因となったり、 熱劣化の原因となる。 また、 温度が低すぎると反応 速度が遅く 、 効率的でない。 The polymerization temperature is usually in the range from −150 to 100 ° C., preferably from −100 to 50 ° C., particularly preferably from 150 to 50 ° C. If the temperature is too high, it reacts violently, making it difficult to control the reaction and causing gelation. Or thermal deterioration. Also, if the temperature is too low, the reaction speed is slow and inefficient.
(重合体)  (Polymer)
本発明で用いるシク ロペン夕ジェン系単量体の重合体は、 下記の 一般式 ( I ) 及び/または ( π ) で表される線状付加重合型の繰り 返し単位を含有する重合体である。  The polymer of a cyclopentene monomer used in the present invention is a polymer containing a linear addition polymerization type repeating unit represented by the following general formula (I) and / or (π). .
Figure imgf000014_0001
Figure imgf000014_0001
(式中、 R1 〜R6は、 それぞれ水素原子またはアルキル基を表す。 ) (In the formula, R 1 to R 6 each represent a hydrogen atom or an alkyl group.)
Figure imgf000014_0002
Figure imgf000014_0002
(式中、 R7〜R12は、 それぞれ水素原子またはアルキル基を表す。 ) なお、 一般式 ( I ) 及び ( Π) において、 アルキル基としては、 メ チル基、 ェチル基などの炭素数 1〜 5程度の低級アルキル基が好 ま しい。 (In the formulas, R 7 to R 12 each represent a hydrogen atom or an alkyl group.) In the general formulas (I) and (と し て), the alkyl group includes a carbon atom having 1 carbon atom such as a methyl group or an ethyl group. About 5 lower alkyl groups are preferred.
シクロペンタジェン系単量体の線状付加重合型の繰り返し単位を 含有する重合体は、 2 5 °Cの トルエン中で測定した極限粘度 〔 7?〕 が 0. l〜 1 0 d l / g、 好ま しく は 0. 2〜 5 d l Z g、 よ り好 ま しく は 0. 3〜 2 d l / gのものである。 極限粘度が小さすぎる と、 該重合体の水素添加物の成形品の機械的強度が小さ くなり、 極 限粘度が大きすぎると、 該重合体の水素添加反応が円滑に進行し難 く なる。 また、 本発明で用いる重合体は、 実質的にゲルを含まない ため、 適当な溶媒に可溶性であり、 かつ、 水素添加反応を円滑に行 う ことができる。 A polymer containing a linear addition polymerization type repeating unit of a cyclopentadiene monomer has an intrinsic viscosity [7?] Measured in toluene at 25 ° C of 0.1 to 10 dl / g, Preferably it is of 0.2 to 5 dl Z g, more preferably of 0.3 to 2 dl / g. If the intrinsic viscosity is too low, the mechanical strength of a molded product of a hydrogenated product of the polymer becomes low, If the limiting viscosity is too large, it becomes difficult for the hydrogenation reaction of the polymer to proceed smoothly. Further, since the polymer used in the present invention does not substantially contain a gel, it is soluble in a suitable solvent and can smoothly carry out a hydrogenation reaction.
A s ο , C . , e t a l . , J . P o l ym e r S c i . , A sο, C., et al., J. Pol ym er Sci.,
P a r t B 4, 7 0 1 ( 1 9 6 6 ) に記載の麻生の方法に基づい て計算すれば、 本発明で用いるシクロペンタジェン系単量体の線状 付加重合型の繰り返し単位を含有する重合体において、 該繰り返し 単位中、 一般式 ( I ) で表される繰り返し単位は、 通常、 2 0重量 %以上、 好ま しく は 3 0重量%以上、 より好ま しく は 4 0重量%以 上である。 一般式 ( I ) で表される繰り返し単位の割合は、 重合触 媒、 重合溶媒などによって決ま り、 コモノマーの存在や重合温度の 影響を実質的に受けない。 Calculated based on the Aso method described in Part B 4,701 (1966), it contains a linear addition-polymerized repeating unit of the cyclopentadiene monomer used in the present invention. In the polymer, the repeating unit represented by the general formula (I) is usually 20% by weight or more, preferably 30% by weight or more, and more preferably 40% by weight or more. is there. The proportion of the repeating unit represented by the general formula (I) is determined by the polymerization catalyst, the polymerization solvent, and the like, and is substantially unaffected by the presence of the comonomer and the polymerization temperature.
シク口ペンタジェン系単量体とビニル基含有環状炭化水素単量体 を共重合させた場合には、 前記一般式 ( I ) 及び Zまたは (Π) で 表される繰り返し単位と、 ビニル基含有環状炭化水素単量体に由来 する繰り返し単位を含有する共重合体が得られる。 ビニル基含有環 状炭化水素単量体が五員環、 六員環または七員環である場合には、 それぞれ下記の一般式 (m) 、 (W) または (V) で表される繰り 返し単位となる。  When a cyclic pentadiene monomer and a vinyl group-containing cyclic hydrocarbon monomer are copolymerized, a repeating unit represented by the above general formula (I) and Z or (Π), A copolymer containing a repeating unit derived from a hydrocarbon monomer is obtained. When the vinyl group-containing cyclic hydrocarbon monomer is a five-membered ring, a six-membered ring or a seven-membered ring, a repeating unit represented by the following general formula (m), (W) or (V), respectively. Unit.
(ΠΙ)
Figure imgf000015_0001
(式中、 R13〜R24は、 それぞれ水素原子またはアルキル基を表し、 そのうち、 R16〜R24は、 互いに隣接する炭素原子を表し、 二重結合 を形成していてもよい。 )
(ΠΙ)
Figure imgf000015_0001
(In the formula, R 13 to R 24 each represent a hydrogen atom or an alkyl group, and among them, R 16 to R 24 represent carbon atoms adjacent to each other and may form a double bond.)
Figure imgf000016_0001
Figure imgf000016_0001
(式中、 R2 R38は、 それぞれ水素原子またはアルキル基を表し、 そのうち、 R: 'R38は、 互いに隣接する炭素原子を表し、 二重結合 を形成していてもよい。 ) (In the formula, R 2 R 38 represents a hydrogen atom or an alkyl group, wherein R : 'R 38 represents carbon atoms adjacent to each other and may form a double bond.)
Figure imgf000016_0002
Figure imgf000016_0002
(式中、 R39〜R5 ま、 それぞれ水素原子またはアルキル基を表し、 そのうち、 R42〜R54は、 互いに隣接する炭素原子を表し、 二重結合 を形成していてもよい。 ) (Wherein, R 39 to R 5 each represent a hydrogen atom or an alkyl group, and among them, R 42 to R 54 represent carbon atoms adjacent to each other and may form a double bond.)
なお、 これらの一般式 (HI) 、 (IV) 及び (V) において、 アル キル基としては、 メチル基、 ェチル基などの炭素数 1〜 5程度の低 級アルキル基が好ま しい。  In these general formulas (HI), (IV) and (V), the alkyl group is preferably a lower alkyl group having about 1 to 5 carbon atoms, such as a methyl group or an ethyl group.
これらの一般式 (m) 、 (IV) または (V) で表される繰り返し 単位は、 それぞれ単独で、 あるいは 2種以上が組み合わされていて もよい。 These repeating units represented by the general formulas (m), (IV) and (V) may be used alone or in combination of two or more. Is also good.
共重合体中、 ビニル基含有環状炭化水素単量体の線状付加重合型 の繰り返し単位は、 通常、 1 0〜 9 0重量%の範囲である。 特に耐 熱性が要求される場合には、 ビニル基含有環状炭化水素単量体の線 状付加重合型の繰り返し単位は、 通常、 5 0〜 9 0重量%、 好ま し く は 5 5〜 8 0重量%、 より好ま しく は 6 0〜 7 0重量%である。 残余は、 前記一般式 ( I ) 及び Zまたは (Π) で表される繰り返し 単位である。 ただし、 所望により、 一才レフイ ン、 共役ジェン、 環状エーテル、 ビニルエーテル、 複素環含有ビニル化合物または環 状ォレフイ ンなどのその他の共重合可能な単量体に由来する繰り返 し単位を少量成分として含有してもよい。 また、 この共重合体の 2 5 。Cの トルエン中で測定した極限粘度 〔 7?〕 は、 0. 1〜 1 0 d 1 Z g、 好ましくは 0. 2〜5 d l / g、 より好ましくは 0. 3〜2 d l / gである。  In the copolymer, the linear addition polymerization type repeating unit of the vinyl group-containing cyclic hydrocarbon monomer is usually in the range of 10 to 90% by weight. In particular, when heat resistance is required, the linear addition polymerization type repeating unit of the vinyl group-containing cyclic hydrocarbon monomer is usually 50 to 90% by weight, preferably 55 to 80% by weight. % By weight, more preferably 60 to 70% by weight. The remainder is a repeating unit represented by the general formula (I) and Z or (ま た は). However, if desired, a repeating unit derived from other copolymerizable monomers such as one-year-old refine, conjugated gen, cyclic ether, vinyl ether, heterocyclic vinyl compound or cyclic olefin may be used as a minor component. May be contained. Also 25 of this copolymer. The intrinsic viscosity [7?] Measured in toluene of C is 0.1 to 10 d1 Zg, preferably 0.2 to 5 dl / g, more preferably 0.3 to 2 dl / g. .
ビニル基含有炭化水素単量体の線状付加重合型の繰り返し単位が 多すぎると、 溶融温度が高くなりすぎて溶融成形が困難になったり、 機械的強度が低下する。 シク ロペンタジェン系単量体の線状付加重 合型の繰り返し単位が多すぎると、 耐熱性が低下する。  If the linear addition polymerization type repeating unit of the vinyl group-containing hydrocarbon monomer is too large, the melting temperature becomes too high, so that melt molding becomes difficult or the mechanical strength decreases. If there are too many linear addition polymer-type repeating units of the cyclopentadiene monomer, heat resistance will be reduced.
シク ロペンタジェン系単量体とビニル基含有環状炭化水素単量体 との重合体は、 新規ポリマーであり、 特に、 シクロペンタジェン系 単量体の線状付加重合型の繰り返し単位 1 0〜 5 0重量%とビニル 基含有環状炭化水素単量体の線状付加重合型の繰り返し単位 5 0〜 9 0重量%とを含有する共重合体は、 水素添加しなくても、 透明性、 低複屈折性、 耐光性、 耐湿性、 成形加工性、 機械的強度、 耐薬品性 などに優れており、 光学材料、 医療用高分子材料、 電気絶縁材料、 電子部品材料などと して使用することができる。 ただし、 耐光劣化 性、 耐熱劣化性、 耐薬品性などの点では、 前記共重合体の水素添加 物の方が優れている。 The polymer of a cyclopentadiene monomer and a vinyl group-containing cyclic hydrocarbon monomer is a novel polymer, and in particular, is a linear addition-polymerized repeating unit of a cyclopentadiene monomer 10 to 50 A copolymer containing 50% by weight and 50 to 90% by weight of a linear addition polymerization type repeating unit of a vinyl group-containing cyclic hydrocarbon monomer has transparency and low birefringence without hydrogenation. Excellent in heat resistance, light resistance, moisture resistance, moldability, mechanical strength, chemical resistance, etc., and can be used as optical materials, medical polymer materials, electrical insulating materials, electronic component materials, etc. . However, light resistance deterioration The hydrogenated product of the copolymer is superior in terms of properties, heat deterioration resistance, chemical resistance and the like.
シクロペンタジェン系単量体とノルボルネン系単量体を共重合さ せた場合には、 前記一般式 ( I ) 及び または ( Π ) で表される繰 り返し単位と、 ノルボルネン系単量体に由来する繰り返し単位を含 有する共重合体が得られる。  When the cyclopentadiene-based monomer and the norbornene-based monomer are copolymerized, the repeating unit represented by the general formula (I) and / or (Π) and the norbornene-based monomer A copolymer having a repeating unit derived therefrom is obtained.
ノルボルネン系単量体に由来する繰り返し単位としては、 下記の 一般式 (VI ) で表される線状付加重合型の繰り返し単位を挙げるこ とができる。  Examples of the repeating unit derived from the norbornene monomer include a linear addition polymerization type repeating unit represented by the following general formula (VI).
Figure imgf000018_0001
Figure imgf000018_0001
(式中、 nは、 0、 1 または 2であり、 R55〜R66は、 それぞれ水 素原子、 アルキル基、 アルキリデン基、 アルケニル基、 芳香族置換 基または極性置換基を表す。 ) (In the formula, n is 0, 1 or 2, and R 55 to R 66 each represent a hydrogen atom, an alkyl group, an alkylidene group, an alkenyl group, an aromatic substituent or a polar substituent.)
ここで、 一般式 (VI ) におけるアルキル基、 アルキリデン基、 ァ ルケニル基、 芳香族置換基及び極性置換基と しては、 前記単量体の 例中に示されるものを例示することができる。  Here, as the alkyl group, alkylidene group, alkenyl group, aromatic substituent and polar substituent in the general formula (VI), those shown in the examples of the monomer can be exemplified.
共重合体中、 ノルボルネン系単量体の線状付加重合型の繰り返し 単位は、 通常、 1 0〜 9 0重量%の範囲である。 特に耐熱性が要求 される場合には、 ノルボルネン系単量体の線状付加重合型の繰り返 し単位は、 通常、 5 0〜 9 0重量%、 好ましく は 5 5〜 8 0重量%、 より好ま しくは 6 0〜 7 0重量%である。 残余は、 前記一般式 ( I ) 及び/または ( Π) で表される繰り返し単位である。 ただし、 所望 により、 α—ォレフィ ン、 共役ジェン、 環状エーテル、 ビニルェ一 テル、 複素環含有ビニル化合物または環状ォレフ ィ ンなどのその他 の共重合可能な単量体に由来する繰り返し単位を少量成分として含 有してもよい。 また、 この共重合体の 2 5 °Cの トルエン中で測定し た極限粘度 〔 "〕 は、 0. l〜 1 0 d l Z g、 好ま しく は 0. 2〜 5 d l / g、 より好ま しく は 0. 3〜 2 d l / gである。 In the copolymer, the repeating unit of the linear addition polymerization type of the norbornene-based monomer is usually in the range of 10 to 90% by weight. When heat resistance is particularly required, the repeating unit of the linear addition polymerization type of norbornene-based monomer is usually 50 to 90% by weight, preferably 55 to 80% by weight, More preferably, it is 60 to 70% by weight. The remainder is a repeating unit represented by the general formula (I) and / or (Π). However, if necessary, repeating units derived from other copolymerizable monomers such as α-olefins, conjugated gens, cyclic ethers, vinyl ethers, heterocyclic-containing vinyl compounds or cyclic olefins may be used as minor components. May be included. In addition, the intrinsic viscosity ["] of this copolymer measured in toluene at 25 ° C is from 0.1 to 10 dl Zg, preferably from 0.2 to 5 dl / g, more preferably from 0.2 to 5 dl / g. Is 0.3-2 dl / g.
ノルボルネン系単量体の線状付加重合型の繰り返し単位が多すぎ ると、 溶融温度が高くなりすぎて溶融成形が困難になったり、 機械 的強度が低下する。 シク ロペンタジェン系単量体の線状付加重合型 の繰り返し単位が多すぎると、 耐熱性が低下する。  If the linear addition polymerization type repeating unit of norbornene-based monomer is too large, the melting temperature becomes too high, so that melt molding becomes difficult or mechanical strength decreases. If there are too many linear addition polymerization type repeating units of the cyclopentadiene monomer, heat resistance will be reduced.
シクロペンタジェン系単量体とノルボルネン系単量体との重合体 は、 新規ポリマーであり、 特に、 シク ロペンタ ジェン系単量体の線 状付加重合型の繰り返し単位 1 0〜 5 0重量%とノルボルネン系単 量体の線状付加重合型の繰り返し単位 5 0〜 9 0重量%とを含有す る共重合体は、 水素添加しなくても、 透明性、 低複屈折性、 耐光性、 耐湿性、 成形加工性、 機械的強度、 耐薬品性などに優れており、 光 学材料、 医療用高分子材料、 電気絶縁材料、 電子部品材料などと し て使用することができる。 ただし、 耐光劣化性、 耐熱劣化性、 耐薬 品性などの点では、 前記共重合体の水素添加物の方が優れている。 The polymer of a cyclopentadiene-based monomer and a norbornene-based monomer is a novel polymer. In particular, a linear addition-polymerized repeating unit of a cyclopentadiene-based monomer is 10 to 50% by weight. A copolymer containing 50 to 90% by weight of a norbornene-based monomeric linear addition polymerization type repeating unit can have transparency, low birefringence, light resistance, and moisture resistance without hydrogenation. It excels in properties, moldability, mechanical strength, and chemical resistance, and can be used as optical materials, medical polymer materials, electrical insulating materials, electronic component materials, and so on. However, the hydrogenated product of the copolymer is superior in terms of light deterioration resistance, heat deterioration resistance, chemical resistance and the like.
(水素添加) (Hydrogenation)
水素添加触媒 Hydrogenation catalyst
水素添加触媒は、 ォレフィ ン化合物の水素化に際して一般に使用 されているものであれば使用可能であり、 例えば、 ウィ ルキンソ ン 錯体、 酢酸コバルト Zト リェチルアルミニウム、 ニッケルァセチル ァセ トナー ト Zト リ イソブチルアルミニウムなどや、 ケイソゥ土、 マグネシァ、 アルミ ナ、 合成ゼオライ トなどに、 二ッゲル、 パラ ジ ゥム、 白金等触媒金属を担持させた不均一触媒が挙げられ、 これら ' の中でも、 マグネシア、 活性アルミ ナ、 合成ゼォライ トを担体と し た細孔容積 0. 5 c m3/g以上、 好ま しく は 0. 7 c m3/g以上、 また、 好ま しく は比表面積 2 5 0 m2/ g以上の不均一触媒が望ま し い。 これらの担体は、 重合触媒由来の遷移金属や塩素原子を吸着す る。 さらに、 不均一系触媒と して、 粒径 0. 2 / m以上のもの、 即 ち、 粒径が 0. 2 // m未満のものを実質的に含まないものを用いる と、 濾過による不均一系触媒の除去が容易であるので好ま しい。 粒 径が小さすぎると濾過の際にリーク しやすく、 また、 遠心しても除 去が困難になり、 水素添加樹脂中の重合触媒や水素添加触媒の残渣 である遷移金属原子量が多くなる。 また、 リーク しないように孔径 の小さなフィルターを用いて濾過すると、 目詰ま りを起こ しやすく、 作業効率が悪い。 The hydrogenation catalyst can be used as long as it is generally used in hydrogenation of an orifice compound, for example, Wilkinson complex, cobalt acetate Z triethylaluminum, nickel acetyl Heterogeneous catalysts in which catalytic metals such as Nigel, Palladium, and Platinum are supported on acetonate Z triisobutylaluminum, diatomaceous earth, magnesium, alumina, synthetic zeolite, etc. among ', magnesia, active alumina, synthetic Zeorai pores bets was carrier volume 0. 5 cm 3 / g or more, favored properly is 0. 7 cm 3 / g or more, is preferred properly specific surface area 2 A heterogeneous catalyst of 50 m 2 / g or more is desirable. These carriers adsorb transition metals and chlorine atoms derived from the polymerization catalyst. Further, if a heterogeneous catalyst having a particle size of 0.2 / m or more, that is, a catalyst substantially not containing a particle size of less than 0.2 // m is used, the filtration by filtration is difficult. It is preferable because the removal of the homogeneous catalyst is easy. If the particle size is too small, it is liable to leak at the time of filtration, and it is difficult to remove even by centrifugation, and the amount of transition metal atoms, which is a residue of the polymerization catalyst or the hydrogenation catalyst in the hydrogenated resin, increases. In addition, if filtration is performed using a filter with a small pore size to prevent leakage, clogging is likely to occur and work efficiency is poor.
ニッケル、 パラジウム、 白金などの担持型触媒を使用 して水素添 加反応を行う場合、 ィソプロ ピルアルコールなどのアルコール類を 少量添加して反応性を高めることができる。 添加量は、 溶液 1 0 0 重量部当たり、 通常、 0. 5〜 5重量部、 好ま しく は 1〜 3重量部 である。  When a hydrogenation reaction is carried out using a supported catalyst such as nickel, palladium, or platinum, the reactivity can be increased by adding a small amount of alcohol such as isopropyl alcohol. The amount added is usually 0.5 to 5 parts by weight, preferably 1 to 3 parts by weight, per 100 parts by weight of the solution.
水素添加反応溶媒 Hydrogenation reaction solvent
水素添加反応は、 通常、 不活性有機溶媒中で実施する。 有機溶媒 と しては、 炭化水素系溶媒が好ま しく 、 その中でも生成する水素添 加樹脂の溶解性に優れた環状炭化水素系溶媒が特に好ま しい。 具体 例と しては、 ベンゼン、 トルエン等の芳香族炭化水素、 n —ペン夕 ン、 へキサン等の脂肪族炭化水素、 シクロへキサン、 デカ リ ン等の 脂環族炭化水素、 メチレンジクロリ ド、 ジク ロルェタン等のハロゲ ン化炭化水素等が挙げられ、 これらの 2種以上を混合して使用する こともできる。 溶媒を使用する場合、 重合体 1重量部に対する溶媒 媒使用量は、 通常、 0. 8〜 2 0重量部、 好ましく は 1〜 1 0重量 部である。 The hydrogenation reaction is usually performed in an inert organic solvent. As the organic solvent, a hydrocarbon-based solvent is preferable, and among them, a cyclic hydrocarbon-based solvent having excellent solubility in the hydrogenated resin to be generated is particularly preferable. Specific examples include aromatic hydrocarbons such as benzene and toluene, aliphatic hydrocarbons such as n-benzene and hexane, and cyclohexane and decalin. Examples include halogenated hydrocarbons such as alicyclic hydrocarbons, methylene dichloride, and dichloroethane, and a mixture of two or more of these can be used. When a solvent is used, the amount of the solvent used is usually 0.8 to 20 parts by weight, preferably 1 to 10 parts by weight based on 1 part by weight of the polymer.
通常は、 重合反応溶媒と同じでよく、 重合反応溶液にそのまま水 素添加触媒等を添加して、 反応させればよい。  Usually, it may be the same as the polymerization reaction solvent, and the reaction may be performed by adding a hydrogenation catalyst or the like to the polymerization reaction solution as it is.
水素添加反応温度 Hydrogenation reaction temperature
水素添加反応の温度は、 通常、 1 0 0で以上、 好ま しくは 1 2 0 〜 3 0 0 °C、 より好ましく は 1 4 0〜 2 5 0でである。 水素添加反 応温度が低すぎると、 水素添加反応が進行し難く、 水素添加率が十 分に高くならない。 温度が高すぎると、 重合体が熱劣化し、 また、 操作が困難になる。  The temperature of the hydrogenation reaction is usually at least 100, preferably from 120 to 300 ° C, more preferably from 140 to 250 ° C. If the hydrogenation reaction temperature is too low, the hydrogenation reaction does not proceed easily, and the hydrogenation rate does not increase sufficiently. If the temperature is too high, the polymer will be thermally degraded and operation will be difficult.
7 g力 7 g force
水素添加反応の水素圧力は、 特に制限はないが、 通常、 1 0〜20 0 k g/ c m2、 好ましくは 2 0〜 1 5 0 15: 0 1112、 より好ましくは 3 0〜 1 0 0 k g/ c m2である。 Hydrogen pressure in the hydrogenation reaction is not particularly limited, usually, 1 0 to 20 0 kg / cm 2, preferably 2 0-1 5 0 1 5: 0 111 2, more preferably 3 0-1 0 0 a kg / cm 2.
触媒の除去 Catalyst removal
水素添加反応終了後の触媒の除去は、 遠心、 濾過などの常法に従 つて行えばよい。 遠心方法や濾過方法は、 用いた触媒が除去できる 条件であれば、 特に限定されない。 濾過による除去は、 簡便かつ効 率的であるので好ま しい。 濾過する場合、 加圧濾過しても吸引濾過 してもよく、 また、 効率の点から、 ケイソゥ土、 パーライ トなどの 濾過助剤を用いることが好ま しい。 前述の水素添加触媒の担体等の 重合触媒に由来する遷移金属原子に対する吸着剤を、 濾過助剤とし て用いてもよい。 (水素添加樹脂) After the completion of the hydrogenation reaction, the catalyst may be removed by a conventional method such as centrifugation or filtration. The centrifugation method and the filtration method are not particularly limited as long as the used catalyst can be removed. Removal by filtration is preferred because it is simple and efficient. In the case of filtration, pressure filtration or suction filtration may be used. From the viewpoint of efficiency, it is preferable to use a filter aid such as diatomaceous earth or perlite. An adsorbent for a transition metal atom derived from a polymerization catalyst such as the above-mentioned carrier for a hydrogenation catalyst may be used as a filter aid. (Hydrogenated resin)
本発明の水素添加樹脂の水素添加率は、 繰り返し単位中の炭素 - 炭素二重結合が水素添加された割合であり、 水素圧、 反応温度、 反 応時間、 触媒濃度などを変えることによって任意に調整するこ とが できる。 水素添加率は、 9 0 %以上、 好ま しく は 9 5 %以上、 よ り 好ま しく は 9 9 %以上である。 水素添加樹脂の水素添加率が低い場 合は、 空気酸化に対する安定性が十分でなく、 特に光学材料に要求 される無色透明性を保持することが難しい。  The hydrogenation rate of the hydrogenated resin of the present invention is a rate at which the carbon-carbon double bond in the repeating unit is hydrogenated, and can be arbitrarily determined by changing the hydrogen pressure, the reaction temperature, the reaction time, the catalyst concentration, and the like. Can be adjusted. The hydrogenation rate is at least 90%, preferably at least 95%, more preferably at least 99%. When the hydrogenation rate of the hydrogenated resin is low, the stability to air oxidation is not sufficient, and it is particularly difficult to maintain the colorless and transparent properties required for optical materials.
通常、 シク ロペンタジェン系単量体以外の単量体に由来する繰り 返し単位については、 シクロペンタジェン系単量体の線状付加重合 型の繰り返し単位とほぼ同程度に水素添加される。 しかし、 スチレ ン系単量体を用いた場合のように、 樹脂構造中にフュニル基等の芳 香族環が存在する場合、 水素化触媒を遷移金属化合物とアルキル金 属化合物の組合わせ触媒から選択することによ り、 選択的に芳香族 環を水素添加せずに残すことができる。 その場合、 芳香族環の不飽 和結合を除いて算出した水素添加率が上記範囲であれば、 本発明の 水素添加樹脂と して使用できる。 芳香族環は、 空気酸化に対して安 定性を有するが、 よ り高い安定性が求められる場合には、 芳香族環 も水素添加することが好ま しい。  Usually, the repeating unit derived from a monomer other than the cyclopentadiene monomer is hydrogenated to substantially the same degree as the linear addition polymerization type repeating unit of the cyclopentadiene monomer. However, when an aromatic ring such as a fuynyl group is present in the resin structure, as in the case of using a styrene monomer, the hydrogenation catalyst is changed from a combination catalyst of a transition metal compound and an alkyl metal compound. By selection, the aromatic ring can be selectively left without hydrogenation. In that case, if the hydrogenation rate calculated excluding the unsaturated bond of the aromatic ring is within the above range, it can be used as the hydrogenated resin of the present invention. The aromatic ring has stability to air oxidation, but when higher stability is required, it is preferable to hydrogenate the aromatic ring.
本発明の水素添加樹脂の分子量範囲は、 2 5 °C、 トルエン中で測 定した極限粘度 〔 〕 が 0 . 1 〜 1 0 d 1 g、 好ま しく は 0 . 2 〜 5 d l Z g、 より好ま しく は 0 . 3〜 2 d l / gである。 水素添 加樹脂の極限粘度が小さ過ぎると、 成形品の機械的強度が小さ く な り、 極限粘度が大き過ぎると、 溶融粘度が高く 、 成形加工が困難に なる。  The hydrogenated resin of the present invention has a molecular weight range of 25 ° C., an intrinsic viscosity [] measured in toluene of 0.1 to 10 d 1 g, preferably 0.2 to 5 dl Z g. Preferably it is 0.3-2 dl / g. If the intrinsic viscosity of the hydrogenated resin is too small, the mechanical strength of the molded article will be low, and if the intrinsic viscosity is too large, the melt viscosity will be high and molding processing will be difficult.
本発明の水素添加樹脂は、 非晶質、 透明性、 低複屈折性、 電気絶 縁性に優れ、 通常、 7 0 °C以上の T gを有し、 低吸湿性で、 電器絶 縁性に優れ、 機械的強靭性も有している。 The hydrogenated resin of the present invention is amorphous, transparent, low birefringent, and electrically insulating. It has excellent edge properties, usually has a Tg of 70 ° C or more, has low moisture absorption, has excellent electrical insulation properties, and has mechanical toughness.
特に、 シクロペンタジェン系単量体の線状付加重合型の繰り返し 単位 1 0〜 5 0重量%とビニル基含有環状炭化水素単量体の線状付 加重合型の繰り返し単位 5 0〜 9 0重量%とを含有する共重合体を 水素添加した樹脂は、 通常、 9 0 °C以上の T gを有し、 機械的強度 が、 曲げ強度で 5 5 0 k g f ノ c m2以上、 好ま しく は 6 0 0 k g f / c m2以上、 より好ましくは 6 5 0 k g f / c m2以上と優れている。 In particular, a linear addition polymerization type repeating unit of a cyclopentadiene monomer is 10 to 50% by weight and a linear addition polymerization type repeating unit of a vinyl group-containing cyclic hydrocarbon monomer is 50 to 90%. % By weight of a copolymer having a Tg of 90 ° C. or more and a mechanical strength of at least 550 kgf cm 2 in bending strength, preferably It is excellent at 600 kgf / cm 2 or more, and more preferably at 600 kgf / cm 2 or more.
同様に、 シク ロペンタジェン系単量体の線状付加重合型の繰り返 し単位 1 0〜 5 0重量%とノルボルネン系単量体の線状付加重合型 の繰り返し単位 5 0〜 9 0重量%とを含有する共重合体を水素添加 した樹脂は、 通常、 1 2 0 °C以上の T gを有し、 機械的強度も優れ ている。  Similarly, 10 to 50% by weight of a linear addition polymerization type repeating unit of a cyclopentadiene monomer and 50 to 90% by weight of a linear addition polymerization type repeating unit of a norbornene monomer. A resin obtained by hydrogenating a copolymer containing styrene usually has a Tg of 120 ° C. or higher, and has excellent mechanical strength.
(成形加工)  (Molding)
本発明の水素添加樹脂は、 慣用の成形方法、 例えば、 射出成形、 押出成形、 圧縮成形、 キャス ト成形、 イ ンフ レーショ ン成形、 ブロー 成形などによって成形加工することができる。  The hydrogenated resin of the present invention can be molded by a conventional molding method, for example, injection molding, extrusion molding, compression molding, cast molding, inflation molding, blow molding and the like.
(添加剤)  (Additive)
本発明の水素添加樹脂には、 所望により、 各種添加剤を添加して もよい。 用いられる添加剤と しては、 例えば、 フエノ一ル系ゃリ ン 系などの酸化防止剤、 帯電防止剤、 紫外線吸収剤、 ゴム質重合体、 石油樹脂、 異種熱可塑性樹脂などがある。 また、 成形性、 物性など を改良する目的で、 例えば、 ガラスファイバー、 カーボンファイバー などの繊維状充填剤 ; シリ カ、 アルミ ナ、 タルク、 水酸化アルミ二 ゥム、 炭酸カルシウムなどの微粒子状充填剤 ; テ トラキス 〔2 - (3, 5 —ジー t一ブチル— 4— ヒ ドロキシフエニル) ェチルプロピオネー ト〕 メ タ ン、 2 , 6 —ジ一 t ーブチルー 4一メ チルフエノールなど の酸化防止剤 ; などの他、 光安定剤、 紫外線吸収剤、 帯電防止剤、 滑剤、 難燃剤、 顔料、 染料、 アンチブロッキング剤などを添加して もよい。 一般に、 水素添加樹脂からの溶出を避けるため、 これらの 添加剤は、 分子量の大きいものほど好ま しく、 また、 添加量が少な いほど好ま しい。 Various additives may be added to the hydrogenated resin of the present invention, if desired. The additives used include, for example, phenol-based antioxidants, antistatic agents, ultraviolet absorbers, rubbery polymers, petroleum resins, and heterogeneous thermoplastic resins. In addition, for the purpose of improving moldability and physical properties, for example, fibrous fillers such as glass fiber and carbon fiber; and particulate fillers such as silica, alumina, talc, aluminum hydroxide, and calcium carbonate. Tetrakis [2- (3,5-di-tert-butyl-4-hydroxyhydroxy) ethylpropionate G) methane, 2,6-di-t-butyl-41-methylphenol and other antioxidants; etc., as well as light stabilizers, ultraviolet absorbers, antistatic agents, lubricants, flame retardants, pigments, dyes, An anti-blocking agent or the like may be added. Generally, to avoid elution from the hydrogenated resin, these additives are preferred as having a higher molecular weight, and as the amount of addition is smaller, the more preferred.
キャス ト法でシー トを形成する場合には、 表面粗さを小さ くする ため、 レべリ ング剤を添加してもよい。 レべリ ング剤としては、 例 えば、 フッ素系ノニオン界面活性剤、 特殊ァク リル樹脂系レべリ ン グ剤、 シリ コーン系レべ ') ング剤など、 塗料用レペリ ング剤を用い ることができ、 それらの中でも溶媒との相溶性の良いものが好まし い。  When a sheet is formed by a casting method, a leveling agent may be added to reduce the surface roughness. As the leveling agent, for example, a coating repelling agent such as a fluorine-based nonionic surfactant, a special acrylic resin-based leveling agent, or a silicone-based leveling agent is used. Among them, those having good compatibility with the solvent are preferred.
本発明の水素添加樹脂に配合剤を添加した場合、 一般に透明性は 低下するが、 薬品容器に成形した場合などには内容物の量や状態が 確認できる程度の透明性があればよい。 そのため必要とされる光線 透過率は、 2 mm厚さの成形板を用い、 波長領域 4 5 0〜7 0 0 nm の範囲で測定して、 通常 4 0 %以上、 好ま しく は 5 0 %以上、 より 好ま しく は 6 0 %以上である。 光学材料として使用する場合の光線 透過率は、 1. 2 mm厚さの成形板を用い、 波長 4 0 0〜 8 3 0 n m で測定して、 通常 8 0 %以上、 好ま しくは 8 5 %以上、 より好ま し ぐは 8 8 %以上、 特に好ましく は 9 0 %以上である。  When a compounding agent is added to the hydrogenated resin of the present invention, the transparency generally decreases. However, when the compound is molded into a chemical container or the like, the transparency only needs to be sufficient to confirm the amount and state of the contents. Therefore, the required light transmittance is usually at least 40%, preferably at least 50%, measured in a wavelength range of 450 to 700 nm using a molded plate having a thickness of 2 mm. , More preferably 60% or more. When used as an optical material, the light transmittance is usually 80% or more, preferably 85%, measured at a wavelength of 400 to 80 nm using a 1.2 mm thick molded plate. The above is more preferably at least 88%, particularly preferably at least 90%.
添加剤は、 水素添加樹脂の電気特性にも影響し、 帯電枋止効果の ない添加剤は、 電気特性を低下させる。 水素添加樹脂を電気絶縁材 料として使用する場合には、 体積固有抵抗値は、 通常、 1 016Q c m 以上、 好ま しく は 5 X 1 016 Ω c m以上で、 誘電率は、 1 02H z、 1 06H z、 1 09 H zの周波数のいずれにおいても 3以下、 好ましく は 2. 5以下で、 誘電正接は、 1 02H z、 1 06H z、 1 09H zの 周波数のいずれにおいても 1 0_3以下、 好ま しく は 7 x 1 0— 4以下で のる。 Additives also affect the electrical properties of the hydrogenated resin, and additives that do not have a charging fanning effect reduce electrical properties. If a hydrogenated resin is used as the electrical insulating material, the volume resistivity is usually at least 10 16 Q cm, preferably at least 5 x 10 16 Ω cm, and the dielectric constant is 10 2 H z, 1 0 6 H z , 1 0 9 3 or less at any of frequencies H z, preferably Is 2. 5 or less, the dielectric loss tangent, 1 0 2 H z, 1 0 6 H z, 1 0 9 H z of 1 0_ 3 or less at any frequency, favored properly is 7 x 1 0- 4 below Nori.
(用途)  (Application)
本発明の水素添加樹脂は、 光学材料をはじめ各種成形品として広 範な分野において有用である。 例えば、 光学材料 ; 電気絶縁材料 ; 医療用高分子材料 ; 受光素子用窓などの電子部品用途 ; I C用キヤ リア一テープ、 シッパー、 I C用 ト レー、 ウェハーキャ リアー、 超 純水用配管などの電子部品処理用器材 ; 窓、 機器部品、 ハウジング などの構造材料や建材 ; バンパー、 ルームミ ラー、 へッ ドランプ力 ノく一、 テールラ ンプカバー、 ィ ンス トルメ ン トパネルなどの自動車 用器材 ; スピーカーコーン材、 スピーカー用振動素子、 電子レンジ 用容器などの電器用器材、 フィルム、 シー ト、 ヘルメ ッ トなどの種々 の用途に利用できる。  The hydrogenated resin of the present invention is useful in a wide range of fields as various molded articles including optical materials. For example, optical materials; electrical insulating materials; medical polymer materials; electronic component applications such as photodetector windows; IC carrier tapes, shippers, IC trays, wafer carriers, and ultrapure water piping. Parts processing equipment; Structural materials and building materials such as windows, equipment parts, and housing; Automotive equipment such as bumpers, room mirrors, headlamp power, tail lamp covers, instrument panels; Speaker cones, speakers It can be used for various uses such as vibration devices, electric equipment such as microwave oven containers, films, sheets, and helmets.
光学材料 Optical materials
本発明の水素添加樹脂は、 透明性、 低複屈折性、 7 0 °C以上のガ ラス転移温度 (T g) を有し、 低吸湿性で、 機械的強靭性も有して いるので、 例えば、 光ディ スク、 光学レンズ、 光カー ド、 光フアイ バー、 光学ミ ラー、 液晶表示素子基板、 導光板、 偏光フ ィルム、 位 相差フィ ルムなどの光学材料と して有用である。 本発明の水素添加樹脂は、 薬品、 特に、 アルコール類、 アミ ン類、 エステル類、 ア ミ ド類、 エーテル類、 カルボン酸類、 ア ミ ノ酸類な どの極性基を有する薬品の吸着が少な く、 また、 樹脂中に不純物と して含有している有機物などが染み出すことが少ないので、 薬品と 接触しても変質させることがない。 さ らに、 樹脂溶液を酸性水と純 水で繰り返し洗浄するなどの方法により、 重合触媒由来の遷移金属 原子や水素添加触媒金属の残留量を下げ、 これらの残留量を 1 p p m 以下にすることができるので、 医療用器材と して用いることができ る The hydrogenated resin of the present invention has transparency, low birefringence, a glass transition temperature (T g) of 70 ° C. or higher, low hygroscopicity, and mechanical toughness. For example, it is useful as an optical material such as an optical disk, an optical lens, an optical card, an optical fiber, an optical mirror, a liquid crystal display element substrate, a light guide plate, a polarizing film, and a phase difference film. The hydrogenated resin of the present invention has low adsorption of chemicals, particularly chemicals having polar groups such as alcohols, amines, esters, amides, ethers, carboxylic acids, and amino acids. In addition, since organic substances and the like contained as impurities in the resin are less likely to ooze out, they do not deteriorate even when contacted with chemicals. In addition, the resin solution is mixed with acidic water and pure It is used as a medical device because the residual amount of transition metal atoms and hydrogenation catalyst metal derived from the polymerization catalyst can be reduced to 1 ppm or less by repeatedly washing with water, etc. be able to
医療用器材としては、 例えば、 注射用の液体薬品容器、 アンプル、 プレフィルドシリ ンジ、 輸液用バッグ、 固体薬品容器、 点眼薬容器、 点滴薬容器などの液体、 粉体または固体の薬品容器 ; 食品容器 ; 血 液検査用のサンプリ ング用試験管、 採血管、 検体容器などのサンプ ル容器 ; 注射器などの医療器具 ; メスゃ鉗子、 ガーゼ、 コンタク ト レンズなどの医療器具などの滅菌容器 ; ビーカー、 シャーレ、 フラ スコ、 試験管、 遠心管などの実験 · 分析器具 ; 医療検査用プラスチ ッ ク レンズなどの医療用光学部品 ; 医療用輸液チューブ、 配管、 継 ぎ手、 バルブなどの配管材料 ; 義歯床、 人工心臓、 人造歯根などの 人工臓器やその部品 ; などが例示される。  Medical equipment includes, for example, liquid, powder or solid drug containers such as liquid drug containers for injection, ampoules, prefilled syringes, infusion bags, solid drug containers, eye drops containers, and infusion containers; food containers Sampling test tubes, blood collection tubes, sample containers such as sample containers for blood tests; Medical instruments such as syringes; Sterile containers such as scalpels, medical instruments such as forceps, gauze, and contact lenses; Beakers, Petri dishes , Flasks, test tubes, centrifuge tubes, etc. · Analytical instruments; medical optical components such as plastic lenses for medical tests; medical infusion tubes, piping, joints, valves and other piping materials; denture bases, Examples include artificial hearts, artificial organs such as artificial roots, and parts thereof.
特に、 長期に渡り、 薬品、 特に液体薬品を保存する薬ビン、 プレ フィル ドンリ ンジ、 密封された薬袋、 点眼用容器、 ァンプル、 バイ アル、 点眼薬容器などにおいては、 従来の汎用の樹脂製のものに比 較して、 透明性、 物理的性質などのほかに、 樹脂から溶出する不純 物等がなく 、 また、 薬品を吸着しないので、 薬品の変質が少ないと いう好ま しい性質を有する。  In particular, long-term storage of medicines, especially liquid medicines, prefill donges, sealed medicine bags, ophthalmic containers, ampules, vials, ophthalmic containers, etc. Compared to those, it has the favorable properties that there are no impurities, etc. eluted from the resin in addition to transparency, physical properties, etc., and that it does not adsorb chemicals, so that there is little alteration of chemicals.
電気絶縁材料 Electrical insulation material
本発明の C P D系重合体水素添加物は、 電気絶縁材料と して広範 な分野において有用である。 例えば、 電線 · ケーブル用被覆材料、 民生用 · 産業用電子機器、 複写機 ' コ ンピュータ一 ' プリ ンタ一等 の O A機器、 計器類などの一般絶縁材料 ; 硬質プリ ン ト基板、 フ レ キシブルプリ ン ト基板、 多層プリ ン ト配線板などの回路基板、 特に 高周波特性が要求される衛星通信機器用などの高周波回路基板 ; 液 晶基板 ♦光メモリー · 自動車や航空機のデフロスタなどの面発熱体 などの透明導電性フィルムの基材 ; トラ ンジスタ · I C · L S I · L E Dなどの半導体封止材ゃ部品 ; モーター · コ ンクター ' スイ ツ チ * センサーなどの電気 ·電子部品の封止材料 ; テレビやビデオ力 メラなどのボディ材料 ; パラボラアンテナ ' フラッ トアンテナ ' レー ダー ドームの構造部材 ; などに好適に用いることができる。 The hydrogenated CPD polymer of the present invention is useful in a wide range of fields as an electrical insulating material. For example, coating materials for electric wires and cables, consumer and industrial electronic equipment, OA equipment such as copiers 'computers' and printers, and general insulating materials such as instruments; rigid printed circuit boards, flexible printers Circuit boards such as printed circuit boards and multilayer printed circuit boards, especially High-frequency circuit boards for satellite communication equipment that require high-frequency characteristics; liquid crystal substrates ♦ Optical memory • Transparent conductive film base materials such as surface heating elements such as automobile and aircraft defrosters; transistors • ICs • LSIs Semiconductor sealing materials such as LEDs, parts; motors, connectors, switches * Encapsulation materials for electric and electronic parts, such as sensors; body materials, such as televisions and video cameras; parabolic antennas, flat antennas, radar It can be suitably used as a structural member of a dome.
実施例  Example
以下、 参考例、 実施例及び比較例を挙げて本発明をさらに具体的 に説明する。 物性の測定法は、 次のとおりである。  Hereinafter, the present invention will be described more specifically with reference to Reference Examples, Examples, and Comparative Examples. The methods for measuring physical properties are as follows.
( 1 ) 数平均分子量 : トルエンを溶媒とするゲル · パーミエーショ ン · クロマ トグラフィ法によって測定した。  (1) Number average molecular weight: Measured by gel-permeation-chromatography using toluene as a solvent.
( 2 ) 極限粘度 : 2 5での トルエン中で測定した。  (2) Intrinsic viscosity: Measured in toluene at 25.
( 3 ) ガラス転移温度 (T g) : D S C法によって測定した。  (3) Glass transition temperature (Tg): measured by the DSC method.
( 4 ) レタデーシヨ ン値 : 波長 8 3 0 n mのダブルパス法によって 測定した。  (4) Retardation value: Measured by the double-pass method at a wavelength of 830 nm.
( 5 ) 曲げ強度 : A S TM D— 7 9 0に準じて測定した。  (5) Flexural strength: Measured according to ASTM D-790.
( 6 ) 一般式 ( I ) で表される繰り返し単位と一般式 ( Π ) で表さ れる繰り返し単位の比率は、 J . P o l yme r S c , P a r t B 4 , 7 0 1 ( 1 9 6 6 ) に記載の麻生らの方法に基づいて計算し  (6) The ratio of the repeating unit represented by the general formula (I) to the repeating unit represented by the general formula (Π) is J. Pollymer Sc, Part B4, 701 (1 9 6 6) Based on the method of Aso et al.
[参考例 1 ] [Reference Example 1]
窒素置換したガラス製反応容器に、 C P D 1 0重量部と トルエン 9 0重量部を入れ、 0 °Cに冷却した。 撹拌しながら、 三フッ化ほう 素ジェチルエーテル錯体 2 0重量% トルエン溶液 1重量部を添加し、 そのまま 0 °Cで 5時間反応させた。 反応溶液を 5 0 0重量部のイソ プロピルアルコールに撹拌しながら入れ、 沈澱した重合体を採取し、 1 t o r r以下の減圧下で 2 4時間乾燥して 6 5重量部の無色の重 合体を得た。 この重合体の極限粘度は、 0. 5 2 d l / gであった。 また、 赤外分光スぺク トルから、 極限粘度 〔 77〕 が 0. 0 6 d l ノ gの公知の C P D重合体 (高分子化学, 丄 , 7 3 4 , 1 9 6 2 ) と同じ骨格構造を有しており、 C P Dの線状付加重合型の繰り返し 単位からなる重合体であるこ とがわかった。 また、 赤外分光スぺク トルにおいては、 3 0 4 0 c m— 1に H— C =結合、 7 5 0 c nr1に C = C結合に基づく強い吸収が認められ、 - NMR (クロ口ホルム 一 d,中、 3 0 °C) では 5. 6 p p mに— H C = C H—基の不飽和炭 素に結合したプロ ト ン、 l〜3 p p mに飽和炭素に結合したプロ ト ンに基づく吸収が 2 : 4の強度比で観察された。 また、 1. 3〜 1. 8 p pm、 1. 8〜2. 2 p pm、 2. 2〜3. O p p mの吸収は、 3 1. 9 : 1 8. 8 : 4 9. 3であり、 C P D系単量体の線状付加 重合型の繰り返し単位中の一般式 ( I ) で表される繰り返し単位の 割合は、 5 7重量%であった。 10 parts by weight of CPD and 90 parts by weight of toluene were placed in a glass-made reaction vessel purged with nitrogen, and cooled to 0 ° C. While stirring, 1 part by weight of a 20% by weight boron trifluoride getyl ether complex solution in toluene was added, and the mixture was allowed to react at 0 ° C. for 5 hours. The reaction solution was mixed with 500 parts by weight of The polymer was placed in propyl alcohol while stirring, and the precipitated polymer was collected and dried under reduced pressure of 1 torr or less for 24 hours to obtain 65 parts by weight of a colorless polymer. The intrinsic viscosity of this polymer was 0.52 dl / g . Infrared spectroscopy shows that the intrinsic skeleton [77] is the same skeletal structure as that of a known CPD polymer (polymer chemistry, 7, 734, 1962) with a limiting viscosity of 0.06 dl / g. It was found that the polymer was composed of linear addition polymerization type repeating units of CPD. In the infrared spectroscopic scan Bae-vector, 3 0 4 0 cm- 1 to H- C = bond, 7 5 0 c nr 1 strong absorption based on C = C bond was observed, - NMR (black port At 30 ° C), at 5.6 ppm based on protons bound to unsaturated carbon with HC = CH— groups, l ~ 3 ppm based on protons bound to saturated carbon Absorption was observed at an intensity ratio of 2: 4. Also, the absorption of 1.3 to 1.8 ppm, 1.8 to 2.2 ppm, 2.2 to 3.O ppm is 31.9: 18.8: 49.3 The ratio of the repeating unit represented by the general formula (I) in the linear addition polymerization type repeating unit of the CPD monomer was 57% by weight.
[実施例 1 ]  [Example 1]
参考例 1 で得た重合体 3 0重量部をシクロへキサン 7 0重量部に 溶解し、 さ らにアルミ ナ担持ニッケル触媒 (触媒 1重量部中、 ニッ ゲル 0. 35重量部、 酸化ニッケル 0. 2重量部、 細孔容積 0. 8 cm3 / g、 比表面積 3 0 0 m2Z g) 1重量部とイ ソプロ ピルアルコ一 ル 2重量部を加え、 オー ト ク レープ中、 2 3 0 °C、 水素圧 5 0 k g / c m2で 5時間反応させた。 反応終了後、 濾過によってニッケル触 媒を除去し、 反応溶液を 5 0 0重量部のイソプロピルアルコールに 撹拌しながら入れ、 沈澱した重合体を濾取した後、 1 t 0 r r以下 の減圧下で 2 4時間乾燥して、 2 7重量部の無色の水素添加樹脂を 得た。 この水素添加樹脂は、 赤外分光スぺク トルでは 30 40 c m"1.30 parts by weight of the polymer obtained in Reference Example 1 was dissolved in 70 parts by weight of cyclohexane, and a nickel catalyst supported on alumina (0.3 part by weight of Nigel, 0.35 part by weight of nickel oxide, 1 part by weight of catalyst) . 2 parts by weight, the pore volume 0. 8 cm 3 / g, a specific surface area 3 0 0 m 2 Z g) 1 part by weight and b Sopuro Piruaruko one le 2 parts by weight of, in auto click Leeb, 2 3 0 The reaction was performed at 50 ° C. and a hydrogen pressure of 50 kg / cm 2 for 5 hours. After completion of the reaction, the nickel catalyst was removed by filtration, the reaction solution was stirred into 500 parts by weight of isopropyl alcohol, and the precipitated polymer was collected by filtration, and then filtered under reduced pressure of 1 t0 rr or less. Dry for 4 hours and remove 27 parts by weight of colorless hydrogenated resin. Obtained. This hydrogenated resin has an infrared spectroscopy spectrum of 30 40 cm " 1 .
7 5 0 c m— 1の吸収が完全に消失し、 1 H— NMRでも 5. 6 p p m のピークが完全に消失し、 水素添加率がほぼ 1 0 0 %であることを 確認した。 極限粘度は 0. 5 2 d 1 で、 ガラス転移温度は 7 9 C 0"あった ο It was confirmed that the absorption at 750 cm- 1 completely disappeared, the peak at 5.6 ppm also completely disappeared in 1 H-NMR, and the hydrogenation rate was almost 100%. The intrinsic viscosity was 0.52 d 1 and the glass transition temperature was 79 C 0 "ο
この水素添加樹脂を 1 8 0 °Cでプレス成形し、 厚さ 2 mm、 直径 This hydrogenated resin was press-molded at 180 ° C, 2 mm thick, diameter
8 6 mmの平板を作成した。 板は無色透明であり、 光線透過率は波 長 400〜83 0 nmで 90. 2 %以上、 レタデ一シヨ ン値は 20 n m 以下であった。 また、 この水素添加樹脂を 1 8 0°Cでプレス成形し、 厚さ 1. 2 mm、 直径 1 2. 5 c mの円板を作成した。 この円扳を 用いて測定したところ、 樹脂の体積固有抵抗値は 5 X 1 016Ω c m以 上、 また、 1 02H z、 1 06H z及び 1 09H zの周波数のいずれに おいても、 誘電率と誘電正接はそれぞれ、 2. 3 4 と 5 X 1 0—4で あった。 An 86 mm plate was made. The plate was colorless and transparent, and the light transmittance was 90.2% or more at wavelengths of 400 to 830 nm, and the retardation value was 20 nm or less. This hydrogenated resin was press-molded at 180 ° C to produce a disc having a thickness of 1.2 mm and a diameter of 12.5 cm. Was measured by using the circular扳volume resistivity of the resin is 5 X 1 0 16 Ω cm or more on, also, any frequency of 1 0 2 H z, 1 0 6 H z and 1 0 9 H z Oite also respectively the dielectric constant and dielectric loss tangent, 2. was 3 4 and 5 X 1 0- 4 in.
[参考例 2 ]  [Reference Example 2]
三フ ッ化ほう素ジェチルエーテル錯体 2 0重量% トルエン溶液 1 重量部の代わりに六塩化タングステン 1重量% トルエン溶液 5重量 部を用いる以外は、 参考例 1 と同様に、 無色の重合体 8 5重量部を 得た。 この重合体の極限粘度は 0. 7 8 d l Z gで、 赤外分光スぺ ク トルでは、 3 0 4 0 c m—1に H— C =結合、 7 5 0 c m—1に C = C 結合に基づく強い吸収が認められ、 — NMR (クロ口ホルム一 中、 3 0 °C) では 5. 6 p p mに— H C = C H -基の不飽和炭素に 結合したプロ ト ン、 l〜3 p p mに飽和炭素に結合したプロ ト ンに 基づく吸収が 2 : 4の強度比で観察された。 また、 1. 3〜1. 8 p pm、 1. 8〜2. 2 p p m、 2. 2〜3. O p p mの吸収は 2 6. 6 : 2 3. 8 : 4 9. 6であり、 C P D系単量体の線状付加重合型の繰 り返し単位中の一般式 ( I ) で表される繰り返し単位は、 5 3重量 %であった。 Boron trifluoride getyl ether complex 20 The colorless polymer was prepared in the same manner as in Reference Example 1 except that 5 parts by weight of 1% by weight of tungsten hexachloride was used instead of 1 part by weight of a toluene solution. 5 parts by weight were obtained. In this intrinsic viscosity of the polymer 0. 7 8 dl Z g, a infrared spectroscopy scan Bae-vector, 3 0 4 0 cm- 1 to H- C = bond, C = C bond to 7 5 0 cm- 1 NMR (at 30 ° C / 30 ° C) in NMR (at 5.6 ppm) — HC = CH 3 -proton bound to unsaturated carbon, l ~ 3 ppm Absorption based on the protons bound to the saturated carbon was observed at an intensity ratio of 2: 4. Also, the absorption of 1.3 to 1.8 ppm, 1.8 to 2.2 ppm, 2.2 to 3.O ppm is 26.6: 23.8: 49.6, and CPD Of linear addition polymerization type The repeating unit represented by the general formula (I) in the repeating unit was 53% by weight.
[実施例 2 ]  [Example 2]
参考例 1 で得た重合体の代わりに参考例 2で得た重合体を用いる 以外は、 実施例 1 と同様にして、 2 5重量部の無色の水素添加樹脂 を得た。 この水素添加樹脂は、 赤外分光スぺク トルでは 3 0 40 c m"1 及び 7 5 0 c m—1の吸収が完全に消失し、 ' Η— NMRスぺク トルで も 5. 6 p p mの吸収が完全に消失し、 水素添加率がほぼ 1 0 0 % であることを確認した。 極限粘度は 0. 7 6 d 1 / gで、 ガラス転 移温度は 8 1 °Cであった。 25 parts by weight of a colorless hydrogenated resin was obtained in the same manner as in Example 1 except that the polymer obtained in Reference Example 2 was used instead of the polymer obtained in Reference Example 1. In the hydrogenated resin, the absorptions at 3040 cm " 1 and 7500 cm- 1 were completely lost in the infrared spectroscopy spectrum, and the 樹脂 -NMR spectrum was 5.6 ppm. It was confirmed that the absorption had completely disappeared, and the hydrogenation ratio was approximately 100% The intrinsic viscosity was 0.76 d1 / g, and the glass transition temperature was 81 ° C.
さらに、 この水素添加樹脂の 1 0重量%濃度シク口へキサン溶液 を原子吸光分析によ り分析した結果、 樹脂中のタングステン原子量 は 0. 05 p pm (検出限界) 以下、 ニッケル原子量は 0. O l p pm (検出限界) 以下であった。 また、 この水素添加樹脂 1 0 O m gを ドーマン燃焼装置で燃焼させ、 5 m 1 の純水に吸収させ、 イオンク 口マ トグラフィ一で分析した結果、 塩素原子量は 0. 0 2 p p m (検 出限界) 以下であった。  Furthermore, as a result of analyzing a 10% by weight hexane solution of the hydrogenated resin by using an atomic absorption spectrometer, the atomic weight of tungsten in the resin was less than 0.05 ppm (detection limit) and the atomic weight of nickel was less than 0.05 ppm. O lp pm (detection limit). In addition, 100 mg of this hydrogenated resin was burned in a Doman combustor, absorbed in 5 ml of pure water, and analyzed by iontophoresis.The chlorine atom content was 0.02 ppm (detection limit). )
この水素添加樹脂 1 7重量部に 0. 0 0 8重量部の老化防止剤 (チ バガイギ一社製、 ィルガノ ッ クス 1 0 1 0 ) を添加し、 2軸押出機 (東芝機械社製 T EM— 3 5 B、 スク リ ュー径 3 7 mm、 L/D = 3 2、 スク リ ユ ー回転数 2 5 0 r p m、 樹脂温度 2 1 5 °C、 フィ 一 ドレー ト 1 O k gZ時間) で押し出し、 ペレツ トと した。  To 180 parts by weight of the hydrogenated resin was added 0.08 parts by weight of an antioxidant (manufactured by Ciba Geigy Co., Ltd., Irganox 11010), and a twin screw extruder (TEM manufactured by Toshiba Machine Co., Ltd.) — 35 B, screw diameter 37 mm, L / D = 32, screw rotation speed 250 rpm, resin temperature 215 ° C, feed rate 1 OkgZ time) Extruded and pelletized.
このペレツ 卜を用いて、 射出成型 (型締め圧 3 5 0 ト ン、 樹脂温 度 225 C、 金型温度 7 0°C) し、 直径 2 0 O mm、 高さ 1 30 mm、 平均厚み 3 mmの円筒状の透明な容器と、 厚さ 2 mm、 直径 8 6 mm の試験片を作成した。 厚さ 2 mmの試験片は無色透明であり、 光線透過率は波長 4 0 0 〜 8 3 0 nmで 9 0. 3 %以上、 レタデーシヨン値は 2 0 n m以下、 濁度は 0. 1 %であった。 Using this pellet, injection molding (molding pressure: 350 tonnes, resin temperature: 225 C, mold temperature: 70 ° C), diameter: 20 Omm, height: 130 mm, average thickness: 3 mm A 2 mm-thick cylindrical transparent container and a 86 mm-diameter specimen were prepared. The test piece with a thickness of 2 mm is colorless and transparent, has a light transmittance of 90.3% or more at a wavelength of 400 to 8300 nm, a retardation value of 20 nm or less, and a turbidity of 0.1%. there were.
L B培地 (パク ト ト リプト ン 1重量%、 イース トェクス トラク ト 0. 5重量%、 N a C 1 1重量%、 グルコース 0. 1重量%の水 溶液を p H 7. 5に調整) に 2重量%の寒天を加えて、 1 2 1で、 3 0分のスチーム滅菌をしてゲル化させ、 固化する前にその 30 0 m l を成型した容器にいれ、 室温で 6時間放置した後、 アルミ箔でキヤ ップし、 7線を 2 5 k G y照射して滅菌した。 処理後、 3 7 °Cで 3 日間保温したが、 菌類の増殖は認められなかった。 また、 処理後の 透明容器の外観は良好であり、 目視で白濁、 割れ、 変形は確認され な力、つた。  2 in LB medium (adjusted aqueous solution of 1% by weight of pactrypton, 0.5% by weight of yeast tract, 1% by weight of NaC, and 0.1% by weight of glucose to pH 7.5) Add 1% by weight of agar, sterilize with steam for 30 minutes in 1 2 1 to gel, place 300 ml in a molded container before solidification, leave at room temperature for 6 hours, It was capped with foil and sterilized by irradiation with 7 lines at 25 kGy. After the treatment, the cells were incubated at 37 ° C for 3 days, but no fungal growth was observed. In addition, the appearance of the transparent container after the treatment was good, and no turbidity, cracking, or deformation was visually observed.
また、 試験片を P H 9の炭酸ナ ト リウム水溶液、 p H 4の塩酸、 エタノールに 4 8時間浸漬した後、 外観を観察したが変化はなく、 濁度、 光線透過率にも変化はなかった。  The test piece was immersed in an aqueous sodium carbonate solution of PH9, hydrochloric acid of pH 4 and ethanol for 48 hours, and the appearance was observed, but there was no change, and there was no change in turbidity and light transmittance. .
この試験片を 1 0 mm幅に切り、 2 0 gを蒸留水中で 2 0分間超 音波洗浄した後、 4 0 °Cで 1 0時間乾燥した。 次いで、 この 2 0 g の試験片を硬質ガラスフラスコに入れ、 蒸留水 2 0 0 gを加えた。 硬質ガラス製の蓋をして、 5 0 °Cで 2 4時間静置して、 蒸留水を回 収した。  The test piece was cut into a 10 mm width, 20 g of the test piece was ultrasonically washed in distilled water for 20 minutes, and then dried at 40 ° C. for 10 hours. Next, this 200 g test piece was placed in a hard glass flask, and 200 g of distilled water was added. The bottle was covered with a hard glass lid and allowed to stand at 50 ° C for 24 hours to recover distilled water.
対照として、 硬質ガラスフラスコに蒸留水 2 0 0 gを入れ、 硬質 ガラス製の蓋をして、 同じく 5 CTCで 2 4時間静置した。  As a control, 200 g of distilled water was placed in a hard glass flask, covered with a hard glass lid, and allowed to stand at 5 CTC for 24 hours.
この 2種類の蒸留水の原子吸光法やイオンクロマ トグラフィー、 燃焼 -非分散型赤外線ガス分析法などによる分析結果の差から、 試 験片からの溶出量を求めた結果、 タングステン原子溶出量は 0. 05 p pm (検出限界) 以下、 ニッケル原子溶出量は 0. 0 1 p p m (検出限 界) 以下、 塩素原子溶出量は 0. 0 2 p p m (検出限界) 以下、 全 有機炭素量は 2 p p m (検出限界) 以下であった。 The difference between the two types of distilled water, such as atomic absorption spectrometry, ion chromatography, and combustion-non-dispersive infrared gas analysis, was used to determine the amount of elution from the test piece. Below 0.05 ppm (detection limit), nickel atom elution amount is 0.01 ppm (detection limit) Below, the chlorine atom elution amount was below 0.02 ppm (detection limit), and the total organic carbon amount was below 2 ppm (detection limit).
上記試験片を日本薬局方第 1 2改正 「輸液用プラスチック試験法」 に従い溶出物試験を行った。 泡立ちは 3分以内に消失し、 p H差は — 0. 0 2、 紫外線吸収は 0. 0 0 5、 過マンガン酸カ リ ウム還元 性物質 0. 1 3 m l であり、 医療用途と して適した特性を有してい ることが分かった。  The above test pieces were subjected to an elution test according to the Japanese Pharmacopoeia No. 12 Revised "Plastic Test Method for Infusion". Foam disappears within 3 minutes, pH difference is -0.02, UV absorption is 0.05, and potassium permanganate reducing substance is 0.13 ml. It turned out to have suitable characteristics.
[参考例 3 ]  [Reference Example 3]
窒素置換した反応器に、 C P D 9 0重量部、 —メチルスチレン 1 0重量部、 トルエン 3 0 0重量部及びニ トロメ タン 1 0 0重量部 を入れ、 0でに冷却した。 撹拌しながら、 濃度 1. 0重量%の P d (C H3 C N) 4 (B F4) 2のニ トロメタン溶液 6 4重量部を添加し、 反応温度を 0でに保ちながら 2時間反応させた。 反応溶液を 5 0重 量部の濃塩酸を混合した 1 5 0 0重量部のメ タノ ール中に撹拌しな がら注ぎ、 沈澱した重合体を濾過、 回収し、 メ タノール 3 0 0重量 部で洗浄後、 5 0 eCで 1 t o r r以下の減圧下で 2 4時間乾燥して 6 8重量部の無色の共重合体を得た。 In a reactor purged with nitrogen, 90 parts by weight of CPD, 100 parts by weight of methylstyrene, 300 parts by weight of toluene and 100 parts by weight of nitromethane were put, and cooled to zero. While stirring, 64 parts by weight of a 1.0% by weight solution of Pd (CH 3 CN) 4 (BF 4 ) 2 in nitromethane was added, and the mixture was reacted for 2 hours while keeping the reaction temperature at zero. The reaction solution was poured with stirring into 150 parts by weight of methanol mixed with 50 parts by weight of concentrated hydrochloric acid, and the precipitated polymer was collected by filtration and collected, and 300 parts by weight of methanol was added. after in washing to obtain 5 0 e C in the following reduced pressure 1 torr 2 4 hours dried 6 8 parts by weight colorless copolymers.
この共重合体の極限粘度は、 0. 4 7 d l Z gであった。 赤外分 光スぺク トルでは 3 0 4 0 じ ^! に!!— じ:結合、 7 5 0 c m—1に 一 C = C—結合、 6 9 5 c m—1にフヱニル基に基づく吸収が認めら れ、 1 H— NM Rスペク トルでは 6. 4〜 7. l p p mにフエニル基 のプロ ト ン、 5. 6 p p mに不飽和炭素に結合したプロ ト ン、 1〜 3 p p mに飽和炭素に結合したプロ ト ンに基づく吸収が 4 : 3 0 : 6 6の強度比で観察された。 ' Η - NMRの強度比から C P Dと α - メチルスチレンの組成比はモル比で 9 5 : 5 と計算された。 また、 1. 3〜 1. 8 p p'm、 1. 8〜2. 2 p pm、 2. 2〜3. 0 p D m の吸収は 2 3. 5 : 1 3. 7 : 6 2. 8であり、 C P D系単量体の 線状付加重合型の繰り返し単位中の一般式 ( I ) で表される繰り返 し単位は、 4 7重量%であった。 The intrinsic viscosity of this copolymer was 0.47 dl Zg. In the infrared spectroscopy spectrum, it's 3 0 4 0 ^! To! ! - Ji: bond, 7 5 0 cm- 1 at a C = C-bond, 6 9 5 cm- 1 absorption based on Fuweniru group observed et al is in, 1 H- NM R 6. 4~ 7 in spectrum. The absorption based on phenyl group protons at lppm, unsaturated carbons at 5.6 ppm, and saturated carbons at 1-3 ppm is 4:30:66. Ratio was observed. The composition ratio between CPD and α-methylstyrene was calculated to be 95: 5 in molar ratio from the intensity ratio of 'Η-NMR. Also, 1.3-1.8 p p'm, 1.8-2.2 p pm, 2.2-3.0 p D m Is 2.3.5: 1.3.7: 62.8, and the repeating unit represented by the general formula (I) in the linear addition polymerization type repeating unit of the CPD monomer is , 47% by weight.
[実施例 3 ]  [Example 3]
参考例 3で得た共重合体 6 0重量部をシクロへキサン 5 4 0重量 部に溶解し、 さらにアルミ ナ担持パラジウム触媒 (E 4 L 1、 曰揮 化学製、 パラジウム担持量 3重量%) 3重量部およびイ ソプロピル アルコール 1 0重量部を加え、 オー トク レーブ中、 1 4 0 °C、 水素 圧 5 0 k gZ c m2で 5時間反応させた。 反応終了後、 濾過によって パラジウム触媒を除去し、 反応溶液を 1 9 0 0重量部のメ タノ一ル 中に撹拌しながら注ぎ、 沈殿した重合体を濾過、 回収した。 5 0 °C で 1 T o r r以下の減圧下で 2 4時間乾燥して 5 5重量部の無色の 水素添加樹脂を得た。 60 parts by weight of the copolymer obtained in Reference Example 3 was dissolved in 540 parts by weight of cyclohexane, and a palladium catalyst supported on alumina (E4L1, manufactured by Nippon Kagaku Co., 3% by weight of palladium supported) 3 parts by weight and 10 parts by weight of isopropyl alcohol were added, and reacted in an autoclave at 140 ° C. and a hydrogen pressure of 50 kgZcm 2 for 5 hours. After completion of the reaction, the palladium catalyst was removed by filtration, and the reaction solution was poured into 190 parts by weight of methanol while stirring, and the precipitated polymer was collected by filtration. It was dried at 50 ° C under a reduced pressure of 1 Torr or less for 24 hours to obtain 55 parts by weight of a colorless hydrogenated resin.
この水素添加樹脂の極限粘度は 0. 4 7 d 1 ノ gで、 ガラス転移 温度は 89°Cであった。 赤外分光スぺクトルでは 3040 cm"\ 750 cm—1 及び 6 9 5 c m—1の吸収が完全に消失し、 ' H— NMRスぺク トルで も 6. 4〜 7. l p p m及び 5. 6 p p mの吸収が完全に消失し、 フ ェニル基およびシクロペンテン環の不飽和基ともほぼ 1 0 0 %水 素添加されていることが確認された。 The limiting viscosity of this hydrogenated resin was 0.47 d1 nog, and the glass transition temperature was 89 ° C. In the infrared spectroscopy spectrum, the absorption at 3040 cm "\ 750 cm- 1 and 695 cm- 1 completely disappeared, and the 'H-NMR spectrum also showed 6.4 to 7 lppm and 5. The absorption at 6 ppm completely disappeared, and it was confirmed that almost 100% of hydrogen was added to both the phenyl group and the unsaturated group of the cyclopentene ring.
この水素添加樹脂を 2 0 0 °Cでプレス成形し、 厚さ 2 mm、 直径 8 6 mmの平板、 厚さ 1. 2 mm、 直径 1 2. 5 c mの円板を作成 した。 厚さ 2 mmの平板は無色透明で強靭であり、 光線透過率は波 長 400〜830 nmは 90. 4 %以上、 レターデーンヨン値は 20 n m 以下であった。 また、 厚さ 1. 2 mmの円扳を用いて測定したこの 水素添加樹脂の体積固有抵抗値は 5 X 1 016Ω cm以上、 誘電率は 1 02 H z、 1 06H z及び 1 09H zのいずれの周波数においても 2. 3 3 で、 誘電正接も 1 02H z、 1 06H z及び 1 09H zのいずれの周波 数においても 5 X 1 0 -4であった。 This hydrogenated resin was press-molded at 200 ° C. to produce a flat plate having a thickness of 2 mm and a diameter of 86 mm, and a disk having a thickness of 1.2 mm and a diameter of 12.5 cm. The 2 mm-thick plate was colorless and transparent and tough. The light transmittance was 90.4% or more for wavelengths of 400 to 830 nm, and the letter daneyon value was 20 nm or less. The thickness 1. volume resistivity of the hydrogenation resin measured using a circular扳of 2 mm is 5 X 1 0 16 Ω cm or more, the dielectric constant 1 0 2 H z, 1 0 6 H z and 1 0 9 in any of the frequency of the H z 2. 3 3 In, the dielectric loss tangent was also 1 0 2 H z, 1 0 6 H z and 1 0 9 5 X in any of the frequency of the H z 1 0 -4.
[実施例 4 ]  [Example 4]
C P D 9 0重量部及びなーメチルスチレン 1 0重量部に代えて、 C P D 6 0重量部及びスチレン 4 0重量部を使用する以外は、 実施 例 3 と同様にして、 共重合体 7 8重量部を得た。  In the same manner as in Example 3 except that 60 parts by weight of CPD and 40 parts by weight of styrene were used instead of 90 parts by weight of CPD and 10 parts by weight of na-methylstyrene, 78 parts by weight of the copolymer was used. Obtained.
この共重合体の極限粘度は、 0. 5 5 d l / gであった。 赤外分 光スぺク トルでは 3 0 4 0 c m— 1に H— C =結合および 7 5 0 c m一1 に— C = C一結合、 6 9 5 c m— 1にフヱニル基に基づく吸収が認めら れ、 1 H— NM Rスペク トルでは 6. 4〜7. l p p mにフユニル基 のプロ ト ン、 5. 6 p p mに不飽和炭素に結合したプロ ト ン、 1〜 3 p p mに飽和炭素に結合したプロ トンに基づく吸収が 2 6 : 2 0 : 5 の強度比で観察された。 — NMRの強度比から C P Dとスチ レンの組成比は、 モル比で 6 5 : 3 5 と計算された。 The intrinsic viscosity of this copolymer was 0.55 dl / g. In infra-red Hikarisupeku torr to 3 0 4 0 cm- 1 H- C = binding and 7 5 0 cm one 1 - C = C first binding, absorption based on Fuweniru group 6 9 5 cm- 1 In the 1 H—NMR spectrum, it was observed that 6.4 to 7.1 ppm of the fuunyl-based protein, 5.6 ppm of the unsaturated carbon-bonded proton, and 1-3 ppm of the saturated carbon. Absorption based on bound proteins was observed at an intensity ratio of 26: 20: 5. — From the NMR intensity ratio, the composition ratio of CPD to styrene was calculated to be 65:35 in molar ratio.
この共重合体 7 0重量部をシクロへキサン 6 3 0重量部に溶解し、 さ らに実施例 1で用いたアルミ ナ担持ニッケル触媒 3. 5重量部及 びイ ソプロ ピルアルコール 1 0重量部を加え、 オー トク レーブ中、 2 3 0 °C、 水素圧 5 0 k g/ c m2で 5時間反応させた。 反応終了後、 濾過によってニッケル触媒を除去し、 反応溶液を 2 2 0 0重量部の メタノール中に撹拌しながら注ぎ、 沈澱した樹脂を濾過、 回収した。 5 0 °Cで 1 t o r r以下の減圧下で 2 4時間乾燥して 6 4重量部の 無色の水素添加樹脂を得た。 70 parts by weight of this copolymer was dissolved in 60 parts by weight of cyclohexane, and 3.5 parts by weight of the alumina-supported nickel catalyst used in Example 1 and 10 parts by weight of isopropyl alcohol were used. Was added, and the mixture was reacted in an autoclave at 230 ° C. and a hydrogen pressure of 50 kg / cm 2 for 5 hours. After completion of the reaction, the nickel catalyst was removed by filtration, and the reaction solution was poured into 220 parts by weight of methanol with stirring, and the precipitated resin was collected by filtration. Drying at 50 ° C under a reduced pressure of 1 torr or less for 24 hours gave 64 parts by weight of a colorless hydrogenated resin.
この水素添加樹脂の極限粘度は 0. 5 4 d 1 / gで、 ガラス転移 温度は 98。Cであった。 赤外分光スぺクトルでは 3040 cm— '、 760 cm一1 及び 6 9 5 c m—1の吸収が完全に消失し、 ' H— NMRスぺク トルで も 6. 4〜7. l p pmおよび 5. 6 p p mの吸収が完全に消失し、 フェニル基およびシクロペンテン環の不飽和基ともほぼ 1 0 0 %水 素添加されていることが確認された。 The intrinsic viscosity of this hydrogenated resin is 0.54 d 1 / g and the glass transition temperature is 98. C. In the infrared spectrum, the absorptions at 3040 cm- 1 ', 760 cm- 1 and 695 cm- 1 completely disappeared, and the H-NMR spectrum also showed 6.4-7. 5. Absorption of 6 ppm completely disappears, It was confirmed that almost 100% of hydrogen was added to both the phenyl group and the unsaturated group of the cyclopentene ring.
この水素添加樹脂を 2 0 0 °Cでプレス成形し、 厚さ 2 mm、 直径 8 6 mmの平板、 厚さ 1. 2 mm、 直径 1 2. 5 c mの円扳を作成 した。 厚さ 2 mmの平板は無色透明で強靭であり、 光線透過率は 40 0 〜8 3 0 n mで 9 0. 3 %以上、 レターデ一シヨ ン値は 2 0 n m以 下であった。 また、 厚さ 1. 2 mmの円板を用いて測定したこの樹 脂の体積固有抵抗値は 5 X 1 016 Ω c m以上、 誘電率は 1 02H z、 1 06H z及び 1 09H zのいずれの周波数においても 2. 3 1で、 誘 電正接も 1 02H z、 1 06 H z及び 1 0s H 2のいずれの周波数にお いても 4 X 1 0-4であった。 This hydrogenated resin was press-molded at 200 ° C. to form a flat plate having a thickness of 2 mm and a diameter of 86 mm, a circle having a thickness of 1.2 mm and a diameter of 12.5 cm. The 2 mm-thick plate was colorless, transparent and tough, with a light transmittance of 90.3% or more in the range of 400 to 80 nm, and a letter decision value of 20 nm or less. The thickness 1. volume resistivity of this tree fat was measured using a circular plate of 2 mm is 5 X 1 0 16 Ω cm or more, the dielectric constant 1 0 2 H z, 1 0 6 H z and 1 0 9 H at 2.3 1 at any frequency z, Yuden loss tangent 1 0 2 H z, 1 0 6 H z and 1 0 s 4 can have you to any of the frequency of the H 2 X 1 0- Was 4 .
[実施例 5 ]  [Example 5]
C P D 9 0重量部及びなーメチルスチレン 1 0重量部に代えて、 C P D 5 0重量部、 5 0重量%のイソブチレンの トルエン溶液 2 0 重量部及びスチレン 4 0重量部を使用する以外は、 実施例 3 と同様 にして、 共重合体 6 9重量部を得た。  Example 10 Except that instead of 90 parts by weight of CPD and 10 parts by weight of na-methylstyrene, 50 parts by weight of CPD, 20 parts by weight of a 50% by weight solution of isobutylene in toluene and 40 parts by weight of styrene were used. In the same manner as in 3, a copolymer (69 parts by weight) was obtained.
この共重合体の極限粘度は、 0. 5 3 d 1 / gであった。 赤外分 光スぺク トルでは 3 0 4 0 c m—1に H— C =結合および 7 5 0 c m—1 に一 C = C—結合、 6 9 5 c m— 1にフヱニル基に基づく吸収が認めら れ、 1 H— NMRスペク トルでは 6. 4〜7. l p p mにフヱニル基 のプロ ト ン、 5. 6 p p mに不飽和炭素に結合したプロ ト ン、 1〜 3 p p mに飽和炭素に結合したプロ トンに基づく吸収が 2 0 : 1 7 : 6 3の強度比で観察された。 ' Η - NMRの強度比から C P D : イ ソ ブチレン : スチレンの組成比は、 モル比で 5 7 : 1 5 : 2 7 と計算 された。 The intrinsic viscosity of this copolymer was 0.53 d 1 / g. In infra-red Hikarisupeku torr to 3 0 4 0 cm- 1 H- C = bond and 7 5 0 cm- 1 at a C = C-bond, is absorption based on Fuweniru group 6 9 5 cm- 1 1 H-NMR spectra showed 6.4 to 7.1 ppm of phenyl group protons, 5.6 ppm of protons bound to unsaturated carbon, and 1-3 ppm to saturated carbon. Absorption based on the selected protons was observed at an intensity ratio of 20:17:63. The composition ratio of CPD: isobutylene: styrene was calculated to be 57:15:27 in molar ratio from the '-NMR intensity ratio.
この共重合体 6 0重量部をシクロへキサン 5 4 0重量部に溶解し、 さらに実施例 1 で用いたアルミ ナ担持二ッゲル触媒 3. 0重量部及 びイ ソプロ ピルアルコール 1 0重量部を加え、 実施例 4 と同様にし て水素添加し、 水素添加樹脂 5 6重量部を得た。 Dissolve 60 parts by weight of this copolymer in 540 parts by weight of cyclohexane, Further, 3.0 parts by weight of the alumina-supported Nigel catalyst used in Example 1 and 10 parts by weight of isopropyl alcohol were added, and hydrogenation was carried out in the same manner as in Example 4, and 56 parts by weight of the hydrogenated resin was added. Obtained.
この水素添加樹脂の極限粘度は 0. 5 1 d 1ノ gで、 ガラス転移 温度は 84。Cであった。 赤外分光スぺクトルでは 3040 cm-\ 760 cm—1 及び 6 9 5 c m—1の吸収が完全に消失し、 1 H— NM Rスぺク トルで も 6. 4〜 7. l p pmおよび 5. 6 p p mの吸収が完全に消失し、 フエニル基及びシク ロペンテン環の不飽和基とも、 ほぼ 1 0 0 %水 素添加されていることが確認された。 The limiting viscosity of this hydrogenated resin is 0.5 d 1 ng and the glass transition temperature is 84. C. In the infrared spectroscopy spectrum, the absorptions at 3040 cm- \ 760 cm- 1 and 695 cm- 1 completely disappeared, and even in the 1 H-NMR spectrum, 6.4 ~ 7 lppm and The absorption at 5.6 ppm completely disappeared, confirming that almost 100% of hydrogen was added to both the phenyl group and the unsaturated group of the cyclopentene ring.
この水素添加樹脂を 2 0 0 °Cでプレス成形し、 厚さ 2 mm、 直径 8 6 mmの平板を作成した。 板は無色透明で強靭であり、 光線透過 率は 4 0 0〜 8 3 0 n mで 9 0. 5 %以上、 レターデーシヨ ン値は 2 0 n m以下であった。  This hydrogenated resin was press-molded at 200 ° C. to produce a flat plate having a thickness of 2 mm and a diameter of 86 mm. The plate was colorless, transparent and tough, had a light transmittance of 90.5% or more in the range of 400 to 830 nm, and a retardation value of 20 nm or less.
[実施例 6 ]  [Example 6]
C P D 9 0重量部及び α—メチルスチレン 1 0重量部に代えて、 Instead of 90 parts by weight of C P D and 10 parts by weight of α-methylstyrene,
C P D 9 0重量部及びジペンテン 1 0重量部を使用する以外は、 実 施例 3 と同様にして、 共重合体 5 4重量部を得た。 54 parts by weight of a copolymer was obtained in the same manner as in Example 3 except that 90 parts by weight of CPD and 10 parts by weight of dipentene were used.
この共重合体の極限粘度は、 0. 3 1 d l " gであった。 赤外分 光スぺク トルでは 3 0 4 0 c m— 1に H— C =結合及び 7 5 0 c m— 1に — C = C -結合に基づく吸収が認められ、 ! 11一 NMRスぺク トルで は 5. 6 p p mに不飽和炭素に結合したプロ ト ン、 l〜 3 p p mに 飽和炭素に結合したプロ ト ンに基づく 吸収が 2 9 : 7 1 の強度比で 観察された。 1 H— NMRの強度比から C P Dとジペンテンの組成比 はモル比で 9 5 : 5 と計算された。 The intrinsic viscosity of this copolymer, 0.1 was 3 1 dl "g. In infra-red Hikarisupeku torr to 3 0 4 0 cm- 1 H- C = binding and 7 5 0 cm- 1 — Absorption due to C = C-bond was observed.11 In the NMR spectrum, a protein bonded to unsaturated carbon at 5.6 ppm and a protein bonded to saturated carbon at l to 3 ppm based emission absorption 2 9:. 7 was observed at 1 intensity ratio 1 H- composition ratio from the intensity ratio of the CPD and dipentene the NMR 9 in a molar ratio of 5: was calculated to 5.
この共重合体 5 0重量部をシクロへキサン 5 4 0重量部に溶解し、 さらに実施例 1で用いたアルミ ナ担持ニッケル触媒 3. 0重量部及 びィ ソプロ ピルアルコール 1 0重量部を加え、 実施例 4 と同様にし て水素添加し、 水素添加樹脂 4 3重量部を得た。 50 parts by weight of this copolymer was dissolved in 540 parts by weight of cyclohexane, and 3.0 parts by weight of the nickel-supported nickel catalyst used in Example 1 was further dissolved. Then, 10 parts by weight of isopropyl alcohol was added, and hydrogenation was carried out in the same manner as in Example 4 to obtain 43 parts by weight of a hydrogenated resin.
この水素添加樹脂の極限粘度は 0. 3 1 d 1 / で、 ガラス転移 温度は 8 7。Cであった。 赤外分光スぺク トルでは 3 0 4 0 c m— 1及び 7 6 0 c m— 1の吸収が完全に消失し、 ' H— NMRスぺク トルでも 5. 6 p p mの吸収が完全に消失し、 シクロペンテン環の不飽和基 及びシクロへキセン環の不飽和基とも、 ほぼ 1 0 0 %水素添加され ていることが確認された。 The intrinsic viscosity of this hydrogenated resin is 0.31 d 1 / and the glass transition temperature is 87. C. In the infrared spectroscopy spectrum, the absorptions at 340 cm- 1 and 760 cm- 1 completely disappeared, and in the 1 H-NMR spectrum, the absorption at 5.6 ppm disappeared completely. It was also confirmed that almost 100% of the unsaturated groups of the cyclopentene ring and the cyclohexene ring were hydrogenated.
この水素添加樹脂を 2 0 0 °Cでプレス成形し、 厚さ 2 mm、 直径 8 6 mmの平板を作成した。 板は無色透明で強靭であり、 光線透過 率は波長 4 0 0〜 8 3 0 n mで 9 0. 5 %以上、 レターデーシヨ ン 値は 2 O n m以下であった。  This hydrogenated resin was press-molded at 200 ° C. to produce a flat plate having a thickness of 2 mm and a diameter of 86 mm. The plate was colorless and transparent, and had a light transmittance of 90.5% or more at a wavelength of 400 to 80 nm and a retardation value of 2 Onm or less.
[実施例 7 ]  [Example 7]
C P D 9 0重量部及びなーメチルスチレン 1 0重量部に代えて、 C P D 5 0重量部及びノルボルネン 5 0重量部を使用する以外は、 実施例 3 と同様にして、 共重合体 6 9重合部を得た。  In the same manner as in Example 3 except that 50 parts by weight of CPD and 50 parts by weight of norbornene were used instead of 90 parts by weight of CPD and 10 parts by weight of Obtained.
