WO1993026048A1 - Pn junction diode and its manufacture method - Google Patents

Pn junction diode and its manufacture method Download PDF

Info

Publication number
WO1993026048A1
WO1993026048A1 PCT/JP1993/000810 JP9300810W WO9326048A1 WO 1993026048 A1 WO1993026048 A1 WO 1993026048A1 JP 9300810 W JP9300810 W JP 9300810W WO 9326048 A1 WO9326048 A1 WO 9326048A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductivity type
diffusion region
semiconductor substrate
impurity
junction
Prior art date
Application number
PCT/JP1993/000810
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Sakurai
Original Assignee
Citizen Watch Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co., Ltd. filed Critical Citizen Watch Co., Ltd.
Publication of WO1993026048A1 publication Critical patent/WO1993026048A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes

Definitions

  • the present invention relates to a PN junction diode and a method of manufacturing the same, and more particularly to a configuration of a PN junction diode capable of preventing a change in diode characteristics with time and a method of manufacturing the same.
  • PN junction diodes are widely used for reference voltage sources such as regulator circuits and voltage limiters for boost circuits.
  • the PN junction diode is formed by diffusing a P-type impurity and an N-type impurity into a semiconductor substrate so as to be in contact with each other. At this time, in order to make the bonding surface as close as possible to the plane and to make connection with metal wiring, both the P-type impurity diffusion region and the N-type impurity diffusion region Must be in contact with
  • PN junction diode the simplest configuration of a PN junction diode is to form both diffusion regions near the substrate surface so that they are in lateral contact with each other.
  • FIG. 8 is a cross-sectional view showing a configuration near a bonding surface of a conventional PN junction diode, and illustration of a connection portion with a metal wiring and the like is omitted.
  • a diffusion region 3 of the first conductivity type and a diffusion region 5 of the second conductivity type are formed near the surface of the semiconductor substrate 1, and both regions are in contact with each other at the bonding surface 7 to form a PN junction. Constitutes a diode. And.
  • the surface of the semiconductor substrate 1 including the bonding surface 7 is covered with a protective film 9 such as an oxide film.
  • the entire bonding surface 7 serves as a breakdown surface during reverse breakdown.
  • the conventional PN junction diode has a configuration in which the breakdown surface is in contact with the protective film 9 on the surface.
  • Such a PN junction diode is excellent in that the manufacturing process is simple and can be manufactured without changing the manufacturing process of the peripheral semiconductor integrated circuit. However, there was a problem that the diode characteristics gradually changed when the breakdown operation was repeated.
  • the present invention has been made to solve the above problems, and has as its object to provide a PN junction diode that does not change with time, and to easily manufacture the PN junction diode. Disclosure of the invention
  • the structure of the PN junction diode according to the present invention covers a first conductivity type diffusion region formed in a semiconductor substrate, a second conductivity type diffusion region in contact with the first conductivity type diffusion region, and the semiconductor substrate.
  • a first conductive type low-concentration region on a surface side of the first conductive type diffusion region which is in contact with a junction surface between the first conductive type diffusion region and the second conductive type diffusion region. It is characterized by having provided.
  • the method of manufacturing a PN junction diode according to the present invention is characterized in that the following steps (1) to (6) are sequentially performed.
  • the characteristics of the PN junction diode change gradually, not the characteristics of the diode itself, but the hot carriers generated during reverse breakdown are trapped in the protective film near the breakdown surface, and the protective film is It is gradually charged, and the electric field reaches the PN junction surface.
  • FIG. 1 is a cross-sectional view showing a configuration near a bonding surface of a PN junction diode according to one embodiment of the present invention.
  • FIG. 2 to 7 are cross-sectional views similar to FIG. 1 showing respective steps of one embodiment of a method for manufacturing a PN junction diode according to the present invention.
  • FIG. 8 is a cross-sectional view showing a configuration near a bonding surface of a conventional PN junction diode.
  • FIG. 1 shows a PN junction die according to an embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing a configuration near a joint surface of a groove, and portions corresponding to FIG. 8 are denoted by the same reference numerals. It should be noted that the illustration of the connection portion with the metal wiring is omitted.
  • the PN junction diode has a diffusion region 3 of the first conductivity type (for example, P type) and a diffusion region 5 of the second conductivity type (for example, N type) near the surface of the semiconductor substrate 1. And a diffusion region of the first conductivity type near the junction surface between the diffusion region 3 of the first conductivity type and the diffusion region 5 of the second conductivity type.
  • a low-concentration region 11 of the first conductivity type having the same conductivity type as that of 3 and a low impurity concentration is provided.
  • the low concentration region 11 of the first conductivity type is in contact with the diffusion region 5 of the second conductivity type at the first bonding surface 13.
  • the diffusion region 3 of the first conductivity type having a high impurity concentration is in contact with the diffusion region 5 of the second conductivity type at the second bonding surface 14.
  • the reverse breakdown of the PN junction occurs at a lower voltage as the impurity concentration increases, in the PN junction diode of this configuration, when the applied voltage increases, the second junction surface 14 Breakdown occurs. After the breakdown occurs on the second bonding surface 14, no breakdown occurs on the first bonding surface 13 even if the voltage further increases.
  • the breakdown surface of the reverse breakdown is separated from the protective film 9 on the surface, the hot carrier is not trapped by the protective film 9, and thus the diode characteristics do not change with time.
  • the break The down surface is a second bonding surface 14, and the second bonding surface 14 is not in contact with the protective film 9 and is separated therefrom. Therefore, the PN junction diode thus configured does not change its diode characteristics even when the breakdown operation is repeated.
  • 2 to 7 are cross-sectional views showing each step in the method for manufacturing a PN junction diode according to the present invention. However, these figures also show only the vicinity of the junction surface of the PN junction diode, and the illustration of the connection portion with the metal wiring is omitted.
  • a masking material 15 such as a resist, which is a photosensitive material, is selectively formed on the surface of the semiconductor substrate 1. Then, the first conductivity type impurity 17 is introduced into the semiconductor substrate 1 by an ion implantation method using the masking material 15 as a blocking film for ion implantation.
  • the masking material 15 is removed, and a resist is formed on the surface of the semiconductor substrate 1 so that a region adjacent to the region into which the impurity 17 of the first conductivity type is introduced becomes an opening as shown in FIG.
  • the masking material 15 is selectively formed.
  • an impurity 19 of the second conductivity type is introduced into the semiconductor substrate 1 by an ion implantation method.
  • the masking material 15 used as a blocking film for the ion implantation is removed and a heat treatment is performed. As shown in FIG. 4, impurities 17 of the first conductivity type and impurities 19 of the second conductivity type are removed. To form a first conductivity type diffusion region 3 and a second conductivity type diffusion region 5 that are in contact with each other.
  • the bonding surface 7 between the diffusion region 3 of the first conductivity type and the diffusion region 5 of the second conductivity type has reached the surface of the semiconductor substrate 1.
  • a masking material 15 such as a resist is selectively formed on the surface of the semiconductor substrate 1 so that a region including the bonding surface 7 becomes an opening.
  • a small amount of the second conductivity type impurity 21, which is the first conductivity type impurity 17 previously implanted by the ion implantation method is introduced into the semiconductor substrate 1 in the opening of the masking material 15.
  • the masking material 15 used as the ion implantation blocking film is removed and a heat treatment is performed to diffuse this small amount of the second conductivity type impurity 21.
  • a low concentration region 11 of the first conductivity type having a lower impurity concentration than the diffusion region 3 of the first conductivity type is formed on the surface side of the diffusion region 3 of the first conductivity type. I do.
  • the second bonding surface 14 between the diffusion region 3 of the first conductivity type and the diffusion region 5 of the second conductivity type is only inside the semiconductor substrate 1, and the surface portion is the first conductivity type.
  • the first junction surface 13 is a junction surface between the low-concentration region 11 and the diffusion region of the second conductivity type.
  • the second conductivity type impurity 21 is also introduced into the diffusion region 5 of the second conductivity type, it can be neglected because it is small and of the same conductivity type.
  • the surface of the semiconductor substrate 1 is covered with a protective film 9 such as silicon dioxide to complete a PN junction diode. Description of subsequent steps such as connection with metal wiring is omitted.
  • the PN junction diode according to the present invention can be easily manufactured.
  • the PN junction diode according to the present invention prevents the hot carrier from being trapped in the protective film by separating the break-down surface of the PN junction from the protective film on the surface of the semiconductor substrate. Can be eliminated. Therefore, if it is used for a reference voltage source such as a regulator or a limiter of a booster circuit, stable operation can be performed for a long time, and the effect is extremely large.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

A PN junction diode which is provided with a diffusion region (3) of first conductivity type and a diffusion region (5) of second conductivity type, which are arranged in contact with each other on a semiconductor substrate (1). In the surface of the diffusion region (3) which abuts upon the junction of the two regions (3, 5), a low concentration region (11) of the first conductivity type is provided, and the surface of this semiconductor substrate is covered with a protective film (9). No hot carrier is trapped by the protective film (9) upon reverse breakdown. Hence the diode characteristics do not deteriorate with time.

Description

明 細 書 . P N接合ダイォー ド及びその製造方法 技術分野  Description PN junction diode and its manufacturing method
この発明は、 P N接合ダイオード及びその製造方法に関し、 特に ダイォー ド特性の経時変化を防止することが可能な P N接合ダイォ 一ドの構成とその製造方法とに関するものである。 背景技術  The present invention relates to a PN junction diode and a method of manufacturing the same, and more particularly to a configuration of a PN junction diode capable of preventing a change in diode characteristics with time and a method of manufacturing the same. Background art
• P N接合ダイオードの逆方向ブレイクダウン電圧は、 その接合面 が平面あるいは平面に近い場合は不純物濃度によって一義的に定ま るため、 電圧値の制御が容易である。. そのため、 レギユレータ回路 などの基準電圧源や昇圧回路の電圧リミッタなどに、 P N接合ダイ ォー ドが広く用いられている。  • The reverse breakdown voltage of a PN junction diode is uniquely determined by the impurity concentration when its junction surface is flat or close to flat, making it easy to control the voltage value. Therefore, PN junction diodes are widely used for reference voltage sources such as regulator circuits and voltage limiters for boost circuits.
P N接合ダイオードは、 半導体基板に P型不純物と N型不純物と を、 互いに接するように拡散させて形成する。 その際接合面ができ る限り平面に近くなるようにする必要があること、 および金属配線 との接続をとるために、 P型不純物拡散領域と N型不純物拡散領域 のどちらの拡散領域も基板表面に接している必要がある。  The PN junction diode is formed by diffusing a P-type impurity and an N-type impurity into a semiconductor substrate so as to be in contact with each other. At this time, in order to make the bonding surface as close as possible to the plane and to make connection with metal wiring, both the P-type impurity diffusion region and the N-type impurity diffusion region Must be in contact with
そのため、 P N接合ダイオードは、 どちらの拡散領域も基板表面 付近に形成し、 互いに横方向で接するようにするのが最も簡単な構 成である。  Therefore, the simplest configuration of a PN junction diode is to form both diffusion regions near the substrate surface so that they are in lateral contact with each other.
このような従来の P N接合ダイォー ドの構成を第 8図によって説 明する。 この第 8図は、 従来の P N接合ダイオー ドの接合面付近の 構成を示す断面図であり、 金属配線との接続部分などについては図 示を省略している。  The configuration of such a conventional PN junction diode will be described with reference to FIG. FIG. 8 is a cross-sectional view showing a configuration near a bonding surface of a conventional PN junction diode, and illustration of a connection portion with a metal wiring and the like is omitted.
図示のように、 半導体基板 1 の表面付近に第 1導電型の拡散領域 3 と第 2導電型の拡散領域 5 とを形成し、 その両領域が接合面 7に おいて互いに接して、 P N接合ダイオードを構成している。 そして. この接合面 7 を含め、 半導体基板 1 の表面を酸化膜などの保護膜 9 で覆っている。 As shown in the figure, a diffusion region 3 of the first conductivity type and a diffusion region 5 of the second conductivity type are formed near the surface of the semiconductor substrate 1, and both regions are in contact with each other at the bonding surface 7 to form a PN junction. Constitutes a diode. And. The surface of the semiconductor substrate 1 including the bonding surface 7 is covered with a protective film 9 such as an oxide film.
このような P N接合ダイオー ドの構成においては、 接合面 7全体 が逆方向ブレイクダウンの際のブレイクダウン面となっている。  In such a PN junction diode configuration, the entire bonding surface 7 serves as a breakdown surface during reverse breakdown.
すなわち、 従来の P N接合ダイオー ドは、 ブレイ クダウン面が表 面の保護膜 9に接する構成になっている。  That is, the conventional PN junction diode has a configuration in which the breakdown surface is in contact with the protective film 9 on the surface.
このような P N接合ダイオー ドは、 製造工程が簡単であり、 周辺 の半導体集積回路の製造工程を'殆んど変えることなしに製造できる という点では非常に優れている。 しかしながら、 ブレイクダウンの 動作を繰り返していると、 次第にダイォ一 ド特性が変化してしまう という問題があった。  Such a PN junction diode is excellent in that the manufacturing process is simple and can be manufactured without changing the manufacturing process of the peripheral semiconductor integrated circuit. However, there was a problem that the diode characteristics gradually changed when the breakdown operation was repeated.
この発明は上記の問題を解決しょう とするものであり、 経時変化 のない P N接合ダイォー ドを提供すること、 及びその P N接合ダイ オー ドを容易に製造できるようにすることを目的とする。 発明の開示  The present invention has been made to solve the above problems, and has as its object to provide a PN junction diode that does not change with time, and to easily manufacture the PN junction diode. Disclosure of the invention
この発明による P N接合ダイオー ドの構成は、 半導体基板に形成 する第 1導電型の拡散領域と、 この第 1導電型の拡散領域に接する 第 2導電型の拡散領域と、 上記半導体基板を被う保護膜とを有し、 その第 1導電型の拡散領域と第 2導電型の拡散領域との接合面に接 する第 1導電型の拡散領域の表面側に、 第 1 導電型の低濃度領域を 設けたことを特徴とする。  The structure of the PN junction diode according to the present invention covers a first conductivity type diffusion region formed in a semiconductor substrate, a second conductivity type diffusion region in contact with the first conductivity type diffusion region, and the semiconductor substrate. A first conductive type low-concentration region on a surface side of the first conductive type diffusion region which is in contact with a junction surface between the first conductive type diffusion region and the second conductive type diffusion region. It is characterized by having provided.
また、 この発明による P N接合ダイオー ドの製造方法は、 次め(1 ) 〜(6)の各工程を順次行なうことを特徴とする。  The method of manufacturing a PN junction diode according to the present invention is characterized in that the following steps (1) to (6) are sequentially performed.
( 1 ) 半導体基板に第 1導電型の不純物を選択的に導入する工程、 (1) a step of selectively introducing a first conductivity type impurity into a semiconductor substrate,
(2) この第 1導電型の不純物を導入した領域に接するように第 2導 電型の不純物を選択的に導入する工程、 (2) a step of selectively introducing a second conductivity type impurity so as to be in contact with the region into which the first conductivity type impurity has been introduced;
(3) これら第 1導電型の不純物と第 2導電型の不純物を拡散させて 互いに接する第 1導電型の拡散領域と第 2導電型の拡散領域とを . 形成する工程、 (4) その第 1導電型の拡散領域と第 2導電型の拡散領域との接合面 を含む領域に、 先に導入した第 1導電型の不純物よリも小量の第 2導電型の不純物を選択的に導入する工程、 (3) a step of diffusing these first conductivity type impurities and second conductivity type impurities to form a first conductivity type diffusion region and a second conductivity type diffusion region which are in contact with each other; (4) In the region including the junction surface between the first conductivity type diffusion region and the second conductivity type diffusion region, a smaller amount of the second conductivity type impurity than the first conductivity type impurity introduced earlier. The process of selectively introducing
(5) この小量の第 2導電型の不純物を拡散させて、 先に形成した第 1導電型の拡散領域の表面側に第 1導電型の低濃度領域を形成す る工程、  (5) a step of diffusing this small amount of the second conductivity type impurity to form a first conductivity type low concentration region on the surface side of the first conductivity type diffusion region previously formed;
、 (6) 半導体基板表面を保護膜で被う工程、  (6) covering the semiconductor substrate surface with a protective film,
P N接合ダイォードの特性が次第に変化するのは、 ダイオー ドそ のものの性質ではなく、 逆方向ブレイクダウンの際に発生するホッ 卜キヤリァがブレイクダウン面近傍の保護膜中に トラップされ、 保 護膜が次第に帯電して、 その電界が P N接合面に及ぶためである。  The characteristics of the PN junction diode change gradually, not the characteristics of the diode itself, but the hot carriers generated during reverse breakdown are trapped in the protective film near the breakdown surface, and the protective film is It is gradually charged, and the electric field reaches the PN junction surface.
しかし、 この発明による P N接合.ダイオー ドは、 保護膜に近い表 面側の領域では、 第 1導電型の拡散領域が低濃度になっているため ブレイクダウンが起こらず、 ブレイクダウン面は保護膜から離れた However, in the PN junction diode according to the present invention, in the region on the surface side close to the protective film, no breakdown occurs because the diffusion region of the first conductivity type has a low concentration, and the breakdown surface is the protective film. Away from
、 P N接合部のみである。 そのため、 ホッ トキャリアが保護膜に トラ ップされれることがなく、 ダイォード特性の経時変化は発生しない。 図面の簡単な説明 , PN junction only. Therefore, the hot carrier is not trapped by the protective film, and the diode characteristics do not change with time. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 この発明の一実施例である P N接合ダイォー ドの接合 面付近の構成を示す断面図である。  FIG. 1 is a cross-sectional view showing a configuration near a bonding surface of a PN junction diode according to one embodiment of the present invention.
第 2図乃至第 7図は、 この発明による P N接合ダイオー ドの製造 方法の一実施例の各工程を示す第 1 図と同様な断面図である。  2 to 7 are cross-sectional views similar to FIG. 1 showing respective steps of one embodiment of a method for manufacturing a PN junction diode according to the present invention.
第 8図は、 従来の P N接合ダイォードの接合面付近の構成を示す 断面図である。 発明を実施するための最良の形態  FIG. 8 is a cross-sectional view showing a configuration near a bonding surface of a conventional PN junction diode. BEST MODE FOR CARRYING OUT THE INVENTION
この発明をより詳細に説明するために、 添付図面にしたがつてこ の発明の実施例を説明する。  In order to explain the present invention in more detail, embodiments of the present invention will be described with reference to the accompanying drawings.
, 先ず、 この発明による. P N接合ダ.ィオー ドの構造を第 1 図によつ て説明する。 第 1 図は、 この発明の一実施例である P N接合ダイォ 一ドの接合面付近の構成を示す断面図であリ、 第 8図と対応する部 分には同一の符号を付している。 なお、 金属配線との接続部分など については図示を省略している。 First, the structure of a PN junction diode according to the present invention will be described with reference to FIG. FIG. 1 shows a PN junction die according to an embodiment of the present invention. FIG. 9 is a cross-sectional view showing a configuration near a joint surface of a groove, and portions corresponding to FIG. 8 are denoted by the same reference numerals. It should be noted that the illustration of the connection portion with the metal wiring is omitted.
この P N接合ダイオー ドは、 第 1 図に示すように、 半導体基板 1 の表面付近に、 第 1導電型 (例えば P型) の拡散領域 3 と第 2導電 型 (例えば N型) の拡散領域 5 とを設け、 さらに、 その第 1導電型 の拡散領域 3 と第 2導電型の拡散領域 5 との接合面付近の第 1導電 型の拡散領域 3の表面側に、 第 1導電型の拡散領域 3 と同じ導電型 で、 かつ不純物濃度が低い第 1 導電型の低濃度領域 1 1 を設ける。  As shown in FIG. 1, the PN junction diode has a diffusion region 3 of the first conductivity type (for example, P type) and a diffusion region 5 of the second conductivity type (for example, N type) near the surface of the semiconductor substrate 1. And a diffusion region of the first conductivity type near the junction surface between the diffusion region 3 of the first conductivity type and the diffusion region 5 of the second conductivity type. A low-concentration region 11 of the first conductivity type having the same conductivity type as that of 3 and a low impurity concentration is provided.
この第 1導電型の低濃度領域 1 1 は、 第 2導電型の拡散領域 5 と 第 1 の接合面 1 3で接している。 一方、 不純物濃度の高い第 1導電 型の拡散領域 3は、 第 2導電型の拡散領域 5 と第 2の接合面 1 4で 接している。  The low concentration region 11 of the first conductivity type is in contact with the diffusion region 5 of the second conductivity type at the first bonding surface 13. On the other hand, the diffusion region 3 of the first conductivity type having a high impurity concentration is in contact with the diffusion region 5 of the second conductivity type at the second bonding surface 14.
P N接合の逆方向ブレイクダウンは、 不純物濃度が高いほど低電 圧で起こるから、 この構成の P N接合ダイオー ドにおいては、 印加 される電圧が上昇してく ると、 第 2の接合面 1 4でブレイクダウン が起こる。 そして、 第 2の接合面 1 4でブレイクダウンが起こった' 後は、 さらに電圧が上昇しても第 1 の接合面 1 3ではブレイクダウ ンは起こらない。  Since the reverse breakdown of the PN junction occurs at a lower voltage as the impurity concentration increases, in the PN junction diode of this configuration, when the applied voltage increases, the second junction surface 14 Breakdown occurs. After the breakdown occurs on the second bonding surface 14, no breakdown occurs on the first bonding surface 13 even if the voltage further increases.
その理由は、 第 2の接合面 1 4でブレイクダウンが起こって電流 が流れ始めると、 第 1 導電型の拡散領域 3 と第 2導電型の拡散領域 5 との内部の抵抗分によって電圧降下が生じ、 その結果、 それまで 第 2の接合面 1 4 と第 1 の接合面 1 3 とに主に加わっていた電圧が、 第 1 導電型の拡散領域 3 と第 2導電型の拡散領域 5の内部に分散し てしまうために、 第 1 の接合面 1 3には、 ブレイクダウンを起こす ような電圧が印加されなくなってしまうからである。  The reason is that when a breakdown occurs at the second junction surface 14 and current starts flowing, a voltage drop is caused by the internal resistance between the diffusion region 3 of the first conductivity type and the diffusion region 5 of the second conductivity type. As a result, the voltage mainly applied to the second bonding surface 14 and the first bonding surface 13 until then is changed to the diffusion region 3 of the first conductivity type and the diffusion region 5 of the second conductivity type. This is because a voltage causing a breakdown is not applied to the first bonding surface 13 because of the dispersion inside.
前述のように、 逆方向ブレイクダウンのブレイクダウン面が表面 の保護膜 9から離れていれば、 ホッ 卜キヤリァは保護膜 9 に トラッ プされないから、 ダイオー ド特性の経時変化は起こらない。  As described above, if the breakdown surface of the reverse breakdown is separated from the protective film 9 on the surface, the hot carrier is not trapped by the protective film 9, and thus the diode characteristics do not change with time.
第 1 図に示した構成の P N接合ダイォー ドにおいては、 ブレイ ク ダウン面は第 2の接合面 1 4であり、 この第 2の接合面 1 4は保護 膜 9に接していないで離れている。 したがって、 このように構成し た P N接合ダイォードは、 ブレイクダウン動作を繰リ返してもダイ ォード特性が変化しない。 In the PN junction diode with the configuration shown in Fig. 1, the break The down surface is a second bonding surface 14, and the second bonding surface 14 is not in contact with the protective film 9 and is separated therefrom. Therefore, the PN junction diode thus configured does not change its diode characteristics even when the breakdown operation is repeated.
次に、 この P N接合ダイォードの製造方法の一実施例を説明する。 第 2図から第 7図までは、 この発明による P N接合ダイオー ドの 製造方法における各工程示す断面図である。 ただし、 これらの各図 も P N接合ダイォードの接合面付近のみを示したものであり、 金属 配線との接続部分などについては図示を省略している。  Next, an embodiment of a method for manufacturing the PN junction diode will be described. 2 to 7 are cross-sectional views showing each step in the method for manufacturing a PN junction diode according to the present invention. However, these figures also show only the vicinity of the junction surface of the PN junction diode, and the illustration of the connection portion with the metal wiring is omitted.
先ず、 第 2図に示すように、 半導体基板 1の表面に感光性材料で あるレジス 卜などのマスキング材 1 5 を選択的に形成する。 そして、 マスキング材 1 5 をイオン注入の阻止膜として、 イオン注入法によ リ第 1導電型の不純物 1 7 を半導体基板 1 に導入する。  First, as shown in FIG. 2, a masking material 15 such as a resist, which is a photosensitive material, is selectively formed on the surface of the semiconductor substrate 1. Then, the first conductivity type impurity 17 is introduced into the semiconductor substrate 1 by an ion implantation method using the masking material 15 as a blocking film for ion implantation.
その後、 このマスキング材 1 5を除去し、 第 3図に示すように第 1導電型の不純物 1 7 を導入した領域に隣接した領域が開口部とな るように、 半導体基板 1の表面にレジストなどのマスキング材 1 5 を選択的に形成する。  Thereafter, the masking material 15 is removed, and a resist is formed on the surface of the semiconductor substrate 1 so that a region adjacent to the region into which the impurity 17 of the first conductivity type is introduced becomes an opening as shown in FIG. The masking material 15 is selectively formed.
そして、 イオン注入法により、 第 2導電型の不純物 1 9 を半導体 基板 1 に導入する。  Then, an impurity 19 of the second conductivity type is introduced into the semiconductor substrate 1 by an ion implantation method.
その後、 このイオン注入の阻止膜として用いたマスキング材 1 5 を除去して熱処理を行い、 第 4図に示すように、 第 1導電型の不純 物 1 7 と第 2導電型の不純物 1 9とを拡散させ、 互いに接する第 1 導電型の拡散領域 3及び第 2導電型の拡散領域 5 を形成する。  After that, the masking material 15 used as a blocking film for the ion implantation is removed and a heat treatment is performed. As shown in FIG. 4, impurities 17 of the first conductivity type and impurities 19 of the second conductivity type are removed. To form a first conductivity type diffusion region 3 and a second conductivity type diffusion region 5 that are in contact with each other.
この段階では、 第 1導電型の拡散領域 3 と第 2導電型の拡散領域 5 との接合面 7は、 半導体基板 1の表面まで達している。  At this stage, the bonding surface 7 between the diffusion region 3 of the first conductivity type and the diffusion region 5 of the second conductivity type has reached the surface of the semiconductor substrate 1.
次に、 第 5図に示すように、 この接合面 7 を含む領域が開口部と なるように、 半導体基板 1 の表面にレジストなどのマスキング材 1 5 を選択的に形成する。 そして、 イオン注入法により先に注入し た第 1導電型の不純物 1 7ょリも小量の第 2導電型の不純物 2 1 を、 マスキング材 1 5の開口部内の半導体基板 1 に導入する。 その後、 イオン注入の阻止膜として用いたマスキング材 1 5 を除 去して熱処理を行い、 この小量の第 2導電型の不純物 2 1 を拡散さ せる。 その結果、 第 6 図に示すように、 第 1導電型の拡散領域 3の 表面側に、 第 1 導電型の拡散領域 3 よ リ不純物濃度が低い第 1導電 型の低濃度領域 1 1 を形成する。 Next, as shown in FIG. 5, a masking material 15 such as a resist is selectively formed on the surface of the semiconductor substrate 1 so that a region including the bonding surface 7 becomes an opening. Then, a small amount of the second conductivity type impurity 21, which is the first conductivity type impurity 17 previously implanted by the ion implantation method, is introduced into the semiconductor substrate 1 in the opening of the masking material 15. Thereafter, the masking material 15 used as the ion implantation blocking film is removed and a heat treatment is performed to diffuse this small amount of the second conductivity type impurity 21. As a result, as shown in FIG. 6, a low concentration region 11 of the first conductivity type having a lower impurity concentration than the diffusion region 3 of the first conductivity type is formed on the surface side of the diffusion region 3 of the first conductivity type. I do.
これによつて、 第 1 導電型の拡散領域 3 と第 2導電型の拡散領域 5 との第 2の接合面 1 4は、 半導体基板 1 の内部のみとなリ、 表面 部分は第 1 導電型の低濃度領域 1 1 と第 2導電型の拡散領域との接 合面である第 1 の接合面 1 3になる。  As a result, the second bonding surface 14 between the diffusion region 3 of the first conductivity type and the diffusion region 5 of the second conductivity type is only inside the semiconductor substrate 1, and the surface portion is the first conductivity type. The first junction surface 13 is a junction surface between the low-concentration region 11 and the diffusion region of the second conductivity type.
なお、 小量の第 2導電型の不純物 2 1 の一部は、 第 2導電型の拡 '散領域 5にも導入されるが、 小量であリ且つ同一導電型であるので 無視できる。  Although a small amount of the second conductivity type impurity 21 is also introduced into the diffusion region 5 of the second conductivity type, it can be neglected because it is small and of the same conductivity type.
次に、 第 7図に示すように、 半導体基板 1 の表面を二酸化シリ コ ンなどの保護膜 9で被い、 P N接合ダイオー ドを完成させる。 金属 配線との接続など、 この後の工程については説明を省略する。  Next, as shown in FIG. 7, the surface of the semiconductor substrate 1 is covered with a protective film 9 such as silicon dioxide to complete a PN junction diode. Description of subsequent steps such as connection with metal wiring is omitted.
このような製造方法により、 この発明による P N接合ダイオー ド を容易に製造することができる。  By such a manufacturing method, the PN junction diode according to the present invention can be easily manufactured.
なお、 半導体基板 1 の表面に予め数 1 O n m程度の厚さの二酸化 シリ コン膜などを形成しておき、 その二酸化シリ コン膜をイオン注 入のバッファと して用いるなど、 多少の変更を行っても、 この発明 の P N接合ダイオー ドを製造することができることは言うまでもな い。 . 産業上の利用性  A slight change was made, such as forming a silicon dioxide film with a thickness of several tens of nm on the surface of the semiconductor substrate 1 in advance, and using the silicon dioxide film as a buffer for ion implantation. It goes without saying that the PN junction diode of the present invention can be manufactured even if it is carried out. . Industrial Applicability
この発明による P N接合ダイオー ドは、 P N接合のブレイクダウ ン面を半導体基板表面の保護膜から離すことによって、 ホッ トキヤ リアが保護膜中に トラップされることを防ぎ、 ダイオー ド特性の経 時変化をなくすことができる。 そのため、 レギユレータなどの基準 電圧源や昇圧回路のリ ミ ッタなどに使用すれば、 長期間安定した動 作をさせることができ、 その効果は非常に大きい。  The PN junction diode according to the present invention prevents the hot carrier from being trapped in the protective film by separating the break-down surface of the PN junction from the protective film on the surface of the semiconductor substrate. Can be eliminated. Therefore, if it is used for a reference voltage source such as a regulator or a limiter of a booster circuit, stable operation can be performed for a long time, and the effect is extremely large.

Claims

請 求 の 範 囲 The scope of the claims
1 . 半導体基板に形成する第 1導電型の拡散領域と、 この第 1導 電型の拡散領域に接するように前記半導体基板に形成する第 2導電 型の拡散領域と、 この半導体基板表面を被う保護膜とを有し、 前記 第 1導電型の拡散領域と第 2導電型の拡散領域との接合面に接する 第 1導電型の拡散領域の表面側に、 前記第 1導電型の低濃度領域を 設けたことを特徴とする P N接合ダイオード。 1. A first conductivity type diffusion region formed on the semiconductor substrate, a second conductivity type diffusion region formed on the semiconductor substrate so as to be in contact with the first conductivity type diffusion region, and a surface of the semiconductor substrate. A protective film, and a low concentration of the first conductivity type on a surface side of the first conductivity type diffusion region which is in contact with a bonding surface between the first conductivity type diffusion region and the second conductivity type diffusion region. A PN junction diode characterized by having a region.
2 . 半導体基板に第 1導電型の不純物を選択的に導入し、 この第 1 導電型の不純物を導入した領域に接するように第 2導電型の不純物 を選択的に導入する工程と、 2. a step of selectively introducing an impurity of the first conductivity type into the semiconductor substrate, and selectively introducing an impurity of the second conductivity type so as to be in contact with the region into which the impurity of the first conductivity type has been introduced;
前記半導体基板に導入した第 1導電型の不純物と第 2導電型の不 純物とを拡散させて互いに接する第 1導電型の拡散領域と第 2導電 型の拡散領域とを形成する工程と、  Diffusing the first conductivity type impurity and the second conductivity type impurity introduced into the semiconductor substrate to form a first conductivity type diffusion region and a second conductivity type diffusion region which are in contact with each other;
前記第 1導電型の拡散領域と第 2導電型の拡散領域との接合面を 含む領域に、 前記第 1導電型の不純物よりも小量の第 2導電型の不 純物を選択的に導入する工程と、  An impurity of the second conductivity type, which is smaller than the impurity of the first conductivity type, is selectively introduced into a region including a junction surface between the diffusion region of the first conductivity type and the diffusion region of the second conductivity type. The process of
前記小量の第 2導電型の不純物を拡散させて、 前記第 1導電型の 拡散領域の表面に第 1導電型の低濃度領域を形成する工程と、 半導体基板表面を保護膜で被う工程と  Forming a low concentration region of the first conductivity type on the surface of the diffusion region of the first conductivity type by diffusing the small amount of impurities of the second conductivity type; and covering the semiconductor substrate surface with a protective film. When
を有することを特徴とする P N接合ダイオードの製造方法。  A method for producing a PN junction diode, comprising:
PCT/JP1993/000810 1992-06-16 1993-06-16 Pn junction diode and its manufacture method WO1993026048A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP18060592A JP3288430B2 (en) 1992-06-16 1992-06-16 PN junction diode and method of manufacturing the same
JP4/180605 1992-06-16

Publications (1)

Publication Number Publication Date
WO1993026048A1 true WO1993026048A1 (en) 1993-12-23

Family

ID=16086176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000810 WO1993026048A1 (en) 1992-06-16 1993-06-16 Pn junction diode and its manufacture method

Country Status (2)

Country Link
JP (1) JP3288430B2 (en)
WO (1) WO1993026048A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6301561B1 (en) * 2016-09-13 2018-03-28 新電元工業株式会社 Semiconductor device and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750480A (en) * 1980-09-12 1982-03-24 Fuji Electric Co Ltd Constant voltage diode
JPH02187071A (en) * 1989-01-13 1990-07-23 Mitsubishi Electric Corp Semiconductor device
JPH0295260U (en) * 1989-01-13 1990-07-30
JPH0499387A (en) * 1990-08-18 1992-03-31 Nec Corp Semiconductor integrated circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750480A (en) * 1980-09-12 1982-03-24 Fuji Electric Co Ltd Constant voltage diode
JPH02187071A (en) * 1989-01-13 1990-07-23 Mitsubishi Electric Corp Semiconductor device
JPH0295260U (en) * 1989-01-13 1990-07-30
JPH0499387A (en) * 1990-08-18 1992-03-31 Nec Corp Semiconductor integrated circuit

Also Published As

Publication number Publication date
JPH065885A (en) 1994-01-14
JP3288430B2 (en) 2002-06-04

Similar Documents

Publication Publication Date Title
US6664607B2 (en) Diode having breakdown voltage adjustable to arbitrary value without increase of parasitic capacitance and process for fabrication thereof
WO1993026048A1 (en) Pn junction diode and its manufacture method
JPH01307265A (en) Pnpn surge-preventing device
JPS6153762A (en) Semiconductor integrated circuit device
JPS6112071A (en) Semiconductor device
JPH0472771A (en) Mosfet
KR100216734B1 (en) Common anode parallel thyristor and the manufacturing method of the module thereof
KR100317604B1 (en) Schottky barrier diode and method for fabricating the same
JPH02296342A (en) Manufacture of mosfet
KR900008817B1 (en) Manufacture method of a bipolar semiconductor device
JP2004296883A (en) Semiconductor device and its manufacturing method
JPH05283715A (en) Highly stable zener diode
JPH0897223A (en) Bipolar transistor and its manufacture
KR0170200B1 (en) Transistor with zener diode and method of fabricating the same
JPH09181336A (en) Semiconductor device
JPH07135315A (en) Semiconductor device
JPH08274313A (en) Semiconductor device and its manufacture
JPH04179162A (en) Semiconductor device and manufacture thereof
JPS61251083A (en) Semiconductor device
JPH0722528A (en) Semiconductor device and fabrication thereof
JP2000252466A (en) Power semiconductor device and manufacture thereof
JPS6185854A (en) Semiconductor device
JPH04206531A (en) Manufacture of semiconductor device
KR970018740A (en) Zener diode and its manufacturing method
JPS62112379A (en) Semiconductor device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase