WO1993024830A1 - Evaluation ultrasonore d'un echantillon - Google Patents

Evaluation ultrasonore d'un echantillon Download PDF

Info

Publication number
WO1993024830A1
WO1993024830A1 PCT/GB1993/001184 GB9301184W WO9324830A1 WO 1993024830 A1 WO1993024830 A1 WO 1993024830A1 GB 9301184 W GB9301184 W GB 9301184W WO 9324830 A1 WO9324830 A1 WO 9324830A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
ultrasound signal
ultrasound
evaluating
contacting means
Prior art date
Application number
PCT/GB1993/001184
Other languages
English (en)
Inventor
Christopher Edwards
Stuart Beaumont Palmer
Original Assignee
Lucas Industries Public Limited Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lucas Industries Public Limited Company filed Critical Lucas Industries Public Limited Company
Publication of WO1993024830A1 publication Critical patent/WO1993024830A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves

Definitions

  • This invention relates to a method of and to an apparatus for evaluating a sample using ultrasound, and is particularly applicable to the evaluation of the liquid fraction of a billet of metal being prepared for a semi-solid forming process.
  • Semi-solid forming processes involve heating a body or billet of metal until it reaches a plastic consistency, and then pressing the billet into a mould to form it into the required shape. It is necessary for the metal to exhibit the correct consistency (i.e. liquid fraction) before the forming or moulding operation and it is therefore necessary to monitor the consistency of the metal.
  • a method of evaluating a sample comprising transmitting an ultrasound signal through the sample, measuring the time taken for a longitudinal wave of the ultrasound signal to pass through the sample, measuring the time taken for a shear wave of the ultrasound signal to pass through the sample, and determining a parameter of the sample from these two measurements.
  • a value may be calculated which is independent of (and therefore does not require measurement of) the path length through the sample: for example this value may be calculated as the ratio of the two times-of-flight.
  • the calculated value provides a measure of the degree of plasticity, or liquid fraction, of the material.
  • the velocity of the shear wave is significantly less than the velocity of the longitudinal wave, so that a detector will firstly sense arrival of the longitudinal wave and then, after a delay, will sense arrival of the shear wave.
  • an apparatus for evaluating a sample comprising non- contacting means for generating an ultrasound signal for passing through the sample, means for measuring the respective times taken for a longitudinal wave and a shear wave of the ultrasound signal to pass through the sample, and for determining a parameter of the sample from these two measurements.
  • the non-contacting means for generating the ultrasound signal may comprise a pulsed laser directed at one side of the sample: incidence of the pulse of laser light on the sample causes generation of an ultrasound signal having both longitudinal and shear wave components.
  • Non-contacting detection of the ultrasound signal at the opposite side of the sample may be made using an interferometer: this requires a reflective surface finish on that side of the sample.
  • the arrangement may be modified so that the detector is positioned on the same side of the sample as the ultrasound generator, and the ultrasound waves pass through the sample in one direction, are reflected from the opposite side and pass through the sample in the return direction towards the detector.
  • Electromagnetic acoustic- transducers EMATs
  • a pulsed laser generator is used, together with an EMAT detector, the laser producing an intense ultrasound signal and the EMAT detector avoiding the need for a reflective surface on the sample, yet yielding good signal-to-noise ratio.
  • a pulsed switched laser for example a q-switched Nd:YAG laser 10, producing 200 mJ, 10 ns pulses, is directed at one side of a sample 12 (e.g. of aluminium alloy) , typically 8mm thick and 19mm in diameter.
  • a sample 12 e.g. of aluminium alloy
  • Incidence of the laser pulse against the side 13 of the sample causes an ultrasound pulse to be generated at the surface and this ultrasound pulse propagates through the sample to its opposite side 14, the ultrasound pulse comprising both longitudinal and shear wave components.
  • the velocity of the longitudinal wave is significantly greater than the velocity of the shear wave, so that the longitudinal wave is the first to arrive at the opposite side 14 of the sample, followed after a delay by the shear wave.
  • Arrival of each wave at the opposite side 14 of the sample causes vibration of the sample surface, the displacements of the surface being in a direction normal to itself but extremely small.
  • a detector 16 is used to sense these displacements.
  • the detector 16 comprises a stabilised HeNe Michelson interferometer directly aligned with the source laser 10.
  • the detector may comprise an EMAT positioned close to the surface 14 of the sample, the EMAT being water cooled.
  • a control and measurement system 20 of the apparatus is arranged to measure the respective times-of-flight of the longitudinal and shear waves (relative to the instant of emission of a pulse from laser 10) . From these measurements, a value is calculated which is independent of the path length, so that it is not necessary to measure the thickness of the sample: for example this value may be calculated as the ratio of the two times-of-flight.
  • the velocity decreases as the sample temperature increases, and decreases more sharply after partial melting has occurred.
  • this effect is more pronounced with the shear wave, consistent with the fact that the shear wave does not propagate in a liquid whilst the longitudinal wave velocity generally drops by approximately 10%.
  • the ratio of the two times-of-flight (being the inverse ratio of the respective velocities) gives a measure related to the temperature and hence the liquid fraction of the sample.
  • the detector 16' can be positioned on the same side of the sample as the ultrasound generating means: in this case the ultrasound waves pass through the sample in one direction, are reflected from the opposite side of the sample and then pass through the sample in the opposite direction, to be picked up by the detector.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Pour évaluer la fraction liquide d'un échantillon de métal (12), on dirige un laser impulsionnel (10) sur une face (13) de l'échantillon (12), et on dirige un détecteur/interféromètre (16) sur la face opposée (14) de l'échantillon. Le laser impulsionnel (10) produit une impulsion ultrasonore qui se propage dans l'échantillon (12), l'impulsion ultrasonore comprenant des composantes d'onde longitudinale et d'onde de cisaillement qui se propagent à différentes vitesses dans l'échantillon. Le rapport des temps de vol des deux composantes peut être évalué pour déterminer la fraction liquide de l'échantillon.
PCT/GB1993/001184 1992-06-03 1993-06-03 Evaluation ultrasonore d'un echantillon WO1993024830A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB929211778A GB9211778D0 (en) 1992-06-03 1992-06-03 Ultrasonic evaluation of a sample
GB9211778.7 1992-06-03

Publications (1)

Publication Number Publication Date
WO1993024830A1 true WO1993024830A1 (fr) 1993-12-09

Family

ID=10716487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1993/001184 WO1993024830A1 (fr) 1992-06-03 1993-06-03 Evaluation ultrasonore d'un echantillon

Country Status (3)

Country Link
AU (1) AU4341293A (fr)
GB (1) GB9211778D0 (fr)
WO (1) WO1993024830A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999044051A1 (fr) * 1998-02-25 1999-09-02 American Iron And Steel Institute Procede et appareil de spectroscopie a ultrasons-laser avec detection de resonance de cisaillement permettant de mesurer l'anisotropie, une epaisseur et d'autres proprietes
US9585692B2 (en) 2007-10-19 2017-03-07 Pressure Products Medical Supplies Inc. Transseptal guidewire
CN107967911A (zh) * 2016-10-18 2018-04-27 南京理工大学 一种产生单一超声横波的光学换能器及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3416365A (en) * 1965-09-28 1968-12-17 Atomic Energy Commission Usa Method of determining elastic properties of a metal sample
EP0019002A1 (fr) * 1978-06-20 1980-11-26 Sumitomo Metal Industries, Ltd. Methode et appareil pour la detection de fissures par ultrasons sans contact
US4602511A (en) * 1985-06-20 1986-07-29 J. A. Green Company Method for measuring fastener stress utilizing longitudinal and transverse ultrasonic wave time-of-flight
WO1988001054A1 (fr) * 1986-07-25 1988-02-11 J.A. Green Company Procede de mesure de la durete de metaux en utilisant le temps de vol d'ondes ultrasoniques
US4790188A (en) * 1986-07-18 1988-12-13 Canadian Patents And Development Limited Method of, and an apparatus for, evaluating forming capabilities of solid plate
WO1989006796A1 (fr) * 1988-01-22 1989-07-27 Kline Ronald A Systeme servant a determiner de façon non destructive les parametres d'un materiau composite
WO1991017009A1 (fr) * 1990-05-01 1991-11-14 The Broken Hill Proprietary Company Limited Controle des metaux coules en continu

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3416365A (en) * 1965-09-28 1968-12-17 Atomic Energy Commission Usa Method of determining elastic properties of a metal sample
EP0019002A1 (fr) * 1978-06-20 1980-11-26 Sumitomo Metal Industries, Ltd. Methode et appareil pour la detection de fissures par ultrasons sans contact
US4602511A (en) * 1985-06-20 1986-07-29 J. A. Green Company Method for measuring fastener stress utilizing longitudinal and transverse ultrasonic wave time-of-flight
US4790188A (en) * 1986-07-18 1988-12-13 Canadian Patents And Development Limited Method of, and an apparatus for, evaluating forming capabilities of solid plate
WO1988001054A1 (fr) * 1986-07-25 1988-02-11 J.A. Green Company Procede de mesure de la durete de metaux en utilisant le temps de vol d'ondes ultrasoniques
WO1989006796A1 (fr) * 1988-01-22 1989-07-27 Kline Ronald A Systeme servant a determiner de façon non destructive les parametres d'un materiau composite
WO1991017009A1 (fr) * 1990-05-01 1991-11-14 The Broken Hill Proprietary Company Limited Controle des metaux coules en continu

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999044051A1 (fr) * 1998-02-25 1999-09-02 American Iron And Steel Institute Procede et appareil de spectroscopie a ultrasons-laser avec detection de resonance de cisaillement permettant de mesurer l'anisotropie, une epaisseur et d'autres proprietes
US6057927A (en) * 1998-02-25 2000-05-02 American Iron And Steel Institute Laser-ultrasound spectroscopy apparatus and method with detection of shear resonances for measuring anisotropy, thickness, and other properties
US9585692B2 (en) 2007-10-19 2017-03-07 Pressure Products Medical Supplies Inc. Transseptal guidewire
CN107967911A (zh) * 2016-10-18 2018-04-27 南京理工大学 一种产生单一超声横波的光学换能器及方法
CN107967911B (zh) * 2016-10-18 2022-03-15 南京理工大学 一种产生单一超声横波的光学换能器及方法

Also Published As

Publication number Publication date
GB9211778D0 (en) 1992-07-15
AU4341293A (en) 1993-12-30

Similar Documents

Publication Publication Date Title
US6837109B2 (en) Material thickness measurement method and apparatus
US4523468A (en) Phased array inspection of cylindrical objects
US11020793B2 (en) Measuring method, system and sensor for a continuous casting machine
US3427866A (en) Ultrasonic thickness gauge and flow detector
US4195517A (en) Ultrasonic flowmeter
US4429576A (en) Ultrasonic inspection apparatus
EP0400770B1 (fr) Mesure de la résistance d'un matériau en bande mouvant
US5349860A (en) Apparatus for measuring the thickness of clad material
EP3561449A1 (fr) Appareil permettant de mesurer une taille de grain cristallin d'une plaque d'acier
US2888824A (en) Ultrasonic thickness gauge
JP2002213936A (ja) 材料厚さの非接触測定方法及び装置
US5492012A (en) Time-of-flight method for sizing cracks through fluid-filled gaps in structures
JP3421412B2 (ja) 配管減肉測定方法と装置
WO1993024830A1 (fr) Evaluation ultrasonore d'un echantillon
CA2428384C (fr) Methode et appareil permettant de determiner la vitesse du son dans un materiau
JP2001343365A (ja) 金属薄板の厚み共振スペクトル測定方法及び金属薄板の電磁超音波計測方法
JPH08201356A (ja) 固体材料の音速測定方法および超音波探触子
GB2172106A (en) Ultrasonic microstructural monitoring
JPH0317283B2 (fr)
JP2002277447A (ja) 超音波探傷方法および装置
JP2001311615A (ja) 非接触超音波厚さ測定方法及び非接触超音波厚さ測定装置
US5507184A (en) Process and apparatus for activating a time gate in the ultrasonic testing of materials using the impulse-echo system
JPH03167418A (ja) クラッド厚さ測定装置
US20240189891A1 (en) Measuring sensor, system and method and casting machine
SU1345063A1 (ru) Способ определени толщины и скорости распространени ультразвуковых объемных волн в издели х

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR CA CH CZ DE DK ES FI GB HU JP KP KR KZ LK LU MG MN MW NL NO NZ PL PT RO RU SD SE SK UA US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA