JPH02289603A - Continuous production of hydrogenated hydrocarbon resin - Google Patents

Continuous production of hydrogenated hydrocarbon resin

Info

Publication number
JPH02289603A
JPH02289603A JP27190A JP27190A JPH02289603A JP H02289603 A JPH02289603 A JP H02289603A JP 27190 A JP27190 A JP 27190A JP 27190 A JP27190 A JP 27190A JP H02289603 A JPH02289603 A JP H02289603A
Authority
JP
Japan
Prior art keywords
hydrocarbon resin
continuously
resin
hydrogenated
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27190A
Other languages
Japanese (ja)
Inventor
Minoru Ishiguro
石黒 稔
Koichi Aeba
饗庭 孝一
Masayuki Iwata
岩田 昌幸
Haruo Yanase
春雄 柳瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Publication of JPH02289603A publication Critical patent/JPH02289603A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To produce the subject resin having good color tone and thermal stability and useful as adhesives, etc., by continuously polymerizing a cyclopentadienic monomer or a mixture thereof with a comonomer, continuously removing the un-reacted monomers and low mol.wt. polymers from the polymerization product and subsequently hydrogenating the remained polymer in a flow type fixed bed reactor. CONSTITUTION:A monomer mixture comprising 100-50wt.% of a cyclohexadienic monomer (e.g. cyclopentadiene) and 0-40wt.% of a comonomer (e.g. isoprene) copolymerizable therewith is continuously polymerized in the absence of an inactive solvent, and the unreacted monomers and low mol.wt. oily polymers are continuously removed. The prepared hydrocarbon resin is introduced into a flow type fixed bed reactor in the melted state and continuously hydrogenated to provide the objective hydrogenated hydrocarbon resin continuously.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水素化炭化水素樹脂の製造方法に関し、さら
に詳し《は、シクロペンタジエン系単量体を主成分とす
る単量体混合物を熱重合して得られる炭化水素樹脂の水
素化物の連続的製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a hydrogenated hydrocarbon resin, and more particularly, the present invention relates to a method for producing a hydrogenated hydrocarbon resin, and more particularly, it relates to a method for producing a hydrogenated hydrocarbon resin. The present invention relates to a method for continuously producing a hydride of a hydrocarbon resin obtained by polymerization.

〔従来の技術〕[Conventional technology]

水素化炭化水素樹脂は、色相に優れ、また、熱安定性に
優れているために、共役ジエン系エラストマーをベース
とする粘着剤、スチレン系ブロック共重合体をベースと
する粘着剤および接着剤、ポリオレフィン系重合体をベ
ースとする接着剤などにおける粘着付与剤として使用さ
れており、特に加熱混線によって製造されるホットメル
ト組成物の粘着付与剤として賞用されている。
Hydrogenated hydrocarbon resins have excellent hue and thermal stability, so they are used in adhesives based on conjugated diene elastomers, adhesives and adhesives based on styrenic block copolymers, It is used as a tackifier in adhesives based on polyolefin polymers, and is particularly prized as a tackifier in hot-melt compositions produced by heating cross-fertilization.

水素化炭化水素樹脂は、石油ナフサの熱分解物をフリー
デルクラフツ触媒の存在下に重合して得られる炭化水素
樹脂や、シクロペンタジエン系単量体を主成分とする単
量体混合物を熱重合して得られる炭化水素樹脂を水素化
することによって製造される。従来、その水素化方法と
して、粉末状のニッケル、白金などの水素化触媒を用い
た、回分式の懸濁床方式あるいは流通式の懸濁気泡塔方
式が一般的に採用されている。これらの方式によれば、
水素化反応終了後、水素化炭化水素樹脂と粉末状触媒を
分離するための濾過工程が不可欠である。ところが、樹
脂を溶融状態で濾過することが困難なために、キシレン
、トルエンなどの有機溶媒で一旦希釈し、水素化反応生
成物の粘度を低下せしめたのち、触媒を濾過する場合が
多い。あるいは、原料炭化水素樹脂を最初からシクロヘ
キサン、デカリンなどの飽和炭化水素溶媒に溶解し、溶
液状で水素化せしめる場合もある。いずれの方法によっ
ても触媒の濾過後、濾液より溶剤を留去する工程が必要
である。
Hydrogenated hydrocarbon resins include hydrocarbon resins obtained by polymerizing thermal decomposition products of petroleum naphtha in the presence of Friedel-Crafts catalysts, and hydrocarbon resins obtained by thermally polymerizing monomer mixtures containing cyclopentadiene monomers as the main component. It is produced by hydrogenating the hydrocarbon resin obtained by Conventionally, as the hydrogenation method, a batch suspension bed system or a flow suspension bubble column system using a hydrogenation catalyst such as powdered nickel or platinum has been generally adopted. According to these methods,
After the hydrogenation reaction is completed, a filtration step is essential to separate the hydrogenated hydrocarbon resin and the powdered catalyst. However, since it is difficult to filter the resin in its molten state, the catalyst is often filtered after first diluting it with an organic solvent such as xylene or toluene to reduce the viscosity of the hydrogenation reaction product. Alternatively, the raw material hydrocarbon resin may be dissolved in a saturated hydrocarbon solvent such as cyclohexane or decalin from the beginning and hydrogenated in solution form. Either method requires a step of distilling off the solvent from the filtrate after filtering the catalyst.

さらに、水素化プロセスを煩雑にするのは原料樹脂の取
扱いである。原料樹脂を加熱溶融あるいは溶媒に溶解す
る工程において、若干の酸素の同伴が避けられず、これ
は安全上、また生成水素化樹脂の安定性を確保する上で
、水素化反応の前に徹底的に除去されなければならない
。樹脂の溶融あるいは溶゛解が完了した後に、この操作
が充分に行なわれたとしても、特に、原料樹脂を加熱溶
融する場合には、原料樹脂自体の熱安定性が不充分であ
るため、加熱によるある程度の劣化が避けられない。ま
た、原料樹脂製造後、これを水素化するまでの貯蔵期間
が長《、あるいは比較的高温で貯蔵された場合には、樹
脂中に過酸化物が生成し、水素化反応に悪影響を及ぼし
て所期の安定性を有する水素化炭化水素樹脂を得ること
が困難となる。したがって、水素化に供するまでの原料
樹脂は、厳しく管理されなければならない。
Furthermore, handling of the raw material resin complicates the hydrogenation process. In the process of heating and melting the raw resin or dissolving it in a solvent, it is inevitable that some oxygen will be entrained. must be removed. Even if this operation is carried out sufficiently after the melting or dissolution of the resin is completed, especially when heating and melting the raw resin, the thermal stability of the raw resin itself is insufficient. Some degree of deterioration is inevitable. In addition, if the raw material resin is stored for a long time after it is produced before it is hydrogenated, or if it is stored at a relatively high temperature, peroxides may form in the resin and have a negative effect on the hydrogenation reaction. It becomes difficult to obtain hydrogenated hydrocarbon resins with the desired stability. Therefore, the raw material resin must be strictly controlled before being subjected to hydrogenation.

かかる従来の水素化炭化水素樹脂製造方法における問題
点に鑑み、省資源、省エネルギー、省大化の観点から、
合理的な炭化水素樹脂水素化プロセスの確立が切望され
ていた。
In view of the problems with the conventional hydrogenated hydrocarbon resin manufacturing method, from the viewpoint of resource saving, energy saving, and size saving,
Establishment of a rational hydrocarbon resin hydrogenation process has been eagerly desired.

〔発明が解決しようとする課題] 本発明の目的は、水素化炭化水素樹脂を重合工程から水
素化工程まで一貫した連続工程により製造する方法を提
供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a method for producing a hydrogenated hydrocarbon resin through an integrated continuous process from the polymerization step to the hydrogenation step.

本発明の他の目的は、炭化水素樹脂の冷却・加熱を繰り
返すことなく、また、樹脂の濾過や溶媒の除去工程を要
することなく、水素化し、樹脂の劣化がな《、安定した
品質の水素化樹脂を製造する方法を提供することにある
Another object of the present invention is to hydrogenate hydrocarbon resin without repeating cooling and heating, without requiring resin filtration or solvent removal steps, and without deterioration of the resin. The object of the present invention is to provide a method for producing a synthetic resin.

本発明者らは従来の水素化炭化水素樹脂製造法における
前記の欠点を解決すべく鋭意検討した結果、■シクロペ
ンタジエン系炭化水素樹脂の連続的熱重合工程、■未反
応単量体および低分子量の油状重合体の除去工程、およ
び■炭化水素樹脂の連続的水素化工程を直結することに
よって、有機溶媒を使用することなく、触媒の濾過工程
を省略し、また、安定した品質の水素化炭化水素樹脂を
得ることができることを見出して、本発明を完成するに
到った。
The inventors of the present invention have conducted intensive studies to solve the above-mentioned drawbacks of conventional hydrogenated hydrocarbon resin production methods. By directly linking the removal process of oily polymers and the continuous hydrogenation process of hydrocarbon resin, it is possible to omit the catalyst filtration process without using organic solvents, and to achieve stable quality hydrocarbonization. The present invention was completed by discovering that hydrogen resin can be obtained.

[課題を解決するための手段] かくして本発明によれば、シクロペンタジエン系単量体
100〜50重量%とこれと共重合可能な共単量体0〜
50重量%より成る単量体混合物を不活性溶媒の実質的
不存在下に連続的に熱重合し、次いで未反応単量体およ
び低分子量の油状重合体を連続的に除去した後、得られ
た炭化水素樹脂を溶融状態のまま流通式固定床反応器に
導入して連続的に水素化せしめることを特徴とする水素
化炭化水素樹脂の連続的製造方法が提供される。
[Means for Solving the Problems] Thus, according to the present invention, 100 to 50% by weight of a cyclopentadiene monomer and 0 to 50% by weight of a comonomer copolymerizable therewith.
After continuous thermal polymerization of a monomer mixture consisting of 50% by weight in the substantial absence of an inert solvent and subsequent continuous removal of unreacted monomers and low molecular weight oily polymers, the Provided is a method for continuously producing a hydrogenated hydrocarbon resin, which comprises introducing the hydrocarbon resin in a molten state into a flow-type fixed bed reactor and continuously hydrogenating the resin.

次に、本発明の構成要素について詳述する。Next, the constituent elements of the present invention will be explained in detail.

(単量体成分) 本発明においては、シクロペンタジエン系単量体を主成
分とする単量体混合物が使用される。シクロペンタジエ
ン系単量体には、シクロペンタジエンのほか、メチルシ
クロペンタジエン、エチルシクロペンタジエンのような
低級アルキル置換シクロペンタジエンおよびこれらの二
量体、三量体、共二量体のごとき低位のディールス・ア
ルダー付加物が包含される。
(Monomer component) In the present invention, a monomer mixture containing a cyclopentadiene monomer as a main component is used. In addition to cyclopentadiene, cyclopentadiene monomers include lower alkyl-substituted cyclopentadiene such as methylcyclopentadiene and ethylcyclopentadiene, and lower Diels-substituted cyclopentadiene such as dimers, trimers, and codimers thereof. Alder adducts are included.

シクロペンタジエン系単量体と共重合可能な共単量体と
しては、エチレン、プロピレン、ブテン、ペンテン、ヘ
キセン、メチルブテン、シクロペンテン、スチレン、α
−メチルスチレンなどのごときモノオレフィン;ブタジ
エン、イソブレン、ペンタジエンのごときジオレフイン
;酢酸ビニル、プロビ才ン酸ビニルのごとき不飽和アル
コールの脂肪酸エステル;アクリル酸メチル、アクリル
酸エチル、アクリル酸ブチル、アクリル酸2−エチルヘ
キシル、メタクリル酸メチルのごときα、β一不飽和カ
ルボン酸のアルキルエステル・アリルアルコール、クロ
チルアルコールのごとき不飽和アルコール;などが例示
される。
Comonomers that can be copolymerized with cyclopentadiene monomers include ethylene, propylene, butene, pentene, hexene, methylbutene, cyclopentene, styrene, α
- Monoolefins such as methylstyrene; diolefins such as butadiene, isobrene, pentadiene; fatty acid esters of unsaturated alcohols such as vinyl acetate, vinyl propynate; methyl acrylate, ethyl acrylate, butyl acrylate, diacrylic acid - Alkyl esters of α,β monounsaturated carboxylic acids such as ethylhexyl and methyl methacrylate; unsaturated alcohols such as allyl alcohol and crotyl alcohol; and the like.

共単量体の種類および単量体混合物組成によって生成す
る炭化水素樹脂の軟化点、平均分子量、分子量分布、お
よび各種高分子量ボリマーに対する相溶性などが変化す
るので、目的とする樹脂の用途に応じこれらの共単量体
が適宜選択されるが、単量体混合物に占める共単量体成
分の比率が50重量%を超λると樹脂の収率が著し《低
下するので好まし《ない。
The softening point, average molecular weight, molecular weight distribution, and compatibility with various high molecular weight polymers of the hydrocarbon resin produced vary depending on the type of comonomer and monomer mixture composition, so depending on the intended use of the resin. These comonomers are selected as appropriate, but if the proportion of the comonomer component in the monomer mixture exceeds 50% by weight, the yield of the resin will drop significantly, so it is not preferred. .

(熱重合工程) 熱重合は、前記の単量体混合物を不活性溶媒の実質的不
存在下、200〜300℃、好ましくは230〜280
℃に保持された、撹拌翼を備えた1基ないし2基以上の
反応器に、.平均滞留時間0.5〜20時間で流通させ
ることによって達成される。
(Thermal polymerization step) Thermal polymerization is performed by heating the monomer mixture at 200 to 300°C, preferably 230 to 280°C, in the substantial absence of an inert solvent.
. . into one or more reactors equipped with stirring blades and maintained at . This is achieved by flowing with an average residence time of 0.5 to 20 hours.

不活性溶剤の実質的不存在下とは、単量体濃度が95重
量%を越す範囲であれば、若干量の不活性溶剤が存在し
てもかまわないことを意味する。
Substantially no inert solvent means that some amount of inert solvent may be present as long as the monomer concentration exceeds 95% by weight.

ただし、不活性溶剤を使用すると、その回収工程が必要
となり、また、重合速度が抑制される傾向にあるので、
不活性溶剤を全《用いないことが好ましい。
However, if an inert solvent is used, a recovery process is required and the polymerization rate tends to be suppressed.
It is preferable not to use any inert solvent.

(未反応単量体等の除去工程) 本発明の方法においては、熱重合工程に連続して未反応
単量体等の除去工程を設ける。
(Step for removing unreacted monomers, etc.) In the method of the present invention, a step for removing unreacted monomers, etc. is provided consecutively to the thermal polymerization step.

重合反応液に含有される未反応単量体および低分子量の
油状重合体は、熱重合工程に引き続いて除去する。反応
系に不活性溶剤を若干量存在する場合には、この工程で
不活性溶剤も除去する。
Unreacted monomers and low molecular weight oily polymers contained in the polymerization reaction solution are removed following the thermal polymerization step. If a small amount of inert solvent is present in the reaction system, the inert solvent is also removed in this step.

未反応単量体等の除去は、減圧蒸留または水蒸気蒸留に
よって連続的に行なうことができる。かかる目的に使用
される蒸発器としては、加熱および減圧のための設備を
設けた撹拌槽や、回転翼を備えた薄膜型蒸発器などが例
示される。
Removal of unreacted monomers etc. can be carried out continuously by vacuum distillation or steam distillation. Examples of the evaporator used for this purpose include a stirring tank equipped with equipment for heating and pressure reduction, a thin film evaporator equipped with rotary blades, and the like.

また、未反応単量体等の易揮発性成分の除去工程と、油
状重合体の除去工程を段階的に連続して行なってもよい
。例えば、減圧蒸留工程を2段階で行なうか、あるいは
重合体溶液を通常150〜250℃の高温でフラッシェ
して、まず、易揮発性成分を除去し、次いで、薄膜型蒸
発器で油状重合体を除去してもよい。
Further, the step of removing easily volatile components such as unreacted monomers and the step of removing the oily polymer may be performed successively in a stepwise manner. For example, a vacuum distillation process may be carried out in two stages, or the polymer solution may be flashed at high temperatures, usually between 150 and 250°C, to first remove easily volatile components, and then the oily polymer may be removed in a thin film evaporator. May be removed.

減圧蒸留または薄膜型蒸発器の操作条件は、通常、18
0〜280℃で50mmHg以下、好ましくは20mm
Hg以下である。
The operating conditions for vacuum distillation or thin film evaporators are usually 18
50mmHg or less at 0-280℃, preferably 20mm
Hg or less.

(水素化反応工程) 本発明においては、未反応単量体等の除去工程に連続し
て水素化反応を行なわせる。つまり、前記除去工程の後
、一旦炭化水素樹脂を取り出して、水素化にあたって再
加熱したり、溶剤に溶解させたりはしない。
(Hydrogenation Reaction Step) In the present invention, a hydrogenation reaction is carried out consecutively to the step of removing unreacted monomers and the like. That is, after the removal step, the hydrocarbon resin is once taken out and is not reheated or dissolved in a solvent during hydrogenation.

水素化反応は、得られた炭化水素樹脂を溶融状態のまま
流通式固定床反応器に導入して連続的に水素化せしめる
。流通式固定床反応器とは、ニッケルや白金等の金属を
担持した固定床触媒を充填した反応器であって、樹脂と
水素ガスとを反応器の上部または下部から流通させて、
連続して水素化反応を行なわせるようにした反応器であ
る。
In the hydrogenation reaction, the obtained hydrocarbon resin is introduced in a molten state into a flow-through type fixed bed reactor and continuously hydrogenated. A flowing fixed bed reactor is a reactor filled with a fixed bed catalyst supporting metals such as nickel or platinum, in which resin and hydrogen gas are passed through the top or bottom of the reactor.
This is a reactor designed to carry out hydrogenation reactions continuously.

本発明に使用される水素化触媒の金属種は、ニッケル、
白金、パラジウム、ロジウムなど、公知のものであって
、特に限定されない。触媒の担体も特に限定されないが
、多孔質で比表面積の大きいアルミナ、シリカ、カーボ
ン、チタニアなどが好ましい。これらの水素化触媒およ
び担体は、任意に組合わせて使用することができるが、
なかでもアルミナにニッケルを担持させた触媒を用いる
と、極めて色相の優れた水素化炭化水素樹脂を得ること
ができるので、特に好ましい。
The metal species of the hydrogenation catalyst used in the present invention are nickel,
Known materials such as platinum, palladium, rhodium, etc. are not particularly limited. The carrier for the catalyst is also not particularly limited, but alumina, silica, carbon, titania, etc., which are porous and have a large specific surface area, are preferable. These hydrogenation catalysts and supports can be used in any combination, but
Among these, it is particularly preferable to use a catalyst in which nickel is supported on alumina, since it is possible to obtain a hydrogenated hydrocarbon resin with an extremely excellent hue.

これらの担体粉末に前記の金属を担持させた粉末触媒を
打錠、押し出し等の方法でベレット状に成型した触媒や
、予め円筒形、ベレット状、球状に成型した担体表面に
前記の金属を担持させた触媒が用いられる。また、触媒
の大きさはその有効面積と反応器内の圧力損失を勘案し
て、直径0.3〜1 0mm、好ましくは0.6〜5m
mの球状あるいはこれに相当する大きさが好ましい。
Catalysts in which the above-mentioned metals are supported on these carrier powders are molded into pellets by a method such as tableting or extrusion, and catalysts in which the above-mentioned metals are supported on the surface of carriers that have been previously formed into cylindrical, pellet-like, or spherical shapes. A catalyst that has been prepared is used. In addition, the size of the catalyst is 0.3 to 10 mm in diameter, preferably 0.6 to 5 m, taking into account its effective area and pressure loss within the reactor.
A spherical shape of m or a size equivalent to this is preferable.

前記固定床用触媒充填層に対する炭化水素樹脂および水
素ガスの流通方式は,特に限定されないが、水素ガスを
充填層下部(反応器下部)から導入すると充填した触媒
の動揺が避けられず、触媒が徐々に脱落して水素化樹脂
とともに排出されるおそれがあるので、炭化水素樹脂と
水素ガスをともに充填M上部(反応器上部)から下方に
流通させる、いわゆる下向並流方式が好ましい。
The method of flowing hydrocarbon resin and hydrogen gas to the fixed bed catalyst packed bed is not particularly limited, but if hydrogen gas is introduced from the bottom of the packed bed (lower part of the reactor), the packed catalyst will be unavoidably shaken, and the catalyst will be damaged. Since there is a risk that the hydrocarbon resin and hydrogen gas may gradually fall off and be discharged together with the hydrogenated resin, a so-called downward cocurrent flow system in which both the hydrocarbon resin and hydrogen gas are passed downward from the upper part of the filling M (the upper part of the reactor) is preferable.

水素化反応条件については、水素化反応率、反応時間、
反応器仕様などを考慮して適宜決定されるが、通常、反
応圧力は20〜200kg/crtr、好ましくは5 
0 〜1 5 0 k g / c rr?がよい。水
素供給量は、原料樹脂の理論水素吸収量の1.0〜10
倍、好ましくは1.2〜3倍であり、理論水素吸収量を
若干上回る水素ガスを供給することによって充分水素化
反応を完結させることができる。反応温度は、150〜
300℃、好ましくは180〜270℃であり、高温ほ
ど効率的に反応を完結させることができるが、触媒のシ
ンタリングによる劣化を抑制するためにはこの範囲で反
応温度を選択するのがよい。炭化水素樹脂の供給量は、
W H S V ( Weight Hourly S
paceVelocity、1時間当りの樹脂供給量/
触媒充填量)を.0.02〜10、好ましくは0.05
〜2とするのがよい。
Regarding hydrogenation reaction conditions, hydrogenation reaction rate, reaction time,
Although it is determined as appropriate considering the reactor specifications, etc., the reaction pressure is usually 20 to 200 kg/crtr, preferably 5
0 to 150 kg/crr? Good. The hydrogen supply amount is 1.0 to 10 of the theoretical hydrogen absorption amount of the raw resin.
The hydrogenation reaction can be sufficiently completed by supplying hydrogen gas that slightly exceeds the theoretical hydrogen absorption amount, preferably 1.2 to 3 times. The reaction temperature is 150~
The reaction temperature is 300°C, preferably 180 to 270°C, and the reaction can be completed more efficiently at a higher temperature, but the reaction temperature is preferably selected within this range in order to suppress deterioration of the catalyst due to sintering. The supply amount of hydrocarbon resin is
W H S V (Weight Hourly S
paceVelocity, resin supply amount per hour/
catalyst loading amount). 0.02-10, preferably 0.05
It is better to set it to ~2.

【発明の効果〕 本発明の方法番こよれば、水素化炭化水素樹脂を重合工
程から製品払出し工程まで一貫した連続的工程で製造す
ることができ、樹脂の加熱・冷却を繰返す必要がない。
[Effects of the Invention] According to the method of the present invention, a hydrogenated hydrocarbon resin can be produced in an integrated and continuous process from the polymerization process to the product delivery process, and there is no need to repeat heating and cooling of the resin.

また、水素化触媒の濾過、溶媒の除去工程を省略するこ
とができる。さらに、原料炭化水素樹脂が水素化される
までに劣化するおそれがなく、安定した品質の水素化炭
化水素樹脂を得ることができる。
Furthermore, the steps of filtration of the hydrogenation catalyst and removal of the solvent can be omitted. Furthermore, there is no fear that the raw material hydrocarbon resin will deteriorate before it is hydrogenated, and a hydrogenated hydrocarbon resin of stable quality can be obtained.

(以下余白) 〔実施例〕 以下、実施例、比較例および参考例を挙げて本発明をさ
らに具体的に説明するが、本発明はこれらの実施例のみ
に限定されるものではない。なお、実施例、比較例およ
び参考例中の部および%は、特に断りのないかぎり重量
基準である。
(Margin below) [Examples] The present invention will be described in more detail below with reference to Examples, Comparative Examples, and Reference Examples, but the present invention is not limited only to these Examples. Note that parts and percentages in Examples, Comparative Examples, and Reference Examples are based on weight unless otherwise specified.

[実施例l] 撹拌機を備えたオートクレープを温度260℃、圧力1
0kg/crt?Gに保持し、ジシクロペンタジエン7
0%、イソブレン30%より成る単量体混合物を平均滞
留時間4時間で流通せしめ、熱重合反応を行なった。
[Example 1] An autoclave equipped with a stirrer was heated at a temperature of 260°C and a pressure of 1
0kg/crt? G and dicyclopentadiene 7
A monomer mixture consisting of 0% isobrene and 30% isobrene was circulated for an average residence time of 4 hours to carry out a thermal polymerization reaction.

重合反応生成物は、引続き第2、第3の同様なオートク
レープに順次導かれた。各々のオートクレープは210
℃の温度に保持され、反応生成物の平均滞留時間が合計
2時間になるよう、オートクレープ内の液面を設定した
。第2、第3のオートクレープの気相をそれぞれトラッ
プを介して真空ボンブに導き、反応生成物中の未反応単
量体および低分子量の油状重合体を連続的に除去した。
The polymerization reaction product was successively led to a second and third similar autoclave. Each autoclave is 210
The liquid level in the autoclave was set such that the temperature was maintained at .degree. C. and the average residence time of the reaction products was 2 hours in total. The gas phases of the second and third autoclaves were each led to a vacuum bomb via a trap, and unreacted monomers and low molecular weight oily polymers in the reaction product were continuously removed.

減圧条件は、第2のオートクレープでは50mmHg、
第3のオートクレープではlommHgであった。
The reduced pressure conditions were 50 mmHg in the second autoclave;
In the third autoclave it was lommHg.

第3のオートクレープに滞留した炭化水素樹脂を水素化
触媒を充填した流通式間定床反応器に導き、連続的に水
素化反応を行なって水素化炭化水素樹脂を得た。
The hydrocarbon resin retained in the third autoclave was introduced into a flow type fixed bed reactor filled with a hydrogenation catalyst, and a hydrogenation reaction was continuously carried out to obtain a hydrogenated hydrocarbon resin.

水素化触媒としては、直径3 m m、高さ3mmのア
ルミナ製ペレット表面に安定化ニッケルを担持させた触
媒(日揮化学株式会社製)を使用した。反応器内は、温
度235〜245℃、圧力1 0 0 k g / c
 rr?に保持し、樹脂の流量は、WHSVが0.14
hr−’になるように設定して、水素ガス流量を樹脂の
理論水素吸収量の1.5倍になるように設定し、樹脂と
水素ガスをともに反応器上部より下方に流下させた。
As the hydrogenation catalyst, a catalyst (manufactured by JGC Chemical Co., Ltd.) in which stabilized nickel was supported on the surface of alumina pellets having a diameter of 3 mm and a height of 3 mm was used. Inside the reactor, the temperature is 235-245°C and the pressure is 100 kg/c.
rr? and the flow rate of the resin is such that the WHSV is 0.14.
hr-', the hydrogen gas flow rate was set to be 1.5 times the theoretical hydrogen absorption amount of the resin, and both the resin and hydrogen gas were allowed to flow downward from the top of the reactor.

得られた水素化炭化水素樹脂および水素化反応前の炭化
水素樹脂の軟化点をJIS  K−2531に規定され
た環球法に従って測定し、色相をJIS  K−540
0に規定されたガードナー色度によって測定し、臭素価
をJIS  K−2543に規定された滴定法によって
測定した。
The softening points of the obtained hydrogenated hydrocarbon resin and the hydrocarbon resin before the hydrogenation reaction were measured according to the ring and ball method specified in JIS K-2531, and the hue was determined according to JIS K-540.
The bromine number was measured by the Gardner chromaticity defined as 0, and the bromine number was measured by the titration method defined in JIS K-2543.

結果を第1表に示す。The results are shown in Table 1.

第1表 [実施例2] ジシクロペンタジエン70%、2−メチル−2−ブテン
30%より成る単量体混合物を熱重合し、引き続き水素
化せしめた以外は、実施例1と同様にして水素化炭化水
素樹脂を得た。その軟化点、色相および臭素価を測定し
た結果を、原料樹脂についての測定結果とともに第2表
に示す。
Table 1 [Example 2] Hydrogen was prepared in the same manner as in Example 1, except that a monomer mixture consisting of 70% dicyclopentadiene and 30% 2-methyl-2-butene was thermally polymerized and then hydrogenated. A carbonized hydrocarbon resin was obtained. The results of measuring the softening point, hue, and bromine number are shown in Table 2 together with the measurement results for the raw resin.

第2表 第1表に示す結果から、本発明によって得られる水素化
炭化水素樹脂は、水素化率98.3%でほぼ完全に水素
化されており、優れた色相を示すことがわかる。
From the results shown in Table 2 and Table 1, it can be seen that the hydrogenated hydrocarbon resin obtained by the present invention is almost completely hydrogenated with a hydrogenation rate of 98.3% and exhibits an excellent hue.

なお、水素化率は、次式から求めた値である。Note that the hydrogenation rate is a value determined from the following formula.

原料樹脂の臭素価 本発明の製造法により得られた水素化炭化水素樹脂は、
第2表の臭素価から求めた水素化率が98.0%であり
、優れた色相を示した。
Bromine number of raw resin The hydrogenated hydrocarbon resin obtained by the production method of the present invention is
The hydrogenation rate determined from the bromine number in Table 2 was 98.0%, and an excellent hue was exhibited.

(以下余白) [参考例1] 実施例1と同様にして得られた重合反応生成物から、未
反応単量体および低分子量の油状重合体を連続的に除去
するかわりに、回分式減圧蒸留でこれらを除去し、炭化
水素樹脂を一旦回収した後、これを180゜Cに加熱溶
融し、実施例1と同様な水素化反応条件のもとに連続的
に水素化せしめた。
(Left below) [Reference Example 1] Instead of continuously removing unreacted monomers and low molecular weight oily polymers from the polymerization reaction product obtained in the same manner as in Example 1, batch vacuum distillation was carried out. After these were removed and the hydrocarbon resin was once recovered, it was heated and melted at 180°C and continuously hydrogenated under the same hydrogenation reaction conditions as in Example 1.

得られた水素化樹脂の軟化点、臭素価および色相の測定
結果を原料樹脂についての測定結果とともに第3表に示
す。
The measurement results of the softening point, bromine number, and hue of the obtained hydrogenated resin are shown in Table 3 together with the measurement results of the raw material resin.

第3表 [実施例3、比較例1] 実施例1および参考例1で得られた水素化炭化水素樹脂
各30gを50ccのガラスビーカーにとり、180℃
にコントロールされたオーブン中に6時間放置した後、
固形分濃度50%になるようにトルエンに溶解し、その
ガードナー色度を測定した.初期値および加熱処理後の
値について、測定結果を第4表に示す。
Table 3 [Example 3, Comparative Example 1] 30 g each of the hydrogenated hydrocarbon resins obtained in Example 1 and Reference Example 1 were placed in a 50 cc glass beaker and heated at 180°C.
After leaving it in a controlled oven for 6 hours,
It was dissolved in toluene to a solid concentration of 50%, and its Gardner chromaticity was measured. Table 4 shows the measurement results for the initial values and values after heat treatment.

第4表 この結果から、本発明の製造法により熱重合から水素化
まで連続工程で水素化炭化水素樹脂を製造した場合、得
られる水素化炭化水素樹脂は、加熱処理を行なっても優
れた色相を保持しており、熱劣化が進行しないことが分
かる。これに対して、炭化水素樹脂を一旦回収した後、
加熱溶融し、連続的に水素化せしめると(参考例1)、
得られた水素化炭化水素樹脂は、加熱後の色相が悪化し
ており、耐熱性に劣っている。
Table 4 From these results, it is clear that when a hydrogenated hydrocarbon resin is produced in a continuous process from thermal polymerization to hydrogenation using the production method of the present invention, the obtained hydrogenated hydrocarbon resin has an excellent hue even after heat treatment. It can be seen that thermal deterioration does not progress. On the other hand, once the hydrocarbon resin is recovered,
When heated and melted and continuously hydrogenated (Reference Example 1),
The obtained hydrogenated hydrocarbon resin has a deteriorated hue after heating and is inferior in heat resistance.

Claims (1)

【特許請求の範囲】[Claims] (1)シクロペンタジエン系単量体100〜50重量%
とこれと共重合可能な共単量体0〜50重量%より成る
単量体混合物を不活性溶媒の実質的不存在下に連続的に
熱重合し、次いで未反応単量体および低分子量の油状重
合体を連続的に除去した後、得られた炭化水素樹脂を溶
融状態のまま流通式固定床反応器に導入して連続的に水
素化せしめることを特徴とする水素化炭化水素樹脂の連
続的製造方法。
(1) Cyclopentadiene monomer 100-50% by weight
A monomer mixture consisting of 0 to 50% by weight of a comonomer copolymerizable with this is continuously thermally polymerized in the substantial absence of an inert solvent, and then unreacted monomers and low molecular weight A continuous production of hydrogenated hydrocarbon resin, characterized in that after the oily polymer is continuously removed, the obtained hydrocarbon resin is introduced in a molten state into a flow-through type fixed bed reactor for continuous hydrogenation. manufacturing method.
JP27190A 1989-02-01 1990-01-05 Continuous production of hydrogenated hydrocarbon resin Pending JPH02289603A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-20782 1989-02-01
JP2078289 1989-02-01

Publications (1)

Publication Number Publication Date
JPH02289603A true JPH02289603A (en) 1990-11-29

Family

ID=12036699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27190A Pending JPH02289603A (en) 1989-02-01 1990-01-05 Continuous production of hydrogenated hydrocarbon resin

Country Status (1)

Country Link
JP (1) JPH02289603A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994002521A1 (en) * 1992-07-28 1994-02-03 Nippon Zeon Co., Ltd. Hydrogenated resin
JP2009144159A (en) * 2007-12-17 2009-07-02 Lanxess Inc Hydrogenation of diene-based polymers
WO2015147027A1 (en) * 2014-03-26 2015-10-01 丸善石油化学株式会社 Method for producing hydrogenated petroleum resin
WO2021200802A1 (en) 2020-03-31 2021-10-07 Eneos株式会社 Method for producing petroleum resin for hot-melt adhesive, and method for producing hydrogenated petroleum resin

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994002521A1 (en) * 1992-07-28 1994-02-03 Nippon Zeon Co., Ltd. Hydrogenated resin
JP2009144159A (en) * 2007-12-17 2009-07-02 Lanxess Inc Hydrogenation of diene-based polymers
WO2015147027A1 (en) * 2014-03-26 2015-10-01 丸善石油化学株式会社 Method for producing hydrogenated petroleum resin
CN106103500A (en) * 2014-03-26 2016-11-09 丸善石油化学株式会社 The manufacture method of hydrogenated petroleum resin
KR20160138391A (en) * 2014-03-26 2016-12-05 마루젠 세끼유가가꾸 가부시키가이샤 Method for producing hydrogenated petroleum resin
US9994650B2 (en) 2014-03-26 2018-06-12 Maruzen Petrochemical Co., Ltd. Method for producing hydrogenated petroleum resin
CN106103500B (en) * 2014-03-26 2018-11-23 丸善石油化学株式会社 The manufacturing method of hydrogenated petroleum resin
WO2021200802A1 (en) 2020-03-31 2021-10-07 Eneos株式会社 Method for producing petroleum resin for hot-melt adhesive, and method for producing hydrogenated petroleum resin

Similar Documents

Publication Publication Date Title
US4629766A (en) Production of hydrofined hydrocarbon resins
US4328090A (en) Process for production of hydrogenated hydrocarbon polymers and catalyst useful therefore
TWI669320B (en) Method for producing hydrogenated petroleum resin
US3701760A (en) Hydrocarbon dac-b resin prepared by polymerizing dac-b using two polymerization temperature ranges followed by hydrogenation
US6433104B1 (en) Hydrogenation process
JPH0742338B2 (en) Hydrogenated resin, adhesive composition, and method for producing resin
JP3356780B2 (en) Continuous production method of ROMP polycyclic olefin polymer
US4851488A (en) Process for altering hydrogenated polymer compositions from high melt flow to low melt flow
US4414146A (en) Method of polymerizing rosin
JPH02289603A (en) Continuous production of hydrogenated hydrocarbon resin
JPH07100721B2 (en) Diels Alder adduct of poly (Aloocimene)
KR20200138207A (en) Method for deodorizing hydrogenated petroleum resin and method for producing hydrogenated petroleum resin
KR100643513B1 (en) Solvent hydrogenation and reuse method in polyolefin polymerization
KR102520230B1 (en) Manufacturing method of hydrogenated petroleum resin
CN117466696A (en) Preparation method and application of cycloolefin monomer
JPH02276804A (en) Production of hydrogenerated hydrocarbon resin
US4180481A (en) Manufacture of a supported chromium oxide catalyst for olefin polymerization
US3331824A (en) Polymerization catalyst residue removal by hydrogenation
JP3289310B2 (en) Production method of hydrogenated petroleum resin
US2717888A (en) Nickel oxide and alkali hydride catalyst for ethylene polymerization
TW200404822A (en) Process for production of hydrogenated petroleum resins
EP0028555B1 (en) Process for the purification of n,n-dialkylaminoethanols by hydrogenation
US4393261A (en) Hydrocarbon resin and process for preparation
JP3409264B2 (en) Catalyst for producing ethylene-propylene copolymer rubber
JPS5829923B2 (en) Method for producing liquid olefin polymer