WO1994000557A1 - Procede d'obtention de proteines membranaires, permettant le maintien des structures oligomeriques de ces proteines en conditions denaturantes, et utilisation de ces proteines dans un but de diagnostic ou de vaccination - Google Patents

Procede d'obtention de proteines membranaires, permettant le maintien des structures oligomeriques de ces proteines en conditions denaturantes, et utilisation de ces proteines dans un but de diagnostic ou de vaccination Download PDF

Info

Publication number
WO1994000557A1
WO1994000557A1 PCT/FR1993/000654 FR9300654W WO9400557A1 WO 1994000557 A1 WO1994000557 A1 WO 1994000557A1 FR 9300654 W FR9300654 W FR 9300654W WO 9400557 A1 WO9400557 A1 WO 9400557A1
Authority
WO
WIPO (PCT)
Prior art keywords
proteins
oligomeric
microorganisms
compound
cells
Prior art date
Application number
PCT/FR1993/000654
Other languages
English (en)
Inventor
Jean-Jacques Madjar
Hervé POLY
Original Assignee
Centre Nat Rech Scient
Pasteur Merieux Serums Vacc
Madjar Jean Jacques
Poly Herve
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre Nat Rech Scient, Pasteur Merieux Serums Vacc, Madjar Jean Jacques, Poly Herve filed Critical Centre Nat Rech Scient
Priority to AU45047/93A priority Critical patent/AU4504793A/en
Publication of WO1994000557A1 publication Critical patent/WO1994000557A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/113General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure
    • C07K1/1136General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure by reversible modification of the secondary, tertiary or quarternary structure, e.g. using denaturating or stabilising agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/06Lysis of microorganisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Definitions

  • the subject of the invention is a process for obtaining oligomeric proteins, and more particularly those with membrane localization in cells, microorganisms (in particular viruses) or cellular hosts infected with these microorganisms, this process allowing the maintenance of these proteins in oligomeric form.
  • the invention also relates to the uses of these oligomeric proteins thus obtained, in particular for the implementation of methods for diagnosing pathologies caused by the infection of an individual by micro ⁇ organisms carrying such proteins, or even in as part of vaccination against this type of infection.
  • proteins with membrane localization in cells or microorganisms are in oligomeric form.
  • AIDS acquired immunodeficiency syndrome
  • the virus In both cases, the virus must be cultivated as a source of antigen, but RIPA is only feasible in a specialized laboratory having at its disposal the equipment and structure allowing the culture and labeling of the virus under regulated conditions, while the "western blot" can be used in any laboratory to which is supplied the membrane carrying the viral antigenic proteins already separated by electrophoresis.
  • the glycoprotein of the HIN-1 envelope is coded by the "env” gene, and the translation of the corresponding AR ⁇ m gives a glycosylated protein, gpl60, in the form of a precursor whose molecular mass is 160 kDa.
  • the gpl60 is cleaved inside the cell to give, on the level of the cytoplasmic membrane during the budding of the virus in the course of formation, on the one hand the gpl20 which one finds outside the cell and the virus, and, on the other hand, gp41, transmembrane part of the glycoprotein, which corresponds to the carboxy-terminal end of the precursor.
  • the only transmembrane protein, gp41 will present its carboxy-terminus terminated towards the inside of the virus and its amino-terminus protruding externally, which is now associated non-covalently with gpl20.
  • Gpl20 behaves like a bi-functional molecule.
  • influenza virus also expresses hemagglutinin on its surface in trimeric form (Doms and Helenius, 1986). In the latter case, the multimeric form is necessary for the intracellular transport of the protein (Copeland et al., 1986; Gething et al., 1986). Influenza also expresses neuraminidase on its surface in the form of a tetramer (Varghese et al., 1983).
  • VSV vesicular stomatitis virus
  • the vesicular stomatitis virus (VSV) also expresses a glycoprotein in oligomeric form and, in this case, the combination of monomers is essential for the transport of the protein from the endoplasmic reticulum to the Golgi apparatus (Kreis and Lodish, 1986) .
  • the oligomerization of glycoprotein Transmembrane is also found in paramyxo viruses, such as the Sendai virus and in the mumps virus.
  • oligomeric structures of proteins represent molecular forms characteristic of certain categories of cells, microorganisms or cellular hosts infected by these microorganisms, and are therefore particularly advantageous components to use:
  • the present invention specifically aims to provide a method of isolating proteins from cells, microorganisms or cellular hosts infected with these microorganisms, which has the advantage of allowing the maintenance in oligomeric form of those of proteins existing in such a form in these cells, microorganisms or cellular hosts infected by these microorganisms.
  • the invention also aims to make available to the public in vitro diagnostic methods, in particular in humans, of infections caused by these microorganisms, and more particularly diagnostic and confirmatory tests, in particular in in the context of HIV infection, which are more efficient and more reliable than current diagnostic methods or confirmatory tests.
  • the invention also aims to provide new vaccine compositions based on oligomeric proteins, in particular in the context of vaccination against HIV infections.
  • the invention also aims to provide compositions for the implementation of such a process for isolating proteins in oligomeric form.
  • the subject of the invention is a process for the lysis of cells or micro ⁇ organisms, in particular viruses, or cellular hosts infected by these micro ⁇ organisms, with genomes modified or not, this process making it possible to maintain in oligomeric form those of proteins which may be present in such a form in the abovementioned cells, microorganisms or cellular hosts, while destroying the infectious power of these microorganisms, which method is characterized in that it comprises a step of treatment of these cells, microorganisms or cellular hosts using a composition containing a combination of at least two different amphipathic molecules, each of these molecules comprising a hydrophobic part and a hydrophilic part.
  • the method of the invention advantageously makes it possible to destroy the infectious power of microorganisms, and more particularly viruses (we will also speak of inactivation of infectious particles), while maintaining all or part of the immunogenic properties of the proteins of microorganisms , in particular thanks to the maintenance of their oligomeric structure.
  • immunogenic properties of proteins means more particularly their properties of inducing the formation of antibodies, in an individual, capable of protecting the latter against infection by the microorganism from which the abovementioned proteins originate, or by a related microorganism.
  • Inactivation of infectious particles is obtained by solubilization of non-oligomeric proteins whose biological activity is linked to infectious power, in particular proteins with polymerase activity necessary for the replication of viral particles, such as DNA or RNA polymerase.
  • the non-oligomeric proteins thus dissolved in the context of the process of the invention lose some of their physicochemical properties, including those linked to the infectious power of the particles containing them, while retaining all or part of their immunogenic properties.
  • a particularly advantageous characteristic of the invention is that the above-mentioned lysis process can be carried out at room temperature.
  • the invention relates more particularly to the application of such a lysis process for the purpose of separation of oligomeric proteins with membrane localization in the abovementioned cells, microorganisms or cellular hosts, for the purposes of obtaining and, where appropriate, of purification of these proteins.
  • separation of the above membrane proteins is meant the possibility of separating all of the different oligomeric proteins present in the medium on which the above-mentioned lysis process is applied, from the other constituents, protein or not, of these cells, micro -organisms or cellular hosts, and, if necessary, the possibility of separating these different oligomeric proteins between them.
  • the method of the invention comprises an additional step of treatment with a bridging chemical agent such as formaldehyde, this step being carried out after using the above-mentioned lysis method according to the invention.
  • a bridging chemical agent such as formaldehyde
  • the association of the two amphipathic molecules used in the process of the invention allows both the solubilization of proteins likely to be present in oligomeric form in cells, microorganisms or cellular hosts infected by these microorganisms, and the reconstitution of an environment analogous to that found in the membrane of these cells, microorganisms or cellular hosts, this environment being necessary for the maintenance of these oligomeric structures.
  • One of the possible mechanisms at the origin of the reconstitution of such an environment would be that one of these two molecules is a compound (hereinafter referred to as the first compound) replacing the phospholipids and membrane glycolipids, while the other either a compound
  • the second compound replacing the membrane cholesterol.
  • the lysis method of the invention is further characterized in that at least one of the two molecules of the composition used for the treatment of cells, microorganisms or cellular hosts, namely the first compound mentioned above, has the property, when used outside the association defined above with the second compound, to dissolve all the proteins present in these cells, microorganisms or cellular hosts, and to dissociate the proteins which are in oligomeric form (which leads to the monomeric structures of these proteins), this compound being used in the association defined above with the second compound in proportions such that it retains the property of dissolving the proteins present in these cells, microorganisms or cellular hosts, and therefore to inactivate infectious particles, while allowing the maintenance in oligomeric form of those of proteins susceptible to be in such a form in these cells, microorganisms or cellular hosts.
  • the first compound defined above consists of one or more hydrocarbon chains, hydrophobic saturated or unsaturated, branched or not, and a polar head connecting together or not these hydrophobic chains.
  • - R represents a sulfate, phosphate, or halogen group, in particular chlorine or bromine,
  • the first compound is chosen from dodecyl sulfate salts, in particular sodium dodecyl sulfate (SDS) or lithium.
  • the first compound can also be chosen from dioctyl sulfosuccinate salts (for example sodium), cetyltrimethylammonium salts (from bromine for example), cetylpyridinium salts (from chlorine for example), N-dodecyl - or N-tetradecyl-sulfobetaine, octylglucoside, lauryl maltoside, lauryldimethylamine oxide, decanoyl-N-methylglucamide, and polyethylene glycol (n) lauryl ether.
  • the second compound used in the association defined above with the first compound has the property of solubilizing the membrane oligomeric proteins by maintaining them in oligomeric form, while retaining all or part of their biological activity, and more particularly all or part of their immunogenic properties.
  • a second particularly advantageous compound has as its hydrophobic basic structure the gonan nucleus, consisting of 4 cyclic nuclei A, B, C and D, with 17 carbon atoms, constituting the basic structure of cholesterol, bearing or not hydrocarbon groups branched in 10 or 13, as well as hydrophilic groups on some of the 17 carbon atoms, in alpha or beta, mainly in 3, 7, 12, esterified or not, this basic structure being associated or not with another polar head connected to the cyclic ring D at 15, 16 or 17, directly or indirectly via a hydrocarbon chain.
  • a second preferred compound is represented by 3 - [(3-cholamidopropyl) - dimethylamino] -1-propane sulfonate (or CHAPS), or also by 3 - [(3-cholamidopropyl) -dimethylamino] -2-hydroxy-1 -propane sulfonate (or CHAPSO).
  • the second compound can also be chosen from the salts of bile acids, cholic and deoxycholic, chenodesoxycholic or lithocholic (sodium for example), the salts of conjugated bile acids taurocholic or glycocholic (sodium for example), and digitonin .
  • the different cells on which the method of the invention can be applied are represented by any cell of the human or animal body or also plant cells, with genomes modified or not, in particular by the use of genetic manipulation or by mutation. These cells can also be infected by microorganisms as described below.
  • microorganisms on which the lysis method of the invention is capable of being applied are represented in particular by bacteria or human or animal (or plant) viruses having envelope glycoproteins capable of being in the form oligomeric.
  • viruses the latter may be responsible for the fusion of the virus-host membranes during infection, and are more particularly represented by human retroviruses of the HIV-1, HIV-2 type and HTLV-I, HTLV-II, myxoviruses, especially influenza viruses, paramyxo viruses, including mumps virus and measles virus.
  • the lysis method according to the invention is advantageously applied to the different types of virus responsible for AIDS, HIV 1 or HIV-2 or a mixture of these dermers, with a view to the separation, with regard to HIV-1, of a part of the transmembrane envelope protein of HIV-1, of 41kDa described above and known under the name of gp41 (responsible for the fusion of the membranes with the target cells during infection), in oligomeric form, it ie trimeric of 120kDa and more particularly tetrameric of 160 kDa, and on the other hand of the other proteins entering into the composition of the virion, in particular the products of the viral genes "gag", “pol” and “env”, including the gpl20 (another cleavage product described above of the precursor of the gpl60 envelope protein and which is responsible for the recognition of the target CD4 positive cell) in monomeric form.
  • the application of the method of the invention allows the separation, on the one hand, of the oligomeric forms of the envelope protein of 36kDa known under the name of gp36 and, on the other hand of the other proteins. constitutive of the virion analogously to those of HIV-1.
  • the lysis method according to the invention can also be applied to the different types of myxovirus responsible for influenza or influenza, with the possibility of separating, on the one hand, the HA envelope protein with hemaglutinating properties in oligomeric and more particularly trimeric form and , on the other hand, the other proteins used in the composition of the virion, themselves in oligomeric form (such as the NP protein for example) or non-oligomeric form.
  • the subject of the invention is also a process for obtaining proteins in their oligomeric form as existing in the cell membrane or in the membrane of microorganisms, characterized in that it comprises a step of lysis of the cells, microorganisms, in particular viruses, or cellular hosts infected with these microorganisms, according to the process of the invention described above, where appropriate followed by a step of actual separation of the proteins obtained during the 'previous step, in particular by electrophoresis in polyacrylamide gel in the presence of sodium dodecyl sulfate for example, allowing the separation of proteins according to their molecular weight, the proteins in oligomeric form remaining associated in such a form.
  • the above-mentioned method can be used with the aim of obtaining said oligomeric proteins in purified form, in particular by following the lysis step or that of separation described above, by a purification step, in particular by immuno-affinity or by separation. molecular and collection of (or) fraction (s) containing the oligomeric protein (s) sought (s) purified (s).
  • the subject of the invention is also the oligomeric proteins as obtained by implementing the aforementioned method of the invention.
  • the invention relates more specifically to the 120kDa trimer and the 160kDa tetramer of HIV-1 mentioned above in purified form, or else the oligomeric forms of the gp36 of HIV-2 mentioned above, as obtained by implementing the lysis process. of the invention followed by a purification step, as described above, of these oligomeric proteins thus obtained, said proteins having the characteristic of being stable at room temperature in the presence of amounts of SDS greater than or equal to approximately 0.5%, especially around 1%, and quantities of CHAPS which are at least of the same order as those of SDS.
  • the invention relates more particularly to protein compositions in oligomeric form obtained by implementing a method as described above of lysis of HIV type viruses, or of cellular hosts capable of containing such viruses, and the where appropriate purified, these compositions comprising either oligomeric proteins which are different from one another in combination, or identical oligomeric proteins isolated.
  • the invention relates in particular to compositions comprising the trimer of the transmembrane envelope protein of HIV-1 of 41kDa (or gp41), namely the trimer of 120kDa described above, and / or the tetramer of this gp41, namely the 160kDa tetramer described above, and / or one or more oligomeric forms of the gp36 of HIV-2 mentioned above.
  • the invention also relates to compositions comprising the oligomeric proteins, and more particularly trimeric, of the HA protein of myxoviruses such as those responsible for influenza or infuenza.
  • the invention also relates to the application of compositions comprising one or more oligomeric proteins, and obtained according to the method described above for the implementation of diagnostic methods or tests for confirming in vitro pathologies caused by the infection of 'individuals (human or animal) by microorganisms capable of carrying such oligomeric proteins.
  • the subject of the invention is any diagnostic method or any confirmation test mentioned above, and carried out by detection of antibodies recognized specifically by these oligomeric proteins and capable of being present in biological samples, in particular in serum, originating individuals themselves likely to be infected by the microorganisms in question (in particular those described above).
  • the invention relates more particularly to any method of in vitro diagnosis of infections caused by various viruses of the HIV type, and which are the cause of AIDS, in humans or in animals, or any test for confirming these infections, comprising, where appropriate, a step of applying the lysis method of the invention to AIDS viruses or to cells infected with the latter, which may be contained in a biological sample, in particular in serum, taken from a individual, and a step of detecting the aforementioned antibodies using one or more proteins in oligomeric form as obtained by implementing the aforementioned lysis method.
  • the subject of the invention is also any composition comprising: - at least one first compound, chosen from those described above, capable of dissolving the proteins present in cells, micro ⁇ organisms, in particular viruses, or cellular hosts infected with these micro ⁇ organisms, and to dissociate (when used alone or in a very large excess compared to the second compound) proteins which are in oligomeric form, in association with
  • At least one second compound chosen from those described above, having the property of solubilizing the oligomeric membrane proteins by maintaining them in oligomeric form, while retaining all or part of their immunogenic properties, the first compound being used in the combination defined above in proportions such that it retains the property of solubilizing the proteins present in these cells, micro -organisms (in particular the proteins responsible for the replication of the genome of these microorganisms) or cellular hosts, while allowing the maintenance in oligomeric form of those of proteins likely to be in such a form in these cells, microorganisms or cellular hosts.
  • a particularly preferred composition in the context of the present invention is such that:
  • the first compound consists of a lithium or sodium salt of dodecyl sulfate
  • the second compound is 3 - [(3-cholamidopropyl) -dimethylamino] -1-propane sulfonate (or CHAPS).
  • the amount of the first compound, and more particularly that of SDS preferably represents approximately 1.5 times the amount (in g / 1) of total proteins present in the biological sample to be treated according to the lysis method of the invention.
  • the concentration of SDS is advantageously of the order of approximately 5 mg / ml.
  • the amount of the second compound, and more particularly of CHAPS, is at least equivalent to that of the first.
  • the second compound is used in an equal weight relationship with the first compound.
  • compositions contain about 0.5% to about 1% of each of the two compounds SDS and CHAPS. _
  • the invention also relates to any process for obtaining the compositions described above of the invention, and comprising by way of example the mixture of the first and of the second compound as described above, if necessary in solution buffered aqueous.
  • the invention also relates to reagent kits (or kits) for implementing a lysis process according to the invention and comprising a composition containing in association a first compound and a second compound as described above.
  • the invention also relates to reagent kits for implementing diagnostic methods or confirmatory tests as described above, and comprising a composition containing one or more proteins oligomers as obtained by implementing the lysis process of the invention, and, where appropriate, a composition containing in combination a first compound and a second compound as described above.
  • the subject of the invention is also the use of one or more oligomeric proteins as obtained by the lysis method of the invention, for obtaining medicaments and vaccinating compositions intended respectively for the treatment and the prevention of pathologies caused by infections by micro ⁇ organisms carrying these oligomeric proteins.
  • the subject of the invention is more particularly vaccines against the various viruses of the HIV type, and comprising one or more proteins as obtained by implementing the lysis process of the invention on viruses of the HIV type (especially HIV-1 and HIV-2) or on cells infected with these viruses.
  • the invention relates more particularly to vaccinating compositions comprising the trimer of 120kDa and / or the tetramer of 160kDa, and / or the oligomeric forms of the envelope protein of 36kDa mentioned above, as obtained by carrying out the lysis process. of the invention on viruses of the HIV-1 and / or HIV-2 type, in association with a physiologically acceptable vehicle.
  • the invention also relates to vaccine compositions against the various viruses responsible for influenza or influenza, comprising a composition containing the oligomeric proteins, and more particularly trimeric, of the HA protein, in association with a physiologically acceptable vehicle.
  • Lymphoblastic line isolated from peripheral blood of a patient with acute lymphoblastic leukemia (T4 +). These cells come from American Tissue Culture Collection "(ATCC CC L 119) and carry the reference CCRS - CEM.
  • CEM HIV II are CEM cells chronically infected with the LAV BRU isolate for CEM HIV-1 and with the ROD isolate for CEM HIV-2.
  • the producing lines are cultivated at a density of 1 to 2.10 ⁇ cells / ml.
  • the medium, containing the viral particles produced, is renewed twice a day and stored at 4 ° C for a maximum of 3 days before purification.
  • the supernatant is removed, the suspended viral particles are sedimented by centrifugation for 1.5 h at 100,000 g,
  • the viral particles are resuspended in TNE (Tris-HCl 0.02 M at pH 7.5, NaCl 0.1 M, EDTA 0.001 M) and purified by isopycnic centrifugation in a discontinuous sucrose gradient from 20 to 59% for 4 p.m. to 280,000 g.
  • the gradient is prepared from five sucrose solutions at 20, 30,
  • Viral particles are collected at the top of the 38% sucrose fraction.
  • the fraction containing the viral particles is diluted with two volumes of TNE and centrifuged to concentrate the virions for 3 h at 150,000 g.
  • the pellet, made up of viral particles, is then taken up with TNE.
  • Polyacrylamide gels are poured at a constant temperature of 20 ° C.
  • the proteins are separated in a polyacrylamide gel 1 mm thick, successively composed:
  • the migration takes place at constant power and ends when the 600 volt hours are reached.
  • the migration is carried out at controlled temperature, constant at 20 ° C.
  • the proteins separated by electrophoresis are then electrotransfered onto a sheet of nitrocellulose or any other equivalent support.
  • the nitrocellulose is colored with a solution: red culvert at 0.025% trichloroacetic acid 3.5% This step fixes the proteins on the nitrocellulose but also makes it possible to color the proteins transferred and therefore to verify the quality of the transfer. This coloration is labile at neutral pH.
  • nitrocellulose is saturated for 30 min in a solution of skimmed milk at 1% in PBS.
  • the solution containing the first antibody is eliminated and the nitrocellulose is rinsed 3 times 10 min with a solution of Tween 20 at 0.1% in PBS.
  • the second antibody is diluted to 1/1000 in PBS / Tween 20 and incubated for 1 hour.
  • gp41 always appears to be of low intensity, while under the conditions of solubilization of the viral proteins conventionally used, gp41 appears with greater intensity with, on the other hand, an absence of gpl60 and gpl20.
  • the anti-gpl20 monoclonal antibodies also recognize a 120 kDa product. It must therefore be assumed that the band demonstrated by immunodetection with a positive serum corresponds to the detection of two products of the "env" gene, namely a multimeric form of gp41 associated with the external glycoprotein gpl20. This is consistent with the results obtained in "western blot” since, l 1 immunodetection performed with the monoclonal antibody anti gpl20 gives in the region of 120 kDa a band of about 1 mm, while on the same membrane, a positive serum gives in this region a much wider signal of about 3 to 4 mm. In addition, this band recognized by the anti gp 120 antibody is not only thinner but also slightly higher than the band recognized by the anti-gp41 monoclonal antibody.
  • the 160 kDa product highlighted on the "western blots" prepared from virus lysates corresponds to a tetramer of gp41 and the band of 120 kDa corresponds to both gpl20 and to a trimer of the gp41.
  • the precursor encoded by the env gene (gpl60) would not be present in the viral particle in its uncleaved form. This point is in agreement with the results of Pinter et al. (1989) which, using an anti-gpl20 monoclonal antibody, demonstrate the presence of gpl60 and gpl20 in a lysate of infected cells, while the same antibody only recognizes gpl20 in viral particles.
  • CHAPS is a "zwitterionic" detergent whose structure is close to that of cholesterol and which has properties close to those of other ionic detergents, such as cholates and deoxycholates. CHAPS allows good solubilization of membrane proteins and prevents the formation of protein aggregates.
  • the gp41 / CHAPS interaction seems to stabilize the oligomeric conformation of gp41, which allows it to be perfectly recognized by antibodies. Without CHAPS and 1% SDS, the oligomeric forms are gradually dissociated, dissociation being accelerated by treatment at 95 ° C.
  • the maximum concentration of SDS tolerated by the tetramer of gp41 is of the order of 0.1 to 0.15%. Beyond the tetramer is dissociated. However, it seems that the tetramers can resist higher concentrations of SDS but for a very short period of time (approximately 5 min) [Pinter et al., 1989].
  • influenza virus purified by sucrose gradient ultracentrifugation is resuspended in phosphate buffer (PBS) at pH 7.4 at a concentration of 3 mg of total proteins / ml (protein assay according to Bradford, 1976).
  • PBS phosphate buffer
  • the virus After sonication, the virus is treated for 18 h at 37 ° C. with an equal volume of a detergent solution containing 1% SDS and 1% CHAPS in PBS buffer at pH 7.4, DTE (dithioerythritol) 0.02 M
  • a detergent solution containing 1% SDS and 1% CHAPS in PBS buffer at pH 7.4, DTE (dithioerythritol) 0.02 M
  • DTE dithioerythritol
  • mice IFFA-CREDO France
  • BALB / c mice aged 6 weeks are immunized subcutaneously, in a volume of 0.5 ml, with doses of 0-0.1-1-10 and 100 ⁇ g of total protein inactivated viral preparation obtained previously; these doses are prepared by diluting the preparation in PBS buffer pH 7.4. They are administered without adjuvant.
  • Each experimental group consists of 10 animals each receiving an identical dose of antigen.
  • Two immunization schemes are carried out in parallel, which may or may not include a booster injection: 28 days after immunization, the groups of animals receiving a single injection are bled, those who receive a booster injection receive the same dose as when the primary immunization and are then bled 15 days after the booster.
  • the blood samples are taken with the carotid artery, under anesthesia of the ether mice.
  • the sera are analyzed for their content of antibodies inhibiting the hemagglutinating activity of the influenza virus (IHA antibody).
  • IHA antibody hemagglutinating activity of the influenza virus
  • the sera will be freed of their non-specific inhibitors beforehand by treatment with cholera neuraminidase (Receptor Destroying Enzyme, RDE), followed if necessary by treatment with potassium metaeriodate.
  • the hemagglutination inhibition reaction brings together, at equal volume (under 50 ⁇ l, in PBS buffer), dilutions of reason 2 of the treated sera, the influenza virus diluted so as to contain 4 units hemagglutinating, and chicken red blood cells at 0.5%.
  • the serum IHA antibody titer is given by the inverse of the last dilution which inhibits the hemagglutinating activity of the virus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Virology (AREA)
  • Biotechnology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Mycology (AREA)
  • Analytical Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

L'invention a pour objet un procédé de lyse de micro-organismes, tels que les virus, notamment aux fins d'obtention et, le cas échéant de purification des protéines à localisation membranaire chez ces micro-organismes, ce procédé permettant de maintenir sous forme oligomérique celles des protéines susceptibles d'être présentes sous une telle forme dans ces micro-organismes tout en détruisant le pouvoir infectieux de ces micro-organismes, lequel procédé est caractérisé en ce qu'il comprend une étape de traitement de ces micro-organismes à l'aide d'une composition contenant une association d'au moins deux molécules différentes au caractère amphipathique. L'invention vise également l'utilisation des protéines oligomériques obtenues par ce procédé pour la mise en ÷uvre de méthodes de diagnostic, ou dans des compositions vaccinantes.

Description

PROCEDE D'OBTENTION DE PROTEINES MEMBRANAIRES, PERMETTANT LE MAINTIEN DES STRUCTURES OLIGOMERIQUES DE CES PROTEINES EN CONDITIONS DENATURANTES, ET UTILISATION DE CES PROTEINES DANS UN BUT DE DIAGNOSTIC OU DE VACCINATION.
L'invention a pour objet un procédé d'obtention de protéines oligomériques, et plus particulièrement celles à localisation membranaire dans les cellules, micro- organismes (notamment les virus) ou hôtes cellulaires infectés par ces micro- organismes, ce procédé permettant le maintien de ces protéines sous forme oligomérique.
L'invention a également pour objet les utilisations de ces protéines oligomériques ainsi obtenues, notamment pour la mise en oeuvre de méthodes de diagnostic de pathologies causées par l'infection d'un individu par des micro¬ organismes porteurs de telles protéines, ou encore dans le cadre de la vaccination contre ce type d'infection.
De nombreuses protéines à localisation membranaire dans les cellules ou les micro-organismes sont sous forme oligomérique. A titre illustratif, on peut citer parmi les micro-organismes susceptibles de posséder des protéines oligomériques membranaires, les virus responsables du syndrome d'immunodéficience acquise (SIDA).
Dans le cas de la recherche d'une infection par HIV, une sérologie trouvée positive au dépistage, généralement par des tests de diagnostic de type ELIS A, ne permet pas, à elle seule, d'affirmer la contamination par le virus. Deux méthodes concurrentes sont utilisées pour la confirmation. La première, réputée la plus performante, est connue sous l'abréviation de RIPA ("radio-immuno précipitation assay") car elle fait appel à l'immuno-précipitation des protéines virales préalablement marquées par un isotope radioactif (ici la 35s-cystéine). La seconde méthode est désignée par l'expression "western blot". En pratique, elle met en oeuvre l'immuno-détection par les anticorps du sérum à analyser, des protéines virales séparées par électrophorèse et transférées sur une feuille de nitrocellulose ou tout autre support équivalent. Dans les deux cas, il faut cultiver le virus comme source d'antigène mais, le RIPA n'est réalisable qu'en laboratoire spécialisé ayant à sa disposition l'équipement et la structure permettant la culture et le marquage du virus en conditions réglementées, tandis que le "western blot" peut être utilisé dans n'importe quel laboratoire auquel est fourni la membrane portant les protéines antigéniques virales déjà séparées par électrophorèse. La glycoprotéine de l'enveloppe de HIN-1 est codée par le gène "env", et la traduction de l'ARΝm correspondant donne une protéine glycosylée, gpl60, sous forme d'un précurseur dont la masse moléculaire est de 160 kDa. La gpl60 est clivée à l'intérieur de la cellule pour donner, au niveau de la membrane cytoplasmique lors du bourgeonnement du virus en cours de formation, d'une part la gpl20 que l'on retrouve à l'extérieur de la cellule et du virus, et, d'autre part, la gp41, partie transmembranaire de la glycoprotéine, qui correspond à l'extrémité carboxy-terminale du précurseur. Une fois la particule virale libérée, la gp41 seule protéine transmembranaire, présentera son extrémité carboxy-terminale tounée vers l'intérieur du virus et son extrémité amino-terminale faisant saillie à l'extérieur, se maintenant associée de façon non covalente à la gpl20. La gpl20 se comporte comme une molécule bi-fonctionnelle. Par son extrémité amino-terminale, elle est fixée à la gp41 alors que son extrémité carboxy-terminale reconnaît la région située entre les résidus 32 et 47 de la molécule CD4 (spécifique des lymphocytes T4 auxiliaires, macrophages...). La liaison de la gpl20 au CD4 permet d'exposer la membrane de la cellule cible à la partie hydrophobe anύno-terminale de la gp41, ce qui semble induire le mécanisme de fusion des membranes du virus et des cellules, cette fusion étant à l'origine de la pénétration du virion dans la cellule cible lors de l'infection (pour revues, voir Evans et Levy, 1989; Wong-Staal et Haseltine, 1992).
Ce processus de reconnaissance du récepteur viral, suivi de la fusion des membranes grâce à l'interaction de l'extrémité amino-terminale.de la protéine de fusion avec la membrane de la cellule cible, n'est pas un mécanisme propre à HIV. Il est possible grâce à la présence, sous forme oligomérique, des glycoprotéines trans-membranaires du virus. Des pontages par agents chimiques ont permis de mettre en évidence des trimères au niveau des glycoprotéines de l'enveloppe de MuLN (Takemoto et col., 1978; Pinter et Fleissner, 1979), de MuMTV (Racevskis et Sarkar, 1980). Il a aussi été montré que la protéine de l'envelope de RSV forme des oligomères retrouvés dans les cellules infectées et les particules virales (Einfeld et Hunter, 1988). Le virus de l'influenza exprime également à sa surface une hémagglutinine sous forme trimérique (Doms et Helenius, 1986). Dans ce dernier cas, la forme multimérique est nécessaire au transport intracellulaire de la protéine (Copeland et col., 1986; Gething et col., 1986). L'influenza exprime aussi à sa surface une neuraminidase sous forme de tétramère (Varghese et col., 1983). Le virus de la stomatite vésiculaire (VSV) exprime également une glycoprotéine sous forme oligomérique et, dans ce cas, l'association des monomères est indispensable au transport de la protéine du réticulum endoplasmique vers l'appareil de Golgi (Kreis et Lodish, 1986). L'oligomérisation de la glycoprotéine transmembranaire se retrouve également dans les paramyxo virus, tel que le virus de Sendaï et dans le virus des oreillons.
Les auteurs de la présente invention ont mis en évidence le fait qu'il est possible, dans des conditions bien déterminées, et même en conditions dénaturantes, d'isoler des formes oligomériques de cette gp41 de HIV-1 (et plus particulièrement un trimère de 120kDa et un tétramère de 160kDa) qui sont donc des protéines différentes des gpl20 et gpl60 susmentionnées.
Les structures oligomériques des protéines, et plus particulièrement des protéines membranaires, représentent des formes moléculaires caractéristiques de certaines catégories de cellules, micro-organismes ou hôtes cellulaires infectés par ces micro-organismes, et sont par conséquent des composants particulièrement avantageux à utiliser:
- dans le cadre d'un dépistage de pathologies causées par l'infection d'un individu par ces micro-organismes (notamment par détection d'anticorps dirigés contre ces protéines dans les sérums des individus infectés), et plus spécifiquement dans le cadre d'un test de confirmation des méthodes classiques de dépistage de ces infections,
- ou encore dans le cadre de la vaccination destinée à prévenir de telles infections. Toutefois, les méthodes existant actuellement pour l'isolement des protéines à partir de cellules ou micro-organismes, en vue notamment de leur obtention, détruisent ces structures oligomériques pour donner naissance à des formes monomériques dont l'utilisation ne permet pas toujours de conclure de façon certaine à une infection, ni d'obtenir une vaccination efficace contre ces infections. Or la présente invention a précisément pour but de fournir un procédé d'isolement de protéines à partir de cellules, micro-organismes ou hôtes cellulaires infectés par ces micro-organismes, qui présente l'avantage de permettre le maintien sous forme oligomérique de celles des protéines existant sous une telle forme dans ces cellules, micro-organismes ou hôtes cellulaires infectés par ces micro- organismes.
L'invention a également pour but de mettre à la disposition du public des méthodes de diagnostic in vitro, notamment chez l'Homme, d'infections causées par ces micro-organismes, et plus particulièrement des tests de diagnostic et de confirmation, notamment dans le cadre de l'infection par HIV, qui soient plus performants et plus fiables que les méthodes de diagnostic ou tests de confirmation actuels. L'invention a également pour but de fournir de nouvelles compositions vaccinantes à base de protéines oligomériques, notamment dans le cadre de la vaccination contre les infections par HIV.
L'invention a également pour but de fournir des compositions pour la mise en oeuvre d'un tel procédé d'isolement de protéines sous forme oligomérique.
L'invention a pour objet un procédé de lyse de cellules ou de micro¬ organismes, notamment de virus, ou d'hôtes cellulaires infectés par ces micro¬ organismes, aux génomes modifiés ou non, ce procédé permettant de maintenir sous forme oligomérique celles des protéines susceptibles d'être présentes sous une telle forme dans les cellules, micro-organismes ou hôtes cellulaires susmentionnés, tout en détruisant le pouvoir infectieux de ces micro-organismes, lequel procédé est caractérisé en ce qu'il comprend une étape de traitement de ces cellules, micro¬ organismes ou hôtes cellulaires à l'aide d'une composition contenant une association d'au moins deux molécules différentes au caractère amphipathique, chacune de ces molécules comprenant une partie hydrophobe et une partie hydrophile.
Le procédé de l'invention permet avantageusement de détruire le pouvoir infectieux des micro-organismes, et plus particulièrement des virus (on parlera encore d'inactivation des particules infectieuses), tout en maintenant tout ou partie des propriétés immunogenes des protéines des micro-organismes, notamment grâce au maintien de leur structure oligomérique.
Par propriétés immunogenes des protéines, on entend plus particulièrement leurs propriétés d'induction de la formation d'anticorps, chez un individu, susceptibles de protéger ce dernier contre l'infection par le micro-organisme dont sont issues les protéines susmentionnées, ou par un micro-organisme apparenté.
L'inactivation des particules infectieuses est obtenue par solubilisation des protéines non oligomériques dont l'activité biologique est liée au pouvoir infectieux, notamment des protéines à activité polymérasique nécessaires à la réplication des particules virales, telles que l'ADN ou l'ARN polymérase. Les protéines non oligomériques ainsi solubilisées dans le cadre du procédé de l'invention, perdent certaines de leurs propriétés physico-chimiques, dont celles liées au pouvoir infectieux des particules les contenant, tout en conservant tout ou partie de leurs propriétés immunogenes.
Une caractéristique particulièrement avantageuse de l'invention est que le procédé de lyse susmentionné est réalisable à température ambiante.
L'invention vise plus particulièrement l'application d'un tel procédé de lyse aux fins de séparation des protéines oligomériques à localisation membranaire dans les cellules, micro-organismes ou hôtes cellulaires susmentionnés, aux fins d'obtention et, le cas échéant de purification de ces protéines.
Par séparation des protéines membranaires ci-dessus, il faut entendre la possibilité de séparer l'ensemble des différentes protéines oligomériques présentes dans le milieu sur lequel est appliqué le procédé de lyse susmentionné, des autres constituants, protéiques ou non, de ces cellules, micro-organismes ou hôtes cellulaires, et, le cas échéant, la possibilité de séparer ces différentes protéines oligomériques entre elles.
Si nécessaire, le procédé de l'invention comprend une étape supplémentaire de traitement par un agent chimique pontant tel que le formaldéhyde, cette étape étant effectuée après avoir utilisé le procédé de lyse susmentionné selon l'invention.
L'association des deux molécules amphipathiques utilisées dans le procédé de l'invention permet à la fois la solubilisation des protéines susceptibles d'être présentes sous forme oligomérique dans les cellules, micro-organismes ou hôtes cellulaires infectés par ces micro-organismes, et la reconstitution d'un environnement analogue à celui trouvé dans la membrane de ces cellules, micro- organismes ou hôtes cellulaires, cet environnement étant nécessaire au maintien de ces structures oligomériques. Un des mécanismes possibles à l'origine de la reconstitution d'un tel environnement serait que l'une de ces deux molécules soit un composé (ci-après désigné par premier composé) se substituant aux phospholipides et glycolipides membranaires, tandis que l'autre soit un composé
(ci-après désigné par second composé) se substituant au cholestérol membranaire.
Le procédé de lyse de l'invention est davantage caractérisé en ce que l'une au moins des deux molécules de la composition utilisée pour le traitement des cellules, micro-organismes ou hôtes cellulaires, à savoir le premier composé susmentionné, possède la propriété, lorsqu'il est utilisé en dehors de l'association définie ci-dessus avec le second composé, de solubiliser l'ensemble des protéines présentes dans ces cellules, micro-organismes ou hôtes cellulaires, et de dissocier les protéines qui sont sous forme oligomérique (ce qui conduit aux stuctures monomeriques de ces protéines), ce composé étant utilisé dans l'association définie ci-dessus avec le second composé dans des proportions telles qu'il conserve la propriété de solubiliser les protéines présentes dans ces cellules, micro-organismes ou hôtes cellulaires, et donc d' inactiver les particules infectieuses, tout en autorisant le maintien sous forme oligomérique de celles des protéines susceptibles d'être sous une telle forme dans ces cellules, micro-organismes ou hôtes cellulaires. Avantageusement, le premier composé défini ci-dessus est constitué d'une ou plusieurs chaînes hydrocarbonées, hydrophobes saturées ou insaturées, ramifiées ou non, et d'une tête polaire reliant entre elles ou non ces chaînes hydrophobes.
Le premier composé est avantageusement choisi parmi les composés répondant à la formule suivante:
CH3-(CH2)n-R. dans laquelle:
- R représente un groupe sulfate, phosphate, ou un halogène, notamment le chlore ou le brome,
- n est supéieur ou égal à 4, et de préférence compris entre 10 et 18. De préférence le premier composé est choisi parmi les sels de dodécyl sulfate, notamment le dodécyl sulfate de sodium (SDS) ou de lithium. A titre illustratif, le premier composé peut également être choisi parmi les sels de dioctyl sulfosuccinate (de sodium par exemple), les sels de cétyltriméthylammonium (de brome par exemple), les sels de cétylpyridinium (de chlore par exemple), les N- dodécyl- ou N-tétradécyl-sulfobétaïne, l'octylglucoside, le lauryl maltoside, l'oxyde de lauryldiméthy lamine, le décanoyl-N-méthylglucamide, et les polyéthylène glycol (n) lauryl éther.
Avantageusement le second composé utilisé dans l'association définie ci- dessus avec le premier composé, possède la propriété de solubiliser les protéines oligomériques membranaires en les maintenant sous forme oligomérique, tout en conservant tout ou partie de leur activité biologique, et plus particulièrement tout ou partie de leurs propriétés immunogenes.
Un second composé particulièrement avantageux a pour structure de base hydrophobe le noyau gonane, constitué de 4 noyaux cycliques A, B, C et D, à 17 atomes de carbone, constituant la structure de base du cholestérol, portant ou non des groupements hydrocarbonés branchés en 10 ou en 13, ainsi que des groupements hydrophiles sur certains des 17 atomes de carbone, en alpha ou béta, principalement en 3, 7, 12, estérifiés ou non, cette structure de base étant associée ou non à une autre tête polaire branchée sur le noyau cyclique D en 15, 16 ou 17, directement ou non par l'intermédiaire d'une chaîne hydrocarbonée.
Un second composé préféré est représenté par le 3-[(3-cholamidopropyl)- diméthylamino]-l-propane sulfonate (ou CHAPS), ou encore par le 3-[(3- cholamidopropyl)-diméthylamino]-2-hydroxy-l-propane sulfonate (ou CHAPSO). A titre illustratif le second composé peut également être choisi parmi les sels des acides biliaires, cholique et désoxycholique, chenodesoxycholique ou lithocholique (de sodium par exemple), les sels des acides biliaires conjugués taurocholique ou glycocholique (de sodium par exemple), et la digitonine. Les différentes cellules sur lesquelles le procédé de l'invention peut être appliqué, sont représentées par toute cellule du corps humain ou animal ou encore les cellules végétales, aux génomes modifiés ou non, notamment par mise en oeuvre de manipulations génétiques ou par mutation. Ces cellules peuvent également être infectées par des micro-organismes tels que décrits ci-dessous.
Les micro-organismes sur lesquels le procédé de lyse de l'invention est susceptible d'être appliqué sont représentés notamment par les bactéries ou les virus humains ou animaux (ou encore de végétaux) présentant des glycoprotéines d'enveloppe susceptibles d'être sous forme oligomérique. Dans le cas ou ces micro-organismes sont des virus, ces derniers peuvent être responsables de la fusion des membranes virus-hôte lors de l'infection, et sont plus particulièrement représentés par les rétrovirus humains du type HIV-1, HIV-2 et HTLV-I, HTLV-II, les myxovirus, notamment les virus de l'influenza, les paramyxo virus, notamment le virus des oreillons et le virus de la rougeole. Le procédé de lyse selon l'invention est avantageusement appliqué aux différents types de virus responsables du SIDA, HIV 1 ou HIV-2 ou un mélange de ces dermers, en vue de la séparation, pour ce qui concerne HIV-1, d'une part de la protéine d'enveloppe transmembranaire de HIV-1, de 41kDa décrite ci-dessus et connue sous le nom de gp41 (responsable de la fusion des membranes avec les cellules cibles lors de l'infection), sous forme oligomérique, c'est à dire trimerique de 120kDa et plus particulièrement tétramérique de 160 kDa, et d'autre part des autres protéines entrant dans la composition du virion, notamment les produits des gènes viraux "gag", "pol" et "env", y compris la gpl20 (autre produit de clivage décrit ci-dessus du précurseur de la protéine d'enveloppe gpl60 et qui est responsable de la reconnaissance de la cellule cible CD4 positive) sous forme monomérique.
Pour ce qui concerne HIV-2, l'application du procédé de l'invention permet la séparation d'une part des formes oligomériques de la protéine d'enveloppe de 36kDa connue sous le nom de gp36 et, d'autre part des autres protéines constitutives du virion de façon analogue à celles de HIV-1.
Le procédé de lyse selon l'invention peut également être appliqué aux différents types de myxovirus responsables de la grippe ou influenza, avec possibilité de séparer, d'une part la protéine d'enveloppe HA aux propriétés hémaglutinantes sous forme oligomérique et plus particulièrement trimerique et, d'autre part, les autres protéines entrant dans la composition du virion, elles- mêmes sous forme oligomérique (comme la protéine NP par exemple) ou non oligomérique. L'invention a également pour objet un procédé d'obtention de protéines sous leur forme oligomérique telle qu'existante dans la membrane de cellules ou dans la membrane de micro-organismes, caractérisé en ce qu'il comprend une étape de lyse des cellules, des micro-organismes, notamment de virus, ou des hôtes cellulaires infectés par ces micro-organismes, suivant le procédé de l'invention décrit ci- dessus, le cas échéant suivie d'une étape de séparation proprement dite des protéines obtenues lors de l'étape précédente, notamment par électrophorèse en gel de polyacrylamide en présence de dodécyl sulfate de sodium par exemple, permettant la séparation des protéines en fonction de leur masse moléculaire, les protéines sous forme oligomérique restant associées sous une telle forme.
Avantageusement le procédé susmentionné peut être utilisé dans le but d'obtenir lesdites protéines oligomériques sous forme purifiée, notammment en faisant suivre l'étape de lyse ou celle de séparation précédemment décrites, par une étape de purification, notamment par immuno-affinité ou par séparation moléculaire et recueil de la (ou des) fraction(s) contenant la (ou les) protéine(s) oligomérique(s) recherchée(s) purifiée(s).
Il va de soi que la réalisation, après l'étape de lyse susmentionnée, de la purification des protéines permet d'obtenir une composition comprenant différentes protéines oligomériques en association, tandis que la réalisation de cette étape de purification après celle de séparation permet d'obtenir des protéines oligomériques isolées et purifiées.
L'invention a également pour objet les protéines oligomériques telles qu'obtenues par mise en oeuvre du procédé susmentionné de l'invention.
L'invention vise plus spécifiquement le trimère de 120kDa et le tétramère de 160kDa de HIV-1 susmentionnés sous forme purifiée, ou encore les formes oligomériques de la gp36 de HIV-2 susmentionnées, tels qu'obtenus par mise en oeuvre du procédé de lyse de l'invention suivi d'une étape de purification, de la manière décrite ci-dessus, de ces protéines oligomériques ainsi obtenues, lesdites protéines présentant la caractéristique d'être stables à température ambiante en présence de quantités de SDS supérieures ou égales à environ 0,5%, notamment d'environ 1 %, et de quantités de CHAPS qui soient au moins du même ordre que celles de SDS.
L'invention vise plus particulièrement des compositions de protéines sous forme oligomérique obtenues par mise en oeuvre d'un procédé tel que décrit ci- dessus de lyse de virus du type HIV, ou d'hôtes cellulaires susceptibles de contenir de tels virus, et le cas échéant purifiées, ces compositions comprenant soit des protéines oligomériques différentes entre elles en association, soit des protéines oligomériques identiques isolées. L'invention vise notamment des compositions comprenant le trimère de la protéine d'enveloppe transmembranaire de HIV-1 de 41kDa (ou gp41), à savoir le trimère de 120kDa décrit ci-dessus, et/ou le tétramère de cette gp41, à savoir le tétramère de 160kDa décrit ci-dessus, et/ou une ou plusieurs formes oligomériques de la gp36 de HIV-2 susmentionnées.
L'invention vise encore des compositions comprenant les protéines oligomériques, et plus particulièrement trimerique, de la protéine HA des myxovirus tels que ceux responsables de la grippe ou infuenza.
L'invention vise également l'application de compositions comprenant une ou plusieurs protéines oligomériques, et obtenues selon le procédé décrit ci-dessus pour la mise en oeuvre de méthodes de diagnostic ou de tests de confirmation in vitro de pathologies causées par l'infection d'individus (homme ou animal) par des micro-organismes susceptibles d'être porteurs de telles protéines oligomériques.
A ce titre, l'invention a pour objet toute méthode de diagnostic ou tout test de confirmation susmentionnés, et réalisés par détection des anticorps reconnus spécifiquement par ces protéines oligomériques et susceptibles d'être présents dans des échantillons biologiques, notamment dans du sérum, provenant d'individus eux-mêmes susceptibles d'être infectés par les micro-organismes en question (notamment ceux décrits ci-dessus). L'invention concerne plus particulièrement toute méthode de diagnostic in vitro des infections causées par les différents virus du type HIV, et qui sont à l'origine du SIDA, chez l'Homme ou chez l'animal, ou tout test de confirmation de ces infections, comprenant le cas échéant une étape d'application du procédé de lyse de l'invention sur les virus du SIDA ou sur les cellules infectées par ces derniers susceptibles d'être contenus dans un échantillon biologique, notamment dans le sérum, prélevé chez un individu, et une étape de détection des anticorps susmentionnés à l'aide d'une ou plusieurs protéines sous forme oligomérique telles qu'obtenues par mise en oeuvre du procédé de lyse susmentionné.
L'invention a également pour objet toute composition comprenant: - au moins un premier composé, choisi parmi ceux décrits ci-dessus, susceptible de solubiliser les protéines présentes dans des cellules, micro¬ organismes, notamment des virus, ou hôtes cellulaires infectés par ces micro¬ organismes, et de dissocier (lorsqu'il est utilisé seul ou en très large excès par rapport au second composé) les protéines qui sont sous forme oligomérique, en association avec
- au moins un second composé, choisi parmi ceux décrits ci-dessus, possédant la propriété de solubiliser les protéines oligomériques membranaires en les maintenant sous forme oligomérique, tout en conservant tout ou partie de leurs propriétés immunogenes, le premier composé étant utilisé dans l'association définie ci-dessus dans des proportions telles qu'il conserve la propriété de solubiliser les protéines présentes dans ces cellules, micro-organismes (notamment les protéines responsables de la replication du génome de ces micro-organismes) ou hôtes cellulaires, tout en autorisant le maintien sous forme oligomérique de celles des protéines susceptibles d'être sous une telle forme dans ces cellules, micro-organismes ou hôtes cellulaires. Une composition particulièrement préférée dans le cadre de la présente invention est telle que:
- le premier composé est constitué d'un sel de lithium ou de sodium de dodécyl sulfate,
- le second composé est le 3-[(3-cholamidopropyl)-diméthylamino]-l-propane sulfonate (ou CHAPS).
A titre illustratif, la quantité du premier composé, et plus particulièrement celle du SDS, représente de préférence environ 1,5 fois la quantité (en g/1) de protéines totales présentes dans l'échantillon biologique à traiter selon le procédé de lyse de l'invention. Dans l'hypothèse où l'on se trouve en présence d'échantillon biologique où la concentration en protéines totales n'excède pas environ 3mg/ml, la concentration de SDS est avantageusement de l'ordre d'environ 5mg/ml.
De préférence, la quantité du second composé, et plus particulièrement du CHAPS, est au moins équivalente à celle du premier. Avantageusement, le second composé est utilisé dans un rapport équipondéral avec le premier composé.
Des compositions particulièrement préférées contiennent environ 0,5% à environ 1 % de chacun des deux composés SDS et CHAPS. _
L'invention a également pour objet tout procédé d'obtention des compositions décrites ci-dessus de l'invention, et comprenant à titre d'exemple le mélange du premier et du second composé tels que décrits ci-dessus, le cas échéant en solution aqueuse tamponnée.
L'invention vise également des trousses de réactifs (ou kits) pour la mise en oeuvre d'un procédé de lyse selon l'invention et comprenant une composition contenant en association un premier composé et un second composé tels que décrits ci-dessus.
L'invention concerne également des trousses de réactifs pour la mise en oeuvre de méthodes de diagnostic ou tests de confirmation tels que décrits ci- dessus, et comprenant une composition contenant une ou plusieurs protéines oligomériques telles qu'obtenues par mise en oeuvre du procédé de lyse de l'invention, et, le cas échéant une composition contenant en association un premier composé et un second composé tels que décrits ci-dessus.
L'invention a également pour objet l'utilisation d'une ou plusieurs protéines oligomériques telles qu'obtenues par le procédé de lyse de l'invention, pour l'obtention de médicaments et compositions vaccinantes destinés respectivement au traitement et à la prévention de pathologies causées par les infections par les micro¬ organismes porteurs de ces protéines oligomériques.
A ce titre, l'invention a plus particulièrement pour objet des vaccins contre les différents virus du type HIV, et comprenant une ou plusieurs protéines telles qu'obtenues par mise en oeuvre du procédé de lyse de l'invention sur des virus du type HIV (notamment HIV-1 et HIV-2) ou sur des cellules infectées par ces virus.
L'invention vise plus particulièrement des compositions vaccinantes comprenant le trimère de 120kDa et/ou le tétramère de 160kDa, et/ou les formes oligomériques de la protéine d'enveloppe de 36kDa susmentionnés, tels qu'obtenus par mise en oeuvre du procédé de lyse de l'invention sur des virus du type HIV-1 et/ou HIV-2, en association avec un véhicule physiologiquement acceptable.
L'invention vise également des compositions vaccinantes contre les différents virus responsables de la grippe ou influenza, comprenant une composition contenant les protéines oligomériques, et plus particulièrement trimerique, de la protéine HA, en association avec un véhicule physiologiquement acceptable.
L'invention sera davantage illustrée à l'aide de la description détaillée qui suit de réalisation du procédé de lyse de l'invention pour l'obtention des protéines oligomériques de 120kDa et de 160kDa d'HIV-1 décrites ci-dessus.
I MATERIEL ET METHODES
1-LIGNEES CELLULAIRES ET VIRUS
1-1 CEM
Lignée lymphoblastique isolée à partir de sang périphérique d'une malade atteinte de leucémie lymphoblastique aiguë (T4+). Ces cellules proviennent de American Tissue Culture Collection" (ATCC CC L 119) et portent la référence CCRS - CEM.
1-2 CEM HIV II s'agit de cellules CEM chroniquement infectées par l'isolât LAV BRU pour les CEM HIV-1 et par l'isolât ROD pour les CEM HIV-2.
1-3 PRODUCTION DE PARTICULES VIRALES Les lignées productrices sont cultivées à une densité de 1 à 2.10^ cellules/ml. Le milieu, contenant les particules virales produites, est renouvelé deux fois par jour et conservé à 4°C pendant au maximum 3 jours avant la purification.
1-4 PURIFICATION DES PARTICULES VIRALES
Les surnageants sont traités de la façon suivante:
- une première centrifugation permet d'éliminer les débris cellulaires pendant 30 min à 3000 g,
- le surnageant est prélevé, les particules virales en suspension sont sédimentées par centrifugation pendant 1,5 h à 100 000 g,