この共重合体の極限粘度は、 0. 4 6 d l / gであった。 赤外分 光スぺク トルでは 3 0 4 0 c m—1に H— C =結合及び 7 5 0 c m—1に — C = C—結合に基づく吸収が認められ、 — NMRスぺク トルで は 5. 6 p p mに不飽和炭素に結合したプロ ト ン、 l〜 3 p p mに 飽和炭素に結合したプロ ト ンに基づく 吸収が 1 8 : 8 2の強度比で 観察された。 — NMRの強度比から C P Dとノルボルネンの組成 比は、 モル比で 6 6 : 3 4 と計算された。 The intrinsic viscosity of this copolymer was 0.46 dl / g. The infra-red Hikarisupeku H- C = bond and 7 5 0 cm- 1 to 3 0 4 0 cm- 1 in Torr - C = C-based coupling absorption was observed, - in NMR spectrum The absorption based on the proton bound to unsaturated carbon at 5.6 ppm and the absorption based on the proton bound to saturated carbon at l to 3 ppm was observed at an intensity ratio of 18:82. — From the NMR intensity ratio, the composition ratio of CPD to norbornene was calculated to be 66:34 in molar ratio.
この共重合体 6 0重量部をシクロへキサン 5 4 0重量部に溶解し、 さらに実施例 1で用いたアルミ ナ担持二ッゲル触媒 3. 0重量部及 びイ ソプロ ピルアルコール 1 0重量部を加え、 実施例 4 と同様にし て水素添加し、 水素添加樹脂 5 6重量部を得た。 60 parts by weight of this copolymer was dissolved in 540 parts by weight of cyclohexane, and 3.0 parts by weight of the alumina-supported Nigel catalyst used in Example 1 and 10 parts by weight of isopropyl alcohol were further dissolved. In addition, as in Example 4, To obtain 56 parts by weight of a hydrogenated resin.
この水素添加樹脂の極限粘度は 0. 4 6 d 1 gで、 ガラス転移 温度は 1 6 5 °Cであった。 赤外分光スぺク トルでは 3 0 4 0 c m—1及 び 7 6 0 c m— 1の吸収が完全に消失し、 — NMRスぺク トルでも 5. 6 p p mの吸収が完全に消失し、 シクロペンテン環の不飽和基 がほぼ 1 0 0 %水素添加されているこ とが確認された。 The intrinsic viscosity of the hydrogenated resin was 0.46 d1 g, and the glass transition temperature was 16.5 ° C. In the infrared spectroscopy spectrum, the absorptions at 340 cm- 1 and 760 cm- 1 disappeared completely, and in the NMR spectrum the absorption at 5.6 ppm disappeared completely. It was confirmed that about 100% of the unsaturated group of the cyclopentene ring was hydrogenated.
この水素添加樹脂を 2 0 0ででプレス成形し、 厚さ 2 mm、 直径 8 6 mmの平板、 厚さ 1. 2 mm、 直径 1 2. 5 c mの円板を作成 した。 厚さ 2 mmの平板は無色透明で強靭であり、 光線透過率は波 長 400〜830 nmで 90. 5 %以上、 レターデーシヨン値は 20 n m 以下であった。 また、 厚さ 1. 2 mmの円板を用いて測定したこの 樹脂の体積固有抵抗値は 5 X 1 016Ω c m以上、 誘電率は 1 02H z、 1 06H z及び 1 09H zのいずれの周波数においても 2. 3 3で、 誘 電正接も 1 02H z、 1 06H z及び 1 09H zのいずれの周波数にお いても 4 X 1 0—4であった。 This hydrogenated resin was press-molded at 200 to produce a flat plate having a thickness of 2 mm and a diameter of 86 mm, and a disk having a thickness of 1.2 mm and a diameter of 12.5 cm. The 2 mm thick flat plate was colorless and transparent and tough, with a light transmittance of 90.5% or more at wavelengths of 400 to 830 nm and a retardation value of 20 nm or less. The thickness 1. volume resistivity of the resin was measured using a circular plate of 2 mm is 5 X 1 0 16 Ω cm or more, the dielectric constant 1 0 2 H z, 1 0 6 H z and 1 0 in 2.3 3 in any of the frequency of 9 H z, Yuden loss tangent 1 0 2 H z, 1 0 6 H z and 1 0 9 4 can have you to any frequency of the H z X 1 0- 4 Met.
[実施例 8 ]  [Example 8]
窒素置換したガラス製反応容器に C P D 6 0重量部と α—メチル スチレン 4 0重量部、 トルエン 9 0 0重量部を仕込み、 一 7 8 °Cに 冷却した。 攪拌しながら、 三ふつ化ほう素ジェチルエーテル錯体の 2 0重量%の トルエン溶液 1 0重量部を添加し、 そのまま一 7 5 °C 以下で 5時間反応させた。 反応溶液を 5 0 0 0重量部のィ ソプロ ピ ルアルコールに攪拌しながら入れ、 沈澱した重合体を濾取した後、 I mmH g以下の減圧下で 2 4時間乾燥して 8 3重量部の無色の線 状付加重合型の共重合体を得た。  A nitrogen-substituted glass reaction vessel was charged with 60 parts by weight of CPD, 40 parts by weight of α-methylstyrene, and 900 parts by weight of toluene, and cooled to 178 ° C. While stirring, 10 parts by weight of a 20% by weight toluene solution of boron trifluoride getyl ether complex was added, and the mixture was allowed to react at a temperature of not more than 75 ° C. for 5 hours. The reaction solution was put into 500 parts by weight of isopropyl alcohol with stirring, and the precipitated polymer was collected by filtration and dried under a reduced pressure of I mmHg or less for 24 hours to obtain 83 parts by weight of the polymer. A colorless linear addition polymerization type copolymer was obtained.
この共重合体の 25 °C、 トルエン中で測定した極限粘度は 0. 37 d l / であった。 赤外分光スぺク トルでは 3 0 4 0 c m— 1に H— C = 結合、 及び 7 5 0 c m— 1に一 C = C一結合、 6 9 5 c m— 1にフヱニル 基に基づく吸収が見られた。 1 H— NMRスペク トルでは、 6. 4〜 7. 1 p p mにフヱニル基のプロ ト ン、 5. 6 p p mに不飽和炭素 に結合したプロ ト ン、 l〜 3 p p mに飽和炭素に結合したプロ ト ン に基づく ピークが 28 : 1 4 : 5 7の強度比で観察された。 'H— NMR スぺク トルの強度比から、 C P Dとスチレンの組成比は、 モル比で 6 5 : 3 5 と計算された。 The intrinsic viscosity of the copolymer measured in toluene at 25 ° C. was 0.37 dl /. To 3 0 4 0 cm- 1 in the infrared spectral scan Bae-vector H- C = Binding, and 7 5 0 cm- 1 at a C = C first binding, absorption was observed based on Fuweniru group 6 9 5 cm- 1. In the 1 H-NMR spectrum, 6.4 to 7.1 ppm of phenyl group protons, 5.6 ppm of protons bonded to unsaturated carbon, and 1 to 3 ppm of protons bonded to saturated carbon. a peak based on tons 28: 1 4: was observed at 5 7 intensity ratio. From the intensity ratio of the 'H-NMR spectrum, the composition ratio of CPD to styrene was calculated to be 65:35 in molar ratio.
参考例 1 で得た重合体の代わりにこの共重合体を用いる以外は実 施例 1 と同様に水素添加し、 2 9重量部の無色の水素添加樹脂を得 た。  Hydrogenation was carried out in the same manner as in Example 1 except that this copolymer was used instead of the polymer obtained in Reference Example 1, to obtain 29 parts by weight of a colorless hydrogenated resin.
この水素添加樹脂は、 赤外分光スぺク トルの 3040 cm— 750 cm"1 及び 69 5 c nr1の吸収と、 1H— NMRスぺク トルでの 6. 4〜7. l p p mと 5. 6 p p mのピークが完全に消失していることから、 水素添加率が 1 0 0 %であることを確認した。 この水素添加樹脂の 2 5 °Cの トルエン中で測定した極限粘度は 0. 3 8 d l / g、 T g は 1 2 2 °Cであった。 The hydrogenation resin, the absorption of infrared spectroscopy scan Bae-vector of 3040 cm- 750 cm "1 and 69 5 c nr 1, 6. in 1 H- NMR spectra 4 to 7. LPPM and 5 The complete disappearance of the 6 ppm peak confirmed that the hydrogenation rate was 100% The limiting viscosity of this hydrogenated resin measured in toluene at 25 ° C was 0. 38 dl / g and Tg were 122 ° C.
また、 この水素添加樹脂をシク ロへキサンに溶解して分析したと ころ、 ほう素原子量は 0. 5 p p m (検出限界) 以下、 ニッケル原 子量は 0. 0 l p pm (検出限界) 以下、 塩素原子量は 0. 02 p pm (検出限界) 以下であった。  When this hydrogenated resin was dissolved in cyclohexane and analyzed, the atomic mass of boron was less than 0.5 ppm (detection limit), the mass of nickel was less than 0.0 lp pm (detection limit), The chlorine atomic weight was less than 0.02 ppm (detection limit).
この水素添加樹脂を、 樹脂温度を 2 6 0 °Cにする以外は参考例 3 と同様にしてペレッ ト化した。  This hydrogenated resin was pelletized in the same manner as in Reference Example 3 except that the resin temperature was set at 260 ° C.
このペレツ トを用いて、 射出成型 (型締め圧 3 5 0 ト ン、 樹脂温 度 2 6 5 °C、 金型温度 1 0 0 °C) し、 実施例 2 と同じく 円筒状の透 明な容器と厚さ 2 mm、 直径 8 6 m mの試験片を作成した。  Using this pellet, injection molding (molding pressure: 350 tonnes, resin temperature: 26.5 ° C, mold temperature: 100 ° C) was performed, and a cylindrical transparent material was used as in Example 2. A container and a test piece with a thickness of 2 mm and a diameter of 86 mm were prepared.
試験片の光線透過率を測定したところ、 波長 4 0 0〜 8 3 0 n m で 9 0. 7 %以上で透明性は良好であった。 また、 濁度を測定した ところ 0. 0 8 %であった。 When the light transmittance of the test piece was measured, the wavelength was 400 to 8300 nm. At 90.7% or more, the transparency was good. The turbidity was measured to be 0.08%.
実施例 1 と同様に 2重量%の寒天を加えた L B培地 3 0 0 m 1 を 成型した容器に入れ、 さらに試験片の 1枚を入れた後、 アルミ箔で キャップして、 1 2 0。C、 3 0分のスチーム滅菌を行った。  As in Example 1, 300 ml of LB medium supplemented with 2% by weight of agar was placed in a molded container, and one of the test pieces was placed. C, steam sterilization was performed for 30 minutes.
処理後、 3 7 °Cに 3日間保温したが、 菌類の増殖は認められなか つた。 処理後の透明容器の外観は良好であり、 目視で、 白濁、 割れ、 熱による変形は確認されなかった。  After the treatment, the cells were kept at 37 ° C for 3 days, but no fungal growth was observed. The appearance of the transparent container after the treatment was good, and no turbidity, cracking, or deformation due to heat was visually observed.
容器から取り出した試験片から寒天により固化した L B培地を除 去した後に測定した濁度は 0. 1 %、 また、 全光線透過率は 8 9. 8 %であった。  The turbidity measured after removing the LB medium solidified with agar from the test piece taken out of the container was 0.1%, and the total light transmittance was 89.8%.
また、 試験片を p H 9の炭酸ナ ト リ ウム水溶液、 p H 4の塩酸、 エタノールに 4 8時間浸漬した後も外観に変化はなく、 濁度、 光線 透過率にも変化はなかった。  After immersion of the test piece in an aqueous solution of sodium carbonate at pH 9 and hydrochloric acid and ethanol at pH 4 for 48 hours, there was no change in appearance, and there was no change in turbidity or light transmittance.
試験片を 1 0 mm幅に切り、 2 0 gを蒸留水中で 2 0分監超音波 洗浄した後、 4 0 eCで 1 0時間乾燥した。 この 2 0 gの試験片を硬 質ガラスフラスコに入れ、 蒸留水 2 0 0 gを加えた。 硬質ガラス製 の蓋をして、 1 2 0度で 1時間スチーム滅菌し、 室温になるまで冷 却した後、 2 4時間静置して、 蒸留水を回収した。 Cut test piece 1 0 mm wide, washed 2 0 minutes監超waves to 2 0 g in distilled water and dried 1 0 h 4 0 e C. The test piece of 20 g was placed in a hard glass flask, and 200 g of distilled water was added. With a hard glass lid, steam sterilization was performed at 120 ° C. for 1 hour, cooled to room temperature, and allowed to stand for 24 hours to recover distilled water.
対照として、 硬質ガラスフラスコに蒸留水 2 0 0 gを入れ、 硬質 ガラス製の蓋をして、 同じく 1 2 0度で 1時間スチーム滅菌し、 室 温になるまで冷却した後、 2 4時間静置してから、 蒸留水を回収し た。  As a control, 200 g of distilled water was placed in a hard glass flask, covered with a hard glass lid, steam-sterilized at 120 ° C for 1 hour, cooled to room temperature, and allowed to stand for 24 hours. After that, distilled water was collected.
この 2種類の蒸留水の分析結果の差から、 試験片からの溶出量を 求めた結果、 ほう素原子溶出量は 0. 5 p p m (検出限界) 以下、 ニッケル原子溶出量は 0. 0 1 p p m (検出限界) 以下、 塩素原子 溶出量は 0. 0 2 p p m (検出限界) 以下、 全有機炭素量は 2 p p m (検出限界) 以下であった。 The elution amount from the test piece was calculated from the difference between the two types of distilled water analysis results. The boron atom elution amount was 0.5 ppm (detection limit) or less, and the nickel atom elution amount was 0.01 ppm. (Detection limit) or less, chlorine atom The elution amount was less than 0.02 ppm (detection limit), and the total amount of organic carbon was less than 2 ppm (detection limit).
実施例 1 と同様に、 日本薬局方に従い溶出物試験を行った。 泡立 ちは 3分以内に消失し、 pH差は— 0. 03、 紫外線吸収は 0. 006、 過マンガン酸カリウム還元性物質 0. 1 3 m l であった。  As in Example 1, an eluate test was performed according to the Japanese Pharmacopoeia. The foaming disappeared within 3 minutes, the pH difference was -0.03, the ultraviolet absorption was 0.006, and the potassium permanganate reducing substance was 0.13 ml.
[比較例 1 ]  [Comparative Example 1]
参考例 1 と同様にして得られた C P D重合体 6 0重合部をシクロ へキサン 5 4 0重合部に溶解し、 実施例 3で使用したと同じパラジ ゥム触媒 6重合部を加え、 9 0 °C. 水素圧 5 0 k gノ c m2で 1 5時 間反応させた。 実施例 3 と同様にして水素添加樹脂を回収し、 5 3 重量部の水素添加樹脂を得た。 60 polymer parts of the CPD polymer obtained in the same manner as in Reference Example 1 were dissolved in 540 polymer parts of cyclohexane, and 6 polymer parts of the same palladium catalyst used in Example 3 were added. ° C. The reaction was carried out at a hydrogen pressure of 50 kg / cm 2 for 15 hours. The hydrogenated resin was recovered in the same manner as in Example 3 to obtain 53 parts by weight of the hydrogenated resin.
この水素添加樹脂の極限粘度は 0. 5 3 d 1 gで、 ガラス転移 温度は 80°Cであった。 赤外分光スぺクトでは 3040 cm—1及び 760 cm—1 の吸収は、 強度低下しているが消失せず、 — NMRスぺク トルで も 5. 6 p p mの吸収が完全に消失せず、 5. 6 111ぉょび 1〜 3 p p mの吸収強度比は 5 : 9 5の強度比で観察され、 水素添加率 は 8 1 %であった。 The intrinsic viscosity of this hydrogenated resin was 0.53 d 1 g, and the glass transition temperature was 80 ° C. In the infrared spectrum, the absorptions at 3040 cm- 1 and 760 cm- 1 decreased in intensity but did not disappear, and — 5.6 ppm absorption did not completely disappear even in the NMR spectrum. The absorption intensity ratio of 5.6 111 to 1 to 3 ppm was observed at an intensity ratio of 5:95, and the hydrogenation rate was 81%.
この水素添加樹脂を実施例 2と同様にペレツ ト化しようとしたが、 着色と焼けがひどく、 ペレツ ト化できなかった。  An attempt was made to pelletize this hydrogenated resin in the same manner as in Example 2, but the coloring and burning were so severe that pelletization was not possible.
この水素添加樹脂を 1 8 0 eCでプレス成形し、 厚さ 2 m m、 直径 8 6 mmの平板を作成した。 板は強靭であつたが、 黄色く着色が見 られ、 外周部では着色が強かった。 内周部の比較的淡色な部分の光 線透過率は 8 9. 0 %、 レターデーシヨ ン値は 2 8 n m以下であつ た。 この成形板を室温、 空気中で 3週間放置したところ、 強靭性は 低下し脆くなっていた。 The hydrogenated resin was pressed at 1 8 0 e C, thickness 2 mm, was prepared a plate having a diameter of 8 6 mm. Although the board was tough, it was yellow and colored, and the outer periphery was strongly colored. The light transmittance of the relatively light-colored portion at the inner periphery was 89.0%, and the retardation value was 28 nm or less. When this molded plate was left in the air at room temperature for 3 weeks, the toughness was reduced and it became brittle.
[比較例 2 ] 参考例 1 の トルエン 9 0重量部に代えてクロ口ホルム 9 0重量部 を、 また、 三フ ッ化ほう素ジェチルェ一テル錯体 2 0重量% トルェ ン溶液 1重量部に代えて四塩化チタンの 1 0重量% トルエン溶液 2. 5重量部を使用する以外は、 参考例 1 と同様にして、 C P D重合体 7. 1重量部を得た。 この重合体の極限粘度は 0. 0 7 d l / gで あった。 赤外分光スぺク トルでは 3 0 4 0 c m— 1に H— C =結合及び 7 5 0 c m— 1に一 C = C一結合に基づく吸収が認められ、 1 H— NMR スペク トルでは 5. 6 p p mに不飽和炭素に結合したプロ ト ン、 1 〜 3 p p mに飽和炭素に結合したプロ ト ンに基づく吸収が 2 : 4の 強度比で観察された。 [Comparative Example 2] 90 parts by weight of formaldehyde in place of 90 parts by weight of toluene in Reference Example 1, and titanium tetrachloride in place of 1 part by weight of a 20% by weight solution of boron trifluoride-ethylester complex in toluene. 7.1 parts by weight of a CPD polymer was obtained in the same manner as in Reference Example 1, except that 2.5 parts by weight of a 10% by weight toluene solution was used. The intrinsic viscosity of this polymer was 0.07 dl / g. In infrared spectroscopy scan Bae-vector based on 3 0 4 0 cm- 1 to H- C = bond and 7 5 0 cm- 1 at a C = C conjoining absorption was observed, 5 in 1 H- NMR spectrum Absorption based on unsaturated carbon bound at 6 ppm and saturated carbon bound at 1-3 ppm was observed at an intensity ratio of 2: 4.
参考例 1 で得た重合体の代わりにこの重合体を使用する以外は、 実施例 1 と同様に水素添加して、 2. 7重量部の水素添加樹脂を得 o  Hydrogenation was carried out in the same manner as in Example 1 except that this polymer was used instead of the polymer obtained in Reference Example 1, to obtain 2.7 parts by weight of a hydrogenated resin.
この水素添加樹脂の極限粘度は 0. 0 7 d 1 gで、 ガラス転移 温度は 78°Cであった。 赤外分光スぺクトでは 3040 cm—1及び 760 cm一1 の吸収が完全に消失し、 ' Η— NMRスぺク トルでも 5. 6 p p mの 吸収が完全に消失し、 シクロペンテン環の不飽和基がほぼ 1 0 0 % 水素添加されていることが確認された。 この重合体を 1 8 0ででプ レス成形し、 厚さ 2 mm、 直径 8 6 mmの平板を作成しょう とした が、 非常に脆く、 板の作成は困難であった。 The limiting viscosity of this hydrogenated resin was 0.07 d 1 g, and the glass transition temperature was 78 ° C. Absorption at 3040 cm- 1 and 760 cm- 1 completely disappeared in the infrared spectroscopy spectrum, and absorption at 5.6 ppm disappeared completely in the NMR spectrum, and the cyclopentene ring was unsaturated. It was confirmed that the group was almost 100% hydrogenated. This polymer was press-molded at 180 to produce a flat plate having a thickness of 2 mm and a diameter of 86 mm, but it was very brittle and it was difficult to prepare the plate.
[参考例 4 ]  [Reference Example 4]
窒素置換した反応器にスチレン 7 0重量部、 C P D 3 0重量部及 び トルエン 4 0 0重量部を入れ、 一 6 0 °Cに冷却した。 攪拌しなが ら、 濃度 1. 0重量%の\^じ 16の トルェン溶液 1 2重量部を添加し、 反応温度を一 6 0 °Cに保ちながら 2時間反応させた。 反応溶液を 5 0 重量部の濃塩酸を混合した 1 5 0 0重量部のメ タノ一ル中に攪拌し ながら注ぎ、 沈殿した共重合体を濾過、 回収し、 メ タノール 3 0 0 重量部で洗浄後、 5 0 Vで 1 t o r r以下の減圧下で 2 4時間乾燥 して、 5 3重量部の共重合体を得た。 70 parts by weight of styrene, 30 parts by weight of CPD, and 400 parts by weight of toluene were placed in a reactor purged with nitrogen, and cooled to 160 ° C. With stirring La, added Toruen solution 1 2 parts by weight of the concentration of 1.0 wt% of \ ^ Ji 1 6, was reacted for 2 hours while maintaining the reaction temperature at a 6 0 ° C. The reaction solution was stirred in 150 parts by weight of methanol mixed with 50 parts by weight of concentrated hydrochloric acid. The precipitated copolymer was collected by filtration, washed with 300 parts by weight of methanol, dried at 50 V under a reduced pressure of 1 torr or less for 24 hours, and then subjected to 53 parts by weight of copolymer. A coalescence was obtained.
この共重合体の極限粘度は 0. 5 2 d であった。 赤外分光 スペク トルでは 3 0 4 0 c m—1に H— C =結合、 7 5 0 c m— 1に— C = C—結合、 及び 6 9 5 c m—1にフヱニル基に基づく吸収がみとめら れ、 1 H— NM Rスペク トルでは 6. 4〜 7. l p p mにフヱニル基 のプロ トン、 5. 6 p p mに不飽和炭素に結合したプロ トン、 1〜 3 p p mに飽和炭素に結合したプロ トンに基づく吸収が 3 6 : 1 4 : 5 0の強度比で観察された。 1 H - NMRの強度比から計算して、 ス チレンと C P Dの組成比は、 モル比で 5 1 : 4 9、 重量比で 6 2 : 3 8であった。 また、 参考例 2の結果から、 この共重合体中の一般 式 ( I ) で表される繰り返し単位と一般式 (Π ) で表される繰り返 し単位は、 重量比で 5 3 : 4 7であると推定される。 The intrinsic viscosity of this copolymer was 0.52 d. In infrared spectroscopic spectrum 3 0 4 0 cm- 1 to H- C = bond, 7 5 0 cm- 1 - C = C- bond, and 6 9 5 cm- absorption observed et based on Fuweniru group 1 In the 1 H—NMR spectrum, 6.4 to 7.1 ppm of protons of a phenyl group, 5.6 ppm of protons bound to unsaturated carbon, and 1 to 3 ppm of protons bound to saturated carbon Based absorption was observed at an intensity ratio of 36:14:50. Calculated from the intensity ratio of 1 H-NMR, the composition ratio of styrene to CPD was 51:49 in molar ratio and 62:38 in weight ratio. Also, from the results of Reference Example 2, the weight ratio of the repeating unit represented by the general formula (I) and the repeating unit represented by the general formula (Π) in this copolymer was 53:47. Is estimated.
[実施例 9 ]  [Example 9]
参考例 4で得た共重合体 5 0重量部をシクロへキサン 4 5 0重量 部に溶解し、 さらにアルミ ナ担持ニッケル触媒 (触媒 1重量部中、 ニッケル 0. 3 5重量部、 酸化ニッ ケル 0. 2重量部、 細孔容積 0. 8 c m3Z g、 比表面積 3 0 0 m2Z g) 3重量部とイソプロピル アルコール 1 0重量部を加え、 オー トク レーブ中、 2 3 0。C、 水素 圧 5 0 k c m2で 5時間反応させた。 反応終了後、 濾過によって ニッケル触媒を除去し、 反応溶液を 2 0 0 0重量部のメ タノール中 に攪拌しながら注ぎ、 沈澱した樹脂を濾過、 回収した。 90°Cで 1 t 0 r r 以下の減圧で 4 8時間乾燥して、 4 4重量部の無色の水素添加樹脂 を得た。 50 parts by weight of the copolymer obtained in Reference Example 4 was dissolved in 450 parts by weight of cyclohexane, and a nickel catalyst supported on alumina (0.3 part by weight of nickel, 1 part by weight of catalyst, nickel oxide, 0.2 parts by weight, the pore volume 0. 8 cm 3 Z g, a specific surface area 3 0 0 m 2 Z g) 3 parts by weight of isopropyl alcohol 1 0 parts by weight of, in Haut Useful Loew, 2 3 0. C, The reaction was carried out at a hydrogen pressure of 50 kcm 2 for 5 hours. After completion of the reaction, the nickel catalyst was removed by filtration, and the reaction solution was poured into 2000 parts by weight of methanol while stirring, and the precipitated resin was collected by filtration. It was dried at 90 ° C. under a reduced pressure of 1 t 0 rr or less for 48 hours to obtain 44 parts by weight of a colorless hydrogenated resin.
この水素添加樹脂の極限粘度は 0. 5 2 d l / gで、 ガラス転移 温度は 105°Cであった。 また、 赤外分光スぺク トルでは、 3040 cnr1 7 5 0 c m—1及び 6 9 5 c m—1の吸収が完全に消失し、 ' H— NMR スペク トルでも 6. 4〜7. l p p m及び 5. 6 p p mの吸収が完 全に消失し、 フヱニル基及びシク口ペンテン環の不飽和基がほぼ 1 0 0 %水素添加されていることが確認された。 The intrinsic viscosity of this hydrogenated resin is 0.52 dl / g and the glass transition The temperature was 105 ° C. Further, the infrared spectroscopic scan Bae-vector, the absorption of the 3040 cnr 1 7 5 0 cm- 1 and 6 9 5 cm- 1 disappeared completely, 6. in 'H- NMR spectra 4 to 7. LPPM and The absorption at 5.6 ppm completely disappeared, and it was confirmed that almost 100% of the phenyl group and the unsaturated group in the pentene ring of the mouth were hydrogenated.
さらに、 この水素添加樹脂の 1 0重量%シクロへキサン溶液を原 子吸光分析により分析した結果、 ポリマー中のタングステン原子量 は 0. 0 5 p pm (検出限界) 以下、 ニッケル原子量は 0. O l p pm (検出限界) 以下であった。 また、 この水素添加樹脂 1 0 O m gを ドーマン燃焼装置で燃焼させ、 5 m l の純水に吸収させ、 イオンク 口マ トグラフィ一で分析した結果、 塩素原子量は 0. 0 2 p pm (検 出限界) 以下であった。  Further, as a result of analyzing a 10% by weight solution of the hydrogenated resin in cyclohexane by atomic absorption spectroscopy, the atomic weight of tungsten in the polymer was 0.05 ppm (detection limit) or less, and the atomic weight of nickel was 0.05 ppm. pm (detection limit). In addition, 100 mg of this hydrogenated resin was burned in a Doman combustor, absorbed in 5 ml of pure water, and analyzed by iontophoresis.The chlorine atom weight was 0.02 ppm (detection limit). )
この水素添加樹脂を 1 8 0 °Cでプレス成形し、 厚さ 1. 2 mm、 直径 1 0 0 mmの試験板 A及び厚さ 2. O mm、 直径 1 0 0 mmの 試験板 Bを作成した。 試験板 Aは無色透明であり、 光線透過率は波 長 4 0 0〜 8 3 0 n mで 9 0. 1 %以上、 複屈折値は 2 5 n m以下 であった。 試験板 Aを用いて測定した、 体積固有抵抗値は 5 X 1 016 Q c m以上、 1 02H z、 1 06H z及び 1 0βΗ zの周波数のいずれ においても、 誘電率と誘電正接はそれぞれ 2. 4 0と 5 x 1 0— 4であ つた。 試験板 Βを切削して、 長さ 6 O mm、 幅 1 2 mmの板を作成 し、 曲げ強度を測定したところ 7 6 0 k gZ c m2であった。 これら のことよ り、 この水素添加樹脂が光学材料、 電気絶縁材料と して適 しているこ とが分かった。 This hydrogenated resin was press-molded at 180 ° C to prepare a test plate A with a thickness of 1.2 mm and a diameter of 100 mm and a test plate B with a thickness of 2.0 mm and a diameter of 100 mm. did. Test plate A was colorless and transparent, had a light transmittance of 90.1% or more at a wavelength of 400 to 80 nm, and a birefringence value of 25 nm or less. Was measured using a test plate A, a volume resistivity of 5 X 1 0 16 Q cm or more, in any of the 1 0 2 H z, 1 0 the frequency of the 6 H z and 1 0 beta Eta z, and the dielectric constant each dielectric loss tangent 2.4 0 and 5 x 1 0- 4 der ivy. A plate having a length of 6 O mm and a width of 12 mm was prepared by cutting the test plate Β, and the bending strength was measured to be 760 kgZ cm 2 . These facts indicate that this hydrogenated resin is suitable as an optical material and an electrical insulating material.
[参考例 5 ]  [Reference Example 5]
窒素置換した反応器に C P D 1 0 0重量部、 トルエン 3 0 0重量 部及びニ ト ロメ タ ン 1 0 0重量部を入れ、 o°cに冷却した。 撹拌し ながら、 濃度 1. 0重量%の P d ( C H3 C N) (B F4) 2のニ トロ メ タン溶液 6 4重量部を添加し、 反応温度を 0でに保ちながら 2時 間反応させた。 反応溶液を 5 0重量部の濃塩酸を混合した 1 5 0 0 重量部のメ タノール中に撹拌しながら注ぎ、 沈澱した重合体を濾過、 回収し、 メ タノール 3 0 0重量部で洗浄後、 5 0 °Cで 1 t o r r以 下の減圧下で 2 4時間乾燥して 6 5重量部の無色の重合体を得た。 In a reactor purged with nitrogen, 100 parts by weight of CPD, 300 parts by weight of toluene, and 100 parts by weight of nitromethane were put, and cooled to o ° c. Stir While, the addition of concentration 1.0 wt% of P d (CH 3 CN) ( BF 4) 2 of the two-Toro methane solution 6 4 parts by weight, the reaction temperature was reacted between 2:00 while maintaining at 0. The reaction solution was poured into 150 parts by weight of methanol mixed with 50 parts by weight of concentrated hydrochloric acid while stirring, and the precipitated polymer was collected by filtration, washed, and washed with 300 parts by weight of methanol. Drying at 50 ° C under a reduced pressure of 1 torr or less for 24 hours gave 65 parts by weight of a colorless polymer.
この重合体の極限粘度は、 0. 4 1 d l Z gであった。 赤外分光 スぺク トルでは 3 0 4 0 c m— 1に H— C =結合、 7 5 0 c m—1に一 C = C一結合に基づく吸収が認められ、 ' H— NMRスぺク トルでは、 5. 6 p p mに不飽和炭素に結合したプロ ト ン、 l〜 3 p p mに飽 和炭素に結合したプロ ト ンに基づく 吸収が 2 : 4の強度比で観察 された。 また、 1 . 3〜 1. 8 p p m、 1 . 8〜 2. 2 p p m、 2. 2〜 3. O p p mの吸収は 2 3. 5 : 1 3. 7 : 6 2. 8であ り、 麻生の方法に基づいて計算すると、 一般式 ( I ) で表される繰 り返し単位と一般式 (Π) で表される繰り返し単位は、 重量比で 47 : 5 3であった。 The intrinsic viscosity of this polymer was 0.41 dl Zg. In infrared spectroscopy spectrum in 3 0 4 0 cm- 1 H- C = bond, 7 5 0 cm- 1 accepted absorption according to one C = C conjoining, 'H- NMR spectrum At 5.6 ppm, absorptions due to protons bound to unsaturated carbon and l to 3 ppm due to protons bound to saturated carbon were observed at an intensity ratio of 2: 4. The absorption of 1.3 to 1.8 ppm, 1.8 to 2.2 ppm, 2.2 to 3.O ppm is 23.5: 13.7: 62.8, and Aso Calculated based on the method described in the above, the repeating unit represented by the general formula (I) and the repeating unit represented by the general formula (Π) were found to have a weight ratio of 47:53.
[参考例 6 ]  [Reference Example 6]
窒素置換した反応器にスチレン 4 0重量部、 な—メチルスチレン 3 0重量部、 C P D 3 0重量部、 トルエン 3 0 0重量部及びニ トロ メ タ ン 1 0 0重量部を入れ、 0 °Cに冷却した。 攪拌しながら、 濃度 1. 0重量%の P d (CH3C N) (B F4) 2のニトロメタン溶液 6 4 重量部を添加し、 反応温度を 0 °Cに保ちながら 2時間反応させた。 反応溶液を 5 0重量部の濃塩酸を混合した 1 5 0 0重量部のメ タノ一 ル中に攪拌しながら注ぎ、 沈澱した重合体を濾過、 回収し、 メ タノー ル 3 0 0重量部で洗浄後、 5 0 °Cで 1 t 0 r r以下の減圧下で 2 4 時間乾燥して 4 3重量部の共重合体を得た。 この共重合体の極限粘度は 0. 4 3 d 1 / gであった。 赤外分光 スぺク トルでは 3 0 4 0 c m—1に H - C =結合、 7 5 0 c m—1に一 C = C—結合、 及び 6 9 5 c m— 1にフヱニル基に基づく 吸収が認めら れ、 1 H— NMRスペク トルでは 6. 4〜 7. l p pmにフヱニル基 のプロ ト ン、 5. 6 p p mに不飽和炭素に結合したプロ ト ン、 1〜 3 p pmに飽和炭素に結合したプロ トンに基づく吸収が 3 1 : 1 5 : 5 4の強度比で観察された。 ' Η— NMRの強度比から算出すると、 スチレン : なーメチルスチレン : C P Dの組成比は、 モル比で 2 9 : 1 6 : 5 5、 重量比で 3 5 : 2 2 : 4 3であった。 また、 参考例 5 の結果から、 この共重合中の一般式 ( I ) で表される繰り返し単位 と一般式 ( Π ) で表される繰り返し単位は、 重量比で 4 7 : 5 3で あると推定できる。 40 parts by weight of styrene, 30 parts by weight of methyl styrene, 30 parts by weight of CPD, 300 parts by weight of toluene, and 100 parts by weight of nitromethane were put into a reactor purged with nitrogen, and 0 ° C And cooled. While stirring, 64 parts by weight of a 1.0% by weight solution of Pd (CH 3 CN) (BF 4 ) 2 in nitromethane was added, and the mixture was reacted for 2 hours while maintaining the reaction temperature at 0 ° C. The reaction solution was poured with stirring into 150 parts by weight of methanol mixed with 50 parts by weight of concentrated hydrochloric acid, and the precipitated polymer was collected by filtration and collected, and 300 parts by weight of methanol was added. After washing, it was dried at 50 ° C under a reduced pressure of 1 t0 rr or less for 24 hours to obtain 43 parts by weight of a copolymer. The intrinsic viscosity of this copolymer was 0.43 d 1 / g. In infrared spectroscopic spectrum 3 0 4 0 cm- 1 to H - C = bond, 7 5 0 cm- 1 at a C = C-bond, and 6 9 5 cm- 1 absorption based on Fuweniru group The 1 H-NMR spectrum showed that 6.4 to 7. lp pm of a phenyl group proton, 5.6 ppm of a proton bonded to an unsaturated carbon, and 1 to 3 ppm of a saturated carbon Absorption based on the protons bound to the A was observed at an intensity ratio of 31 : 1: 5: 54. Calculated from the intensity ratio of Η-NMR, the composition ratio of styrene: na-methylstyrene: CPD was 29:16:55 in molar ratio, and 35:22:43 in weight ratio. Also, from the results of Reference Example 5, the weight ratio of the repeating unit represented by the general formula (I) and the repeating unit represented by the general formula (Π) in this copolymer is 47:53. Can be estimated.
[実施例 1 0 ]  [Example 10]
参考例 6で得た共重合体 4 0重量部をシクロへキサン 3 6 0重量 部に溶解し、 さらに実施例 9で使用 したと同じニッケル触媒 2. 4 重量部とィ ソプロピルアルコール 8重量部を加え、 実施例 9 と同様 にして水素添加反応を行った。 反応終了後、 実施例 9と同様に凝固、 分離、 乾燥して 3 6重量部の無色の水素添加樹脂を得た。  40 parts by weight of the copolymer obtained in Reference Example 6 was dissolved in 360 parts by weight of cyclohexane, and 2.4 parts by weight of the same nickel catalyst used in Example 9 and 8 parts by weight of isopropyl alcohol were used. And a hydrogenation reaction was carried out in the same manner as in Example 9. After completion of the reaction, coagulation, separation and drying were carried out in the same manner as in Example 9 to obtain 36 parts by weight of a colorless hydrogenated resin.
この水素添加樹脂の極限粘度は 0. 4 4 d 1 / gで、 ガラス転移 温度は 1 2 0。Cであつた。 赤外分光スぺク トルでは 3 0 4 0 c m—1、 7 5 0 c m—1、 及び 6 9 5 c m—1の吸収が完全に消失し、 1 H - NMR スペク トルでも 6. 4〜 7. l p p m及び 5. 6 p p mの吸収が完 全に消失し、 フヱニル基及びシク口ペンテン環の不飽和基がほぼ 1 00 %水素添加されているこ とが確認された。 The intrinsic viscosity of this hydrogenated resin is 0.44 d 1 / g and the glass transition temperature is 120. C In infrared spectroscopy scan Bae-vector 3 0 4 0 cm- 1, 7 5 0 cm- 1, and 6 9 5 cm- 1 absorption disappeared completely, 1 H - NMR spectrum in Torr 6.4 to 7 The absorptions at 1 ppm and 5.6 ppm completely disappeared, and it was confirmed that almost 100% of the phenyl group and the unsaturated group of the pentene ring were hydrogenated.
この水素添加樹脂を 1 9 0 °Cでプレス成形し、 実施例 9 と同様に 試験板を作成し、 物性測定した。 光線透過率は波長 40 0〜83 0 nm で 9 0. 1 %以上、 複屈折値は 2 5 n m以下、 体積固有抵抗値は 5 x l 016Q c m以上、 1 02H z、 1 06 H z及び 1 09 H zの周波数 のいずれにおいても、 誘電率と誘電正接はそれぞれ 2. 3 5 と 5 1 0— 4、 曲げ強度は 7 1 0 k gノ c m2であった。 このことより、 こ の水素添加樹脂が光学材料、 電気絶縁材料として適していることが 分力、つた。 This hydrogenated resin was press-molded at 190 ° C., a test plate was prepared in the same manner as in Example 9, and the physical properties were measured. Light transmittance is wavelength 400-830 nm In 9 0.1% or more, the birefringence value is 2 5 nm or less, a volume resistivity of 5 xl 0 16 Q cm or more, 1 0 2 H z, 1 0 6 H z and 1 0 9 H z frequency in any case, each of the dielectric constant and dielectric loss tangent 2.3 5,5 1 0 4, the bending strength was 7 1 0 kg Bruno cm 2. Thus, this hydrogenated resin is suitable as an optical material and an electrical insulating material.
[参考例 7 ]  [Reference Example 7]
α—メチルスチレン 3 0重量部に代えて、 1 一メチル— 4—イ ソ プロべニルシクロへキセン 3 0部を使用する以外は、 参考例 6 と同 様にして、 3 5重量部の共重合体を得た。  In the same manner as in Reference Example 6, except that 30 parts by weight of α-methylstyrene was replaced by 30 parts by weight of 1-methyl-4-isoprobenylcyclohexene, a weight of 35 parts by weight was obtained. A coalescence was obtained.
この共重合体の極限粘度は 0. 4 5 d 1 であった。 赤外分光 スぺク トルでは 3 0 4 0 c πΓ1に H— C =結合、 7 5 0 c πτ1に— C = C一結合、 及び 6 9 5 c m—1にフヱニル基に基づく吸収が認めら れ、 1 H— NMRスペク トルでは 6. 4〜7. l p p mにフヱニル基 のプロ ト ン、 5. 6 p p mに不飽和炭素に結合したプロ ト ン、 1〜 3 p p mに飽和炭素に結合したプロ ト ンに基づく吸収が 2 4 : 1 6 : 6 0の強度比で観察された。 ' H— NMRの強度比から算出したスチ レン : 1 ー メ チルー 4一イ ソプロべニノレシク ロへキセン : C P Dの 組成比は、 モル比で 3 5 : 8 : 5 7、 重量比で 4 3 : 1 3 : 4 4で あった。 また、 参考例 5の結果から、 この共重合体中の一般式 ( I ) で表される繰り返し単位と一般式 (Π) で表される繰り返し単位は、 重量比で 4 7 : 5 3であると推定できる。 The intrinsic viscosity of this copolymer was 0.45 d 1. The infrared spectroscopic spectrum 3 0 4 0 c πΓ to 1 H- C = bond, and 7 5 0 c πτ 1 - C = C conjoining, and 6 9 5 cm- 1 absorption based on Fuweniru group 1 H-NMR spectra showed 6.4 to 7.1 ppm of phenyl group protons, 5.6 ppm of protons bound to unsaturated carbon, and 1-3 ppm to saturated carbon. Absorption based on the selected protons was observed at an intensity ratio of 24:16:60. 'The composition ratio of styrene: 1-methyl-41-isoproveninolecyclohexene: CPD calculated from the H-NMR intensity ratio is 35: 8: 57 in molar ratio, and 43 in weight ratio: 1 3: 4 4 From the results of Reference Example 5, the weight ratio of the repeating unit represented by the general formula (I) and the repeating unit represented by the general formula (Π) in the copolymer is 47:53. Can be estimated.
[実施例 1 1 ]  [Example 11]
参考例 7で得た共重合体 3 0重量部をシクロへキサン 2 7 0重量 部に溶解し、 さらに実施例 9で使用 したと同じニッケル触媒 1. 8 重量部とィ ソプロピルアルコール 6重量部を加え、 実施例 9 と同様 にして水素添加反応を行った。 反応終了後、 実施例 9 と同様にして 凝固、 分離、 乾燥して 2 6重量部の無色の水素添加樹脂を得た。 30 parts by weight of the copolymer obtained in Reference Example 7 was dissolved in 70 parts by weight of cyclohexane, and 1.8 parts by weight of the same nickel catalyst as used in Example 9 and 6 parts by weight of isopropyl alcohol As in Example 9 To perform a hydrogenation reaction. After completion of the reaction, solidification, separation and drying were performed in the same manner as in Example 9 to obtain 26 parts by weight of a colorless hydrogenated resin.
この水素添加樹脂の極限粘度は 0. 4 5 d 1 / gで、 ガラス転移' 温度は 1 0 8°Cであった。 赤外分光スぺク トルでは 3 0 4 0 c m— 750 c m-\ 及び 695 c m—1にの吸収が完全に消失し、 - NMR スペク トルでも 6. 4〜7. l p p m及び 5. 6 p p mの吸収が完 全に消失し、 フヱニル基、 シク ロへキセン環及びシクロペンテン環 の不飽和基がほぼ 1 0 0 %水素添加されていることが確認された。 The intrinsic viscosity of this hydrogenated resin was 0.45 d 1 / g, and the glass transition temperature was 108 ° C. Absorption at 340 cm—750 cm- \ and 695 cm— 1 disappeared completely in the infrared spectroscopy spectrum, and-6.4 to 7. lppm and 5.6 ppm in the NMR spectrum Completely disappeared, and it was confirmed that almost 100% of the unsaturated groups of the phenyl group, cyclohexene ring and cyclopentene ring were hydrogenated.
この水素添加樹脂を 1 8 0 eCでプレス成形し、 実施例 9 と同様に 試験板を作成し、 物性測定した。 光線透過率は波長 400〜830 nm で 9 0. 2 %以上、 複屈折値は 2 5 n m以下、 体積固有抵抗値は 5 x l 016 Q c m以上、 1 02H z、 1 06 H z及び 1 09 H zの周波数 のいずれにおいても、 誘電率と誘電正接はそれぞれ 2. 3 5と 5 1 0_4、 曲げ強度は 7 2 0 k g c m2であった。 このことより、 こ の水素添加樹脂が光学材料、 電気絶縁材料と して適していることが 分かった。 The hydrogenated resin was pressed at 1 8 0 e C, prepared in the same manner as in test plate as in Example 9, was measuring physical properties. Light transmittance wavelength from 400 to 830 nm with 9 0.2% or more, the birefringence value is 2 5 nm or less, a volume resistivity of 5 xl 0 16 Q cm or more, 1 0 2 H z, 1 0 6 H z and in any of the frequency of 1 0 9 H z, respectively the dielectric constant and dielectric loss tangent 2.3 5,5 1 0_ 4, the bending strength was 7 2 0 kgcm 2. This indicates that this hydrogenated resin is suitable as an optical material and an electrical insulating material.
[比較例 3 ]  [Comparative Example 3]
窒素置換した反応器にスチレン 1 0 0重量部、 トルエン 2 0 0重 量部及びァゾイソプチロニ ト リル 0. 0 1重量部を入れ、 攪拌しな がら温度 8 0 °Cに加熱して 1 0時間反応させた。 得られたポリマー 溶液に トルエン 5 0 0重量部を加えて希釈し、 メ タノール 2 5 0 0 重量部中に攪拌しながら注ぎ、 沈澱した重合体を濾過、 回収した。 7 0 °Cで 1 t o r r以下の減圧で 4 8時間乾燥して 9 2重量部のポ リ スチレンを得た。  100 parts by weight of styrene, 200 parts by weight of toluene and 0.01 part by weight of azoisobutyronitrile are placed in a reactor purged with nitrogen, heated to a temperature of 80 ° C with stirring, and reacted for 10 hours. I let it. The resulting polymer solution was diluted by adding 500 parts by weight of toluene, and poured into 250 parts by weight of methanol with stirring, and the precipitated polymer was collected by filtration. It was dried at 70 ° C under a reduced pressure of 1 torr or less for 48 hours to obtain 92 parts by weight of polystyrene.
このポリ スチレンの極限粘度は 0. 7 4 d 1 ノ g、 ガラス転移温 度は 1 0 0 °Cであった。 このポリ スチレン 5 0重量部をテ トラヒ ドロフラ ン 4 5 0重量部 に溶解し、 実施例 9で使用したのと同じアルミナ担持ニッゲル触媒 5重量部を加え、 オー トク レープ中、 2 3 0 °C、 水素圧 5 0 k gZ 0 1112で 1 0時間反応させた。 反応終了後、 濾過によってニッケル触 媒を除去し、 反応溶液を 2 0 0 0重量部のメ タ ノ ール中に攪拌しな がら注ぎ、 沈澱した重合体を濾過、 回収した。 9 0 eCで 1 t 0 r r 以下の減圧で 4 8時間乾燥して 4 1重量部の無色のポリスチレン水 素添加物を得た。 The intrinsic viscosity of this polystyrene was 0.74 d1 nog, and the glass transition temperature was 100 ° C. This polystyrene (50 parts by weight) was dissolved in tetrahydrofuran (450 parts by weight), and the same alumina-supported Nigel catalyst used in Example 9 (5 parts by weight) was added. and at a hydrogen pressure of 5 0 k gZ 0 111 2 reacted 1 0 hours. After completion of the reaction, the nickel catalyst was removed by filtration, and the reaction solution was poured into 2000 parts by weight of methanol with stirring, and the precipitated polymer was collected by filtration. 9 0 was obtained e C in 1 t 0 rr dried 48 hours at a reduced pressure of not more than 4 1 part by weight colorless polystyrene Hydrogen additives.
このポリ スチレン水素添加物を 1 9 0 °Cでプレス成形し、 実施例 9と同様に試験板を作成し、 物性測定した。 光線透過率は波長 40 0 〜 8 3 0 n mで 9 0. 1 %以上、 複屈折値は 2 5 nm以下、 体積固 有抵抗値は 5 X 1 016 Ω c m以上、 1 02H z、 1 06H z及び 1 09 H zの周波数のいずれにおいても、 誘電率と誘電正接はそれぞれ 2. 3 6 と 5 X 1 0- 4であった。 しかし、 試験板は機械的強度が弱く、 割 れ易く、 曲げ強度は 4 0 0 k gZ c m2であった。 This hydrogenated polystyrene was press-molded at 190 ° C., a test plate was prepared in the same manner as in Example 9, and the physical properties were measured. Light transmittance wavelength 40 0 ~ 8 3 0 nm 9 0.1% or more, the birefringence value is 2 5 nm or less, the volume-specific resistance value of 5 X 1 0 16 Ω cm or more, 1 0 2 H z, in any of the frequencies 1 0 6 H z and 1 0 9 H z also the dielectric constant and dielectric loss tangent were respectively 2.3 6 with 5 X 1 0- 4. However, the test plate has low mechanical strength, easy Re split, flexural strength was 4 0 0 k gZ cm 2.
[実施例 1 2 ]  [Example 12]
実施例 9で得た水素添加樹脂 4 0重量部に酸化防止剤 (チバガイ ギ一社製、 ィルガノ ックス 1 0 1 0 ) 0. 0 0 2重量部を添加し、 2軸押出機 (東芝機械社製、 T EM - 3 5 B、 スクリュ一径 35 mm、 スク リ ユ ー回転数 1 5 0 r p m、 樹脂温度 2 0 0 °C) で押し出し、 ペレツ ト と した。  To 40 parts by weight of the hydrogenated resin obtained in Example 9 was added 0.02 parts by weight of an antioxidant (manufactured by Ciba-Gai Gi Co., Ltd., Irganox 100), and a twin-screw extruder (Toshiba Machine Co., Ltd.) Extruded at TEM-35B, screw diameter 35 mm, screw rotation speed 150 rpm, resin temperature 200 ° C).
このペレツ トを用いて、 射出成形 (東芝機械社製、 I S— 3 50 F B 一 1 9 A P、 型締め圧 3 5 0 トン、 樹脂温度 3 0 0。C、 金型温度 8 0 °C) し、 直径 1 30mm、 厚さ 1. 2 mmの試験片 C及び直径 200 mm、 高さ 1 3 0 mm、 平均厚み 3 m mの円筒状の透明な容器 Dを作製し た。 [実施例 1 3 ] Using this pellet, injection molding (made by Toshiba Machine Co., Ltd., IS-350FB-119AP, mold clamping pressure 350 tons, resin temperature 300.C, mold temperature 80 ° C) was performed. A test piece C having a diameter of 130 mm and a thickness of 1.2 mm and a cylindrical transparent container D having a diameter of 200 mm, a height of 130 mm and an average thickness of 3 mm were prepared. [Example 13]
L B培地に 2重量%の寒天を加えて、 1 2 1 °C、 3 0分のスチー ム滅菌をしてゲル化させ、 固化する前にその 3 0 0 m l を実施例 1 2 で成形した容器 Dに入れ、 室温で 6時間放置した後、 アルミ箔で蓋 をし、 ァ線を 2 5 k G y照射して滅菌を行った。 処理後の容器の外 観は良好で、 白濁、 割れ、 変形は確認されなかった。 その後、 3 7 でで 3 日間保温したが、 菌類の増殖は認められなかった。  2% by weight agar was added to the LB medium, and the mixture was sterilized by steam at 121 ° C for 30 minutes to form a gel. Before solidification, 300 ml of the container was molded in Example 12 It was placed in D, allowed to stand at room temperature for 6 hours, covered with aluminum foil, and sterilized by irradiating it with 25 kGy. The appearance of the container after the treatment was good, and no cloudiness, cracking, or deformation was observed. After that, the cells were incubated at 37 for 3 days, but no fungal growth was observed.
実施例 1 2で成形した試験板 Cを 1 0 m m幅に切り、 蒸留水中で 2 0分間超音波洗浄した後、 4 0 °Cで 1 0時間乾燥した。 この試験 板を試験板 Eとする。 試験板 Eを日本薬局方第 1 2改正 「輸液用プ ラスチック試験法」 に従い溶出物試験を行った。 泡立ちは 3分以内 に消失し、 p H差は一 0 . 0 1、 紫外線吸光度は 0 . 0 0 4、 過マ ンガン酸力 リウム還元性物質 0 . 1 6 m l であり、 医療用途として 適した特性を有していることが分かった。  The test plate C formed in Example 12 was cut to a width of 10 mm, washed ultrasonically in distilled water for 20 minutes, and then dried at 40 ° C for 10 hours. This test plate is referred to as test plate E. The test plate E was subjected to an elution test according to the Japanese Pharmacopoeia No. 12 Revised "Plastic Test Method for Infusion". Foam disappears within 3 minutes, pH difference is 0.01, UV absorbance is 0.004, potassium permanganate reducing substance 0.16 ml, suitable for medical use It was found to have properties.
[実施例 1 4 ]  [Example 14]
実施例 1 2で作成した試験片 Cを、 7 0 %硝酸、 燐酸、 フ ッ硝酸 (フッ酸 7重量%、 硝酸 4 2重量%、 水 5 1 % ) 、 3 7 %塩酸、 3 0 %希硫酸、 濃硫酸、 3 0 %過酸化水素水、 水酸化カリウム飽和水溶 液、 2 9 %アンモニア水、 アセ ト ン、 イ ソプロ ピルアルコール、 ト リ クロロエチレン、 2 . 3 8重量%テ トラメチルアンモニゥムハイ ドロォキサイ ド水溶液、 アルミニウム用エッチング液 (濃リ ン酸 8 0 重量%、 硝酸 5重量%、 氷酢酸 5重量%、 水 1 0 % ) に、 それぞれ 5分間浸漬した。 試験片 Cは、 ト リ ク ロロエチレンで膨潤し、 濃硫 酸では表面が黒変したが、 その他の薬品による影響は認められず、 良好な耐薬品製が示された。  Specimen C prepared in Example 12 was subjected to 70% nitric acid, phosphoric acid, hydrofluoric acid (hydrofluoric acid 7% by weight, nitric acid 42% by weight, water 51%), 37% hydrochloric acid, 30% diluted Sulfuric acid, concentrated sulfuric acid, 30% hydrogen peroxide aqueous solution, potassium hydroxide saturated aqueous solution, 29% ammonia water, acetone, isopropyl alcohol, trichloroethylene, 2.38% by weight tetramethylammonium The specimens were immersed in an aqueous solution of Demoxide and an etching solution for aluminum (80% by weight of concentrated phosphoric acid, 5% by weight of nitric acid, 5% by weight of glacial acetic acid, and 10% by weight of water) for 5 minutes. Specimen C swelled with trifluoroethylene and darkened with concentrated sulfuric acid, but was not affected by other chemicals, indicating good chemical resistance.
試験板 E 2 0 gを硬質ガラス容器に入れ、 蒸留水 2 0 0 gを加え た。 硬質ガラス製の蓋をして 8 0 °Cで 2 4時間浸漬したところ、 抽 出された有機物は全有機炭素量で一日当たり 3 X 1 02 / gZm2であ つた。 その後、 同じ試験片を 8 0°Cで再度蒸留水 2 0 0 g中に 1 4 4 時間浸漬したところ、 抽出された全有機炭素量は一日当たり測定限 界である 以下であった。 Place 200 g of test plate E in a hard glass container, and add 200 g of distilled water. Was. When covered with a hard glass lid and immersed for 24 hours at 80 ° C, the extracted organic matter was 3 X 10 2 / gZm 2 per day in total organic carbon content. After that, when the same test piece was immersed again in 200 g of distilled water at 80 ° C for 144 hours, the amount of total organic carbon extracted was below the measurement limit per day.
これらの結果から、 本発明のポリマーが電子部品処理用器材とし て適した特性を有していることが分かった。  From these results, it was found that the polymer of the present invention had characteristics suitable as an electronic component processing equipment.
[参考例 8 ]  [Reference Example 8]
窒素置換した反応器にノルボルネン 6 5重量部、 C P D 3 5重量 部、 トルエン 3 0 0重量部及びニトロメ タン 1 0 0重量部を入れ、 0eCに冷却した。 撹拌しながら、 濃度 1. 0重量%の P d (CHsCN) 4 (B F4 ) 2のニトロメタン溶液 6 4重量部を添加し、 反応温度を 0 eCに保ちながら 2時間反応させた。 反応溶液を 5 0重量部の濃塩酸 を混合した 1 5 0 0重量部のメタノール中に撹拌しながら注ぎ、 沈 澱した重合体を濾過、 回収し、 メ夕 ノ ール 3 0 0重量部で洗浄後、 5 0でで 1 t o r r以下の減圧下で 2 4時間乾燥して、 7 3重量部 の共重合体を得た。 A nitrogen-purged reactor norbornene 6 5 parts by weight, CPD 3 5 parts by weight, put toluene 3 0 0 parts by weight and Nitorome Tan 1 0 0 parts by weight, was cooled to 0 e C. While stirring, added concentration 1.0 wt% of P d (CHsCN) 4 (B F4) 2 in nitromethane solution 6 4 parts by weight, was allowed to react for 2 hours while maintaining the reaction temperature at 0 e C. The reaction solution was poured with stirring into 150 parts by weight of methanol mixed with 50 parts by weight of concentrated hydrochloric acid, and the precipitated polymer was collected by filtration and collected, and then mixed with 300 parts by weight of methanol. After washing, the mixture was dried at 50 under reduced pressure of 1 torr or less for 24 hours to obtain 73 parts by weight of a copolymer.
この共重合の極限粘度は、 0. 4 5 d 1 Zgであった。 赤外分光 スぺク トルでは 3 0 4 0 c πτ1に H— C =結合、 7 5 0 c m—1に一 C = C—結合に基づく吸収が認められ、 1 H— NMRスぺク トルでは、 5. 6 p p mに不飽和炭素に結合したプロ トン、 l〜 3 p p mに飽 和炭素に結合したプロ トンに基づく吸収が 1 2 : 8 8の強度比で観 察された。 1 H— NMRの強度比から、 ノルボルネンと C P Dの組成 比は、 モル比で 5 1 : 4 9、 重量比で 4 7 : 5 3であると推定され た。 The intrinsic viscosity of this copolymer was 0.45 d1 Zg. Infrared spectroscopy The spectral 3 0 4 0 c πτ to 1 H- C = bond, 7 5 0 cm- 1 at a C = C-based coupling absorption was observed, 1 H- NMR spectrum At 5.6 ppm, absorptions based on protons bound to unsaturated carbon and l to 3 ppm based on protons bound to saturated carbon were observed at an intensity ratio of 12:88. From the 1 H-NMR intensity ratio, the composition ratio of norbornene and CPD was estimated to be 51:49 in molar ratio and 47:53 in weight ratio.
[実施例 1 5 ] ■ 参考例 8で得た共重合体 7 0重量部をシクロへキサン 6 3 0重量 部に溶解し、 さらにアルミナ担持ニッケル触媒 (触媒 1重量部中、 ニッケル 3 5重量部、 酸化ニッケル 0. 2重量部、 細孔容積 0. 8 c m3 / g. 比表面積 3 0 0 m2 / g) 3重量部とィソプロピルアル コール 1 2重量部を加え、 ォートクレーブ中、 230°C、 水素圧 50 k g Z c m2で 5時間反応させた。 反応終了後、 濾過によってニッケル触 媒を除去し、 反応溶液を 2 8 0 0重量部のメ タノール中に攪拌しな がら注ぎ、 沈澱した重合体を濾過、 回収した。 9 0 °Cで 1 t 0 r r 以下の減圧で 4 8時間乾燥して 6 5重量部の無色の水素添加樹脂を 得た。 [Example 15] ■ 70 parts by weight of the copolymer obtained in Reference Example 8 was dissolved in 60 parts by weight of cyclohexane, and a nickel catalyst supported on alumina (1 part by weight of catalyst, 35 parts by weight of nickel, 0.2 parts by weight of nickel oxide) Parts, pore volume 0.8 cm 3 / g.Specific surface area 300 m 2 / g) 3 parts by weight and 12 parts by weight of isopropyl alcohol are added, and in an autoclave, 230 ° C, hydrogen pressure 50 kg Z cm 2 For 5 hours. After completion of the reaction, the nickel catalyst was removed by filtration, and the reaction solution was poured into 280 parts by weight of methanol with stirring, and the precipitated polymer was collected by filtration. It was dried at 90 ° C. under a reduced pressure of 1 t 0 rr or less for 48 hours to obtain 65 parts by weight of a colorless hydrogenated resin.
この水素添加樹脂の極限粘度は 0. 4 5 d 1 gで、 ガラス転移 温度は 1 9 9 °Cであつた。 赤外分光スぺク トルでは 3 0 4 0 c m—1及 び 7 5 0 c m—1の吸収が完全に消失し、 ' Η— NMRスぺク トルでも 5. 6 p p mの吸収が完全に消失し、 シクロペンテン環の不飽和基 がほぼ 1 0 0 %水素添加されていることが確認された。 The intrinsic viscosity of the hydrogenated resin was 0.45 d1 g, and the glass transition temperature was 199 ° C. Absorption at 340 cm- 1 and 750 cm- 1 disappeared completely in the infrared spectroscopy spectrum, and 5.6 ppm absorption also disappeared completely in the NMR-NMR spectrum However, it was confirmed that approximately 100% of the unsaturated group of the cyclopentene ring was hydrogenated.
さらに、 この水素添加樹脂の 1 0重量%シク ロへキサン溶液を原 子吸光分析により分析した結果、 水素添加樹脂中のパラジゥム原子 量は 0. 05 p pm (検出限界) 以下、 ニッケル原子量は 0. O l p pm (検出限界) 以下であった。 また、 この水素添加樹脂 1 0 O m gを ドーマン燃焼装置で燃焼させ、 5 m l の純水に吸収させ、 イオンク 口マ トグラフィ 一で分析した結果、 塩素原子量は 0. 0 2 p p m (検 出限界) 以下であった。  Furthermore, as a result of analyzing a 10% by weight cyclohexane solution of the hydrogenated resin by atomic absorption spectrometry, the atomic weight of palladium in the hydrogenated resin was 0.05 ppm (detection limit) or less, and the atomic weight of nickel was 0%. O lp pm (detection limit). In addition, 100 mg of this hydrogenated resin was burned in a Doman combustor, absorbed in 5 ml of pure water, and analyzed by ion chromatography. As a result, the chlorine atomic weight was 0.02 ppm (detection limit). It was below.
この水素添加樹脂 6 0重量部に酸化防止剤 (チバガイギ一社製、 ィルガノ ッ クス 1 0 1 0 ) 0. 0 3重量部を添加し、 2軸押出機 (東 芝機械社製、 T EM— 3 5 B、 スク リ ュー径 3 5 mm、 スク リ ユー 回転数 1 5 0 r p m、 樹脂温度 3 0 0でで押し出し、 ペレツ トと し た。 To 60 parts by weight of the hydrogenated resin, 0.03 parts by weight of an antioxidant (manufactured by Ciba Geigy Co., Ltd., Irganox 101) was added, and a twin-screw extruder (TEM-M, manufactured by Toshiba Machine Co.) Extruded at 35 B, screw diameter 35 mm, screw rotation speed 150 rpm, resin temperature 300, and pelletized. Was.
このペレツ トを用いて、 射出成形 (東芝機械社製、 I S - 35 0 F B 一 1 9 A P型締め圧 3 5 0 ト ン、 樹脂温度 3 3 0 °C、 金型温度 1 2 0 °C) し、 直径 1 00mm、 厚さ 1. 2 mmの試験板と、 直径 200mm、 高さ 1 3 0 mm、 平均厚み 3 mmの円筒状の透明な容器を作成した。 試験板は無色透明であり、 厚さ 1. 2 mmの試験板での光線透過 率は 9 0. 4 %、 複屈折値は 2 5 n m以下であった。 また、 この試 験板を用いて測定した体積固有抵抗値は、 5 X 1 016Ω c m以上であ り、 1 02H z、 1 06H z及び 1 09H zの周波数のいずれにおいて も、 誘電率と誘電正接はそれぞれ 2. 3 6と 5 X 1 0— 4であった。 こ のことより、 この水素添加樹脂は、 光学材料、 電気絶縁材料として 適していることが分かった。 Using this pellet, injection molding (made by Toshiba Machine Co., Ltd., IS-350 FB-119 AP mold clamping pressure 350 ton, resin temperature 330 ° C, mold temperature 120 ° C) Then, a test plate having a diameter of 100 mm and a thickness of 1.2 mm and a cylindrical transparent container having a diameter of 200 mm, a height of 130 mm and an average thickness of 3 mm were prepared. The test plate was colorless and transparent, and the light transmittance of the test plate having a thickness of 1.2 mm was 90.4% and the birefringence value was 25 nm or less. The volume resistivity measured using the test plate state, and are 5 X 1 0 16 Ω cm or more, any frequency of 1 0 2 H z, 1 0 6 H z and 1 0 9 H z in also the dielectric constant and dielectric loss tangent were respectively 2.3 6 with 5 X 1 0- 4. This proved that this hydrogenated resin was suitable as an optical material and an electrical insulating material.
[実施例 1 6 ]  [Example 16]
L B培地に 2重量%の寒天を加えて、 1 2 1 °C、 3 0分のスチー ム滅菌をしてゲル化させ、 固化する前にその 3 0 0 m l を実施例 1 5 で成形した容器に入れ、 室温で 6時間放置した後、 アルミ箔で蓋を し、 1 2 1 °C、 3 0分のスチーム滅菌を行った。 処理後の容器の外 観は良好で, 白濁、 割れ、 変形は確認されなかった。 処理後、 3 7 でで 3日間保温したが、 菌類の増殖は認められなかった。  2% by weight agar was added to the LB medium, and the mixture was steam-sterilized at 121 ° C for 30 minutes to form a gel. Before solidification, 300 ml of the container was molded in Example 15 After leaving it at room temperature for 6 hours, it was covered with aluminum foil, and steam sterilized at 121 ° C for 30 minutes. The appearance of the container after the treatment was good, and no turbidity, cracking or deformation was observed. After the treatment, the cells were incubated at 37 for 3 days, but no fungal growth was observed.
実施例 1 5で成形した厚さ 2 mm試験板を 1 0 mm幅に切り、 試 験片とし、 蒸留水中で 2 0分間超音波洗浄した後、 4 0でで 1 0時 間乾燥した。 試験片を日本薬局方第 1 2改正 「輸液用プラスチッ ク 試験法」 に従い溶出物試験を行った。 泡立ちは 3分以内に消失し、 p H差は— 0. 0 1 、 紫外線吸収は 0. 0 0 4、 過マンガン酸カ リ ゥム還元性物質 0. 1 6 m l であった。 このこ とより、 この水素添 加樹脂は、 医療用器材として適していることが分かった。 [実施例 1 7〕 A 2 mm thick test plate formed in Example 15 was cut into a 10 mm width, used as a test piece, ultrasonically cleaned in distilled water for 20 minutes, and dried at 40 for 10 hours. The test piece was subjected to an elution test according to the Japanese Pharmacopoeia No. 12 Revised “Plastic Test Method for Infusion Solutions”. The bubbling disappeared within 3 minutes, the pH difference was -0.01, the ultraviolet absorption was 0.004, and the permanganate-reducing substance was 0.16 ml. This proved that this hydrogenated resin was suitable as medical equipment. [Example 17]
実施例 1 6で作製した試験片を、 7 0 %硝酸、 燐酸、 フッ硝酸 (フ ッ酸 7重量%、 硝酸 4 2重量%、 水 5 1 %) 、 3 7 %塩酸、 3 0 % 希硫酸、 濃硫酸、 3 0 %過酸化水素水、 水酸化カ リウム飽和水溶液、 2 9 %アンモニア水、 アセ ト ン、 イソプロ ピルアルコール、 ト リ ク ロロエチレン、 2. 3 8重量%テ トラメチルアンモニゥムハイ ド口 オキサイ ド水溶液、 アルミニウム用エッチング液 (濃リ ン酸 8 0重 量%、 硝酸 5重量%、 氷酢酸 5重量%、 水 1 0 %) に、 それぞれ 5 分間浸潰した。 ト リ クロ口エチレンで膨潤し、 濃硫酸では表面が黒 変したが、 その他の薬品による影響は認められず、 良好な耐薬品性 が示された。  The test specimen prepared in Example 16 was subjected to 70% nitric acid, phosphoric acid, hydrofluoric acid (hydrofluoric acid 7% by weight, nitric acid 42% by weight, water 51%), 37% hydrochloric acid, 30% diluted sulfuric acid , Concentrated sulfuric acid, 30% aqueous hydrogen peroxide, saturated aqueous solution of potassium hydroxide, 29% aqueous ammonia, acetate, isopropyl alcohol, trichloroethylene, 2.38% by weight tetramethylammonium The solution was immersed in an aqueous solution of oxide for oxide and an aluminum etchant (80% by weight of concentrated phosphoric acid, 5% by weight of nitric acid, 5% by weight of glacial acetic acid, and 10% of water) for 5 minutes. Although it swelled with ethylene at the trichloride and darkened the surface with concentrated sulfuric acid, it was not affected by other chemicals, indicating good chemical resistance.
この試験片 2 0 gを硬質ガラス容器に入れ、 蒸留水 2 0 0 gを加 えた。 硬質ガラス製の蓋をして、 8 0でで 2 4時間浸漬したところ、 抽出された有機物は、 全有機炭素量で一日当たり 2 X 1 02 g/mz であった。 その後、 同じ試験片を 8 0 °Cで再度蒸留水 2 0 0 g中に 1 4 4時間浸漬したところ、 抽出された全有機炭素量は一日当たり 測定限界である 7 gZm2以下であった。 200 g of this test piece was placed in a hard glass container, and 200 g of distilled water was added. And a hard glass cap, was immersed for 24 hours at 8 0, extracted organics were daily 2 X 1 0 2 g / m z in total organic carbon content. After that, when the same test piece was immersed again in 200 g of distilled water at 80 ° C for 144 hours, the total amount of extracted organic carbon was 7 gZm 2 or less, which is the measurement limit per day.
これらの結果から、 この水素添加樹脂は、 電子部品製造用器材と して適していることが分かった。  From these results, it was found that this hydrogenated resin was suitable as a device for manufacturing electronic components.
[比較例 4 ]  [Comparative Example 4]
参考例 8で得た共重合体を実施例 1 5 と同様にペレツ ト化しよう としたが、 着色とやけがひどく、 ペレツ ト化できなかった。  An attempt was made to pelletize the copolymer obtained in Reference Example 8 in the same manner as in Example 15, but the coloring and burnt were so severe that pelletization was not possible.
[比較例 5 ]  [Comparative Example 5]
窒素置換した反応器に トルエン 3 0 0重量部、 メチルアルミ ノキ サン 2 0重量部を トルエン 5 0重量部に溶解した溶液 1 5重量部及 びニッケルビスァセチルァセ トナー ト 0. 0 7重量部を加えた。 次 いで、 ノルボルネン 4 7 0重量部及び トルェン 2 0 0重量部からな る溶液を加え、 5 0 °Cで 5時間反応させた。 メ タノール 1 0重量部 を添加して反応を停止した後、 濃塩酸 5重量部を含むメタノール 3 0 0 0 部中に反応混合物を攪拌化に注ぎ、 ポリマーを凝固した。 ポリマー を濾過、 回収下後、 メ タノール 5 0 0重量部で洗浄し、 1 0 0 °C、 1 t o r r以下で 4 8時間乾燥し、 ノルボルネン付加重合型の重合 体 3 2 0重量部を得た。 In a reactor purged with nitrogen, 300 parts by weight of toluene, 20 parts by weight of methylaluminoxane dissolved in 50 parts by weight of toluene, 15 parts by weight and nickel bisacetyl acetate toner 0.07 parts by weight Parts were added. Next Then, a solution composed of 470 parts by weight of norbornene and 200 parts by weight of toluene was added, and the mixture was reacted at 50 ° C. for 5 hours. After the addition of 10 parts by weight of methanol to terminate the reaction, the reaction mixture was poured into 300 parts by weight of methanol containing 5 parts by weight of concentrated hydrochloric acid for stirring to coagulate the polymer. After filtering and collecting the polymer, the polymer was washed with 500 parts by weight of methanol and dried at 100 ° C. and 1 torr or less for 48 hours to obtain 320 parts by weight of a norbornene addition polymerization type polymer. .
この重合体の極限粘度は 1 . 2 4 d 1 で、 ガラス転移温度は 3 0 0 °C以上であった。 この重合体を窒素中で 4 0 0 °Cまで加熱昇 温したが、 溶融することなく分解が始まり、 溶融成形することはで きなかった。 産業上の利用可能性  The intrinsic viscosity of this polymer was 1.24 d 1, and the glass transition temperature was 300 ° C. or higher. The polymer was heated and heated to 400 ° C. in nitrogen, but decomposition started without melting, and it could not be melt-molded. Industrial applicability
本発明の水素添加樹脂は、 架橋したゲル状化物を含まず、 透明性、 低複屈折性、 耐光性、 耐湿性、 成形加工性、 電気絶縁性、 機械的強 度などに優れており、 光学材料、 医療用高分子材料、 電気絶縁材料、 電子部品材料等の分野に適している。  The hydrogenated resin of the present invention does not contain a crosslinked gelled material, and is excellent in transparency, low birefringence, light resistance, moisture resistance, moldability, electrical insulation, mechanical strength, etc. It is suitable for the fields of materials, medical polymer materials, electrical insulation materials, and electronic component materials.

Claims

請求の範囲 The scope of the claims
1 . シクロペンタジェン系単量体の線状付加重合型の繰り返し 単位を含有する重合体を水素添加した樹脂であって、 該繰り返し単 位中の炭素-炭素二重結合の少なく とも 9 0 %が水素添加され、 か つ、 2 5での トルエン中で測定した極限粘度 〔"〕 カ 0 . l〜 1 0 d l である水素添加樹脂。 1. A resin obtained by hydrogenating a polymer containing a linear addition polymerization type repeating unit of a cyclopentadiene monomer, wherein at least 90% of carbon-carbon double bonds in the repeating unit are contained. A hydrogenated resin which has been hydrogenated and has an intrinsic viscosity measured in toluene at 25 ["] 0.1 to 10 dl.
2 . 前記重合体が、 シク ロペンタジェン系単量体の線状付加重 合型の単独重合体である請求項 1記載の水素添加樹脂。  2. The hydrogenated resin according to claim 1, wherein the polymer is a linear addition polymer type homopolymer of a cyclopentadiene monomer.
3 . 前記重合体が、 シク ロペンタジェン系単量体の線状付加重 合型の繰り返し単位 1 0重量%以上と、 該シク ロペンタ ジェン系単 量体と共重合可能な単量体に由来する繰り返し単位 9 0重量%以下 とを含有する共重合体である請求項 1 記載の水素添加樹脂。  3. The polymer is composed of at least 10% by weight of a linear addition polymer type repeating unit of a cyclopentadiene monomer and a repeating unit derived from a monomer copolymerizable with the cyclopentadiene monomer. The hydrogenated resin according to claim 1, which is a copolymer containing 90% by weight or less of a unit.
4 . シクロペンタジェン系単量体と共重合可能な単量体が、 a —ォレフィ ン、 共役ジェン、 環状エーテル、 ビニルエーテル、 複素 環含有ビニル化合物、 環状ォレフイ ン、 ビニル基含有環状炭化水素 単量体またはノルボルネン系単量体である請求項 3記載の水素添加 樹脂。  4. Monomers copolymerizable with a cyclopentadiene monomer include a-olefin, conjugated diene, cyclic ether, vinyl ether, heterocyclic ring-containing vinyl compound, cyclic olefin, and vinyl group-containing cyclic hydrocarbon. 4. The hydrogenated resin according to claim 3, which is a monomer or a norbornene-based monomer.
5 . 前記重合体が、 シク ロペンタジェン系単量体の線状付加重 合型の繰り返し単位 6 0重量%以上と、 ひ一才レフイ ン、 共役ジェ ン、 環状エーテル、 ビニルエーテル、 複素環含有ビニル化合物また は環状ォレフ ィ ンの線状付加重合型の繰り返し単位 4 0重量%以下 とを含有する共重合体であって、 該共重合体中の炭素 -炭素二重結 合の少なく とも 9 0 %が水素添加されている請求項 4記載の水素添 加樹脂。  5. The polymer comprises 60% by weight or more of a linear addition-polymer type repeating unit of a cyclopentadiene monomer, and a vinyl compound containing a heterocyclic ring, a conjugated gen, a cyclic ether, a vinyl ether, or a heterocycle. Or a copolymer containing 40% by weight or less of a linear addition polymerization type repeating unit of a cyclic olefin, wherein at least 90% of carbon-carbon double bonds in the copolymer are contained. 5. The hydrogenated resin according to claim 4, wherein is hydrogenated.
6 . 前記重合体が、 シク ロペンタジェン系単量体の線状付加重 合型の繰り返し単位 1 0〜 9 0重量%と、 ビニル基含有環状炭化水 素単量体またはノルボルネン系単量体の線状付加重合型の繰り返し 単位 9 0〜 1 0重量%とを含有する共重合体であって、 該共重合体 中の炭素-炭素二重結合の少なく とも 9 0 %が水素添加されている 請求項 4記載の水素添加樹脂。 6. The polymer has linear addition weight of cyclopentadiene monomer. It contains 10 to 90% by weight of a combined repeating unit and 90 to 10% by weight of a linear addition polymerization type repeating unit of a vinyl group-containing cyclic hydrocarbon monomer or a norbornene-based monomer. The hydrogenated resin according to claim 4, which is a copolymer, wherein at least 90% of carbon-carbon double bonds in the copolymer are hydrogenated.
7. 前記重合体が、 シクロペンタジェン系単量体の線状付加重 合型の繰り返し単位 1 0〜 5 0重量%と、 ビニル基含有環状炭化水 素単量体の線状付加重合型の繰り返し単位 9 0〜 5 0重量%とを含 有する共重合体である請求項 6記載の水素添加樹脂。  7. The polymer has a linear addition polymerization type repeating unit of a cyclopentadiene monomer of 10 to 50% by weight, and a linear addition polymerization type of a vinyl group-containing cyclic hydrocarbon monomer. 7. The hydrogenated resin according to claim 6, which is a copolymer containing 90 to 50% by weight of a repeating unit.
8. 前記重合体が、 シクロペンタジェン系単量体の線状付加重 合型の繰り返し単位 1 0〜 5 0重量%と、 ノルボルネン系単量体の 線状付加重合型の繰り返し単位 9 0〜 5 0重量%とを含有する共重 合体である請求項 6記載の水素添加樹脂。  8. The polymer is composed of 10 to 50% by weight of a linear addition polymerization type repeating unit of a cyclopentadiene monomer and 90 to 50% by weight of a linear addition polymerization type repeating unit of a norbornene monomer. 7. The hydrogenated resin according to claim 6, which is a copolymer containing 50% by weight.
9. 光学材料、 医療用高分子材料、 電気絶縁材料、 または電子 部品材料と しての用途に使用される前記請求項のいずれか 1項に記 載の水素添加樹脂。  9. The hydrogenated resin according to any one of the preceding claims, which is used as an optical material, a medical polymer material, an electrical insulating material, or an electronic component material.
1 0. シクロペンタジェン系単量体の線状付加重合型の繰り返 し単位 1 0〜 5 0重量%と、 ビニル基含有環状炭化水素単量体の線 状付加重合型の繰り返し単位 9 0〜 5 0重量%とを含有し、 2 5 °C の トルェン中で測定した極限粘度 〔 7?〕 が0. 1〜: L O d l Z gで ある共重合体。  10 0 to 50% by weight of a linear addition polymerization type repeating unit of a cyclopentadiene monomer and 90% by weight of a linear addition polymerization type repeating unit of a vinyl group-containing cyclic hydrocarbon monomer 90 A copolymer having an intrinsic viscosity [7?] Of 0.1 to LO LO dl Zg measured in toluene at 25 ° C.
1 1. シクロペンタジェン系単量体の線状付加重合型の繰り返 し単位 1 0〜 5 0重量%と、 ノルボルネン系単量体の線状付加重合 型の繰り返し単位 9 0〜 5 0重量%とを含有し、 2 5 °Cの トルエン 中で測定した極限粘度 〔 7?〕 が 0. 1〜 1 0 d 1 / gである共重合 体。  1 1. 10 to 50% by weight of a linear addition polymerization type repeating unit of a cyclopentadiene monomer and 90 to 50% by weight of a linear addition polymerization type repeating unit of a norbornene monomer % And a limiting viscosity [7?] Measured in toluene at 25 ° C. of 0.1 to 10 d 1 / g.
PCT/JP1993/001065 1992-07-28 1993-07-28 Hydrogenated resin WO1994002521A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP4/219634 1992-07-28
JP21963492 1992-07-28
JP26958492 1992-09-11
JP4/269584 1992-09-11
JP4/285107 1992-09-30
JP28510492A JP3235219B2 (en) 1992-09-30 1992-09-30 Norbornene-based copolymers, their hydrogenated products, optical materials composed of them, medical materials, electrical insulating materials, and equipment for processing electronic components
JP4/285105 1992-09-30
JP28510792A JPH06136057A (en) 1992-07-28 1992-09-30 Hydrogenated cyclopentadiene resin, its production and optical material, medical material, electrical insulation material and electronic part treating material made from the resin
JP4/285104 1992-09-30
JP28510592A JP3277568B2 (en) 1992-09-30 1992-09-30 Vinylated cyclic hydrocarbon copolymer, its hydrogenated product, optical material composed of hydrogenated product, medical equipment, electrical insulating material, and equipment for processing electronic components

Publications (1)

Publication Number Publication Date
WO1994002521A1 true WO1994002521A1 (en) 1994-02-03

Family

ID=27529677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001065 WO1994002521A1 (en) 1992-07-28 1993-07-28 Hydrogenated resin

Country Status (1)

Country Link
WO (1) WO1994002521A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8013090B2 (en) 2006-01-30 2011-09-06 Zeon Corporation Film comprising norbornene compound addition polymer
CN113717486A (en) * 2021-09-17 2021-11-30 恒河材料科技股份有限公司 Preparation method of BOPP film stiffening agent

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52140591A (en) * 1976-05-20 1977-11-24 Nippon Zeon Co Ltd Novel hydrogenated hydrocarbon resisn
JPS62506A (en) * 1985-06-27 1987-01-06 Idemitsu Petrochem Co Ltd Hydrocarbon resin
JPS6315802A (en) * 1986-07-08 1988-01-22 Idemitsu Petrochem Co Ltd Hydrogenation product of copolymer
JPS63128048A (en) * 1986-11-19 1988-05-31 Idemitsu Petrochem Co Ltd Resin composition
JPH02276804A (en) * 1989-01-31 1990-11-13 Nippon Zeon Co Ltd Production of hydrogenerated hydrocarbon resin
JPH02289603A (en) * 1989-02-01 1990-11-29 Nippon Zeon Co Ltd Continuous production of hydrogenated hydrocarbon resin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52140591A (en) * 1976-05-20 1977-11-24 Nippon Zeon Co Ltd Novel hydrogenated hydrocarbon resisn
JPS62506A (en) * 1985-06-27 1987-01-06 Idemitsu Petrochem Co Ltd Hydrocarbon resin
JPS6315802A (en) * 1986-07-08 1988-01-22 Idemitsu Petrochem Co Ltd Hydrogenation product of copolymer
JPS63128048A (en) * 1986-11-19 1988-05-31 Idemitsu Petrochem Co Ltd Resin composition
JPH02276804A (en) * 1989-01-31 1990-11-13 Nippon Zeon Co Ltd Production of hydrogenerated hydrocarbon resin
JPH02289603A (en) * 1989-02-01 1990-11-29 Nippon Zeon Co Ltd Continuous production of hydrogenated hydrocarbon resin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8013090B2 (en) 2006-01-30 2011-09-06 Zeon Corporation Film comprising norbornene compound addition polymer
CN113717486A (en) * 2021-09-17 2021-11-30 恒河材料科技股份有限公司 Preparation method of BOPP film stiffening agent
CN113717486B (en) * 2021-09-17 2022-09-02 恒河材料科技股份有限公司 Preparation method of BOPP film stiffening agent
WO2023040415A1 (en) * 2021-09-17 2023-03-23 恒河材料科技股份有限公司 Preparation method for bopp film stiffening agent

Similar Documents

Publication Publication Date Title
JP3291857B2 (en) Norbornene-based ring-opened (co) polymer hydrogenated product, method for producing the same, and use thereof
JP4174968B2 (en) Norbornene polymer and process for producing the same
WO1996010596A1 (en) Hydrogenated ring-opening polymer
JPH10139865A (en) Norbornene-based polymer and its production
JPH06136057A (en) Hydrogenated cyclopentadiene resin, its production and optical material, medical material, electrical insulation material and electronic part treating material made from the resin
JP2008195890A (en) Resin composition and film
JP3534127B2 (en) Norbornene-based addition copolymer
JP3360335B2 (en) Molding material composed of vinylated cyclic hydrocarbon polymer
JP4945945B2 (en) Thermoplastic resin, method for producing the same, and molding material
EP1550679B1 (en) Cycloolefin copolymer formed by ring-opening polymerization, process for producing the same, and optical material
WO1994002521A1 (en) Hydrogenated resin
JP3277568B2 (en) Vinylated cyclic hydrocarbon copolymer, its hydrogenated product, optical material composed of hydrogenated product, medical equipment, electrical insulating material, and equipment for processing electronic components
JP3235219B2 (en) Norbornene-based copolymers, their hydrogenated products, optical materials composed of them, medical materials, electrical insulating materials, and equipment for processing electronic components
JP3170937B2 (en) Modified resin and its hydrogenated product
JP3387533B2 (en) Norbornene-based copolymer hydrogenated product and use thereof
JP3248310B2 (en) Novel resins, their hydrogenated products, their production methods and their uses
JP2005290232A (en) Hydrogenated ring-opened copolymer, method for producing the same and molding material
JP3259465B2 (en) Ring-opening (co) polymer cyclized hydrogenated product, production method thereof, and use thereof
JP2006282831A (en) Resin composition comprising norbornene-based polymer containing aromatic ring structure and addition polymer of aromatic vinyl compound, and molded article obtained by molding the same
WO2000012586A1 (en) Norbornene copolymer produced by ring-opening polymerization
JP3982306B2 (en) Method for producing cycloolefin polymer
JP3997121B2 (en) Molding material comprising vinylated alicyclic hydrocarbon polymer
JP2009209276A (en) Crosslinkable norbornene resin composition, and resin film
JP2006282696A (en) Method for producing norbornene ring-opened polymer hydrogenate and norbornene ring-opened polymer hydrogenate obtained thereby
JP2005036090A (en) Cyclic olefin polymer, its film and their manufacturing methods

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA