WO1993023750A1 - Verfahren zur zerstörungsfreien prüfung von stahlarmierungen in bauwerken - Google Patents

Verfahren zur zerstörungsfreien prüfung von stahlarmierungen in bauwerken Download PDF

Info

Publication number
WO1993023750A1
WO1993023750A1 PCT/DE1993/000437 DE9300437W WO9323750A1 WO 1993023750 A1 WO1993023750 A1 WO 1993023750A1 DE 9300437 W DE9300437 W DE 9300437W WO 9323750 A1 WO9323750 A1 WO 9323750A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
measuring head
pick
coil
steel
Prior art date
Application number
PCT/DE1993/000437
Other languages
English (en)
French (fr)
Inventor
Herbert Bousack
Yi Zhang
Gottfried Sawade
Original Assignee
Forschungszentrum Jülich GmbH
FORSCHUNGS- UND MATERIALPRüFUNGSANSTALT BADEN-WüRTTEMBERG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH, FORSCHUNGS- UND MATERIALPRüFUNGSANSTALT BADEN-WüRTTEMBERG filed Critical Forschungszentrum Jülich GmbH
Priority to EP93909777A priority Critical patent/EP0640213A1/de
Publication of WO1993023750A1 publication Critical patent/WO1993023750A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws

Definitions

  • the invention relates to a method for the non-destructive testing of steel reinforcements in structures according to the preamble of claim 1. Furthermore, the invention relates to a device for the non-destructive testing of steel reinforcements in structures according to the preamble of claim 10.
  • the prestress is achieved by steel bundles cast with the concrete under tensile stress.
  • the steel bundle can be located in a metallic tube, and the free interior space can be filled with a molding compound. If one or more chips break in such bundles, e.g.
  • the mechanical stability of the component may be endangered by overloading, corrosion, etc. Since in the initial stage of the damage the fracture effect due to concrete cracks is generally not visible from the outside, a non-destructive test method is required, the position of the steel reinforcements, in particular the steel bundle or the individual prestressing steel, or individual fractures of such prestressing steel detect.
  • a measuring head is made up from an electrical yoke magnet and a sensor array (Hall probes) moved long ago to a carrier to be examined.
  • the possible magnetization is checked when the field magnet is switched off.
  • the stray field is measured with active field magnets.
  • the remanent magnetic field now present is recorded when the field magnet is not activated.
  • the signal differences between the measurement in the active field (step 2) and the residual field measurement (step 3) can be used to make statements about iron parts such as brackets, wires etc. arranged transversely to the prestressing steel. Fractures in prestressing steel, on the other hand, are indicated by constant, characteristic signals in measurement steps 2 and 3.
  • the change in permeability of the steel structures present in the concrete is determined as the measured variable.
  • material-related changes in permeability which in this case could represent an interference signal
  • breaks and ends of steel structures lead to particularly clear field changes due to strong pole formation.
  • the natural, remanent field which results from the orientation of the steel structures in the earth field, is sufficient to carry out a check of the reinforcement.
  • the field to be measured can also be an external one, e.g. a field wash applied direct or alternating field, a break in the prestressing steel causing a field change in comparison to undisturbed areas of the prestressing steel.
  • a pick-up coil in the measuring head records the field change over time and passes it on to the coupling coil SQUID's.
  • the temporal change of the field to be measured at the location of the pick-up coil, which the SQUID requires as an input signal can, in the case of a stationary field, ie a remanent, in particular natural or constant field, be caused by a uniformly moving field Measuring head are generated.
  • a stationary field ie a remanent, in particular natural or constant field
  • Measuring head are generated.
  • the movement of the measuring head can be stopped, that is to say in these cases the measuring head can be moved to a location to be tested in order to measure there in a stationary manner.
  • the method according to the invention allows the position of individual prestressing steels or other structures with magnetic anomaly to be determined without prior knowledge of the orientation of such components.
  • the method according to the invention allows the testing of individual prestressing steels, even in the event that such steels are embedded together with others in a, in particular metallic, cladding tube, for example in concrete.
  • the method according to the invention makes it possible to test non-destructively without prior magnetization of the steel reinforcements to be examined, in particular the individual prestressing steel, in particular determining the position and / or determining cracks in the prestressing steel structure without prior magnetization.
  • the method according to the invention is directed to one that enables the non-destructive testing of Steel reinforcements are permitted in buildings, but the method according to the invention is just as good for determining the position of pipes or for determining break points in pipes made of materials which have magnetic anomalies, such as steel, in concrete, as well as in other buildings, for example in masonry or buried in the ground, applicable. Furthermore, it is conceivable that the method according to the invention can also be used in the field of environmental technology, for example for checking leaks in pipe systems and in plant construction, for example for determining the condition of safety-relevant components, as well as in landfill technology and contamination testing.
  • a first possibility is to move the measuring head connected to the respective coil relative to the steel reinforcement to be examined, preferably at a linear constant speed.
  • the coil is excited to vibrate at a defined frequency on a stationary measuring head.
  • the pick-up coil should preferably vibrate parallel to the direction of the prestressing steel to be examined. If one selects the frequency of an excitation vibration outside the frequency range of interference signals, then ambient interference can be largely configured by appropriate filtering.
  • Another alternative variant of the method according to the invention is that the coil and the Measuring head arranged stationary close to a steel reinforcement to be examined, with the help of, for example, a field coil of the steel reinforcement to be examined, an alternating field is exposed.
  • the steel reinforcement to be examined in particular the individual chip steel, is first completely demagnetized before the field change over time.
  • the high sensitivity of the method according to the invention is sufficient for the detection of the still existing pole formation at break points in the earth's field.
  • the method may erfindu ⁇ gsdorfe as Meßergeb ⁇ is result in the course of a field size as a function of the measurement path, 'wherein a break, for example, in a single chip by a strong steel Aus ⁇ noticeable impact makes the curve. Further information can be obtained in that a parallel arrangement of several pick-up coils (both a single one Arrangement as well as a gradiometer arrangement) can be obtained perpendicular to the measuring path. With a suitable further processing of the measurement results, taking into account the additional recording of the field changes perpendicular to the measurement path, a two-dimensional image of the field distribution can be determined, which, for example, can make the interpretation of a defect considerably easier under certain circumstances.
  • the evaluation electronics may include a control unit, a unit with data storage, analysis and display character, and possibly a field generator for a field coil arranged on the measuring head.
  • a control unit a unit with data storage, analysis and display character, and possibly a field generator for a field coil arranged on the measuring head.
  • An expert system is also conceivable for electronics.
  • this can be a SQUID based on a conventional superconductor such as niobium, but also a SQUID based on a modern high-temperature superconducting material (for example from DE-PS 40 28 301 known).
  • a modern high-temperature superconducting material for example from DE-PS 40 28 301 known.
  • the latter HTSL-SQUID has the advantage that liquid nitrogen can now be selected in the cryostat instead of the liquid helium.
  • FIG 1 Schematic representation of the device according to the invention with a movable measuring head with pick-up coil and field coil
  • Figure 2 block diagram for processing the signal recorded on a measuring head
  • FIG. 1 shows a schematic representation of the device according to the invention with a movable measuring head with pick-up coil and field coil. It can be one or more pick-up coils connected to the stationary SQUID system.
  • the measuring head is located on a processing unit which allows the measuring head to be positioned, for example, with up to three degrees of freedom.
  • the processing unit can be moved along the measuring path via stepper motors.
  • the stationary SQUID is shielded in a cryostat.
  • Corresponding evaluation electronics are also provided.
  • a field generator which can supply the field coil with a DC field or an AC field with freely adjustable frequency and field strength, - a transfer of all measured variables, ie the measurement signals from the SQUID, the coordinates and speeds of the measuring head, and possibly field sizes of the field coil to the data processing,
  • the stationary SQUID is shielded in a cryogen with the corresponding evaluation electronics. It can be a SQUID based on high-temperature superconducting materials, in particular of the RF-SQUID type.
  • FIG. 3 shows a single pick-up coil, a gradiometer arrangement of two pick-up coils with opposing turns, or a multiple gradiometer arrangement.
  • the change in the magnetic field over time is measured, with spatially constant signals from the environment, for example the 50 Hz oscillation from transformers or electric motors, occurring as a disturbance during the measurement and removed from the measurement by filtering have to.
  • This disadvantage avoids a gradiometer arrangement of two pick-up coils with opposing turns, since in both coils the same recorded interference signals can be removed from the measurement by forming a difference.
  • the course of a field size as a function of the measuring path can be obtained as the measurement result. For example, a break or other discontinuity in the prestressing steel or in the material to be examined is noticeable by a more or less pronounced deflection in the course of the curve. Additional information can be obtained by arranging several pick-up coils in parallel perpendicular to the measuring path. As a result, a two-dimensional image of the field distribution can be determined and the interpretation of a defect can be made considerably easier.
  • FIGS. 4a-c there are measurement results on a bundle with 16 flat bars, each 5 ⁇ 10 mm, which are located in a cladding tube with a diameter of 70 mm.
  • the signals obtained with the aid of a pick-up coil and a HTSL-RF-SQUID by moving along the bundle at a distance of 100 mm or 190 mm from the pick-up coil to the cladding tube axis were obtained by the in Figure 4a or Figure 4b received signals recorded.
  • the bundle with the flat bars in the cladding tube was now demagnetized for comparison and examined at a measuring distance of 190 mm. The signals then recorded are shown in FIG. 4c.
  • the signals obtained with the aid of the device according to the invention are shown in volt units as a function of the bundle coordinate in mm in FIGS. 4a-4c.
  • the two ends of the to be examined are shown in volt units as a function of the bundle coordinate in mm in FIGS. 4a-4c.
  • Bundles essentially agree with the extreme values of the bundle coordinates in FIGS. 4a-c.
  • the investigated model bundle of a prestressing steel bundle located in a cladding tube was obtained by removing it from a partial area of a prestressed concrete component that had been under tensile stress for years.

Abstract

Die Erfindung betrifft ein Verfahren sowie eine Vorrichtung zur zerstörungsfreien Prüfung von Stahlarmierungen in Bauwerken, insbesondere zur Lagebestimmung einzelner Spannstähle mit unbekannter Orientierung und/oder Bestimmung von Rissen einzelner Spannstähle. Es ist Aufgabe der Erfindung, ein Verfahren sowie eine Vorrichtung der eingangs genannten Art zu schaffen, daß es erlaubt, die Lage von Stahlarmierungen in Bauwerken zu bestimmen sowie eine Prüfung von Rißbildungen in einzelnen Spannstählen sogar für den Fall, daß sich einzelne Spannstähle mit mehreren in einem metallischen Hüllrohr innerhalb des Bauwerkes befinden, mit erhöhter Meßgenauigkeit und Empfindlichkeit zu bestimmen. Die Aufgabe wird durch ein Verfahren gelöst, bei dem ein mit einer Pick-up-Spule vorgesehener Meßkopf eine von den Permeabilitätseigenschaften der zu untersuchenden Stahlarmierung hervorgerufene zeitliche Feldänderung ohne aktive vorherige Magnetisierung der Stahlarmierung aufnimmt. Das am Meßkopf erhaltene Signal wird an ein SQUID-System weitergegeben, wobei diesem SQUID-System eine Auswerteelektronik nachgeschaltet ist. Dabei kann im Falle eines stationären Feldes, insbesondere im Falle des natürlichen, remanenten Feldes der Stahlarmierung die zeitliche Feldänderung durch eine Relativbewegung des Meßkopfes erzeugt werden.

Description

B e s c h r e i b u n g
Verfahren zur zerstörungsfreien Prüfung von Stahlarmie¬ rungen in Bauwerken
Die Erfindung betrifft ein Verfahren zur zerstörungs¬ freien Prüfung von Stahlarmierungen in Bauwerken gemäß dem Oberbegriff des Anspruchs 1. Desweiteren betrifft die Erfindung eine Vorrichtung zur zerstörungsfreien Prüfung von Stahlarmierungen in Bauwerken gemäß dem Oberbegriff des Anspruchs 10.
Bei vorgespannten Betonbauteilen wird die Vorspannung durch unter Zugspannung mit dem Beton vergossene Stahl- bündel erreicht. Das Stahlbündel kann sich dabei in einem metallischen Rohr befinden, wobei der freie In¬ nenraum mit einer Verpreßmasse aufgefüllt sein kann. Wenn in solchen Bündeln eine oder mehrere Spanstähle brechen, z.B. durch Überbelastung, Korrosion etc., kann die mechanische Stabilität des Bauteils unter Umstän¬ den gefährdet sein. Da im Anfangsstadium des Schadens im allgemeinen die Bruchauswirkung durch Betonrisse von außen nicht sichtbar ist, bedarf es eines zerstö¬ rungsfreien Prüfverfahrens, die Lage der Stahlarmie- rungen, insbesondere des Stahlbündels bzw. des einzel¬ nen Spannstahls oder einzelne Brüche eines solchen Spannstahls sicher zu detektieren.
Als Stand der Technik ist bekannt, Spannbetonträger mit sofortigem Verbund, daß heißt mit unmittelbar im Beton liegenden Spannstählen ohne ferromagnetisches Hüllrohr abgeschirmt, mit Hilfe von Streuflußmessungen zu prüfen. (z.B. Deutsche Patentschrift DE 39 23 377, US-PT 363 343). Zunächst wird ein Meßkopf, bestehend aus einem elektrischen Jochmagneten und einem Sensor- array (Hall-Sonden) längst eines zu untersuchenden Trägers bewegt. In einem ersten Schritt wird die mög¬ liche vorhandene Magnetisierung bei ausgeschaltetem Feldmagneten geprüft. In einem zweiten Schritt wird die Messung des Streufeldes mit aktiven Feldmagneten vorgenommen. Schließlich wird im dritten Meßschritt das nunmehr vorhandene remanente Magnetfeld bei nicht- aktiviertem Feldmagneten aufgenommen. Im Ergebnis las¬ sen sich aus den Signalunterschieden zwischen der Mes- suπg im aktiven Feld (2. Schritt) und der Restfeldmes¬ sung (3. Schritt) Aussagen über quer zum Spannstahl angeordnete Eisenteile wie Bügel, Drähte etc. machen. Brüche im Spannstahl werden hingegen durch gleichblei bende, charakteristische Signale bei den Meßschritten 2 und 3 angezeigt.
Solche Verfahren erlauben es Brüche in Stählen von Trägern in sofortigem Verbund bis zu einer Rißweite von ca. 0,01 mm bis zu einem Abstand von 60 - 80 mm zu detektieren. Aufgrund der Signalformen von Brüchen im Spannstahl werden diese über einen relativ großen Bereich von ca. 100 mm angezeigt. Differenzfeldmessun¬ gen mit kleineren Abständen der Meßsonden sind deshalb nicht sinnvoll. Insbesamt zeigen die bekannten Verfah- ren eine sehr begrenzte Nachweisgenauigkeit.
Es ist deshalb Aufgabe der Erfindung, ein Verfahren der Eingangs bezeichneten Art zu schaffen, das es er¬ laubt die Lage von Stahlarmierungen in Bauwerken zu bestimmen sowie eine Prüfung von Rißbildungen in ein¬ zelnen Spannstählen sogar für den Fall, das sich diese einzelnen Spannstähle mit mehreren in einem metalli¬ schen Hüllrohr innerhalb des Bauwerkes befinden, mit gegenüber bekannten Verfahren erhöhter Meßgenauigkeit und Empfindlichkeit zu detektieren. Desweiteren ist es Aufgabe der vorliegenden Erfindung eine Vorrichtung zur Durchführung eines solchen Verfahrens zu schaffen.
Die erfindungsgemäße Aufgabe wird gelöst durch ein Ver¬ fahren mit dem Merkmal des Anspruchs 1. Weitere vorteil¬ hafte oder zweckmäßige Varianten des erfindungsgemäßen Verfahrens finden sich in den Ansprüchen 2 - 9.
Die erfindungsgemäße Aufgabe wird desweiteren gelöst durch eine Vorrichtung mit den Merkmalen des Anspruchs 10. In den Ansprüchen 11 - 14 finden sich weitere vor¬ teilhafte oder zweckmäßige Ausführungsformen der er¬ findungsgemäßen Vorrichtung.
Verfahreπs äßig wird als Meßgröße die Permeabilitäts¬ änderung der im Beton vorhandenen Stahlstrukturen er¬ mittelt. Neben werkstoffbedingten Permeabilitätsände¬ rungen, die in diesem Falle ein Störsignal darstellen könnten, führen Brüche und Enden von Stahlstrukturen wegen einer starken Polbilduπg zu besonders deutlichen Feldänderungen. Bei dem zu vermessenden Feld reicht das natürliche, remanente Feld, welches durch die Orientierung der Stahlstrukturen im Erdfeld entsteht, aus eine Prüfung der Armierung vorzunehmen.
Desweiteren kann es sich bei dem zu vermessenden Feld auch um ein von außen durch z.B. eine Feldspühle auf¬ gebrachtes Gleich- oder Wechselfeld handeln, wobei eine Bruchstelle im Spannstahl im Vergleich zu unge¬ störten Bereichen des Spannstahls eine Feldänderung hervorruft.
Eine Pick-Up-Spule im Meßkopf nimmt die zeitliche Feld¬ änderung auf und übergibt sie an die Koppelspule eines SQUID's. Die zeitliche Änderung des zu messenden Fel¬ des am Ort der Pick-Up-Spule, die der SQUID als Ein- gangssigπal benötigt, kann bei einem stationären Feld, d.h. ein remanentes, insbesonderen natürliches Feld oder Gleichfeld, durch einen sich gleichmäßig bewegen¬ den Meßkopf erzeugt werden. Bei einem Wechselfeld in der Feldspule kann die Bewegung des Meßkopfes unter¬ bleiben, daß heißt in diesen Fällen kann der Meßkopf an eine zu prüfende Stelle gefahren werden um dort stationär zu messen.
Bekannten Verfahren gegenüber sind beim erfindungsge¬ mäßen Verfahren folgende Vorteile hervorzuheben:
- Das erfindungsgemäße Verfahren erlaubt eine Lagebe¬ stimmung einzelner Spannstähle oder sonstige Struk¬ turen mit magnetischer Anomalie ohne vorherigen Kenntnis der Orientierung solcher Komponenten.
- Das erfindungsgemäße Verfahren erlaubt die Prüfung einzelner Spannstähle, sogar für die Fälle, daß solche Stähle mit anderen zusammen in einem, insbesondere metallischen Hüllrohr, beispielsweise im Beton, eingebettet sind.
- Das erfindungsgemäße Verfahren erlaubt es ohne vor¬ herige Magnetisierung der zu untersuchenden Stahlar¬ mierungen, insbesondere des einzelnen Spannstahls zerstörungsfrei zu prüfen, insbesondere eine Lage- bestimmung und/oder eine Bestimmung von Rissen in der Spannstahlstruktur ohne vorherige Magnetisierung vorzunehmen.
- Zwar richtet sich das erfindungsgemäße Verfahren auf ein solches, das die zerstörungsfreie Prüfung von Stahlarmierungen in Bauwerken erlaubt, das erfindungs¬ gemäße Verfahren ist jedoch genauso gut zu Lagebe¬ stimmung von Rohrleitungen oder zur Ermittlung von Bruchstellen in Rohrleitungen aus Materialien die magnetische Anomalien aufweisen, wie z.B. Stahl, in Beton als auch in anderen Bauwerken, z.B. in einem Mauerwerk oder im Erdboden vergraben, anwendbar. Desweiteren ist es vorstellbar das erfindungsgemäße Verfahren auch im Bereich der Umwelttechnik, beispiels¬ weise zur Prüfung von Leckagen in Rohrsystemen als auch im Anlagebau z.B. zur Zustandsermittlung von sicherheitsrelevanten Bauteilen wie auch in der De¬ ponietechnik und Altlastenerkundung einsetzbar.
Die zeitliche Feldänderung die wenigstens von einer
Pick-Up-Spule aufgenommen werden soll, kann durch alter¬ native Verfahrensweise erzeugt werden.
Eine erste Möglichkeit besteht darin, den mit der je- weiligen Spule verbundene Meßkopf relativ zur zu unter¬ suchenden Stahlarmierungen zu bewegen, bevorzugt mit einer linearen konstanten Geschwindigkeit.
Bei einer weiteren Varianten des erfindungsgemäßen Ver- fahrens wird die Spule an einem stationären Meßkopf zu Schwingungen mit einer definierten Frequenz angeregt. Dabei soll bevorzugt die Schwingung der Pick-Up-Spule parallel zur Richtung des zu untersuchenden Spannstahls erfolgen. Wählt man dabei die Frequenz einer Erreger- Schwingung außerhalb der Frequenzbreite von Störsigπa- len, dann können durch entsprechende Filterung Umgebungs¬ störungen weitgehend ausgestaltet werden.
Eine weitere alternative Variante des erfindungsgemäßen Verfahrens besteht darin, daß die Spule als auch der Meßkopf stationär nahe an einer zu untersuchenden Stahlarmierung angeordnet, mit Hilfe beispielsweise einer Feldspule der zu untersuchenden Stahlarmierung ein Wechselfeld ausgesetzt wird.
Desweiteren kann eine besondere Reproduzierbarkeit dadurch erreicht werden, daß die zu untersuchende Stahlarmierung, insbesondere der einzelne Spaπnstahl, vor Aufnahme der zeitlichen Feldänderung zunächst vollständig entmagnetisiert wird. Zur Detektion von Rissen in einem solchen entmagnetisierten Spannstahl reicht die hohe Empfindlichkeit des erfindungsgemäßen Verfahrens zur Detektion der immer noch vorhandenen Polbildung an Bruchstellen im Erdfeld aus.
Wenn auch bei Verwendung einer Pick-Up-Spule die zeit¬ liche Änderung des Felds gemessen, dabei allerdings räumlich konstante Signale der Umgebung wie z.B. die 50 Hz-Schwingung eines Trafos oder Elektromotors ge- stört wird, kann dieser Nachteil durch eine vorteil¬ hafte Variante des erfindungsgemäßen Verfahrens besei¬ tigt werden, in dem wenigstens eine Gradiometeranord- nuπg von 2 Pick-Up-Spulen mit gegenläufigen Windungen gewählt wird. Eine solche Gradiometeranordnung von wenigstens 2 Spulen erlaubt die Eliminierung von gleich aufgenommenen Störsignalen durch eine Differenzbilduπg bei der Messung.
Das erfinduπgsgemäße Verfahren kann als Meßergebπis den Verlauf einer Feldgröße als Funktion des Meßweges ergeben, 'wobei sich ein Bruch beispielsweise in einem einzelnen Spannstahl durch einen ausgeprägten Aus¬ schlag im Kurvenverlauf bemerkbar macht. Weitere Infor¬ mationen können erhalten werden in dem eine parallele Anordnung mehrere Pick-Up-Spulen (sowohl eine einzelne Anordnung als auch eine Gradiometeranordnung) senkrecht zum Meßweg erhalten werden. Bei geeigneter Weiterver¬ arbeitung der Meßergebnisse unter Berücksichtigung der zusätzlichen Aufnahme der Feldänderungen senkrecht zum Meßweg kann ein zweidi ensionales Bild der Feldvertei¬ lung ermittelt werden, was beispielsweise die Deutung einer Fehlstelle unter Umständen erheblich erleichtern kann.
Die Auswerteelektronik umfaßt neben der SQUID-Elektro- nik unter Umständen eine Steuerungseinheit, eine Ein¬ heit mit Datenspeicherung, Analyse und Darstellungs¬ charakter, sowie ggfs. ein Feldgenerator für eine am Meßkopf angeordnete Feldspule. Bei der Elektronik ist auch ein Experten-System denkbar.
Bei Einsatz des SQUID-Systems mit geeignetem Kryosta- ten kann es sich dabei um ein SQUID auf der Basis eines herkömmlichen Supraleiters wie beispielsweise Niob aber auch um einen SQUID auf der Basis eines modernen hochtemperatursupraleitenden Materials handeln (bei¬ spielsweise aus DE-PS 40 28 301 bekannt) . Letzterer HTSL-SQUID zeigt den Vorteil, daß im Kryostaten an¬ stelle des flüssigen Heliums nunmehr flüssiges Stick- stoff gewählt werden kann.
Es sind im folgenden in den Figuren zum erfindungsge¬ mäßen Verfahren, bzw. zur erfindungsgemäßen Vorrichtung dargestellt:
Figur 1 Schematische Darstellung der erfindungs¬ gemäßen Vorrichtung mit verfahrbarem Meßkopf mit Pick-Up-Spule und Feld¬ spule Figur 2 Prinzipschaltbild zur Verarbeitung des an einem Meßkopf aufgenommenen Signals
Figur 3 Drei mögliche Varianten zur Aufnahme der gemessenen zeitlichen Feldänderung mit
Hilfe einer einzelnen Spule, einer ein¬ fachen bzw. mehrfachen Gradiometeranord¬ nung
Figur 4a-c Meßergebnisse an einem in einem Hüllrohr befindlichen Bündel mit 16 Flachstäben.
In der Figur 1 ist eine schematische Darstellung der erfindungsgemäßen Vorrichtung mit verfahrbarem Meßkopf mit Pick-Up-Spule und Feldspule gezeigt. Es kann sich dabei um eine oder mehrere, an das stationäre SQUID-Sy- stem angeschlossene Pick-Up-Spulen handeln. Der Meßkopf befindet sich auf einer Verfahrenseinheit, die es er¬ laubt, den Meßkopf beispielsweise mit bis zu drei Freiheitsgraden zu positionieren. Über Schrittmotoren kann die Verfahrenseinheit entlang des Meßweges bewegt werden. Der stationäre SQUID befindet sich abgeschirmt in einem Kryostaten. Des weiteren ist eine entspre¬ chende Auswerteelektronik vorgesehen.
Eine Steuerung erlaubt
- die Vorgabe der Bewegung des Meßkopfes nach oordi- naten und Geschwindigkeit,
- eine-Ansteuerung eines Feldgenerators, der die Feld¬ spule mit einem Gleichfeld oder einem Wechselfeld mit frei einstellbarer Frequenz und Feldstärke ver¬ sorgen kann,* - eine Weitergabe aller Meßgrößen, d.h. die Meßsignale vom SQUID, der Koordinaten und Geschwindigkeiten des Meßkopfes, ggf. Feldgrößen der Feldspule an die Datenverarbeitung,
- eine Datenverarbeitung, die alle signifikanten Daten speichert, analysiert und entsprechend dokumentiert.
Ausführlicher dargestellt in der Figur 2 ist abge- schirmt der stationäre SQUID in einem Kryos aten mit der entsprechenden Auswerteelektronik. Es kann dabei ein SQUID auf der Basis hochtemperatur-supraleitender Materialien sein, insbesondere vom Typ RF-SQUID.
Bei der Anordnung der Pick-Up-Spulen im Meßkopf sind verschiedene Varianten möglich. Aus der Figur 3 ergeben sich dabei als Alternative eine einzige Pick-Up-Spule, eine Gradiometeranordnung von zwei Pick-Up-Spulen mit gegenläufigen Windungen oder eine Mehrfach- gradiometeranordnung.
Bei Verwendung einer Pick-Up-Spule wird die zeitliche Änderung des Magnetfeldes gemessen, wobei räumlich kon¬ stante Signale der Umgebung, z.B. die 50 Hz-Schwingung durch Trafos oder Elektromotoren, bei der Messung als Störung anfallen und aus der Messung durch Filterung entfernt werden müssen. Dieser Nachteil umgeht eine Gradiometeranordnung von zwei Pick-Up-Spulen mit gegen¬ läufigen Windungen, da in beiden Spulen gleich aufge- nommene- Störsignale durch eine Differenzbildung aus der Messung entfernt werden können. Bei diesen beschriebenen Anordnungen kann man als Me߬ ergebnis den Verlauf einer Feldgröße als Funktion des Meßweges erhalten. Dabei macht sich z.B. ein Bruch oder eine sonstige Diskontinuität im Spannstahl oder im zu untersuchenden Material durch einen mehr oder weniger ausgeprägten Ausschlag im Kurvenverlauf bemerkbar. Da¬ bei kann man zusätzlich Informationen erhalten durch eine parallele Anordnung mehrerer Pick-Up-Spulen senk¬ recht zum Meßweg. Im Ergebnis kann man damit ein zwei- dimensionales Bild der Feldverteilung ermitteln und die Deutung einer Fehlstelle erheblich erleichtern.
In den Figuren 4a - c finden sich Meßergebnisse an einem Bündel mit 16 Flachstäben zu je 5 x 10 mm, die sich in einem Hüllrohr mit einem Durchmesser von 70 mm befinden. Die mit Hilfe einer Pick-Up-Spule und einem HTSL-RF-SQUID erhaltenen Signale durch Entlangfahren an dem Bündel in einer Entfernung von 100 mm bzw. 190 mm Meßabstand von der Pick-Up-Spule bis zur Hüllrohrachse wurden durch die in Figur 4a bzw. Figur 4b erhaltenen Signale aufgenommen. In einem weiteren Meßzyklus wurde zum Vergleich nunmehr das Bündel mit den Flachstäben im Hüllrohr entmagnetisiert und in einem Meßabstand von 190 mm untersucht. Die dann aufgenommenen Signale sind in der Figur 4c dargestellt.
Aufgetragen in den Figuren 4a - 4c sind die mit Hilfe der erfindungsgemäßen Vorrichtung erhaltenen Signale in Volt-Einheiten als Funktion der Bündelkoordinate in mm dargestellt. Die beiden Enden des zu untersuchenden
Bündels stimmen mit den Extremwerten der Bündelkoordi¬ naten in den Figuren 4a - c im wesentlichen überein. Durch Vergleich der erzielten Meßergebnisse in den Fi¬ guren 4a - c ergibt sich bei der Bündelkoordi¬ nate = 2140 mm ein reproduzierbares Signal, das auch bei Entmagnetisierung des Bündels gemäß dem Meßlauf zu Figur 4c eindeutig auf eine Diskontinuität im Bündel hinweist.
Das untersuchte Modell-Bündel eines in einem Hüllrohr befindlichen Spannstahlbündels wurde erhalten durch Ausbau aus einem Teilbereich eines über Jahre unter Zugbelastung gestandenen Spannbetonbauteils.

Claims

P a t e n t a n s p r ü c h e
1. Verfahren zur zerstörungsfreien Prüfung von Stahlar¬ mierungen in Bauwerken, insbesondere zur Lagebestim¬ mung einzelner Spannstähle mit unbekannter Orientie¬ rung und/oder Bestimmung von Rissen einzelner Spann- stähle, insbesondere für den Fall, daß sich der ein¬ zelne Spannstahl mit mehreren in einem metallischen Hüllrohr im Inneren eines Spannbetonbauteils befindet, d a d u r c h g e k e n n z e i c h n e t , daß - ein mit wenigstens einer Pick-Up-Spule vorgesehe¬ ner Meßkopf eine von den Permeabilitätseigen¬ schaften der zu untersuchenden Stahlarmierung hervorgerufene, zeitliche Feldänderung ohne ak¬ tive, vorherige Magnetisierung der Stahlarmierung aufnimmt, das am Meßkopf erhaltene Signal an ein SQUID-Sy- stem weitergegeben wird und - diesem SQUID-Syste eine Auswerte-Elektronik nachgeschaltet ist.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß im Fall eines stationären Feldes die zeitliche Feldänderung durch eine zur zu untersuchenden Stahlar- mierung relative, insbesondere gleichmäßige Bewegung des Meßkopfs erzeugt wird.
3. Verfahren nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , daß als stationäres Feld der Stahlarmierung ihr natür¬ liches, remanentes Feld oder ein von aussen an die Stahlarmierung angelegtes Gleichfeld gewählt wird.
4. Verfahren nach Anspruch 1 , 2 oder 3 , d a d u r c h g e k e n n z e i c h n e t , daß im Fall eines von aussen an der Stahlarmierung an- gelegten Wechselfeldes die zeitliche Feldänderung mit Hilfe eines relativ zur zu untersuchenden Stahlarmie¬ rung stationär angeordneten Meßkopfs aufgenommen wird.
5. Verfahren nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t , daß das Wechselfeld von einer am Meßkopf verbundenen Feldspule erzeugt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , daß die zu untersuchende Stahlarmierung vor Aufnahme der Feldänderung am Meßkopf entmagnetisiert wird.
7. Verfahren nach einem der vorhergehenden Ansprüche , d a d u r c h g e k e n n z e i c h n e t , daß die zeitliche Feldänderung vom Meßkopf mit einer aus wenigstens einer weiteren Pick-Up-Spule mit zur ersteren Spule gegenläufigen Windungen bestehenden Gradiometeranordnung aufgenommen wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß wenigstens ein Array von Pick-Up-Spulen, ggfs. in wenigstens einer Anordnung von mehreren Gradiometeran- Ordnungen derart vorgesehen ist, daß eine zweidimen- sionale Information der zu untersuchenden Stahlarmie¬ rung erhalten wird.
Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß die eine oder mehrere mit dem Meßkopf verbundenen Pick-Up-Spulen in einer oder jeweils mehreren ausge¬ wählten Richtungen mit jeweils definiert eingestellter Frequenz zu Schwingen erregbar sind.
10. Vorrichtung zur zerstörungsfreien Prüfung von Stahlar¬ mierungen in Bauwerken, insbesondere zur Lagebestim¬ mung einzelner Spannstähle mit unbekannter Orientie¬ rung und/oder Bestimmung von Rissen einzelner Spann- stähle, insbesondere für den Fall, daß sich der ein¬ zelne Spannstahl mit mehreren in einem metallischen Hüllrohr im Inneren eines Spannbetonbauteils befindet, g e k e n n z e i c h n e t d u r c h
- einen Meßkopf mit wenigstens einer zur Aufnahme von Magnetfeldänderungen vorgesehene Pick-Up- Spule, ein SQUID-system mit Koppelspule zur Aufnahme des Signals der Pick-Up-Spule und
- eine Auswerte-Elektronik zur Weiterverarbeitung des SQUID-signals.
11. Vorrichtung nach Anspruch 10, g e k e n n z e i c h n e t d u r c h wenigstens einer weiteren Pick-Up-Spule mit zur erste- ren gegenläufigen Windungen zur Bildung einer Gradio¬ meteranordnung oder wenigstens ein aus mehreren Pick- Up-Spulen bestehendes Array.
12. Vorrichtung nach Anspruch 10 oder 11, g e k e n n z e i c h n e t d u r c h mehrere mit dem Meßkopf verbundenen Pick-Up-Spulen, die jeweils einzeln oder zu mehreren in einer oder mehreren ausgewählten Richtungen mit jeweils definier¬ ter Frequenz schwingbar angeordnet sind.
13. Vorrichtung nach Anspruch 10, 11 oder 12, g e k e n n z e i c h n e t d u r c h eine mit dem Meßkopf verbundene Feldspule.
14. Vorrichtung nach einem der Ansprüche 10 bis 13, g e k e n n z e i c h n e t d u r c h einen in bis zu drei von einander unabhängigen Orien- tierungen bewegbaren Meßkopf.
PCT/DE1993/000437 1992-05-14 1993-05-14 Verfahren zur zerstörungsfreien prüfung von stahlarmierungen in bauwerken WO1993023750A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP93909777A EP0640213A1 (de) 1992-05-14 1993-05-14 Verfahren zur zerstörungsfreien prüfung von stahlarmierungen in bauwerken

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19924215358 DE4215358A1 (de) 1992-05-14 1992-05-14 Verfahren zur zerstörungsfreien Prüfung von Stahlarmierungen in Bauwerken
DEP4215358.1 1992-05-14

Publications (1)

Publication Number Publication Date
WO1993023750A1 true WO1993023750A1 (de) 1993-11-25

Family

ID=6458519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1993/000437 WO1993023750A1 (de) 1992-05-14 1993-05-14 Verfahren zur zerstörungsfreien prüfung von stahlarmierungen in bauwerken

Country Status (3)

Country Link
EP (1) EP0640213A1 (de)
DE (1) DE4215358A1 (de)
WO (1) WO1993023750A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0716300A1 (de) * 1994-12-05 1996-06-12 Hitachi, Ltd. Messsystem für Materialverschlechterung
DE19631490A1 (de) * 1996-08-03 1998-02-05 Forschungszentrum Juelich Gmbh Vorrichtung und Verfahren zur Unterdrückung von Signalen der Querbügel bei der Untersuchung von Spannbetonbauteilen mit der Methode der magnetischen Restfeldmessung

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19746000C2 (de) 1997-10-20 2002-05-16 Forschungszentrum Juelich Gmbh Verfahren zur Ermittlung von Defekten in Werkstücken sowie Magnetfeldmeßgerät zur Durchführung dieses Verfahrens
DE102006006468A1 (de) * 2006-02-10 2007-08-16 Rwe Power Ag Verfahren zur Überwachung und/oder zerstörungsfreien Prüfung eines Transmissionselements sowie Messanordnung zur Durchführung des Verfahrens
DE202015004751U1 (de) 2015-07-01 2015-08-13 IAB - Institut für Angewandte Bauforschung Weimar gemeinnützige GmbH Vorrichtung zum Detektieren und Vermessen von Stahlbewehrung in Betonschwellen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657638A (en) * 1969-01-09 1972-04-18 Huettenwerk Oberhausen Ag Method of magnetic flaw detection in bodies of non-circular cross section using unidirectional magnetization and demagnetization pulses to eliminate edge distortion of the magnetic field
US4573013A (en) * 1982-03-29 1986-02-25 The United States Of America As Represented By The Secretary Of Transportation Magnetic inspection of reinforcing steel rods in prestressed concrete
WO1989012833A1 (en) * 1988-06-23 1989-12-28 Electric Power Research Institute, Inc. Inhomogeneity detection system
EP0376116A2 (de) * 1988-12-29 1990-07-04 Hochtief Aktiengesellschaft Vorm. Gebr. Helfmann Verfahren zur Ermittlung der Lage einer Bruchstelle eines Spannstahls

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657638A (en) * 1969-01-09 1972-04-18 Huettenwerk Oberhausen Ag Method of magnetic flaw detection in bodies of non-circular cross section using unidirectional magnetization and demagnetization pulses to eliminate edge distortion of the magnetic field
US4573013A (en) * 1982-03-29 1986-02-25 The United States Of America As Represented By The Secretary Of Transportation Magnetic inspection of reinforcing steel rods in prestressed concrete
WO1989012833A1 (en) * 1988-06-23 1989-12-28 Electric Power Research Institute, Inc. Inhomogeneity detection system
EP0376116A2 (de) * 1988-12-29 1990-07-04 Hochtief Aktiengesellschaft Vorm. Gebr. Helfmann Verfahren zur Ermittlung der Lage einer Bruchstelle eines Spannstahls

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DONALDSON G., ET AL.: "USE OF SQUID MAGNETIC SENSOR TO DETECT AGING EFFECTS IN DUPLEX STAINLESS STEEL.", BRITISH JOURNAL OF NON DESTRUCTIVE TESTING., BRITISH INSTITUTE OF NON DESTRUCTIVE TESTING, NORTHAMPTON., GB, vol. 32., no. 05., 1 May 1990 (1990-05-01), GB, pages 238 - 240., XP000125410 *
IEEE TRANSACTIONS ON MAGNETICS Bd. 23, Nr. 2, März 1987, NEW YORK Seiten 477 - 479 J.G. BELLINGHAM AND M.L.A. MAC VICAR 'SQUID Technology Applied for the Study of Electrochemical Corrosion' *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0716300A1 (de) * 1994-12-05 1996-06-12 Hitachi, Ltd. Messsystem für Materialverschlechterung
US5793203A (en) * 1994-12-05 1998-08-11 Hitachi, Ltd. Measurement system with noise reduction circuit
DE19631490A1 (de) * 1996-08-03 1998-02-05 Forschungszentrum Juelich Gmbh Vorrichtung und Verfahren zur Unterdrückung von Signalen der Querbügel bei der Untersuchung von Spannbetonbauteilen mit der Methode der magnetischen Restfeldmessung
DE19631490C2 (de) * 1996-08-03 1998-06-10 Forschungszentrum Juelich Gmbh Vorrichtung und Verfahren zur Unterdrückung von Signalen der Querbügel bei der Untersuchung von Spannbetonbauteilen mit der Methode der magnetischen Restfeldmessung

Also Published As

Publication number Publication date
DE4215358A1 (de) 1993-11-18
EP0640213A1 (de) 1995-03-01

Similar Documents

Publication Publication Date Title
EP0365622B1 (de) Verfahren zum zerstörungsfreien messen magnetischer eigenschaften eines prüfkörpers sowie vorrichtung zum zerstörungsfreien messen magnetischer eigenschaften eines prüfkörpers
EP0100009B1 (de) Vorrichtung zum zerstörungsfreien Messen der Einhärtetiefe von Werkstoffen
DE19601707C2 (de) Verfahren und Vorrichtung zum zerstörungsfreien Prüfen eines Drahtseiles
EP2893336B1 (de) Differentieller sensor, prüfsystem und verfahren zur detektion von anomalien in elektrisch leitfähigen materialien
EP0220457B1 (de) Verfahren und Vorrichtung zum Vermessen von in nichtmagnetischen Materialien verlegten ferromagnetischen Gegenständen
DE10000845B4 (de) Verfahren und Vorrichtung zur berührungslosen Planheitsmessung von Metallbändern aus ferromagnetischen Werkstoffen
EP0376116B1 (de) Verfahren zur Ermittlung der Lage einer Bruchstelle eines Spannstahls
EP0640213A1 (de) Verfahren zur zerstörungsfreien prüfung von stahlarmierungen in bauwerken
EP2783206A1 (de) Verfahren und vorrichtung zum nachweis von mechanischen veränderungen in einem bauteil mittels magnetoelastischen sensors
EP2108112B1 (de) Verfahren zur bestimmung der restlebensdauer und/oder des ermüdungszustandes von bauteilen
EP0170690B1 (de) Zerstörungsfreie werkstoffprüfung von ferromagnetika
DE3152919C2 (de) Verfahren und Vorrichtung zur magnetischen Pr}fungmechanischer Eigenschaften
DE3821070A1 (de) Vorrichtung fuer die nicht-zerstoerende untersuchung von langgestreckten, magnetisch leitenden elementen
EP1767932B1 (de) Vorrichtung und Verfahren zur zerstörungsfreien Prüfung von Bauteilen
EP3581916A1 (de) Vorrichtung und verfahren zur magnetischen partikelbestimmung
EP0831323A1 (de) Verfahren zum zerstörungsfreien Prüfen eines Prüflings mit einer Schweissnaht aus magnetisierbarem Material
DE19631490C2 (de) Vorrichtung und Verfahren zur Unterdrückung von Signalen der Querbügel bei der Untersuchung von Spannbetonbauteilen mit der Methode der magnetischen Restfeldmessung
DE1498973A1 (de) Verfahren zum Analysieren einer Mischung
DE102013209774A1 (de) Prüfverfahren und Prüfvorrichtung zur Wirbelstromprüfung mit Vormagnetisierung
DE19640379C2 (de) Verfahren und Meßanordnung zur Prüfung von Dauermagneten
WO2001023877A1 (de) Verfahren und vorrichtung zur zerstörungsfreien materialcharakterisierung ferromagnetischer stoffe
WO1995002099A1 (de) Armierung für zugbelastete bauteile und damit versehene anlagen
DE102007009361B4 (de) Verfahren und Vorrichtung zum Entmagnetisieren eines Objektes aus zumindest teilweise ferromagnetischem Material
DE2411459C3 (de) Verfahren zur Bestimmung der Werkstoffermüdung eines Probekörpers
DD253685A1 (de) Messkopf zur ermittlung von mechanischen spannungen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1993909777

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1993909777

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1993909777

Country of ref document: EP