- les particules virales sont remises en suspension dans du TNE (Tris-HCl 0,02 M à pH7,5, NaCl 0,1 M, EDTA 0,001 M) et purifiées par centrifugation isopycnique en gradient discontinu de saccharose de 20 à 59% pendant 16 h à 280 000 g. Le gradient est préparé à partir de cinq solutions de saccharose à 20, 30,
38,5, 47 et 59% (poids/volume). Il s'agit d'une centrifugation à l'équilibre dans un gradient de densité discontinue. Les particules vont donc traverser les couches successives du gradient jusqu'à ce qu'elles rencontrent un milieu de densité identique à leur propre densité (d= 1,13). Les particules virales sont recueillies au sommet de la fraction de saccharose à 38%. La fraction contenant les particules virales est diluée par deux volumes de TNE et centrifugée pour concentrer les virions pendant 3 h à 150 000g. Le culot, constitué de particules virales, est alors repris avec du TNE.
2-SEPARATION DES PROTEINES PAR ELECTROPHORESE EN
GEL DE POLYACRYLAMIDE EN PRESENCE DE SDS
2-1 SOLUBILISATION DES PROTEINES VIRALES DANS LES CONDITIONS OPTIMISEES
Les protéines sont solubilisées dans le tampon d'échantillon suivant: Tris-HCl pH 6,8 0.0625M
DTE (dithioérythritol) 0,100M
SDS 1%
CHAPS 1 %
Glycérol 10% 2-2 CONDITIONS D'ELECTROPHORESE
Les gels de polyacrylamide sont coulés à température constante de 20 °C. La séparation des protéines est effectuée en gel de polyacrylamide de 1 mm d'épaisseur composé successivement:
- d'un gel de résolution fait de:
Figure imgf000015_0001
Avec ces paramètres la migration s'effectue à puissance constante et prend fin lorsque les 600 volts heures sont atteints. La migration est effectuée à température contrôlée, constante à 20°C.
3-ELECTROTRANSFERT SUR NITROCELLULOSE
Les protéines séparées par électrophorèse sont ensuite électrotransférées sur une feuille de nitrocellulose ou tout autre support équivalent.
4-REVELATION DES PROTEINES TRANSFEREES
En fin de transfert la nitrocellulose est colorée avec une solution: rouge Ponceau à 0,025 % acide trichloroacétique 3,5 % Cette étape fixe les protéines sur la nitrocellulose mais permet aussi de colorer les protéines transférées et donc de vérifier la qualité du transfert. Cette coloration est labile à pH neutre.
5-IMMUNODETECTION
Toutes les étapes sont effectuées à température ambiante et sous agitation constante. Le rouge Ponceau est totalement éliminé par rinçage avec du PBS.
- La nitrocellulose est saturée 30 min dans une solution de lait écrémé à 1 % dans du PBS.
- Fixation du premier anticorps contenu dans du sérum dilué au l/100^me dans la solution de saturation, pendant 1 heure.
- La solution contenant le premier anticorps est éliminée et la nitrocellulose est rincée 3 fois 10 min avec une solution de Tween 20 à 0,1 % dans du PBS. - le second anticorps est dilué au l/1000ème dans du PBS/Tween 20 et incubé pendant 1 heure.
- La nitrocellulose est alors lavée 3 fois 10 min dans du PBS/Tween puis rincée rapidement dans du PBS.
- La révélation est effectuée dans une solution de NBT/BCIP ("nitro blue tetrazolium/5 bromo-4 chloro-3 indolyl phosphate"), la réaction est arrêtée dans de l'eau distillée.
II-RESULTATS
Dans les conditions utilisant le procédé de l'invention de solubilisation des protéines virales, trois bandes correspondant aux produits de gène "env" peuvent être mises en évidence à 160, 120 et 41 kDa, laissant supposer, en première approche, qu'il s'agit respectivement:
- du précurseur, gpl60;
- de la glycoprotéine externe gpl20, permettant la reconnaissance du CD4; - de la glycoprotéine transmembranaire gp41, permettant la fusion des membranes.
Dans ces conditions, toutefois, la gp41 apparaît toujours de faible intensité, alors que dans les conditions de solubilisation des protéines virales classiquement utilisées, la gp41 apparaît avec une plus grande intensité avec, en contre partie, une absence de gpl60 et gpl20.
Cependant les résultats obtenus avec des anticorps monoclonaux montrent que: - la bande située à 120 kDa contient une protéine qui possède un étitope de la gp41, puisqu'un anticorps monoclonal anti-gp41 reconnaît à la fois les produits de 160 kDa et de 120 kDa,
- le même produit de 120 kDa est reconnu très faiblement par un anticorps monoclonal anti-gpl20 qui lui-même ne reconnaît pas le produit qui devrait être son précurseur, la gpl60.
Si on ne peut pas écarter l'hypothèse que l'épitope reconnu par l'anticorps monoclonal anti-gpl20 ne soit pas accessible sur le précurseur gpl60 non clivé, la présence d'un épitope de gp41 sur la gpl20 ne peut, en revanche, pas être expliquée puisque ces deux protéines sont codées par des régions différentes du génome viral et qu'elles ne possèdent ni homologie de séquence ni réactivité immunologique croisée.
Par conséquent, tous les épitopes reconnus par ces anticorps monoclonaux anti-gp41 sont présents sur les produits de 120 à 160 kDa et les épitopes de la gpl20 ne sont jamais détectés sur le produit de 160 kDa. Ceci suggère que les deux bandes mises en évidence en "western blot" à 120 et 160 kDa correspondent à des formes oligomériques de la gp41.
Cependant, les anticorps monoclonaux anti gpl20 reconnaissent également un produit de 120 kDa. Il faut donc supposer que la bande mise en évidence par immunodetection avec un sérum positif, correspond à la détection de deux produits du gène "env", à savoir une forme multimérique de la gp41 associée à la glycoprotéine externe gpl20. Ceci est compatible avec les résultats obtenus en "western blot" puisque, l1 immunodetection effectuée avec les anticorps monoclonaux anti gpl20 donne dans la région de 120 kDa une bande d'environ 1 mm, alors que sur la même membrane, un sérum positif donne dans cette région un signal beaucoup plus large de 3 à 4 mm environ. De plus, cette bande reconnue par l'anticorps anti gp 120 est non seulement plus fine mais également légèrement plus haute que la bande reconnue par l'anticorps monoclonal anti-gp41.
Ainsi le produit de 160 kDa mis en évidence sur les "western blots" préparés à partir de lysats de virus correspond-il à un tétramère de gp41 et la bande de 120 kDa correspond-elle à la fois à la gpl20 et à un trimère de la gp41.
Le précurseur codé par le gène env (la gpl60) ne serait pas présent dans la particule virale sous sa forme non clivée. Ce point est en accord avec les résultats de Pinter et col. (1989) qui, grâce à un anticorps monoclonal anti-gpl20, mettent en évidence la présence de gpl60 et de gpl20 dans un lysat de cellules infectées, alors que le même anticorps ne reconnaît que la gpl20 dans les particules virales.
L'addition de CHAPS ou 3-[(3-cholamidoproyl)-diméthylamino-l-propane sulfonate] au tampon de dissociation des particules virales apparaît directement responsable du maintien des structures oligomériques des glycoprotéines de l'enveloppe virale. Le CHAPS est un détergent "zwitterionique" dont la structure est proche de celle du cholestérol et qui possède des propriétés proches de celles d'autres détergents ioniques, comme les cholates et deoxycholates. Le CHAPS permet une bonne solubilisation des protéines membranaires et empêche la formation d'aggrégats protéiques. Il a permis d'isoler des récepteurs membranaires sans en altérer les propriétés (affinités, spécificités), alors que ces récepteurs perdent leur propriété lorsqu'ils sont extraits avec d'autres détergents [Simonds et col., 1980; Sladeczek et col., 1984; Brose et col., 1992]. Dans le cas de HIV, l'effet stabilisateur du CHAPS sur la structure quaternaire du tétramère dépend de la concentration en CHAPS au moment de la dissociation des particules virales. Si le CHAPS est ajouté à des particules virales déjà dissociées par action du SDS, il ne permet pas la réassociation des monomères. Pour HIV, l'interaction gp41/CHAPS semble stabiliser la conformation oligomérique de la gp41, ce qui lui permet d'être parfaitement reconnue par les anticorps. Sans CHAPS et à 1% de SDS, les formes oligomériques sont progressivement dissociées, la dissociation étant accélérée par le traitement à 95 °C. De plus, il a été montré que la concentration maximum de SDS tolérée par le tétramère de gp41 est de l'ordre de 0,1 à 0,15 %. Au-delà le tétramère est dissocié. Il semble cependant que les tétramères puissent résister à des concentrations plus élevées en SDS mais pendant un laps de temps très court (environ 5 min) [Pinter et col., 1989]. Ces résultats renforcent les observations effectuées au laboratoire avec la mise en évidence de la perte de réactivité antigénique au niveau des formes oligomériques de la gp41 par traitement de échantillons à 95 °C en présence de 1 % de SDS.
On peut donc supposer que lors du traitement de la particule virale par le tampon de solubilisation contenant à la fois du CHAPS et du SDS:
- le CHAPS prend la place du cholestérol membranaire avec une affinité pour les aminoacides hydrophobes impliqués dans l'interaction avec le cholestérol plus importante que celle, moins spécifique, du SDS pour ces mêmes aminoacides hydrophobes transmembranaires,
- tandis que le SDS prend la place des phospholipides et glycolipides membranaires,
- l'association SDS-CHAPS tendant à reconstituer l'environnement nécessaire au maintien des structures oligomériques des glycoprotéines transmembranaires.
Cependant, un excès de SDS ou le chauffage prolongé au moment de la solubilisation déplacent l'interaction en faveur du SDS qui prend alors, de façon irréversible, la place du CHAPS. III TEST D IMMUNOGENICITE CHEZ LA SOURIS
- Obtention de la préparation vaccinale
Le virus grippal purifié par ultracentrifugation sur gradient de saccharose est remis en suspension en tampon phosphate (PBS) à pH 7,4 à la concentration de 3 mg de protéines totales/ml (dosage protéique selon Bradford, 1976).
Après sonication, le virus est traité pendant 18h à 37°C par un égal volume d'une solution de détergents contenant 1 % de SDS et 1 % de CHAPS en tampon PBS à pH 7,4, DTE (dithioerythritol) 0,02 M. On recherche l'absence de virus résiduel par inoculation de 0,2 ml de la préparation virale non diluée ou diluée à 1/10 dans la cavité allantoïque d'oeufs de poule embryonnés de 10 jours; en cas d'activité infectieuse résiduelle, on peut effectuer une étape supplémentaire d'inactivation par traitement au formaldéhyde à 0,01 % final pendant 24 h à température ambiante.
- Protocole d'immunisation
Des souris BALB/c (IFFA-CREDO France) âgées de 6 semaines sont immunisées par voie sous-cutanée, sous un volume de 0,5 ml, avec les doses de 0- 0,1-1-10 et lOOμg de protéines totales de la préparation virale inactivée obtenue précédemment; ces doses sont préparées par dilution de la préparation dans du tampon PBS pH 7,4. Elles sont administrées sans adjuvant. Chaque groupe expérimental est constitué de 10 animaux recevant chacun une dose identique d'antigène.
Deux schémas d'immunisation sont effectués parallèlement qui comportent ou non une injection de rappel: 28 jours après immunisation, les groupes d'animaux recevant une seule injection sont saignés, ceux qui subissent une injection de rappel reçoivent une injection de même dose que lors de la primo-immunisation et sont ensuite saignés 15 jours après le rappel. Les prélèvements de sang sont effectués à la carotide, sous anesthésie des souris à l'éther.
- Analyse des sérums Les sérums sont analysés pour leur contenu en anticorps inhibant l'activité hémagglutinante du virus grippal (anticorps IHA). (il est admis qu'ils ont, chez l'homme, une signification protectrice vis-à-vis de la souche d'immunisation pour des taux d'ordre de 40-80). Les sérums sont préalablement débarrassés de leurs inhibiteurs non spécifiques par traitement à la neuraminidase de choléra (Receptor Destroying Enzyme, RDE), suivi si nécessaire par un traitement au métapériodate de potassium. La réaction d'inhibition d'hémagglutination (Palmer et al., 1975) met en présence à volume égal (sous 50 μl, en tampon PBS) des dilutions de raison 2 des sérums traités, le virus grippal dilué de façon à contenir 4 unités hémagglutinantes, et des globules rouges de poule à 0,5 %. Le titre du sérum en anticorps IHA est donné par l'inverse de la dernière dilution qui inhibe l'activité hémagglutinante du virus.
BIBLIOGRAPHIE
- Bradford (1976). Anal. Biochem. 72, 248-354.
- Brose, N., Petrenko, A.G., Sϋdhof, T.C. et Jahn, R. (1992). "Synaptogamin: A calcium sensor on the synaptic vesicle surface". Science 256, 1021-1025.
- Copeland, CS., Doms, R.W., Bolzau, E.M., Webster, R.G. et Helenius, A. (1986). "Assembly of influenza hemagglutinin trimers and its rôle in intracellular transport". J. Cell Biol. 103, 1179-1191.
- Doms, R.W. et Helenius, A. (1986). "Quaternary structure of influenza virus hemagglutinin after acidic treatment". 60, 833-839.
- Einfeld, D. et Hunter, E. (1988). "Oligomeric structure of a prototype retrovirus glycoprotein". Proc. Natl. Acad. Sci. USA 85, 8688-8692.
- Evans, L.A. et Levy, J.A. (1989). "Characteristics of HIV infection and pathogenesis". Biochim. Biophys. Acta 989, 237-254.
- Gething, M.J., McCammon, K. et Sambrook, J. (1986). "Expression of wild-type and mutant forms of influenza hemagglutinin: the rôle of folding in intracellular transport". Cell 46, 939-950. - Kreis, T.E. et Lodish, H.F. (1986). "Oligomerization is essential for transport of vesicular stomatitis viral glycoprotein to the cell surface". Cell 46, 929- 937.
- Pinter, A. et Fleissner, E. (1979). "Structural studies of retroviruses: characterization of oligomeric complexes of murine and féline leukemia virus envelope and core components formed upon cross-linking". J. Virol. 30, 157-165.
- Palmer et al. (1975). "Haemagglutination-inhibition test". Advanced laboratory technicals for immunological diagnostic (Ed. Welfare P.H.S., Atlanta),
Immunology Ser. N° 6, Procédural guide Part 2, 25-62.)
- Pinter, A., Honnen, W.J., Tilley, S.A., Bona, C, Zaghouani, H., Gorny, M.K. et Zolla-Pazner, S. (1989). "Oligomeric structure of gp41, the transmembrane protein of human immunodeficiency virus type 1". 63, 2674-2679.
- Racevskis, J. et Sarkar, N.H. (1980). "Murine mammary tumor virus stuctural protein interactions: formation of oligomeric complexes with cleavable cross-linking agents". J. Virol. 35, 937-948.
- Simonds, W., Koski, G., Streaty, R.A., Hjelmeland, L.M. et Klee, W.A. (1980). "Solubilisation of active opiate receptors". Proc. Natl. Sc,i. Acad. USA 77, 4623-4627.
- Sladeczek, F., Bockaert, J. et Rouot, B. (1984). "Solubilization of a adrenoreceptor with a zwitterionic détergent: préservation of agonist binding and its sensitivity to GTP". Biochem. Biophys. Res. Comm. 1116-1121.
- Takemoto, L.J., Fox, C.S., Jensen, F.C., Elder, J.H. et Lerner, R.A. (1978). "Nearest neighbor interactions of the major RNA tumor virus glycoprotein on murine cell surfaces". Proc. Natl. Sci. Acad. USA 75, 3644-3648.
- Varghese, J.N., Lavef, W.G. et Colman, P.M. (1983). "Structure of the influenza virus glycoprotein antigen neuraminidase at 2,9 A resolution". Nature 303, 35-40. - Wong-Staal, F. et Haseltine, W.A. (1992). "Regulatory gènes of Human Immunodeficiency Viruses". in Molecular Genetic Medicine, Vol.2, Friedman, T. éd., PP 189-219.

Claims

REVENDICATIONS
1. Procédé de lyse de cellules ou de micro-organismes, tels que les virus, ou d'hôtes cellulaires infectés par ces micro-organismes, aux génomes modifiés ou non, notamment aux fins d'obtention et, le cas échéant de purification des protéines à localisation membranaire chez ces cellules, micro-organismes ou hôtes cellulaires, ce procédé permettant de maintenir sous forme oligomérique celles des protéines susceptibles d'être présentes sous une telle forme dans les cellules, micro-organismes ou hôtes cellulaires susmentionnés, tout en détruisant le pouvoir infectieux de ces micro-organismes, lequel procédé est caractérisé en ce qu'il comprend une étape de traitement de ces cellules, micro-organismes ou hôtes cellulaires à l'aide d'une composition contenant une association d'au moins deux molécules différentes (désignées respectivement par premier et second composés) au caractère amphipathique, chacune comprenant une partie hydrophobe et une partie hydrophile.
2. Procédé de lyse selon la revendication 1, caractérisé en ce que l'une au moins des deux molécules, à savoir le premier composé, possède la propriété, lorsqu'il est utilisé en dehors de l'association avec le second composé, de solubiliser les protéines présentes dans ces cellules, micro-organismes ou hôtes cellulaires, et de dissocier les protéines qui sont sous forme oligomérique, ce composé étant utilisé dans l'association définie dans la revendication 1 avec le second composé dans des proportions telles qu'il conserve la propriété de solubiliser les protéines présentes dans ces cellules, micro-organismes ou hôtes cellulaires tout en autorisant le maintien sous forme oligomérique de celles des protéines susceptibles d'être sous une telle forme dans ces cellules, micro- organismes ou hôtes cellulaires.
3. Procédé de lyse selon la revendication 2, caractérisé en ce que le premier composé, est constitué d'une ou plusieurs chaînes hydrocarbonées, hydrophobes saturées ou insaturées, ramifiées ou non, et d'une tête polaire reliant entre elles ou non ces chaînes hydrophobes.
4. Procédé de lyse selon la revendication 3, caractérisé en ce que le premier composé est choisi parmi les composés répondant à la formule suivante:
CH3-(CH2)n-R. dans laquelle:
- R représente un groupe sulfate, phosphate, ou un halogène, notamment le chlore ou le brome,
- n est supéieur ou égal à 4, et de préférence compris entre 10 et 18.
5. Procédé de lyse selon l'une des revendications 1 à 4, caractérisé en ce que le second composé utilisé dans l'association définie dans la revendication 1, possède la propriété de solubiliser les protéines oligomériques membranaires en les maintenant sous forme oligomérique, tout en conservant tout ou partie de leurs propriétés immunogenes.
6. Procédé de lyse selon la revendication 5, caractérisé en ce que le second composé a pour structure de base hydrophobe le noyau gonane, constitué de
4 noyaux cycliques A, B, C et D, à 17 atomes de carbone, constituant la structure de base du cholestérol, portant ou non des groupements hydrocarbonés branchés en 10 ou en 13, ainsi que des groupements hydrophiles sur certains des 17 atomes de carbone, en alpha ou béta, principalement en 3, 7, 12, estérifiés ou non, cette structure de base étant associée ou non à une autre tête polaire branchée sur le noyau cyclique D en 15, 16 ou 17, directement ou non par l'intermédiaire d'une chaîne hydrocarbonée.
7. Procédé de lyse selon l'une des revendications 1 à 6, caractérisé en ce que le premier composé est le sodium dodécyl sulfate (ou SDS) et le second composé est le 3-[(3-cholamidopropyl)-diméthylamino-l-propane sulfonate] (ou CHAPS).
8. Procédé de lyse selon l'une des revendications 1 à 7, caractérisé en ce qu'il est appliqué sur des cellules humaines, animales ou végétales, ou sur des micro-organismes ou des hôtes cellulaires infectés par ces micro-organismes, notamment par des virus humains, animaux ou végétaux, présentant des protéines, notamment des glycoprotéines d'enveloppe, susceptibles d'être sous forme oligomérique et, le cas échéant, responsables de la fusion des membranes virus- hôte lors de l'infection.
9. Procédé de lyse selon l'une des revendications 1 à 8, caractérisé en ce qu'il est appliqué sur des rétrovirus humains du type HIV-1, HTV-2 et HTLV-I, HTLV-II, les myxovirus, notamment les virus de l'influenza, les paramyxovirus, notamment le virus des oreillons et le virus de la rougeole.
10. Procédé de lyse selon l'une des revendications 1 à 9, caractérisé en ce qu'il est appliqué aux différents types de virus responsables du SIDA, HTV-1 ou
HTV-2 OU un mélange de ces derniers, en vue de la séparation, pour ce qui concerne HIV-1, d'une part la protéine d'enveloppe transmembranaire de HFV-1, de 41kDa connue sous le nom de GP41 (responsable de la fusion des membranes avec les cellules cibles lors de l'infection), sous forme oligomérique, c'est à dire trimerique de 120kDa et plus particulièrement tétramérique de 160 kDa, et d'autre part les autres protéines entrant dans la composition du virion, notamment les produits des gènes viraux "gag", "pol" et "env", y compris la gpl20 (autre produit de clivage du précurseur de la protéine d'enveloppe gpl60 et qui est responsable de la reconnaissance de la cellule cible CD4 positive) sous forme monomérique, et, pour ce qui concerne HTV-2, d'une part les formes oligomériques de la protéine d'enveloppe de 36kDa connues sous le nom de gp36 et, d'autre part les autres protéines constitutives du virion de façon analogue à celles d'HIV-1.
11. Procédé de lyse selon l'une des revendications 1 à 9, caractérisé en ce qu'il est appliqué aux différents types de myxovirus responsables de la grippe ou influenza, avec possibilité de séparer, d'une part la protéine d'enveloppe HA aux propriétés hémaglutinantes sous forme oligomérique et plus particulièrement trimerique et, d'autre part, les autres protéines entrant dans la composition du virion.
12. Procédé d'obtention de protéines sous leur forme oligomérique telle qu'existante dans la membrane cellulaire ou dans la membrane des micro¬ organismes, caractérisé en ce qu'il comprend une étape de lyse des cellules, des micro-organismes, notamment de virus, ou des hôtes cellulaires infectés par ces micro-organismes, suivant le procédé selon l'une des revendications 1 à 11, le cas échéant suivie d'une étape de séparation proprement dite des protéines obtenues lors de l'étape précédente, notamment par électrophorèse en gel de polyacrylamide en présence de dodécyl sulfate de sodium par exemple, permettant la séparation des protéines en fonction de leur masse moléculaire, les protéines sous forme oligomérique restant associées sous une telle forme, cette dernière étape ou l'étape de lyse précédente étant elles-mêmes le cas échéant suivie d'une étape de purification de la protéine ou des protéines ainsi obtenues.
13. Protéines oligomériques telles qu'obtenues par mise en oeuvre d'un procédé selon l'une des revendications 1 à 12.
14. composition de protéines oligomériques telles selon la revendication 13, comprenant le trimère de la protéine d'enveloppe transmembranaire de HIV-1 de
41kDa (ou gp41), à savoir le trimère de 120kDa décrit ci-dessus, et/ou le tétramère de cette gp41, à savoir le tétramère de 160kDa, et/ou une ou plusieurs formes oligomériques de la gp36 d'HIV-2.
15. Composition de protéines oligomériques selon la revendication 13, comprenant la protéine d'enveloppe HA aux propriétés hémaglutinantes sous forme oligomérique et plus particulièrement trimerique, des myxovirus responsables de la grippe ou influenza.
16. Méthode de diagnostic in vitro de pathologies causées par l'infection d'individus (homme ou animal) par des micro-organismes, notamment par les virus du type HIV, cette méthode comprenant une étape de détection des anticorps reconnus spécifiquement par les protéines oligomériques telles qu'obtenues par le procédé selon l'une des revendications 1 à 13, notamment par les protéines selon la revendication 14, ces anticorps étant susceptibles d'être présents dans des échantillons biologiques, notamment dans du sérum, provenant d'individus eux-mêmes susceptibles d'être infectés par les micro-organismes en question.
17. Composition vaccinante contre les différents virus du type HIV, comprenant une composition selon la revendication 14, en association avec un véhicule physiologiquement acceptable.
18. Composition vaccinante contre les différents virus responsables de la grippe ou influenza, comprenant une composition selon la revendication 15, en association avec un véhicule physiologiquement acceptable.
19. Composition caractérisée en ce qu'elle comprend:
- au moins un premier composé susceptible de solubiliser les protéines présentes dans des cellules, micro-organismes, notamment des virus, ou hôtes cellulaires infectés par ces micro-organismes, et de dissocier (lorsqu'il est utilisé seul ou en très large excès par rapport au second composé) les protéines qui sont sous forme oligomérique, en association avec - au moins un second composé possédant la propriété de solubiliser les protéines oligomériques membranaires en les maintenant sous forme oligomérique, tout en conservant leurs propriétés immunogenes, le premier composé étant utilisé dans l'association définie ci-dessus avec dans des proportions telles qu'il conserve la propriété de solubiliser les protéines présentes dans ces cellules, micro-organismes ou hôtes cellulaires, tout en autorisant le maintien sous forme oligomérique de celles des protéines susceptibles d'être sous une telle forme dans ces cellules, micro-organismes ou hôtes cellulaires.
20. Composition selon la revendication 19, caractérisée en ce que le premier composé est le sodium dodécyl sulfate (ou SDS) et le second composé est le 3-[(3-cholamidopropyl)-diméthylamino-l-propane sulfonate] (ou CHAPS).
21. Composition selon la revendication 19 ou 20, caractérisée en ce que la quantité du premier composé, et plus particulièrement celle du SDS, représente de préférence environ 1,5 fois la quantité (en g/1) de protéines totales présentes dans l'échantillon biologique à traiter selon le procédé de lyse défini dans l'une des revendications 1 à 13.
22. Composition selon l'une des revendications 19 à 21, caractérisée en ce que la quantité du second composé, et plus particulièrement du CHAPS, est au moins équivalente à celle du premier.
23. Composition selon l'une des revendications 19 à 22, caractérisée en ce que le SDS et le CHAPS sont utilisés dans un rapport équipondéral, et contient de préférence environ 0,5% à environ 1% de chacun de ces deux composés.
24. Trousses de réactifs (ou kits) pour la mise en oeuvre d'un procédé selon l'une des revendications 1 à 13 et comprenant une composition selon l'une des revendications 19 à 23.
25. Trousses de réactifs pour la mise en oeuvre d'une méthode de diagnostic selon la revendication 16, comprenant une composition contenant une ou plusieurs protéines oligomériques telles qu'obtenues par le procédé selon l'une des revendications 1 à 13, notamment une composition selon la revendication 14, et le cas échéant une composition selon l'une des revendications 19 à 23.
PCT/FR1993/000654 1992-06-30 1993-06-29 Procede d'obtention de proteines membranaires, permettant le maintien des structures oligomeriques de ces proteines en conditions denaturantes, et utilisation de ces proteines dans un but de diagnostic ou de vaccination WO1994000557A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU45047/93A AU4504793A (en) 1992-06-30 1993-06-29 Method for preparing membrane proteins and preserving their oligomeric structures under denaturing conditions, and uses of said proteins in diagnostics and vaccination

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9208051A FR2692898B1 (fr) 1992-06-30 1992-06-30 Procédé d'obtention de protéines membranaires, et utilisation de ces protéines dans un but de diagnostic ou de vaccination.
FR92/08051 1992-06-30

Publications (1)

Publication Number Publication Date
WO1994000557A1 true WO1994000557A1 (fr) 1994-01-06

Family

ID=9431365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1993/000654 WO1994000557A1 (fr) 1992-06-30 1993-06-29 Procede d'obtention de proteines membranaires, permettant le maintien des structures oligomeriques de ces proteines en conditions denaturantes, et utilisation de ces proteines dans un but de diagnostic ou de vaccination

Country Status (3)

Country Link
AU (1) AU4504793A (fr)
FR (1) FR2692898B1 (fr)
WO (1) WO1994000557A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051780A2 (fr) * 1997-05-12 1998-11-19 Celtrix Pharmaceuticals, Inc. Methodes d'augmentation de rendements de proteines recombinees
DE19801090A1 (de) * 1998-01-14 1999-07-15 Gerhard Haase Lysis-Filtrations-Assay LYFA
FR2781676A1 (fr) * 1998-07-31 2000-02-04 Pasteur Merieux Serums Vacc Trimere du produit d'expression du gene env de hiv
WO2001014407A2 (fr) * 1999-08-19 2001-03-01 M-Phasys Gmbh Repliement de proteines membranaires
WO2024056508A1 (fr) 2022-09-15 2024-03-21 Cube Biotech Gmbh Procédé de diagnostic in vitro pour détecter la présence d'une cible à l'aide de protéines membranaires stabilisées

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752473A (en) * 1984-10-12 1988-06-21 The Regents Of The University Of California Expression of glycosylated human influenza hemagglutinin proteins
EP0295859A2 (fr) * 1987-06-15 1988-12-21 Southern Cross Biotech Pty.Ltd. Préparation de protéines dans les formes actives
EP0321606A1 (fr) * 1987-12-23 1989-06-28 IMMUNO Aktiengesellschaft Protéines amphipatiques cellulaires en forme d'agrégats et procédé pour la production et la purification de ces protéines
EP0334278A2 (fr) * 1988-03-23 1989-09-27 Wolfgang Prof. Dr. Bredt Procédé de purification d'une protéine de 168 kD à partir de Mycoplasma pneumoniae
EP0366239A1 (fr) * 1988-08-31 1990-05-02 Smithkline Beecham Corporation Procédé de purification pour protéines recombinantes d'influenza
EP0382875A1 (fr) * 1987-08-18 1990-08-22 Yuhsy Matuo Dispersant pour peprtides biologiquement actifs
WO1990013314A2 (fr) * 1989-05-12 1990-11-15 Institut Pasteur Antigenes de la glycoproteine transmembranaire d'enveloppe d'un retrovirus humain du type hiv-2 (antigenes presentant avec eux une parente immunologique)
WO1991006646A1 (fr) * 1989-10-24 1991-05-16 Triton Biosciences, Inc. Solubilisation et purification du recepteur de peptides de liberation de gastrine
WO1991014449A1 (fr) * 1990-03-19 1991-10-03 Institut Pasteur Induction de protection contre les infections virales
DD300690A5 (de) * 1990-03-23 1992-07-02 Univ Berlin Humboldt Verfahren zur Herstellung eines Derivates des Transmembranproteins Gp41 deshumanen Immundeffizienzvirus 1 (Penv 474-647) in E. Coli

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752473A (en) * 1984-10-12 1988-06-21 The Regents Of The University Of California Expression of glycosylated human influenza hemagglutinin proteins
EP0295859A2 (fr) * 1987-06-15 1988-12-21 Southern Cross Biotech Pty.Ltd. Préparation de protéines dans les formes actives
EP0382875A1 (fr) * 1987-08-18 1990-08-22 Yuhsy Matuo Dispersant pour peprtides biologiquement actifs
EP0321606A1 (fr) * 1987-12-23 1989-06-28 IMMUNO Aktiengesellschaft Protéines amphipatiques cellulaires en forme d'agrégats et procédé pour la production et la purification de ces protéines
EP0334278A2 (fr) * 1988-03-23 1989-09-27 Wolfgang Prof. Dr. Bredt Procédé de purification d'une protéine de 168 kD à partir de Mycoplasma pneumoniae
EP0366239A1 (fr) * 1988-08-31 1990-05-02 Smithkline Beecham Corporation Procédé de purification pour protéines recombinantes d'influenza
WO1990013314A2 (fr) * 1989-05-12 1990-11-15 Institut Pasteur Antigenes de la glycoproteine transmembranaire d'enveloppe d'un retrovirus humain du type hiv-2 (antigenes presentant avec eux une parente immunologique)
WO1991006646A1 (fr) * 1989-10-24 1991-05-16 Triton Biosciences, Inc. Solubilisation et purification du recepteur de peptides de liberation de gastrine
WO1991014449A1 (fr) * 1990-03-19 1991-10-03 Institut Pasteur Induction de protection contre les infections virales
DD300690A5 (de) * 1990-03-23 1992-07-02 Univ Berlin Humboldt Verfahren zur Herstellung eines Derivates des Transmembranproteins Gp41 deshumanen Immundeffizienzvirus 1 (Penv 474-647) in E. Coli

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051780A2 (fr) * 1997-05-12 1998-11-19 Celtrix Pharmaceuticals, Inc. Methodes d'augmentation de rendements de proteines recombinees
WO1998051780A3 (fr) * 1997-05-12 1999-03-25 Celtrix Pharma Methodes d'augmentation de rendements de proteines recombinees
US5914390A (en) * 1997-05-12 1999-06-22 Celtrix Pharmaceuticals, Inc. Methods for increasing yields of recombinant proteins
DE19801090A1 (de) * 1998-01-14 1999-07-15 Gerhard Haase Lysis-Filtrations-Assay LYFA
FR2781676A1 (fr) * 1998-07-31 2000-02-04 Pasteur Merieux Serums Vacc Trimere du produit d'expression du gene env de hiv
WO2000008167A1 (fr) * 1998-07-31 2000-02-17 Aventis Pasteur Trimere du produit d'expression du gene env de hiv
US6737067B1 (en) 1998-07-31 2004-05-18 Aventis Pasteur S.A. Trimer of HIV env gene expression product
WO2001014407A2 (fr) * 1999-08-19 2001-03-01 M-Phasys Gmbh Repliement de proteines membranaires
WO2001014407A3 (fr) * 1999-08-19 2001-09-20 Phasys Gmbh M Repliement de proteines membranaires
EP1359155A1 (fr) 1999-08-19 2003-11-05 M-Phasys GmbH Repliement de protéines membranaires utilisant deux détergents différents
US6939951B1 (en) 1999-08-19 2005-09-06 M-Phasys Gmbh Refolding of membrane proteins
WO2024056508A1 (fr) 2022-09-15 2024-03-21 Cube Biotech Gmbh Procédé de diagnostic in vitro pour détecter la présence d'une cible à l'aide de protéines membranaires stabilisées

Also Published As

Publication number Publication date
FR2692898B1 (fr) 1995-06-02
AU4504793A (en) 1994-01-24
FR2692898A1 (fr) 1993-12-31

Similar Documents

Publication Publication Date Title
US5858647A (en) Methods for detecting antibodies against HIV-3 retrovirus and its use!
JPH05328967A (ja) Aidsワクチン及びその製法
WO2002028427A2 (fr) Composition pharmaceutique pour l'immunisation contre le sida
JP2006056893A (ja) Hivに対する中和性抗体および細胞障害性tリンパ球を誘発する複合合成ペプチド構築物
CA2065402A1 (fr) Prophylaxie et traitement du syndrome d'immunodeficience acquise
PT1991564E (pt) Vesículas de tipo virosoma compreendendo antigénios derivados de gp41
Berzofsky Development of artificial vaccines against HIV using defined epitopes
FR2781676A1 (fr) Trimere du produit d'expression du gene env de hiv
CA2077753C (fr) Composition a base de gp120 purifie conservant sa conformation naturelle
WO2000061067A2 (fr) Vaccin anti-vih-1 comprenant tout ou partie de la proteine tat de vih-1
EP0402088A2 (fr) Conjugés immunogènes contre le Sida
Browning et al. Incorporation of soluble antigens into ISCOMs: HIV gp120 ISCOMs induce virus neutralizing antibodies
WO1994000557A1 (fr) Procede d'obtention de proteines membranaires, permettant le maintien des structures oligomeriques de ces proteines en conditions denaturantes, et utilisation de ces proteines dans un but de diagnostic ou de vaccination
JPH07505412A (ja) Ctl応答の誘導
Stott Towards a vaccine against AIDS: lessons from simian immunodeficiency virus vaccines
EP0783038A1 (fr) Pseudo-particules virales recombinantes et applications vaccinales et antitumorales
EP1368478B1 (fr) Polypeptide induisant des anticorps neutralisant le vih
FR2859909A1 (fr) Procede de preparation de microparticules bioresorbables, microparticules obtenues et utilisation
EP0424519B1 (fr) Antigenes de la glycoproteine transmembranaire d'enveloppe d'un retrovirus humain du type hiv-2 (antigenes presentant avec eux une parente immunologique)
EP1442124B1 (fr) ANTIGENE POLYPEPTIDIQUE FORMANT UNE STRUCTURE MIMANT L'ETAT INTERMEDIAIRE DE gp41
JPH07502729A (ja) 免疫応答または抗感染応答を誘発するための方法と組成物
FR2677364A1 (fr) Sequences peptidiques de la glycoproteine externe d'enveloppe du retrovirus hiv-1.
Åkerblom et al. Cross-Neutralizing Antibodies to HIV-1 in Mice After Immunization with gp160 Iscoms. Dissection of the Immune Response
Mills Prospects for vaccination against HIV infection
WO1992000098A1 (fr) Methodes destinees a provoquer une reponse immunitaire au virus du sida

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase