WO1993022481A1 - Phosphating process - Google Patents

Phosphating process Download PDF

Info

Publication number
WO1993022481A1
WO1993022481A1 PCT/JP1993/000593 JP9300593W WO9322481A1 WO 1993022481 A1 WO1993022481 A1 WO 1993022481A1 JP 9300593 W JP9300593 W JP 9300593W WO 9322481 A1 WO9322481 A1 WO 9322481A1
Authority
WO
WIPO (PCT)
Prior art keywords
bath
treatment
phosphoric acid
film
conversion treatment
Prior art date
Application number
PCT/JP1993/000593
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeki Matsuda
Original Assignee
Nippondenso Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15207902&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1993022481(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippondenso Co., Ltd. filed Critical Nippondenso Co., Ltd.
Priority to AU42719/93A priority Critical patent/AU663599B2/en
Priority to CA002112592A priority patent/CA2112592C/en
Priority to EP93911970A priority patent/EP0597131B1/en
Priority to KR1019930704062A priority patent/KR100261953B1/en
Priority to DE69316160T priority patent/DE69316160T2/en
Priority to JP5518742A priority patent/JP3060537B2/en
Publication of WO1993022481A1 publication Critical patent/WO1993022481A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/06Filtering particles other than ions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/34Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/36Phosphatising

Definitions

  • the present invention relates to a phosphoric acid conversion treatment method for forming a phosphoric acid conversion coating on a metal material surface, and more particularly, to a treatment method for forming a chemical conversion coating on a conductive metal material surface. .
  • the phosphoric acid conversion treatment method has been used in various fields such as pretreatment before coating and pretreatment before cold forging.
  • Japanese Patent Application Laid-Open No. 60-204847 discloses a method of subjecting iron, steel, zinc, and / or aluminum to acid phosphate conversion treatment on the surface thereof. I have.
  • Japanese Patent Application Laid-Open No. 6-64881 discloses phosphoric acid for steel and zinc or zinc-plated steel, or metal composed of aluminum and steel and / or zinc-plated steel. A method of performing a chemical conversion treatment is disclosed.
  • Japanese Patent Application Laid-Open No. 2-190478 discloses a chemical conversion treatment bath containing Fe 3+ ions as a method for forming a phosphate film on an aluminum material surface. I have.
  • stainless steel which is a material to be treated other than iron and steel, is subjected to electrolysis in a phosphate chemical conversion treatment bath. It is known that it is possible to form a phosphoric acid conversion coating on the material to be treated as described above, but such a coating still has a very thin film thickness, such as a coating base. It was limited to formation.
  • the present invention has been made in view of the above problems, and a phosphoric acid conversion coating film having a sufficient film thickness can be applied to the surface of any conductive metal material. It provides a phosphoric acid conversion treatment method that can be used. Disclosure of the invention
  • the present inventors argued that in the conventional phosphoric acid conversion treatment method, the above-described complicated conditions were required in the treatment other than iron, and furthermore, a sufficient film thickness was required.
  • the process of forming a phosphatized chemical conversion film and the phosphatized chemical conversion reaction were examined in detail from the following two aspects. First, analysis was performed from the chemical reaction side, because the chemical reaction of the formation of the phosphate chemical conversion coating can be understood as an electrochemical reaction. Second, we analyzed the phase transition phenomenon. This refers to the phenomenon in which the soluble component (liquid) undergoes a chemical reaction in the phosphatization reaction to form a film (solid).
  • Phosphoric acid conversion treatment is a type of so-called chemical conversion film treatment method in which a film is formed on a metal material substrate using a chemical reaction between a metal material and a chemical solution.
  • a phosphate solution containing a film-forming metal ion such as iron, manganese, nickel, calcium, or zinc is used as the chemical conversion solution.
  • the phosphoric acid conversion treatment method can be considered to include an etching reaction step for a steel material and a film formation reaction step for forming a film. Then, they are electrochemical reactions and reduction reactions of ion nitrate or the like as a force source reaction, for example,
  • a metal dissolution (etching) reaction (Chem. 3) and a film formation reaction (Chem. 4) as anode reactions;
  • the reaction of chemical formula 3 acts as the main reaction, and the internal energy (mH) released into the solution by the reaction of yg 3 is converted to chemical formula 1, It is considered that the reactions of 2 and 4 occur on the surface of the metal material (solid), and a film is formed. Therefore, if no other energy such as heat is applied to the reaction system (that is, the chemical conversion bath), the formation of the chemical conversion film is reduced by the reduction of nitrogen-containing oxoacid ions such as nitric acid represented by chemical formulas 1 and 2.
  • the reaction is carried out by an oxidation reaction comprising dissolution of iron and oxidation of phosphate ions as represented by Chemical Formulas 3 and 4.
  • the dissolution resistance ⁇ when using an iron metal such as aluminum or ⁇ as the metal material is as follows.
  • halogen ions other than fluorine ions, for example, chlorine ions (CI-I) into the chemical treatment bath. Had been good.
  • the inventor of the present invention concluded that the phosphoric acid conversion treatment reaction is basically a “liquid phase-solid phase” reaction in which soluble component ions (liquid) in the bath are converted into a film (solid) by a chemical reaction. However, we thought that it could be understood as a transfer phenomenon.
  • the chemical conversion reaction in the conventional treatment bath is not sufficiently controlled, the chemical conversion reaction in the phosphoric acid conversion treatment bath can cause multiple chemical reactions even on surfaces other than the surface of the material to be treated. Waking up inside at the same time. As described above, when a plurality of reactions occur at the same time, not only one kind of “liquid-solid-solid” reaction but also a plurality of “liquid-solid-solid J reactions” and “ A phase-to-liquid phase "reaction is occurring. As a result, the treatment bath will contain sludge. Therefore, the transfer of energy between these reactions is complicated, and the formation of a film on the metal surface is regarded as a phase transition phenomenon. It is impossible to capture.
  • thermodynamic analysis of the phase transition phenomenon can be easily understood in a single-component system such as water, for example, but not in a reaction in a phosphate chemical conversion treatment bath.
  • complex systems involving complex chemical reactions can be very difficult to understand.
  • the present inventor can regard the reaction in the bath as a phase transition phenomenon by simplifying the reaction in the phosphate chemical conversion treatment bath as a physical phenomenon. I found this. That is, the state of the bath is controlled to include only liquid so that the reaction in the phosphatization bath is limited to the reaction of forming a film (solid) from the components (liquid) in the solution.
  • the chemical reaction in the phosphatization bath is regarded as a single-phase (liquid) reaction, and as a result, a film (solid) is formed. It is regarded as a phase transition phenomenon. I thought that by using it concretely, it would be possible to find a more effective means of forming a chemical conversion film, which is fundamentally different from the conventional one. is there.
  • phosphoric acid conversion treatment involves bringing a metal material (solid) to be treated into contact with a solution (liquid) containing a film-forming component. Therefore, the reaction related to chemical conversion treatment
  • the phase transition phenomenon (liquid-solid) is more dependent on the action between solid and liquid phases (reaction) than on the action between liquid and liquid phases (reaction). It is recognized that it can happen easily. This is because, for example, the coagulation of water in the air is more easily performed on the surface of a solid (solid-gas phase) than in the same phase (gas-phase gas phase). Dew '' frost It seems that it can be easily understood from the result. ⁇ In other words, solids are precipitated by the “liquid-liquid” reaction in the solution when a larger amount of energy is added to the reaction system than in the “solid-liquid-liquid” reaction on the surface of the workpiece. It is limited.
  • the inventor regards the reaction in the phosphatization bath as a phase transfer reaction, and thereby transfers the energy added to the chemical conversion reaction system between the liquid and the liquid.
  • the chemical conversion reaction is a phase transition phenomenon between the “solid phase and liquid phase” (film formation) by controlling the reaction between the solid phase and the liquid phase (phase transition) within the range that does not occur. For the first time, we found the fact that it can be performed only on a limited basis.
  • the reaction in the phosphatization bath was analyzed from two aspects, namely, the chemical reaction and phase transition phenomena. For the first time, it was possible to understand whether a good phosphoric acid conversion treatment film with a well-controlled film thickness could be obtained.
  • the method of forming a phosphatized chemical treatment film having a sufficiently controlled film thickness on a metal material as a conductive material can be further improved. They found out if they could do it. From such a background, the present inventor has determined that the phosphoric acid conversion treatment reaction is essentially an electrochemical reaction system, and that control of the reaction should be considered based on this concept.
  • a conductive metal material is brought into contact with a phosphate phosphatization treatment solution containing at least ion phosphate, oxo acid ion containing nitrogen, and metal ion forming a chemical conversion film.
  • the phosphoric acid conversion treatment bath is treated with a bath containing no solid component other than the unavoidable components, and the metal material is electrolytically treated in the phosphoric acid conversion treatment bath.
  • the phosphate chemical conversion treatment bath does not contain solid components other than the inevitable components means that there is no sludge which is energetically unstable in the bath, that is, the bath reacts. This means that the reaction activity involved in the reaction is clear.
  • the reaction by the electrolytic treatment of the present invention promotes the reactions of Chemical Formulas 1 to 8 by supplying the electric energy from the external power source.
  • the conventional electric plating and anodic oxidation are performed.
  • the dissolution reaction (Chem. 3 and 8) of the material to be treated is caused by the thermodynamics in the solution.
  • the dissolution reaction is promoted by applying electric energy, thereby forming a film on all the reaction systems of Chemical Formulas 1 to 8. It is something we can do.
  • the anodic treatment promotes the dissolution reaction of the material to be treated, and is therefore effective in ensuring the adhesion of the formed chemical film.
  • Cathodic treatment which is another method of the reaction accompanying the supply of energy from an external power supply of the present invention, is a chemical conversion film formed by acting on the component ions in the solution phase and depositing them on the cathode. The thickness is to be ensured. Therefore, the cathodic treatment alone does not cause a dissolution reaction of the metal to be treated, so that the cathodic treatment is preferably performed after the anodizing treatment.
  • a film-forming metal material such as zinc is used for the anode, which is dissolved and reacted with ion phosphate and ion in the solution phase to form a film on the surface of the cathode (material to be treated). I do.
  • the cathode treatment should be carried out using a chemical containing a predetermined metal material and related chemical components such as phosphoric acid for the anode and the solution phase.
  • a chemical containing a predetermined metal material and related chemical components such as phosphoric acid for the anode and the solution phase.
  • the anodic treatment is effective for promoting film formation by ensuring that the material capable of forming a film undergoes a melting reaction.
  • the application of only anodic treatment increases the adhesion of the coating, but is effective for the undercoating treatment of steel materials because it does not increase the film thickness.
  • the technology of the present invention provides a phosphoric acid chloride that ensures adhesion to any metal material. It is possible to form a sufficiently thick coating film.
  • an inorganic insulating film by increasing the thickness of a phosphate film, use of an insulating film on magnetic materials, prevention of aluminum materials, paint base, adhesion, lubrication base for plastic working, etc.
  • Applications include lubricating bases for cold forging stainless steel, and coatings for stainless steel.
  • the present invention the chemical treatment bath soluble components containing no slide Tsu di - Limited (H 3 P 0 4, N 0 3, HN 0 2, Z n 2+ , etc. such as metal ions) only After that, put the object to be treated and the electrode in the treatment bath, connect an external power supply between them, and apply a current between the object to be treated (work) and the electrode.
  • H 3 P 0 4, N 0 3, HN 0 2, Z n 2+ , etc. such as metal ions
  • the phosphate conversion treatment bath is controlled so as not to cause sludge in the treatment bath.
  • the following method is used to control the phosphate conversion treatment bath.
  • control of the energy addition to the chemical conversion bath pressure control of the liquid by controlling the temperature and the number of revolutions of the circulating pump, and alternately changing the state of the processing bath to the state not reacting).
  • stabilization of the energy state of the solution in the solution and by employing means such as filtration to form and maintain a state in which sludge is not generated in the chemical conversion bath. It is preferable to limit the phase transition phenomenon in the treatment bath to only the formation of a film on the surface of the metal to be treated, and perform the phosphatization treatment.
  • the primary purpose of installing the filtration circulation pump and the filtration device is to stabilize the thermodynamic energy state in the solution phase of the reactive solution. If the treatment bath stays in a place where it always reacts (unless there is an alternating circulation of “reacting places J” and “reacting places”), the solution bath in the solution phase as the chemical conversion reaction progresses Thermodynamic energy accumulates. As a result, the stability of the treatment bath solution phase as a liquid is lost, and a solid (sludge) is formed in the solution phase.
  • Filtration circulation pumps and filters are installed to prevent loss of thermodynamic stability of such solutions as liquids. Therefore, the filter itself has a certain volume, and not only a function of filtration but also a state in which the treatment bath is not reacting is maintained for a certain period of time or more. It contributes to the thermodynamic stability of.
  • the treatment bath is circulated alternately between the “non-reactive place” and the “reactive place” However, ensuring the thermodynamic stability of the solution phase should be considered for all the reaction systems (chemical formulas 1 to 8) in the phosphatization treatment bath.
  • the equilibrium state of phosphoric acid will be described below.
  • the phosphatization bath is a solution containing a large amount of phosphoric acid and having a pH of about 2 to 4.
  • Phosphoric acid is in solution at pH 2-4 and is in equilibrium with Chemical Formula 5.
  • the filtration circulation pump be operated by controlling its rotation speed.
  • Operating the circulation pump at a high speed means applying a high pressure to the solution phase.
  • the energy in the solution phase increases, and the solution phase cannot maintain its liquid state, and eventually precipitates a solid (sludge).
  • the rotation speed is low, a large capacity pump must be installed, which increases the cost. Therefore, when the circulating pump is an ordinary spiral-wound pump, it is preferable to appropriately control the pump rotation speed using an inverter or the like, suppress the pressure to the solution phase, and secure the circulating amount.
  • the second purpose of installing a filtration circulation pump and a filtration unit is to remove sludge generated in the treatment bath. If the sludge that has been generated, especially the sludge that is unstable in energy, is left untreated, Makes it easy to generate sludge. Therefore, it is preferable to remove sludge that has been generated quickly.
  • the temperature of the chemical conversion reaction system is moderately adjusted.
  • the temperature of the chemical conversion bath in the present invention is in the range of about 20 to 35 ° C.
  • the temperature range is a range generally set to a normal room temperature, which is a normal temperature of an aqueous solution.
  • heating is required to reach the required temperature.
  • the present invention does not use heating to promote the reaction.
  • the temperature range of 20 to 35 ° C related to the chemical conversion reaction system is a necessary condition for controlling the chemical conversion reaction, and if heat energy is directly used for the chemical conversion reaction, Absent.
  • the current method of heating a phosphate chemical conversion bath heated to 40 ° C or higher is to use a steam or other heat source in the chemical conversion bath, insert a heat exchanger, and directly heat the chemical conversion bath. I have. In this method, the temperature becomes extremely high near the heat exchanger, so that decomposition of the components of the chemical conversion bath by heat is promoted near the heat exchanger and sludge is generated. In that respect, the meaning of the heating is clearly different.
  • suppression of sludge generation is considered first. Therefore, it is not preferable to directly input a heat source into the chemical conversion treatment bath.
  • the chemical treatment bath should be warmed as slowly and indirectly as possible.
  • a method is preferred in which a heat exchanger is installed in the treatment bath circulation cycle of the electrolytic conversion treatment system, and the system is heated when the circulation pump is operating. It is also preferable to heat the entire treatment tank with water at about 30 to 40 ° C.
  • the hydrogen ion concentration (PH), redox potential (ORP), electric conductivity (EC), temperature, etc. of the chemical conversion bath are measured, and a chemical is injected according to the fluctuation.
  • PH hydrogen ion concentration
  • ORP redox potential
  • EC electric conductivity
  • temperature etc.
  • the temperature sensor is installed separately from the processing tank. In the present invention, an electrolytic reaction using an external power supply occurs in the processing tank. Therefore, a current flows in the processing tank, which affects the sensor and cannot display an accurate value.
  • each component in the treatment bath becomes either an energy-stable solid component (sludge and film) or a soluble component in an energy-stable bath solution as a solution. If sludge is produced, the sludge will be stable and will remain at the bottom of the tank.
  • the treatment bath can maintain a state that is always stable and does not contain an unstable (halfway in energy) sludge. can do.
  • the electrolysis of the present invention is preferably DC electrolysis.
  • the electrolysis depends on the location (electrode) where the workpiece (work) is connected. It is divided into
  • any of the above-described electrolysis methods may be combined with the method of forming a film by electroless.
  • FIGS. 1 to 4 the electrolysis systems shown in FIGS. 1 to 4 can be considered.
  • the electrolytic conversion treatment system is composed of a treatment tank 1, a circulation pump 2, a filter 3, a sensor 4, a power supply 5, an electrode 6, an object to be treated 7, and a temperature control system 8. ing.
  • the electrolysis reaction system consists of one or more, and in the case of two or more, it is installed separately in main electrolysis (reaction) system A and sub electrolysis (reaction) system B.
  • the secondary electrolysis (reaction) system B may be in the same tank or in a separate tank.
  • Figure 1 shows a typical electrolytic treatment system.
  • the electrode and the object may be interchanged.
  • Figure 2 is composed of the main electrolysis system A and the sub electrolysis system B.
  • Figure 2 shows an electrolytic treatment system that performs cathodic treatment.
  • the configuration is such that voltage and current are applied to the main electrolytic system A, but voltage and current are not directly applied to the secondary electrolytic system.
  • the sub-electrolysis system B current does not flow directly from the external circuit from the object 7 to the electrode 10, the electrode 11, etc. via the electric wires.
  • the current applied in the main electrolytic system A flows in the solution to the object 7 to be treated and the opposite electrodes 10 and 11 of the auxiliary electrolytic system. Then, the current flowing to the counter electrodes (electrodes 10 and 11) of the sub-electrolysis system B passes through the solution again and reaches the treated material 7. In addition, a portion of the sub-electrolysis system B where the current flows to the opposite electrode reaches the workpiece 7 via the diode D.
  • Main electrolytic system A is directly used for chemical conversion film formation
  • the secondary electrolytic system B acts to promote the main reaction satisfactorily, while the secondary electrolytic system B acts on the electrolytic reaction that is locally involved.
  • the potential in the processing bath during electrolysis is: anode of main electrolysis system A> counter electrode of sub electrolysis system B> object 7 to be processed.
  • the main electrolytic system A is configured such that a main metal for forming a phosphate film such as zinc is used as the electrode 6 on the anode side, and the workpiece 7 is used as a cathode.
  • the secondary electrolytic system B is constructed by immersing a metal material, such as iron and nickel, which constitutes a secondary component of the phosphate conversion coating in a treatment bath, and using this as an electrode.
  • a metal material such as iron and nickel
  • the current applied to the main electrolytic system. (Between the Zn electrode and the object to be processed) A is applied to the electrodes 10 and 11 in the same processing bath. Although the current is applied, the current is composed of a part discharged to the treatment bath and a part where the current flows to the object 7 through the external connection from iron or nickel. As a result, the dissolution of iron by electrolysis in the chemical conversion bath is suppressed as compared with the case where current flows directly from the iron electrode to the bath. The resulting conversion coating is based on the control of the iron component. In other words, it becomes elaborate.
  • the electrodes 10 and 11 of the sub electrolytic system B may be used in combination with iron and nickel, may be used alone, or may be made of another metal.
  • the direction of the diode D in FIG. 2 may be reversed.
  • FIG. 3 shows the main electrolysis system A and sub electrolysis system B performed in separate tanks.
  • the secondary electrolyzer 14 in Fig. 3 is installed for such a purpose. Chi words, the main electrolytic cell 1 excess F e 2+ is good Ri large voltage in secondary electrolytic cell 1 4 eluted by Ri reaction system to the electrolytic reaction at the 3, Ri by the electrolysis at a current, F e 2 + ⁇ Fe 3+, and the ORP of the treatment bath can be controlled to a predetermined range of 56 OmV or more.
  • FIG 4 shows the installation of multiple main electrolytic systems A.
  • the anode is an electrode 7 using zinc and an electrode 15 using other metals (such as iron), and the object 6 is connected as a cathode. Then, a plurality of metals are electrolytically treated at the same time to form a chemical conversion film.
  • Figures 5 (a) to (d) show the outline.
  • Voltage-scanning electrolysis An electrolysis method in which the applied voltage is controlled (scanned) using a function generator or the like so that the voltage becomes a predetermined voltage after a predetermined time, and the voltage is applied. It may be repeated n times.
  • the electrolysis methods (a), (b), (c), and (d) can be performed with the anode and the cathode, and in fact, the eight methods shown in Table 1 are possible .
  • the electrolytic treatment of the present invention produces sludge more than in the case of an electroless bath. Hard to occur. This is because the electrical energy supplied to the bath increased the electrochemical energy level of the entire bath and increased the stability of each component ion. That is, in a transparent electrolytic bath, the supply of electrons (e) to the solution phase contributes to stabilization of the presence of various ions in the solution phase. Therefore, the solution is thermodynamically stable, since various ions are stable in this transparent electrolytic bath. Therefore, in order to cause a phase transition such as film formation (corresponding to a “liquid-solid” reaction in this case), a large amount of electrochemical energy is required as compared with a transparent electroless bath. Therefore, the electrolytic treatment of the present invention is more stable as a solution than the electroless bath, and is less likely to generate sludge.
  • the voltage and current applied during the electrolytic treatment are 0.1 V or more: L 0 V, preferably 10 mk / dm 2 to 4 A dm 2 .
  • the preferred electrolysis is to ensure that a large amount of current is provided at as low a voltage as possible.
  • the oxidation-reduction potential (indicated by the AgC1 electrode potential) of the phosphatization bath of the present invention is preferably from 250 to 65 mV.
  • the 250-65 OmV of the present invention is preferably 450-86 OmV at the hydrogen standard electrode potential.
  • the oxidation-reduction potential of the chemical treatment bath reflects the whole of various equilibrium systems in the treatment bath, but in relation to Fe 2+ ion, Reflects Ehi 4. That is, if the amount of soluble metal ions , particularly Fe 2+, is large, the oxidation-reduction potential is low. Conversely, if the amount of soluble metal ions , especially F e 2+ is small, the redox potential is high. Become. If there is no electrolysis and no energy supply such as heating, the oxidation-reduction potential does not exceed 560 mV. The reason is that the Ag C1 electrode potential of the present invention is the hydrogen standard electrode potential minus about 21 OmV, and the ORP 560 mV (AgC1 electrode potential) is the hydrogen standard electrode potential. At 77 OmV, and the potential is
  • the oxidation-reduction potential of the chemical conversion bath is generally in the range of 250 to 65 ⁇ mV. This is because the oxidation-reduction potential reflects the redox balance of the chemical baths 1, 2, 4, and 8 in the treatment bath. This is because the balance between oxidation and reduction of 2, 4 does not fluctuate significantly.
  • the phosphate ion in the chemical conversion coating bath according to the present invention is approximately 4 g Z £ (gram / liter) or more, the film-forming metal ion is approximately 1.5 gZ or more, and the nitrate ion is approximately. Preferably more than 3 gZi is required.
  • the upper limit for phosphate ions is approximately 150 g
  • the upper limit for film-forming metal ions is approximately 40 g Z ⁇
  • the upper limit for nitrate ions is approximately Preferably, it is approximately 15 OgZ ⁇ .
  • the most preferable ion concentration is about 5 to 80 g / .beta.
  • the control of the chemical conversion bath is based on the control of the oxidation-reduction potential. Therefore, it is desirable to add a base agent (an acidic chemical containing phosphoric acid, nitric acid, zinc, etc.) in response to fluctuations in the oxidation-reduction potential, but for more reliable control of the chemical treatment bath, It is preferable to use it in combination with other electrochemical parameters such as hydrogen ion concentration (PH) and electric conductivity (EC).
  • the hydrogen ion concentration (P H) is preferably in the range of about 2.5 to 4.0.
  • pH can be reduced by injecting a base material that is an acidic chemical containing phosphoric acid, nitric acid, zinc, and the like.
  • the appropriate range of the electric conductivity varies depending on the type of the chemical treatment bath. It is preferable to set a higher value for a bath containing a large amount of active ions such as ion nitrate, but to set a lower value for a bath containing a small amount of nitrate ions and a large amount of phosphate ions. In general, it is preferable to add a base agent at the lower limit of the electric conductivity set value and control the electric conductivity of the chemical conversion treatment bath within a certain range.
  • the electric conductivity varies depending on the structure of the ions in the chemical conversion treatment bath, and the conductivity decreases as the structure of the ions in the solution progresses, even if the composition is the same. In consideration of the above, it is preferable to control the electric conductivity of the chemical conversion treatment bath to about 10 to 200 ms-cm- 1 .
  • a phosphate conversion treatment method capable of applying a phosphoric acid conversion coating film having a sufficient film thickness to the surface of a metal material having any conductivity. be able to.
  • Fig. 1 is a schematic diagram of the phosphatization electrolytic treatment system
  • Fig. 2 is a diagram of the phosphatization electrolytic treatment system
  • Fig. 3 is a diagram of the phosphatization electrolytic treatment system
  • Fig. 4 is Fig. 5), (b), (c), (d) are characteristic diagrams showing the state of current and voltage application
  • Fig. 6 is phosphoric acid obtained by the method of Example 1.
  • Fig. 7 is a fluorescence analysis diagram of the phosphoric acid film obtained by the method of Example 1
  • Fig. 8 is X-ray image of the phosphoric acid film obtained by the method of Example 1.
  • FIG. 9 is an SEM photograph of the crystal structure of the phosphate film obtained by the method of Example 2
  • FIG. 10 is the image of the phosphoric acid film obtained by the method of Example 2.
  • X-ray fluorescence analysis diagram Fig. 11 is the X-ray diffraction chart of the phosphoric acid film obtained by the method of Example 2
  • Fig. 12 is the re- sult obtained by the method of Example 3.
  • SEM photograph of the crystal structure of the phosphate film Fig. 13 is an X-ray fluorescence analysis diagram of the phosphoric acid film obtained by the method of Example 3
  • Fig. 14 is a photoreceptor obtained by the method of Example 3.
  • X-ray diffraction chart of the phosphoric acid film Fig.
  • Fig. 15 is an SEM photograph of the crystalline structure of the phosphate film obtained by the method of Example 4, and Fig. 16 is the method of Example 4.
  • X-ray fluorescence analysis diagram of the obtained phosphoric acid film Fig. I7 is a fluorescence X-ray diffraction chart of the phosphoric acid film obtained by the method of Example 4, and Fig. 18 is the method of Example 5.
  • Fig. 19 is an X-ray analysis chart of the phosphate film obtained by the method of Example 5
  • Fig. 20 is Example 6
  • Fig. 21 is an X-ray analysis chart of the phosphate film obtained by the method of Example 6, and Fig.
  • FIG. 21 is an SEM photograph of the structure of the phosphate film obtained by the method of Fig. 2.
  • 2 is the ring obtained by the method of the comparative example.
  • SEM photograph of the crystal structure of the phosphate film Figure 23 is a schematic diagram of the parts used in Example 7, and Figure 24 is an SEM photograph of the crystal structure of the phosphate film obtained by the method of Example 8.
  • Fig. 25 and Fig. 25 are X-ray X-ray charts of the phosphate film obtained by the method of Example 8, and Fig. 26 is the crystals of the phosphate film obtained by the method of Example 9.
  • SEM micrograph of the structure Fig. 27 is an X-ray analysis chart of the phosphate film obtained by the method of Example 9, and Fig.
  • FIG. 30 is a schematic diagram of the segment used in Example 11,
  • FIG. 31 is a schematic diagram showing the core of Example 11, and
  • FIG. 32 is a valve made of the core of Example 11
  • FIG. 33 is a schematic diagram showing a conventional core
  • FIG. 34 is a cross-sectional view showing a valve made of a conventional core
  • FIG. 35 is a characteristic diagram showing the characteristics of Example 11
  • FIG. 37 is a characteristic diagram showing characteristics of Example 12;
  • FIGS. 38 (a) and (b) are front and side views of a core showing Example 13;
  • FIG. 39 is a partially enlarged view of the core of Example 13;
  • FIG. 40 is a partially enlarged view of the conventional core; and
  • FIG. 41 is a characteristic diagram showing current and voltage characteristics of Example 14; is there.
  • the test agent was a plate-like test piece (A) of 15 cm, 7 cm, or 1 mm in length, width, or thickness, respectively.
  • Test pieces of 7.5 cm, 3.5 cm, 1 mm were used, and the opposite electrode was a 2 Ocm, 5 cm, 1 to 2 mm plate-shaped one each in vertical, horizontal, and thickness directions.
  • a clutch component of a compressor for an automobile air conditioner was used.
  • Example 11 a magnetic material (ILSS) and a component (core segment) forming a core for a solenoid for controlling a fuel injection pump for an automobile were used.
  • ILSS magnetic material
  • core segment component forming a core for a solenoid for controlling a fuel injection pump for an automobile
  • Example 12 a magnetic material (ILSS) having a length of 500 mm, a width of 28 mm, and a thickness of 2 mm before plastic working of the solenoid core segment used in Example 11 was used. Using.
  • Example 13 used a stator core of an automotive alternator.
  • the volume of the treatment bath used for the treatment was about 20 liters.
  • the tent pieces in each example are degreased, rinsed with water, rinsed with water and pickled (1-2% HN03 at room temperature for 1 to 2 minutes) ⁇ rinsed with water ⁇ rinsed with water (surface adjustment) (0.2%) ⁇ Phosphoric acid conversion treatment ⁇ Rinsing—Washing was performed in 2 minutes for each step except for the phosphoric acid conversion treatment.
  • the treatment time of the phosphoric acid conversion treatment differs in each of Examples and Comparative Examples. After degreasing, after washing, fresh industrial water was sprayed to ensure reliable washing.
  • a steel material (SPCC) was used as the treatment agent.
  • an electroless chemical conversion treatment was performed for 2 minutes as the first step.
  • -Phosphate salt chemical treatment bath used was the Z n 2+ 3. 0 g / 1 , H 3 P 0 4 to 8 g / l, N 0 3 - a 3 2 g / l, the N i 2+ 0.8 g / l, F-one is for 0.1 lg Zl.
  • the pH, ORP and temperature of the treatment bath are 3.20, 400-500 mV and 30 ° C, and the total acidity, free acidity and accelerator concentration are 16 pt, 0-0. They were 1 2 pt and 6 pt. Further, the transparency of the treatment bath was 30 cm or more, and the chemical conversion treatment bath did not contain sludge.
  • Li phosphate salt chemical treatment bath used was, Z n 2+ a 3. 0 g / 1, H 3 P 0 4 to 1 6 g raised to the power of N 0 3 -!
  • the pH and RP of the treatment bath were 3.20, 400 to 5001 11 and 28, and the total acidity, free acidity and accelerator concentration were 16 pt, 0 to 0, 0.01 t and 6 pt.
  • the transparency of the treatment bath was 30 cm or more.
  • a phosphoric acid conversion coating film with a film thickness of 2 T rn and a dielectric breakdown voltage of 250 V or more according to JIS K 6911 was obtained.
  • the film thickness is a value measured with a KET SCIENCE (manufactured) electromagnetic thick film meter L ⁇ -300.
  • the thicknesses of the steel materials are all measured by the same method as in Example 1.
  • Figs. 6 and 7 show S-ray micrographs and X-ray fluorescence analysis diagrams of the obtained phosphoric acid chloride conversion coating.
  • Fig. 8 shows the X-ray diffraction diagram. In Fig. 8, the symbol ⁇ Shows a peak of Z n 3 (P 04) z ⁇ 4 H 2 0 and Z n 3 (P 0 4) .
  • the film obtained in Example 1 is a thick film containing nickel, manganese, and zinc with excellent withstand voltage.
  • An aluminum plate (Al100) was used as the material to be treated, and a steel plate was used as the counter electrode.
  • a-phosphate salt chemical treatment bath the same Z n 2+ processing bath used in the electrolytic process of Example 1 3. 0 g / 1, H 3 P 0 4 to 1 6 gZ 1, 03 - 3 ⁇ 4 1.7 g / l, 2.4 g / l for Ni'2 + , 0.1 g for F, 4.0 g for Zl and Mn2 ⁇ did.
  • the pH, ORP and temperature of the treatment bath were 3.00 to 3.40, 560 to 570 mV and 25 to 30 ° C, and the total acidity, free acidity and accelerator concentration were They were 18 pt, 0.1 pt and 6 pt.
  • the treatment bath had a transparency of 30 cm or more, and the treatment bath was free of sludge.
  • an aluminum plate which is a material to be treated, is used as an anode and a steel plate is used as a cathode, and a voltage of 1 to 3 V and a current of 0.3 to 0.6 A / dm 2 , 0.5 are used.
  • voltage 1-3 V voltage 1-3 V
  • a phosphate film having a coating weight of 6.12 g / dm 2 was formed on the surface of the aluminum plate. .
  • Figures 9 and 10 show an SEM photograph and an X-ray fluorescence analysis of the resulting phosphoric acid chloride conversion coating.
  • Figure 11 shows the X-ray diffraction diagram of the coating. Incidentally, .smallcircle in FIG. 1, similar to FIG. 8, a peak of Z n 3 (P 0 4) 2 ⁇ 4 H 2 0 Contact and Z n 3 (P 04), also ⁇ is The peak of A 1 is shown.
  • Example 2 The coating obtained in Example 2 was a phosphor containing manganese, nickel and zinc. It can be said that this is an acid conversion coating.
  • a stainless steel plate ('SUS304) was used as the material to be treated, and a steel plate was used as the counter electrode.
  • a-phosphate salt chemical conversion treatment bath Examples 2 and 3 the same Z n 2+. 0 g / 1 , H 3 P 0 4 to 1 6 g / l, N 0 3 to 1 7 g / 1 the n i 2+ 2. 4 g / 1 .
  • the pH, ORP and temperature of the treatment bath are 3.00 to 3.40, 560 to 570 mV and 25 to 30 ° C, and the total acidity, free acidity and accelerator concentration Were .18 pt, 0.1 pt and 6 pt. Further, the transparency of the treatment bath was 30 cm or more, and the treatment bath did not contain sludge.
  • Electrolytic process first, and stearyl down-less steel and an anode of the steel plate and shadow. Poles to be processed material, voltage 1 ⁇ 3 V, the current 0. 3 ⁇ 0. 6 AZ dm 2, time 1 minute Then, using the same treatment bath, using a stainless steel plate as the material to be treated as a cathode, a voltage of 1 to 3 V and a current of 0.3 to 0.6 A / dm 2 Treated for 0 minutes.
  • Figures 12 and 13 show SEM photographs and X-ray fluorescence analysis diagrams of the obtained phosphoric acid conversion coating.
  • Fig. 14 shows the X-ray diffraction diagram of the film.
  • .smallcircle in FIG. 4 similar to FIG. 8 shows a peak of Z n 3 (P 04) 2 ⁇ 4 H 2 0 and Z n 3 (P 0 4) . .
  • Example 4 The film obtained in Example 3 was a zinc phosphate conversion film containing zinc. (Example 4)
  • Oxygen-free copper (C1020) copper plate was used as the material to be treated, and iron steel plate was used as the counter electrode.
  • a-phosphate salt chemical treatment bath the same Z n 2+ as in Example 2 3. 0 g / 1, H 3 P 0 4 to 1 6 g Z l, N 0 3 to 1 7 g Z l , N i 2+ 2.4 g / 1, F 0 .lg Z l, M n 2+ 4.0 g / 1 was used.
  • the pH, ORP, and temperature of the treatment bath were 3.00 to 3-40, 560-570 mV and 25 to 30 ° C, and the total acidity, free acidity, and accelerator concentration were 1 They were 8 pt, 0.1 pt and 6 pt.
  • the treatment bath had a transparency of 30 cm or more, and the treatment bath did not contain sludge.
  • Electrolytic process first, a copper plate to be processed forest as an anode and the voltage. 1 to 3 V, the current 0. 3 ⁇ 0. 6 A / dm 2 , was treated at time 3 0 seconds, followed by the same treatment bath The substrate was treated for 10 minutes at a voltage of 1 to 3 V and a high current of 0.3 to 0.6 A dm 2 using a copper plate as a material to be treated as a cathode.
  • Figures 15 and 16 show SEM photographs and X-ray fluorescence analysis diagrams of the obtained phosphoric acid conversion coating.
  • Fig. 17 shows the X-ray diffraction diagram of the coating.
  • FIG - O mark in 1 7 shows a peak in the same manner as FIG. 8, Z n 3 (P 04 ) 2 ⁇ 4 H 2 0 and Z n 3 (P 0 4) ..
  • Example 4 The coating obtained in Example 4 is called a phosphoric acid conversion coating containing manganese and zinc.
  • the coating obtained in Example 5 is a dense phosphate coating.
  • the steel plate (SPCC) was used as the material to be treated, and the same steel plate was used for the counter electrode.
  • a-phosphate salt chemical conversion treatment bath 4 the same Z n 2+ as in Example 5. 0 g / 1, H 3 P 0 4 to 1 2 g Z l, N 0 3 a 4 0 g Z l , i 2 + was 6 g Zl, F was 0.2 g Z, and 3 ⁇ 4 ⁇ 11 2+ was 5 no 1.
  • the pH, ORP and temperature of the treatment bath were 2.70, 300 to 400 m and 23 ° C, and the total acidity and accelerator concentration were 16 pt and 1.6 pt. Also, the transparency of the treatment bath was 30 cm or more, and the treatment bath did not contain sludge.
  • a steel sheet which is the material to be treated, was used as the anode, and a voltage of 1.5 to 2.5 V, a current of 0.5 A / dm2 was applied for 30 seconds, and then the current was turned off for 10 seconds.
  • the process of maintaining the state was repeated once or twice, and the entire process was performed for about 8 minutes.
  • a voltage of 1.5 to 2.5 V and a current of 0.5 AZ dm2 were applied for 30 seconds, and thereafter, the current was applied for 10 seconds.
  • the treatment was repeated 12.times. With the cut off, and the treatment was performed for about 8 minutes in total.
  • FIGS. 20 and 21 S-ray micrographs and X-ray diffraction charts of the obtained phosphoric acid conversion coating are shown in FIGS. 20 and 21.
  • the coating obtained in Example 6 was a phosphate conversion coating having insulating properties. You.
  • a steel sheet (SPCC) was used as the material to be treated.
  • SPCC steel sheet
  • 3 Z n 2+. 2 g Z l , H 3 PC to 8 g / l, N 0 3 scratch 3 2 g Z l, ⁇ 1 2+ a 0.8 g / 1, F— of 0.2 g Zl was used.
  • PH, 0 RP and temperature of the treatment bath were 3.20, 510 to 54 in V and 28 ° C, and total acidity, free acidity and accelerator concentration were 16 pt, 0 to 0. lpt and 6 pt.
  • the treatment bath had a transparency of 30 cm or more.
  • the treatment bath contained no sludge.
  • the material to be treated was immersed in this treatment bath for 8 minutes.
  • Figure 22 shows an SEM photograph of the resulting phosphoric acid chloride conversion coating.
  • the phosphoric acid conversion coating obtained in the comparative example is generally obtained by an electroless method, and it can be said that even if the immersion time is lengthened, an increase in the film thickness and an improvement in the withstand voltage cannot be expected.
  • the steel material used for the compressor clutch of the car air conditioner was used as the material to be treated, and the same steel plate was used for the counter electrode.
  • the steel parts, as a-phosphate salt chemical conversion treatment bath in a substantially hollow shape having a diameter of 9 6 mm, thickness 2 7 mm, 4 to Z n 2+ 2 g / ⁇ , H a P 0 4 8 gl, N 0 3 — was 24.1 g / l, Ni 2+ was 2.6 g / l, and F ⁇ was 0.1 g.
  • the pH, ORP and temperature of the treatment bath are 2.93, 580-590 mV and 27 ° C, total acidity, accelerator
  • the concentrations were 20 pt and 6.0 pt.
  • the transparency of the treatment bath was 30 cm or more, and it did not contain sludge.
  • Electrolytic treatment is performed using the method shown in Fig. 3, with the part to be treated as the anode and the iron plate as the cathode, with a voltage of 0.3 V to 1.0 V and a current of 0.01 A to 0.14 A in the main electrolytic system. This was performed for 2 minutes using the treated material as shown in Fig. 5 (a).
  • the secondary electrolytic system B performs current scanning electrolysis according to the method shown in Fig. 5 (c), and removes Fe 2+ dissolved in the processing bath from the bath. Removed and performed to increase ORP. After this, Kao-tin electrodeposition coating (Nippon Paint Co., Ltd., Wartop U56) was performed, and baking was performed at 190 ° C for about 25 minutes. After leaving the coated material for 24 Hr or more, scratch the flat surface 20 and the outer peripheral portion 21 with a cutter knife until the base material is reached, and then add 5% sodium chloride at 55 ° C. A saltwater immersion test was performed by immersion in water for 240 Hr.
  • the flat portion 20 was 5 mm or less, or the outer peripheral surface 21 was peeled off by about 8 to 12 mm.
  • the method of the present invention has good corrosion resistance after coating in the outer peripheral portion 21.
  • the outer peripheral surface 21 is a portion that is greatly deformed when this part is formed by press working, and it is considered that the chemical conversion treatment is difficult with the conventional electroless method. Therefore, the corrosion resistance of the coating is poor in the electroless chemical conversion treatment.However, in Example 7, the anodic electrolysis is performed to dissolve the material even in a portion where it was conventionally difficult to dissolve the material, and the chemical conversion treatment is performed. And improved coating corrosion resistance.
  • Electrolysis using the same parts in the same treatment bath and the same electrolytic treatment system Only the processing method was changed to the method shown in Fig. 5 (c), and the current : OA ⁇ 0.01 A was started in 30 seconds, and the current was held for 30 seconds. Electrolysis was performed for 2 minutes in a manner of changing from 0 A to 0 A. Thereafter, it was painted and subjected to the same salt water immersion test as described above. As a result, the tape peeling width was 5 mm or less for both the flat portion 20 and the outer peripheral surface 21, and the coating corrosion resistance was better than that of the non-electrolytic one.
  • Example 7 the material was dissolved by using the sub-electrolysis system, but it may not be necessary depending on the anodic treatment conditions (current, voltage composition, etc.). .
  • a steel sheet (SPCC) was used as the material to be treated. Iron was used for the anodizing on the counter electrode, iron was used for the secondary electrolytic system for the cathodic treatment, and zinc was used for the main electrolytic system.
  • Electrolytic process first the workpiece as the anode, of ⁇ rather 1, iron as a cathode, Figure 5 current constant current electrolysis of (a) 0. 0 5 A / dm 2 ( voltage 0.1 3 min) for 1 minute. Subsequently, a main electrolytic system is formed using the same bath, using the material to be treated as a cathode and zinc as an anode.
  • wiring is performed between the workpiece and the iron electrode, and the wiring is made so that current flows only in the direction from the iron electrode to the workpiece.
  • the route between the material to be treated and iron is a secondary electrolytic system.
  • Cathode process in the main electrolysis system A in FIG. 2 performs a current scanning electrolysis, over 5 minutes to a 0 AZ dm 2 ⁇ 1. 5 A / ⁇ m 2 between the electrodes of the main electrolysis system A The application was performed gradually. The maximum applied voltage at that time was 4.5 V. Then, the same operation was repeated for six cycles, and the cathode treatment was performed for a total of 30 minutes.
  • a 15- to 30-m-thick phosphoric acid conversion coating was formed on the steel sheet surface.
  • the film thickness is the value measured with an electromagnetic film thickness meter LE-300 manufactured by Ket Kagaku Corporation.
  • the insulation resistance of this film was measured by a super-insulation meter SM-8210 manufactured by Toa Denpa Co., Ltd. Measured at The measurement was performed by lightly contacting the rod-shaped probe (positive electrode, negative electrode) of the super insulation meter with the surface. As a result, both the flat surface and the edge of the steel sheet had an insulation resistance of 500 V DC or more.
  • Figs. 24 and 25 show SEM photographs and X-ray diffraction charts of the obtained phosphoric acid chloride conversion coating. Incidentally, .smallcircle in FIG. 5, similar to FIG. 8 shows a peak of Z n 3 (P 04) 2 ⁇ 4 H 2 0 and Z n 3 (P 04).
  • a steel plate (SPCC) was used as the material to be treated. Iron was used for the anodizing process on the counter electrode, zinc was used for the main electrolytic system A for the cathodic treatment, and iron and nigel were used for the sub electrolytic system B.
  • Electrolysis treatment the first device of Figure 1, the workpiece as the anode, iron as a cathode, the current constant current electrolysis in Fig. 5 (a) 0. 0 5 A Roh dm 2 (voltage 0. 3 min) for 1 minute.
  • the same treatment bath is used, and the apparatus shown in Fig. 2 is used. That is, the main electrolytic system A is formed using the material to be treated 7 as a cathode and zinc as an anode. Also The wiring is made between the physical material 7 and the electrodes 10 and 11, which are iron and nickel. The wiring is made so that current flows only from the iron and nickel electrodes to the object to be processed. The path between the object 7 and the electrodes 10 and 11 is the auxiliary electrolytic system B.
  • the film thickness is a value measured by an electromagnetic film thickness meter LE-300 manufactured by Chit Kagaku Corporation.
  • the insulation resistance of this film was measured by a super-insulation meter SM-8210 manufactured by Toa Denpa Co., Ltd. did.
  • the measurement was performed by lightly touching the probe (positive electrode, negative electrode) of the super insulation meter to the surface.
  • both the flat part and the edge part of the steel sheet had an insulation resistance of 500 V DC or more.
  • SPCC steel plate
  • the iron electrode plate was removed from the power supply and the wire was immersed in the bath.
  • the pH, ORP and temperature of the treatment bath were 3.02, 569 mV and 2 ° C, respectively, and the total acidity was , Free acidity and accelerator concentration were 51.8 pt, 2.4 pt and 5.6 pt, respectively.
  • the transparency of the treatment bath was 30 cm or more, and the treatment bath did not contain sludge.
  • the material to be treated is used as the anode
  • iron is used as the cathode
  • the constant current electrolysis shown in Fig. 5 (a) is performed with a current of 0.05 A A dm 2 (voltage 0.5 min) for 1 minute.
  • the same treatment bath is used to form an electrolytic system using the material to be treated 7 as a cathode and zinc as an anode.
  • steel sheets were often immersed in them. If the steel sheet is immersed in the treatment bath, the steel sheet exists in the electrolytic reaction system. That is, iron is easily dissolved from the steel sheet, and the dissolved Fe 2 + adheres to the surface of the workpiece as a chemical conversion film. For this reason, the film thickness of the chemical conversion film is significantly increased as compared with Examples 8 and 9.
  • the cathodic treatment of the main electrolytic system A is performed by current scanning electrolysis, and it is applied gradually over 5 minutes to make 0 A dm 2 ⁇ 2.0 A / dm 2 between the electrodes of the main electrolytic system A. I went there. The maximum applied voltage at that time was 5.8 V. Then, the same operation was performed for 6 cycles, and the cathode treatment was performed for a total of 30 minutes.
  • a phosphoric acid chloride film with a thickness of 50 to 60 m was formed on the steel sheet surface.
  • the film thickness is a value measured with an electromagnetic film thickness meter LE-300, manufactured by Chit Kagaku Corporation.
  • the insulation resistance of this film was measured by Toa Denpa Co., Ltd., a super-insulation meter SM-8210. Was measured. The measurement was performed by lightly contacting the probe (positive electrode, negative electrode) of the super insulation meter with the surface.
  • the flat part of the steel sheet had an insulation resistance of DC 500 V or more.
  • the pressure resistance was about 250 V in the edge part.
  • the adhesion of the film to the base was also inferior to those of Examples 8 and 9. From these facts, it can be said that it is necessary to control the Fe ions in the chemical conversion bath in order to form a thick type insulating chemical conversion film.
  • a magnetic material containing 1 L S S, 1% Si
  • a segment 30 for a solenoid core used for a fuel injection pump of an automobile were used.
  • the pH and temperature of the treatment bath were 2.96 to 3.02, 5777 to 581 mV and 26 to 28 ° C, respectively, and the total acidity and accelerator concentration were respectively It was 40 pt and 3.0 t. (The free acidity was not measured.)
  • the treatment bath had a transparency of 30 cm or more and contained no sludge.
  • the chemical conversion treatment was performed by putting 200 segments 30 shown in Fig. 30 into a small barrel made of acrylic resin and performing electrolytic treatment inside the barrel.
  • Processing was performed for a total of 4 barrels, for a total of 800 parts.
  • the barrel is rotated at 2 RPM and has many 5 mXm holes on the sides to facilitate bath flow.
  • the material to be treated was first used as the anode, and iron was used as the cathode, and the constant current electrolysis shown in Fig. 5 (a) was performed using the connection system shown in Fig. 1.
  • the current at that time was 0.06 A barrel and the voltage was between 1.2 V force and 3.5 V. Incidentally surface area per barrel corresponds to 6 2 dm 2. Anodizing was performed for 5 minutes, and then the power was turned off for 2.5 minutes.Cathode processing was performed using iron and zinc as anodes and the barrel containing the object to be treated as the cathode to form the electrolysis system in Fig. 4. The current scanning electrolysis method shown in Fig. 5 (c) was used.
  • the iron electrode at that time is 0 A (ampere) barrel ⁇ 0.06 A ⁇ 0.1
  • the A-barrel is applied sequentially in 90 seconds, and the zinc electrode is applied in 0-barrel 0.5-1.0 A novar in 90 seconds, and the same. The operation was performed for 15 cycles.
  • the insulation resistance of this film was measured with a super insulation meter manufactured by Toa Denpa Co., Ltd.
  • the measurement method was the same as in Examples 8 to 10.
  • an insulation resistance of 100 V (D C) or more was obtained in the plane portion.
  • Figure 33 shows a conventional solenoid stator core segment 35 and a stationary core 36 using the same.
  • the conventional segment 35 is an F-type segment (material G09) that has already been insulated.
  • a fuel injection pump valve 37 was created as shown in FIG. .
  • the size (dimensions) of the valve 32 related to the embodiment 11 in FIG. 32 and the conventional valve 37 in FIG. 34 are the same.
  • Figure 35 shows a comparison of the performance of each valve 32 and 34.
  • valve 32 solid line in Fig. 35
  • valve 37 dashed line in Fig. 35
  • a magnetic material having a length of 500 mm, a width of 28 mm, and a thickness of 2 mm before plastic working of the solenoid core segment 30 used in Example 11 was used. ) was used.
  • N i 2+ to 6 g Z 1 comprises a bath with a-phosphate salt chemical conversion treatment bath.
  • the treatment bath had an FH of 3.03, an ORP of 576 mV, a temperature of 25 to 30 ° C, a total acidity of 44 pt, and a promoter concentration of 5.2 pt. (The free acidity was not measured.)
  • the transparency of the treatment bath was 30 cm or more and did not contain sludge.
  • the agent to be treated was used as the anode and iron was used as the cathode, and the constant current electrolysis shown in Fig. 5 (a) was performed for 1 minute using the electrolysis system shown in Fig. 1.
  • the current at that time was 0.4 AZ to be treated, and the voltage was 2.4 V.
  • the cathodic treatment was performed for 3 minutes in the same bath, using the object to be treated as the cathode and iron as the anode, using the same electrolytic system current application method as for the anodizing.
  • the current at that time was 0.4 A / treatment agent, and the voltage was 2.4 V.
  • the treated agent with the film formed is washed with water and dried, then immersed in a solution of 5% sodium stearate at 80 ° C for 10 minutes, and a metal seggen film of zinc stearate is applied on the surface. I got
  • this material was rolled in the direction of reducing the thickness at the center. >
  • Rolling is performed with a press of 200 tons, applying a load of 60 tons and 70 tons at a time, and moving by 1 mm per turn, reaching a total of 6 times of rolling.
  • the thin plate thickness (ti) was measured.
  • FIG. 37 shows the result of the chemical conversion treatment of the present invention.
  • processing oil Sugimura Chemical Co., Ltd.
  • FIG. 37 shows the case where only 0 0 — A) was used.
  • stator core 40 of an automotive alterna- ble shown in Fig. 38 was used as a material to be treated.
  • the core 40 is formed by laminating a plurality of segments 41 each having a thickness of 0.5 mm.
  • the pH of the treatment bath is 3.30, the ORP is 540 to 550 mV, the temperature is 28 ° C, the total acidity is 35 pt, the free acidity is 0.2 pt, and the accelerator concentration : Was 4-6 pt. Further, the transparency of the treatment bath was 30 cm or more, and the treatment bath did not contain sludge.
  • the treatment agent is first used as the anode, iron is used as the cathode, and the constant current electrolysis shown in Fig. 1 and Fig. Run for 5 minutes. Subsequently, using the same treatment bath, a main electrolytic system is formed using zinc and iron as anodes with the material to be treated as a cathode.
  • an electrolytic treatment system is formed, and a cathodic treatment is performed.
  • the cathodic treatment is performed by current scanning electrolysis, and 0 A-* 1.25 A is applied between the electrodes of the zinc electrolytic system for 40 seconds to produce the object to be treated. And went. In addition, it was gradually applied for 40 seconds to make the object to be treated 0 A ⁇ 0.4 A between the electrodes of the iron electrolytic system.
  • the electrolysis of zinc and iron was carried out simultaneously. Then, the same operation was performed for 20 to 30 cycles, and the cathode treatment was performed for a total of 13 to 20 minutes.
  • a phosphate conversion film having a thickness of 20 to 25 m was formed on the surface of the object to be treated.
  • the film thickness is manufactured by Chit Kagaku Corporation, electromagnetic film thickness meter LE — It is a value measured at 300.
  • the insulation resistance of this film was measured with a super insulation meter SM-8219 manufactured by Toa Denpa Co., Ltd. The measurement was performed by bringing the probe (positive electrode, negative electrode) of the super insulation meter into contact with the light surface. As a result, the surface of the workpiece had an insulation resistance of 500 V DC or more.
  • the workpiece was then electrocoated with Nippon Paint @ Power TOP, U-600E so that the thickness of the organic film was 40 to 50 ⁇ m.
  • the baking was performed at 180 ° C for 30 minutes.
  • the winding 42 automatically winds 12 windings of 1.4 mm in diameter per Z slot.
  • Figure 39 shows the inside of the slot part 44 after the winding 42 is processed.
  • the conventional electroless chemical conversion treatment which was not the chemical conversion treatment of Example 13, and was subjected to the same electroplating coating as in Example 13 resulted in the destruction of the entire insulation by the mechanical winding process described above.
  • the AC 600 V could not be maintained.
  • the inorganic insulating film of the present invention is effective for alternator insulating treatment.
  • the conventional alternator stator core 45 is provided with a paper insulator (organic insulating paper) 47 between the core 45 and the winding 46. Thereafter, the winding 46 is sealed with a page 48.
  • the thickness of the paper insulation was 2 0 zm, which hinders downsizing of the core 40.
  • the paper insulation breaks at less than 200 m due to mechanical winding.
  • Example 13 the insulation treatment of Example 13 can be made thinner than the conventional method, with a film thickness of 50 to 70 im, and the insulation effect is sufficient.
  • the phosphate conversion treatment method of the present invention in a place requiring insulation, such as the core 40, it is possible to abolish the conventional insulation member. It can be used for various applications.
  • Table 4 summarizes the electrochemical differences between the electrolytic treatment in the transparent treatment bath of the present invention and the conventional electroless treatment.
  • Electron energy from an external power supply Electron is supplied only at the level of dissolution of iron Only with iron ion Fe 3+ with Fe without F e 3 + without Form Fe z + with Fe 2+ with F e 2 + with Treatment Bath redox 5 ⁇ 0 m V 5 6 0 m V
  • the magnetic field does not affect the circulation path.
  • a magnetic field acts on the treatment baths, it acts on the paramagnetic component (F e 3+ ), such that F e 3+ dissolves and cannot be present in each treatment bath, and It does not contain Fe 3+ . Therefore, 0 RP is necessarily less than 560 mV c
  • electrolytic qualitative tendency is strong. It is considered that the property facilitates the formation of a chemical conversion film on a metal material having a passivation film on the surface such as aluminum or stainless steel. In other words, it is considered that the electrolyte has a strong tendency to act on the passive film on the surface by the electrolytic treatment, so that dissolution and film formation can be performed.
  • the film formed from a bath of 56 OmV or less does not contain Fe3 + and has the same properties as conventional electroless chemical conversion films. However, the film thickness can be controlled by the method of the present invention.
  • the object to be treated is a cathode. It is important how the Fe ions are dissolved and precipitated on the surface of the workpiece. When using Fe as an electrode material, it is important how to apply current and voltage to the Fe electrode specifically.
  • the secondary electrolytic system is effective mainly for controlling the dissolution and precipitation of iron ions and for forming a good film in combination with the main electrolytic system.
  • FIG. 1 An example of current scanning electrolysis is shown in FIG. 1
  • Fig. 41 shows the voltage change I of the "main electrolytic system” between the material 7 to be treated and the electrode 6 when the current shown in Fig. 5 (c) is applied in the device of Fig. 2 (from the electrode 6 to the Voltage change in the “sub-electrolysis system” between the material 7 and the electrodes 10 and 11 (the direction from the material 7 to the electrodes 10 and 11 is positive). ).
  • Fig. 41 shows that the current applied from the external power supply to the main electrolytic system is 0 A ⁇ 4.0 AZ cnM sequentially over 300 seconds, as shown in Fig. 5 (c). Under such conditions, as in 41, during the first 90 to 100 seconds of the application of the current for 300 seconds, the current is applied from the outside, The voltage change I indicates a negative voltage, and the voltage change H indicates a value of almost zero.
  • Counter electrode of secondary electrolytic system (F e ⁇ Ni)> Counter electrode of main electrolytic system (Z n)
  • the chemical conversion bath itself is an electrolytic bath, a potential difference is generated between the electrodes (materials) immersed in the bath. And apply a current It can be said that the state of the bath that reflects the potential difference when it is not present is the most stable state as a chemical conversion bath.
  • the current flowing from the anode of the electrode 6 in FIG. 2 passes through the electrodes 11 and 12 in FIG. 2, passes through the diode D, and flows to the object to be processed, indicating a negative potential. .
  • the voltage changes I and H are linked.
  • the bath always returns to an energy stable state.
  • the film can be formed, and the dissolution of the electrodes 10 and 11 of the secondary electrolytic system B can be controlled by the electrolysis of the electrode 6 of the main electrolytic system A.
  • excessive dissolution of the electrodes 10 and 11 can be controlled. Therefore, it is possible to form a dense film on the material to be treated.
  • the current immediately reaches the predetermined set voltage. Then, the electrolysis reaction is performed, but it is the same as that of the formation of a good conductor film such as electroplating, which is clearly different from the method of Fig. 5 (c).
  • the energy breakdown associated with electrolysis always shows the maximum voltage of the voltage change I in Fig. 41. Therefore, the solution is always in a state where a strong current is applied. Then, a large amount of current flows to a predetermined place on the object to be processed (for example, an edge portion), and as a result, the adhesiveness of such a place is deteriorated.
  • the electrolytic film forming reaction of always starting from an initial state in which the solution is not electrolyzed is performed by repeating and carrying out the reaction.
  • Such measures greatly affect the adhesion of the coating.
  • the phosphoric acid conversion treatment method according to the present invention is a phosphoric acid conversion treatment method used as a pretreatment before cold forging a metal material such as a steel plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

A process for producing a phosphate coating, wherein a sludge, which is an impurity component other than inevitable impurities contained in a phosphating bath, is removed and the object is electrolyzed in order to enhance the capability of chemical conversion coating and provide a high-quality conversion coating. This process serves to form a satisfactory phosphate coating on whatever metallic material and can provide a phosphate coating having a large thickness which has not been available in the prior art.

Description

明細書 リ ン酸塩化成処理方法 技術分野  Description Phosphoric acid conversion treatment Technical field
本発明は金属材料表面に リ ン酸塩化成皮膜を形成する リ ン酸塩化成 処理方法、 さ らに詳し く は、 導電性を有する金属材料表面に化成皮膜 を形成する処理方法に関する ものである。  The present invention relates to a phosphoric acid conversion treatment method for forming a phosphoric acid conversion coating on a metal material surface, and more particularly, to a treatment method for forming a chemical conversion coating on a conductive metal material surface. .
. 背景技術 Background technology
従来よ り、 リ ン酸塩化成処理方法は、 塗装の下地処理ゃ冷鍛加工前 の前処理等様々な分野において、 使用されてきている。  Conventionally, the phosphoric acid conversion treatment method has been used in various fields such as pretreatment before coating and pretreatment before cold forging.
例えば、 特開昭 6 0 .- 2 0 8 4 7 9 号公報では、 鉄、 鋼、 亜鉛及び 又はアル ミ ニ ウ ムの表面に、 酸性リ ン酸塩化成処理を行う方法が開 示されている。  For example, Japanese Patent Application Laid-Open No. 60-204847 discloses a method of subjecting iron, steel, zinc, and / or aluminum to acid phosphate conversion treatment on the surface thereof. I have.
また、 特開昭 6 4 - 6 8 4 8 1 号は鋼およびノまたは亜鉛めつ き鋼 、 あるいはアル ミ ニウムと鋼および/または亜鉛めつ き鋼とからなる 金属に対して、 リ ン酸塩化成処理する方法について開示している。  Japanese Patent Application Laid-Open No. 6-64881 discloses phosphoric acid for steel and zinc or zinc-plated steel, or metal composed of aluminum and steel and / or zinc-plated steel. A method of performing a chemical conversion treatment is disclosed.
また、 特開平 2 — 1 9 0 4 7 8 号公報はアル ミ ニウ ム材表面に リ ン 酸塩皮膜を形成する方法と して F e 3+イ オ ンを含む化成処理浴を開示 している。 Further, Japanese Patent Application Laid-Open No. 2-190478 discloses a chemical conversion treatment bath containing Fe 3+ ions as a method for forming a phosphate film on an aluminum material surface. I have.
また、 特開平 4 一 1 2 0 2 9 4 号公報では、 ステ ン レススチ ー ルの 表面に塗装下地処理と して、 リ ン酸塩化成処理被膜を形成する際に、 リ ン酸塩化成処理浴中にて、 ステ ン レス スチ ー ルに P Rパルス電流を 印加して電解を行う こ と によ って被膜を形成している こ とが開示され ている。  In Japanese Patent Application Laid-Open No. HEI 4-120294, when a phosphoric acid conversion treatment film is formed on the surface of stainless steel as a coating base treatment, the phosphoric acid conversion treatment is performed. It is disclosed that a coating is formed by applying a PR pulse current to a stainless steel in a bath to perform electrolysis.
しかしながら従来の リ ン酸塩化成処理方法においては、 特開昭 6 0 一 2 0 8 4 7 9号公報、 特願昭 6 4 - 6 8 4 8 1 号および特開平 2 - 1 9 0 4 7 8号公報等の如 く 、 従来より鉄以外の被処理材に リ ン酸塩 化成被膜を形成する方法は、 数多 く 知られていたが、 被処理材の種類 によって、 假々にリ ン酸塩化成処理浴の成分および処理時の条件を変 えなく てはいけないという問題が生じていた。 また、 そのよ うな リ ン 酸塩化成処理浴の成分および条件は、 非常に厳しいものであり、 到底 実用的とはいえなかった。 However, in the conventional phosphoric acid conversion treatment method, Japanese Patent Application Laid-Open Nos. 60-208479, Japanese Patent Application No. S64-68481, and Many methods for forming a phosphate conversion coating on a material other than iron have been known in the past, as disclosed in, for example, Japanese Patent Publication No. 1904478, but depending on the type of material to be treated, Various problems have arisen that the components of the phosphatization bath and the conditions for the treatment must be changed. Further, the components and conditions of such a phosphate chemical conversion treatment bath were extremely severe, and were not practical at all.
また、 特開平 4一 1 2 0 2 9 4号公報の如 く 、 リ ン酸塩化成処理浴 中にて被処理材に電解をかけるこ とによって、 鉄鋼以外の被処理材で あるステン レススチールの如 く 被処理材においても リ ン酸塩化成処理 被膜を形成する ことが可能である こ とは知られていたが、 このような 被膜はいまだ塗装の下地の如く 、 非常に薄い膜厚の形成に限られてい た。  Further, as disclosed in Japanese Patent Application Laid-Open No. H11-2012, stainless steel, which is a material to be treated other than iron and steel, is subjected to electrolysis in a phosphate chemical conversion treatment bath. It is known that it is possible to form a phosphoric acid conversion coating on the material to be treated as described above, but such a coating still has a very thin film thickness, such as a coating base. It was limited to formation.
本発明は、 上記問題を鑑みる ことによって得られた発明であり、 ど のよ うな導電性を有する金属材料の表面に対しても、 十分な膜厚を有 する リ ン酸塩化成被膜を施すこ とのできる リ ン酸塩化成処理方法を提 供するものである。 発明の開示  The present invention has been made in view of the above problems, and a phosphoric acid conversion coating film having a sufficient film thickness can be applied to the surface of any conductive metal material. It provides a phosphoric acid conversion treatment method that can be used. Disclosure of the invention
そこで、 本発明者らは、 なぜ従来の リ ン酸塩化成処理方法において 、 鉄以外の処理において、 上述するような複雑な条件が必要であった のか、 さ らには、 十分な膜厚を得る こ とのできる処理方法ができなか つたのか鋭意研究する ことによって、 その原因.をつき とめ、 さ らには その原因を解決する手段を見いだした。  Therefore, the present inventors argued that in the conventional phosphoric acid conversion treatment method, the above-described complicated conditions were required in the treatment other than iron, and furthermore, a sufficient film thickness was required. By diligently researching whether or not a processing method that can be obtained was obtained, we determined the cause and found a means to solve the cause.
即ち、 従来においては、 リ ン酸塩化成処理方法において、 被処理材 を鉄鋼材と して用いた方法を、 そのままその他の被処理材に適応して いるのにすぎないため、 鉄鐧以外の被処理林の処理条件が非常に厳し い ものになったり、 または、 鉄鋼材料との複合材料と しかリ ン酸塩化 成処理被膜を形成する こ とができなかったのである と思われる。 そ こで、 本発明においては、 まずリ ン酸塩化成処理被膜形成の過程 を、 リ ン酸塩化成処理反応を下記の 2 つの面から詳細に検討した。 それは、 リ ン酸塩化成処理被膜の形成の化学反応は電気化学反応と して把握でき る こ とから、 第 1 に化学反応面からの解析を行った。 また、 第 2 に相転移現象と しての解析を行っ た。 これは リ ン酸塩化 成処理反応を可溶性成分 (液体) が化学反応 して皮膜 (固体) になる 現象を指すものである。 That is, conventionally, in the phosphate chemical conversion treatment method, the method in which the material to be treated is used as a steel material is simply applied to other materials to be treated as it is. It seems that the treatment conditions of the forest to be treated became very severe, or that the phosphate conversion coating could be formed only with a composite material with a steel material. Therefore, in the present invention, first, the process of forming a phosphatized chemical conversion film and the phosphatized chemical conversion reaction were examined in detail from the following two aspects. First, analysis was performed from the chemical reaction side, because the chemical reaction of the formation of the phosphate chemical conversion coating can be understood as an electrochemical reaction. Second, we analyzed the phase transition phenomenon. This refers to the phenomenon in which the soluble component (liquid) undergoes a chemical reaction in the phosphatization reaction to form a film (solid).
なお、 上記のいづれの検討 (解析) においても、 熱力学の第 1 法則 及び第 2 法則が重要な役割を果たすこ とを'合わせて述べてお く 。  It should be noted that the first and second laws of thermodynamics play an important role in any of the above studies (analysis).
以下詳細な検討結果を述べる。  The detailed examination results are described below.
最初に化学反応面からの解析を行う。  First, an analysis from the chemical reaction side is performed.
リ ン酸塩化成処理とは、 金属材料と薬液との化学反応を利用 して金 属材料素地上に皮膜を形成させる、 いわゆる.化成皮膜処理方法の一種 である。 そ して、 化成処理液と して鉄, マ ンガン、 ニッ ケル、 カルシ ゥ ムあるいは亜鉛等の皮膜形成金属イ オ ンを含む リ ン酸塩水溶液を使 用 している。  Phosphoric acid conversion treatment is a type of so-called chemical conversion film treatment method in which a film is formed on a metal material substrate using a chemical reaction between a metal material and a chemical solution. In addition, a phosphate solution containing a film-forming metal ion such as iron, manganese, nickel, calcium, or zinc is used as the chemical conversion solution.
リ ン酸塩化成処理方法は、 鉄鋼材料に対するエッ チ ング反応工程と 、 皮膜を形成する皮膜形成反応工程とからなる とみる こ とができ る。 そ して、 それらは、 電気化学反応であ り 力 ソー ド反応と しての硝酸ィ オ ン等の還元反応、 例えば、  The phosphoric acid conversion treatment method can be considered to include an etching reaction step for a steel material and a film formation reaction step for forming a film. Then, they are electrochemical reactions and reduction reactions of ion nitrate or the like as a force source reaction, for example,
【化 1 】  [Formula 1]
N 0 3 一 + 3 H + + 2 e → H N 0 2 + H 2 .0 N 0 3 one + 3 H + + 2 e → HN 0 2 + H 2 .0
【化 2 】  [Formula 2]
H N 0 2 + H + + e → N 0 + H 2 0  H N 0 2 + H + + e → N 0 + H 2 0
と、 アノ ー ド反応と しての金属の溶解 (エッ チ ング) 反応 (化 3 ) と 皮膜形成反応 (化 4 ) である反応、 A metal dissolution (etching) reaction (Chem. 3) and a film formation reaction (Chem. 4) as anode reactions;
【化 3 】  [Formula 3]
F e → F e 2 + + 2 e + A H (発熱反応) 【化 4】 F e → F e 2 + + 2 e + AH (exothermic reaction) [Formula 4]
3 ( Z n 2+, F e 2+ ) + 2 H 2 P 04 - → 3 (Z n 2+, F e 2+) + 2 H 2 P 0 4 - →
( Z n, F e ) 3 ( P 04 ) 2 + 4 H+ (吸熱反応) とからなる。 Consists (Z n, F e) 3 and (P 0 4) 2 + 4 H + ( endothermic reaction).
そ して上記化 1 から化 4 までの反応以外に化成処理浴のバラ ンス保 持反応と して、  Then, in addition to the reactions of Chemical Formulas 1 to 4 above, the balance maintaining reaction of the chemical treatment bath is as follows:
【化 5】 [Formula 5]
Figure imgf000006_0001
Figure imgf000006_0001
【化 6】 '  [Formula 6] '
4 0 H- →02 + 2 H 2 0 + 4 e 4 0 H- → 0 2 + 2 H 2 0 + 4 e
【化 7】 [Formula 7]
Figure imgf000006_0002
Figure imgf000006_0002
等がある。 . Etc. .
通常の無電解の鉄鋼材料の化成処理反応では化 3の反応が主反応と して働き、 ィヒ 3 による反応で溶液内へ放出される内部エネルギー (厶 H ) を利用して化 1 , 化 2及び化 4の反応が金属材料 (固体) 表面で 起こ り、 皮膜形成が行われる と考えられる。 従って、 反応系 (すなわ ち化成処理浴) に熱等の他のエネルギーが加えられないならば、 化成 皮膜形成は化 1 , 2 に代表される硝酸等の窒素含有ォキソ酸イ オ ンの 還元反応と、 化 3、 4 に代表される鉄の溶解及びリ ン酸イオンの酸化 からなる酸化反応にて行われる。  In the chemical conversion reaction of ordinary electroless steel materials, the reaction of chemical formula 3 acts as the main reaction, and the internal energy (mH) released into the solution by the reaction of yg 3 is converted to chemical formula 1, It is considered that the reactions of 2 and 4 occur on the surface of the metal material (solid), and a film is formed. Therefore, if no other energy such as heat is applied to the reaction system (that is, the chemical conversion bath), the formation of the chemical conversion film is reduced by the reduction of nitrogen-containing oxoacid ions such as nitric acid represented by chemical formulas 1 and 2. The reaction is carried out by an oxidation reaction comprising dissolution of iron and oxidation of phosphate ions as represented by Chemical Formulas 3 and 4.
このよ う に、 従来の無電解で、 他のエネルギ.一を供給しない化成皮 膜形成は、 金属材料の溶解に伴って発生したエネルギー (Δ Η) のみ を利用 し行われ、 溶解に伴って発生したエネルギー ( Δ H ) 以上には 化成皮膜は形成されない。  Thus, conventional electroless skin formation without supplying other energy is carried out using only the energy (ΔΗ) generated by the melting of the metal material, and is accompanied by the melting. No conversion coating is formed above the generated energy (ΔH).
それに対して、 金属材料と してアル ミ ニウム、 鋦等の披鉄金属を用 いた場合の溶解反 ίδは次のよう になる。  On the other hand, the dissolution resistance δ when using an iron metal such as aluminum or 鋦 as the metal material is as follows.
【化 8】 M→ M n+ + n e [Formula 8] M → M n + + ne
しかしながら、 例えばアル ミ ニウムを鉄鋼材に用いる リ ン酸塩化成 処理浴に浸潰させたと しても、 アル ミ 二ゥ ムの表面に不導体が形成さ れており、 アル ミ ニウムは リ ン酸塩化成処理浴中において溶解する こ と はな く 、 化 8 の反応が進まないこ と になる。 そのため、 アル ミ ニゥ ム表面の溶解によ って生じるはずのエネルギーが発生しない。  However, even when aluminum is immersed in a phosphatization bath used for steel, for example, non-conductors are formed on the surface of aluminum, and aluminum is The compound is not dissolved in the acidification treatment bath, and the reaction of chemical formula 8 does not proceed. Therefore, energy that would otherwise be caused by dissolution of the aluminum surface is not generated.
従来では、 金属材料と してアル ミ ニ ウ ムを使用する場合、 化 8 の溶 解反応を促進するために化成処理浴中にフ ッ素イオ ン ( F— ) を導入 するのが好ま しいと されていた。  Conventionally, when aluminum is used as the metal material, it is preferable to introduce fluorine ion (F—) into the chemical conversion bath in order to promote the dissolution reaction of chemical formula 8. It was believed.
また、 同様に金属材料と して銅 ( C u ) を使用する場合には化成処 理浴中にフ ッ素イオ ン以外のハロゲンイオ ン、 例えば塩素イオ ン ( C I 一 ) を導入するのが良いと されてきていた。  Similarly, when copper (Cu) is used as the metal material, it is better to introduce halogen ions other than fluorine ions, for example, chlorine ions (CI-I) into the chemical treatment bath. Had been good.
しかしながら、 上述の如 く 、 .金属材料を溶解させたと しても、 これ ら被処理材に対しては、 良好な リ ン酸塩化成処理被膜を形成する こ と はできなかつた。  However, as described above, even if the metal material is dissolved, it is not possible to form a favorable phosphatized chemical conversion coating on these materials.
その理由と して、 従来の無電解法ゃスラ ッ ジを有する処理浴におけ る電解法を採用する場合には、 前述の如 く 、 一般的な鉄鋼以外の金属 素材 (ステ ン レススチール、 銅等) には、 上述の化 1 〜化 8 の リ ン酸 塩化成処理反応系全体を対象と して、 その反応系全体を有効に進める ェネルギー利用の技術的思想がなかった。 故に、 反応系全体を制御す る具体的な処置も実施されていなかったためである。  As a reason, when the conventional electroless method is adopted in a treatment bath having a sludge, as described above, a metal material other than general steel (stainless steel, Copper, etc.) did not have the technical idea of using energy for the entire phosphoric acid conversion treatment system of Chemicals 1 to 8 above to effectively promote the entire reaction system. Therefore, no specific measures for controlling the entire reaction system have been implemented.
即ち、 例えば、 アルミ 材の場合における、 鉄鋼の化 3 に代わる溶解 反応は、  That is, for example, in the case of aluminum material, the dissolution reaction instead of chemical conversion of steel 3
【化 9 】  [Formula 9]
A 1 → A 1 3 + + 3 e A 1 → A 1 3 + + 3 e
であるが、  In Although,
このよ うな場合には、 以下の如 く 理由にて、 被膜形成のための十分 なエネルギー供給ができな く なる こ とを見いだしたのである。 & In such a case, they found that it was not possible to supply sufficient energy for film formation for the following reasons. &
①この化 9 は、 F — を添加しない場合は非常に遅く 、 化 9 によって 、 発生するエネルギーもまた非常に少な く 、 従って全体の反応系が成 立しなく なる。  (1) This chemical formula (9) is very slow when F— is not added, and the chemical energy generated by chemical formula (9) is also very small, so that the entire reaction system cannot be established.
② F - を添加した場合には化 9 は充分に早く 進むが、 その結果生じ る A 1 3+と F — との錯体 ( A 1 F 4 ― ) が形成され、 この錯体が溶液 中で安定となり、 化 4 に^:わる A 1 を含んだ皮膜形成反応ができなく なる。 (2) When F-is added, chemical reaction proceeds quickly enough, but the resulting complex of A13 + and F— ( A1F4- ) is formed, and this complex is stable in solution. Thus, a film formation reaction containing A 1, which is different from the chemical formula 4, cannot be performed.
以上の如く 、 リ ン酸塩化成処理被膜の形成の化学反応を電気化学反 応とみなすことにより、 従来の如 .く 、 単純に、 第 3成分を添加する こ とによって、 化 &の反応を.促進させたのみでは、 鉄鋼以外の金属材料 または導電材料にリ ン酸塩化成処理被膜を形成する こ とはできないこ とを見いだしたのである。  As described above, by regarding the chemical reaction of the formation of the phosphatized chemical conversion treatment film as an electrochemical reaction, the reaction of the chemical conversion is simply performed by adding the third component, as in the related art. It was discovered that mere mere promotion could not form a phosphate conversion coating on metallic or conductive materials other than steel.
次に、 我々 は次にリ ン酸塩化成処理反応の相転移現象面からの解析 を行つた。 :  Next, we analyzed the phase transition phenomena of the phosphatization reaction. :
即ち、 本発明者は、 リ ン酸塩化成処理反応は基本的に浴中の可溶性 成分イオン (液体) が化学反応によ り皮膜 (固体) になる、 「液相一 固相」 反応である と し、 そのことは、 栢転移現象と して、 把握する こ とができると考えた。  That is, the inventor of the present invention concluded that the phosphoric acid conversion treatment reaction is basically a “liquid phase-solid phase” reaction in which soluble component ions (liquid) in the bath are converted into a film (solid) by a chemical reaction. However, we thought that it could be understood as a transfer phenomenon.
しかしながら、 従来においては、 リ ン酸塩化成処理反応をこのよう に、 相転移現象の一種と と らえる こ とができなかった。  However, in the past, phosphoric acid conversion treatment could not be regarded as a kind of phase transition phenomenon.
なぜなら、 従来の処理浴においては、 化成処理反応が十分に制御さ れていないため、 リ ン酸塩化成処理浴中には、 .被処理材表面以外にお いても、 複数の化学反応が浴中にて同時に起きている。 このよう に、 同時に複数の反応が生じている場合、 浴中においては、 一種類の 「液 相一固相」 反応のみではな く 、 複数の 「液相一固相 J 反応および複数 の 「液相一液相」 反応が生じている。 その結果、 処理浴にはスラ ッ ジ が含まれることになる。 そのため、 それら反応間のエネルギー授受は 複雑になってしまい、 故に、 金属表面の皮膜形成を、 相転移現象と し てと らえる こ と は、 不可能となるのである。 Because the chemical conversion reaction in the conventional treatment bath is not sufficiently controlled, the chemical conversion reaction in the phosphoric acid conversion treatment bath can cause multiple chemical reactions even on surfaces other than the surface of the material to be treated. Waking up inside at the same time. As described above, when a plurality of reactions occur at the same time, not only one kind of “liquid-solid-solid” reaction but also a plurality of “liquid-solid-solid J reactions” and “ A phase-to-liquid phase "reaction is occurring. As a result, the treatment bath will contain sludge. Therefore, the transfer of energy between these reactions is complicated, and the formation of a film on the metal surface is regarded as a phase transition phenomenon. It is impossible to capture.
即ち、 相転移現象の熱力学的な解析は例えば水の如 く 、 単一成分系 では、 容易に理解される と ころであるが、 ー且、 リ ン酸塩化成処理浴 中における反応の如 く 、 複雑な化学反応を伴う複成分系では、 非常に 理解 しに く く な つて しま う。  That is, thermodynamic analysis of the phase transition phenomenon can be easily understood in a single-component system such as water, for example, but not in a reaction in a phosphate chemical conversion treatment bath. In addition, complex systems involving complex chemical reactions can be very difficult to understand.
そこで、 本発明者は、 この リ ン酸塩化成処理浴中の反応を物理現象 的に単純化させる こ と によ って、 浴中の反応を相転移現象と してみな すこ とができ る こ とを見いだした。 即ち、 リ ン酸塩化成処理浴中の 反応を溶液内成分 (液体) から皮膜 (固体) を形成する という反応の みとするよ う に、 浴の状態を液体のみの状態に制御する。 そ して、 リ ン酸塩化成処理浴中の化学反応を単一相 (液体) での反応と し、 その 結果、 皮膜 (固体) を生じる という こ とから、 リ ン酸塩化成処理反応 を相転移現象と見なすのである。 そ して、 それを具体的に利用する こ と によ り、 従来と は基:本的に異なるよ り有効な化成皮膜形成手段を見 いだすこ とができ るのではないかと考えたのである。  Therefore, the present inventor can regard the reaction in the bath as a phase transition phenomenon by simplifying the reaction in the phosphate chemical conversion treatment bath as a physical phenomenon. I found this. That is, the state of the bath is controlled to include only liquid so that the reaction in the phosphatization bath is limited to the reaction of forming a film (solid) from the components (liquid) in the solution. The chemical reaction in the phosphatization bath is regarded as a single-phase (liquid) reaction, and as a result, a film (solid) is formed. It is regarded as a phase transition phenomenon. I thought that by using it concretely, it would be possible to find a more effective means of forming a chemical conversion film, which is fundamentally different from the conventional one. is there.
以下に、 相転移現象とみなすこ と による具体的な解析内容を説明す る。  The following is a description of the specific analysis based on the phase transition phenomenon.
そ もそ も、 リ ン酸塩化成処理は被処理物である金属材料 (固体) と 皮膜形成成分を含んだ溶液 (液体) とを接触させ行う ものである。 そ のため、 化成処理に関連する反応は  In the first place, phosphoric acid conversion treatment involves bringing a metal material (solid) to be treated into contact with a solution (liquid) containing a film-forming component. Therefore, the reaction related to chemical conversion treatment
①金属材料 (固相) と溶液 (液相) との反応 (固相—液相反応) ①Reaction between metal material (solid phase) and solution (liquid phase) (solid-liquid reaction)
②溶液内成分相互の反応 (液相一液相反応) , ②Reaction between components in solution (liquid-liquid-liquid reaction),
に大別される。  Are roughly divided into
そ して、 熱力学的検討からは、 相転移現象 (液体—固体) は液栢ー 液相間の作用 (反応) よ り も固相一液相間の作用 (反応) による方が よ り容易に起こ る こ とが認められている。 これは、 例えば空気中の水 分の凝析は、 同一相 (気相一気相) よ り も固体の表面 (固相—気相) にて容易に行われ、 この一例と して、 我々が露 (つゆ) ' 霜 ( し も) を見る ことから も容易に理解できる ものと思われる。 · 即ち、 溶液中の 「液栢—液栢」 反応にて固体を析出するのは、 被処 理物表面の 「固相一液相』 反応より も大きなエルネギーを反応系に付 加する場合に限られるのである。 According to thermodynamic studies, the phase transition phenomenon (liquid-solid) is more dependent on the action between solid and liquid phases (reaction) than on the action between liquid and liquid phases (reaction). It is recognized that it can happen easily. This is because, for example, the coagulation of water in the air is more easily performed on the surface of a solid (solid-gas phase) than in the same phase (gas-phase gas phase). Dew '' frost It seems that it can be easily understood from the result. · In other words, solids are precipitated by the “liquid-liquid” reaction in the solution when a larger amount of energy is added to the reaction system than in the “solid-liquid-liquid” reaction on the surface of the workpiece. It is limited.
故に上記の事から、 発明者は、 リ ン酸塩化成処理浴中の反応を相転 移反応とみなすことによって、 化成処理反応系に付加するエネルギー を液栢ー液栢間では反応 (相転移) しない範囲内と し、 固相—液相間 にて反応 (相転移) する範囲に制御する こ とにより、 化成処理反応は 「固相—液相」 間での相転移現象 (皮膜形成) に限定し行う ことがで きる という事実をはじめて見いだしたのである。  Therefore, based on the above, the inventor regards the reaction in the phosphatization bath as a phase transfer reaction, and thereby transfers the energy added to the chemical conversion reaction system between the liquid and the liquid. The chemical conversion reaction is a phase transition phenomenon between the “solid phase and liquid phase” (film formation) by controlling the reaction between the solid phase and the liquid phase (phase transition) within the range that does not occur. For the first time, we found the fact that it can be performed only on a limited basis.
また、 相転移現象の見地から従来の方法 (処理浴を加温する方法) を検討してみると、 従来では、 被処理材にリ ン酸塩化成処理被膜を形 成しよ う と して処理浴にエネルギーを与えた場合、 浴は化学反応面で 、 十分に制御されていないため、 被処理材表面以外でも、 過剰のエネ ルギ一による反応 (相転移) が起こ り、 浴中にスラ ッ ジが形成される 。 その結果、 複数の固相—液栢間の相転移作用が処理浴中で生じる こ とになる。 そのため、 外部からのエネルギー供給がリ ン酸塩化成処理 被膜の膜厚を制御するには到底およばず、 単に、 より多 く のスラ ッ ジ 生成を促進する こ ととなり、 被処理材表面への良好な リ ン酸塩化成処 理被膜の形成は困難となってしま うのである。  Also, considering the conventional method (method of heating the treatment bath) from the viewpoint of the phase transition phenomenon, it has been attempted to form a phosphate conversion coating on the material to be treated. When energy is applied to the treatment bath, the bath is not sufficiently controlled in terms of chemical reaction, and a reaction (phase transition) occurs due to excess energy even on the surface other than the surface of the material to be treated, and the slurry is added to the bath. An edge is formed. As a result, a plurality of solid-liquid phase transition effects occur in the processing bath. For this reason, external energy supply is far from controlling the thickness of the phosphatized chemical conversion coating, and simply promotes the generation of more sludge. It becomes difficult to form a good phosphoric acid conversion coating.
以上のよう に、 リ ン酸塩化成処理浴中の反応を 2つの面から、 即ち 、 化学反応面および相転移現象面からの解析によって、 なぜ従来の方 法では、 鉄鋼以外の金属材料および導電材料に対して、 良好な、 十分 に膜厚の制御されたリ ン酸塩化成処理被膜ができないかをはじめて理 解する ことができた。  As described above, the reaction in the phosphatization bath was analyzed from two aspects, namely, the chemical reaction and phase transition phenomena. For the first time, it was possible to understand whether a good phosphoric acid conversion treatment film with a well-controlled film thickness could be obtained.
さ らに、 本発明は、 上述の解析から、 さ らにどのよう にすれば、 導 電材料である金属材料に対して、 十分に膜厚の制御されたリ ン酸塩化 成処理被膜を形成する こ とができるかを見いだしたのである。 このよ う な背景から、 本発明者は リ ン酸塩化成処理反応は本来電気 化学反応系であ り、 その考えに基づいた反応の制御を考えるべきであ る と判断 した。 Furthermore, according to the present invention, based on the analysis described above, the method of forming a phosphatized chemical treatment film having a sufficiently controlled film thickness on a metal material as a conductive material can be further improved. They found out if they could do it. From such a background, the present inventor has determined that the phosphoric acid conversion treatment reaction is essentially an electrochemical reaction system, and that control of the reaction should be considered based on this concept.
即ち、 少な く と も リ ン酸イオ ン、 窒素を含むォキソ酸イオ ンおよび 化成皮膜形成金属イ オ ンを含む リ ン酸塩化成処理液に、 導電性を有す る金属材料を接触させて前記金属材料表面に リ ン酸塩化成皮膜を形成 する方法であって、  That is, a conductive metal material is brought into contact with a phosphate phosphatization treatment solution containing at least ion phosphate, oxo acid ion containing nitrogen, and metal ion forming a chemical conversion film. A method for forming a phosphoric acid conversion coating on the surface of the metal material,
前記リ ン酸塩化成処理浴は、 不可避成分以外の固型分を含有しない 浴で処理すと と もに、 前記リ ン酸塩化成処理浴中にて、 前記金属材料 を電解処理する リ ン酸塩化成処理方法と い う全 く 新しい方法を見いだ すこ とができたのである。  The phosphoric acid conversion treatment bath is treated with a bath containing no solid component other than the unavoidable components, and the metal material is electrolytically treated in the phosphoric acid conversion treatment bath. We have found a completely new method of acidification.
その具体的な工夫と して、 ①化成処理浴からの固型分 (スラ ッ ジ) の除去及び②外部電源の反応への利用を行った。  As concrete measures, (1) removal of solid components (sludge) from the chemical conversion bath and (2) utilization of external power supply for reaction.
こ こで、 リ ン酸塩化成処理浴が不可避成分以外の固型分を含有しな いと は、 浴中にエネルギー的に不安定なスラ ッ ジがない状態を意味し 、 即ち、 浴が反応に関与する反応活性なにごりのない状態を意味する ものである。  Here, that the phosphate chemical conversion treatment bath does not contain solid components other than the inevitable components means that there is no sludge which is energetically unstable in the bath, that is, the bath reacts. This means that the reaction activity involved in the reaction is clear.
本発明の電解処理による反応は、 こ の前記外部電源からの電気エネ ルギー供給によって、 化 1 〜化 8 の反応を促進させる ものであ り、 そ の点で従来の電気めつ きおよび陽極酸化と は大き く 異なる ものである 本発明の外部電源からのエネルギー供給に伴う反応の 1 つである陽 極処理は、 被処理材の溶解反応 (化 3 及び化 8 ) がその溶液中の熱力 学的条件では、 自然に進まない場合又は進行が充分でない場合に、 電 気エネルギーを印加する こ と によ り溶解反応を促進 し、 その事によ り 化 1 〜 8 の全反応系を皮膜形成でき るよう に進める ものである。 陽極 処理は、 被処理材の溶解反応を促進する ものであるから、 生成する化 成皮膜の密着性を確保するの に有効である。 本発明の外部電源からのエネルギー供給に伴う反応のも う 1 つの方 法である陰極処理は、 溶液相の成分イオンに作用し、 それを陰極に析 出させる こ とによ り形成する化成皮膜の厚みを確保する ものである。 故に、 陰極処理のみでは、 被処理材金属の溶解反応は起こ らないため 、 陰極処理は陽極処理の後に行うのが好ま しい。 陰極処理では陽極に 亜鉛等の皮膜形成金属材料を用い、 それを溶解させ、 溶液相内の リ ン 酸イ オ ン及び硝酸イ オ ン等と反応させ陰極 (被処理材) 表面に皮膜を 形成する。 The reaction by the electrolytic treatment of the present invention promotes the reactions of Chemical Formulas 1 to 8 by supplying the electric energy from the external power source. In this respect, the conventional electric plating and anodic oxidation are performed. In the positive electrode treatment, which is one of the reactions accompanying the supply of energy from an external power supply according to the present invention, the dissolution reaction (Chem. 3 and 8) of the material to be treated is caused by the thermodynamics in the solution. Under the typical conditions, when the reaction does not proceed naturally or when the progress is not sufficient, the dissolution reaction is promoted by applying electric energy, thereby forming a film on all the reaction systems of Chemical Formulas 1 to 8. It is something we can do. The anodic treatment promotes the dissolution reaction of the material to be treated, and is therefore effective in ensuring the adhesion of the formed chemical film. Cathodic treatment, which is another method of the reaction accompanying the supply of energy from an external power supply of the present invention, is a chemical conversion film formed by acting on the component ions in the solution phase and depositing them on the cathode. The thickness is to be ensured. Therefore, the cathodic treatment alone does not cause a dissolution reaction of the metal to be treated, so that the cathodic treatment is preferably performed after the anodizing treatment. In the cathodic treatment, a film-forming metal material such as zinc is used for the anode, which is dissolved and reacted with ion phosphate and ion in the solution phase to form a film on the surface of the cathode (material to be treated). I do.
故に、 陰極に接続する被処理材が導電性材料であるならば、 陽極及 び溶液相に所定の金属材料及びリ ン酸等関連する化学成分を含む薬品 を用いて、 陰極処理を行う こ とにより、 希望する彼処理金属材料にリ ン酸塩化成皮膜を形成する ことが可能である。 そ して、 陽極処理後に 陰極処理を行う ことが好ま し く 、 これにより、 密着性にすぐれた リ ン 酸塩化成皮膜を一般の鉄鋼以外の材料であるステ ン レス鋼、 磁性材料 、 アルミ 、 銅等に形'成する こ とができる。  Therefore, if the material to be connected to the cathode is a conductive material, the cathode treatment should be carried out using a chemical containing a predetermined metal material and related chemical components such as phosphoric acid for the anode and the solution phase. Thus, it is possible to form a phosphoric acid conversion coating on a desired metal material to be treated. Then, it is preferable to carry out the cathodic treatment after the anodizing treatment, whereby the phosphate conversion film having excellent adhesion can be formed by using a stainless steel, a magnetic material, an aluminum, It can be formed into copper or the like.
こ こで、 陽極処理は、 皮膜形成可能な素材については素材の溶解反 応を確実に行う こ とで、 皮膜形成を促進する こ と に有効である。 そ し て、 陽極処理のみの適用は、 皮膜の密着性を増すが、 膜厚を大き く し ないこ とから鉄鋼材料の塗装下地処理等に有効である。 そ して、 さ ら に、 陽極処理と陰極処理を組合せる (陽極処理—陰極処理) ことによ り、 本発明の技術は、 あらゆる金属材料に素材との密着性を確保した リ ン酸塩化成皮膜を、 充分に厚く 形成する こと.を可能とする。  Here, the anodic treatment is effective for promoting film formation by ensuring that the material capable of forming a film undergoes a melting reaction. The application of only anodic treatment increases the adhesion of the coating, but is effective for the undercoating treatment of steel materials because it does not increase the film thickness. Further, by combining anodizing and cathodic treatment (anodic treatment-cathode treatment), the technology of the present invention provides a phosphoric acid chloride that ensures adhesion to any metal material. It is possible to form a sufficiently thick coating film.
例えば、 リ ン酸塩皮膜の厚膜化による無機絶縁膜と しての用途, 磁 性材料への絶縁膜の用途、 アルミ材の防锖用, 塗装下地, 接着, 塑性 加工用潤滑下地等の甩途, ステ ン レス鋼の冷鍛加工潤滑下地, 塗装下 地の用途等が挙げられる。  For example, use as an inorganic insulating film by increasing the thickness of a phosphate film, use of an insulating film on magnetic materials, prevention of aluminum materials, paint base, adhesion, lubrication base for plastic working, etc. Applications include lubricating bases for cold forging stainless steel, and coatings for stainless steel.
本発明は、 化成処理浴をスラ ッ ジを含有しない可溶性の成分 (H 3 P 0 4 、 N 0 3 ― , H N 0 2 , Z n 2+等の金属イオン等) のみに限定 した上で、 その処理浴中に被処理物と電極を入れその間に外部電源を 接続し、 被処理物 (ワーク) と電極間に電流を印加する。 The present invention, the chemical treatment bath soluble components containing no slide Tsu di - Limited (H 3 P 0 4, N 0 3, HN 0 2, Z n 2+ , etc. such as metal ions) only After that, put the object to be treated and the electrode in the treatment bath, connect an external power supply between them, and apply a current between the object to be treated (work) and the electrode.
そ して、 処理浴中にス ラ ッ ジを生じさせないよ う に、 リ ン酸塩化成 処理浴を制御するのである。  Then, the phosphate conversion treatment bath is controlled so as not to cause sludge in the treatment bath.
こ こで、 リ ン酸塩化成処理浴を制御する と は、 例えば以下の方法が ある  Here, for example, the following method is used to control the phosphate conversion treatment bath.
すなわち、 化成処理浴へのエネルギー付加の制御 (温度制御, 循環 ポ ンプ回転数制御による液体への圧力制御、 処理浴を反応している状 態と反応していない状態とを交互に交代させる こ と による溶液内エネ ルギー状態の安定化等) 及び濾過等の手段を採用する こ と によ り、 化 成処理浴中にスラ ッ ジを生成させない状態を形成、 維持する こ と によ つて、 処理浴中の相転移現象を被処理金属表面の被膜形成のみに限定 し、 リ ン酸塩化成処理を行うのが好ま しい。  In other words, the control of the energy addition to the chemical conversion bath (pressure control of the liquid by controlling the temperature and the number of revolutions of the circulating pump, and alternately changing the state of the processing bath to the state not reacting). And stabilization of the energy state of the solution in the solution, and by employing means such as filtration to form and maintain a state in which sludge is not generated in the chemical conversion bath. It is preferable to limit the phase transition phenomenon in the treatment bath to only the formation of a film on the surface of the metal to be treated, and perform the phosphatization treatment.
そ して、 本発明においては、 リ ン酸塩化成処理浴槽に、 濾過循環ポ ンプ及び濾過機を設置するのが好ま しい。  Then, in the present invention, it is preferable to install a filtration circulation pump and a filtration machine in the phosphate conversion treatment bath.
こ の濾過循環ポ ンプ及び濾過機設置の第 1 目的は、 反応活性な溶液 の溶液相内の熱力学的エネルギー状態を安定化させる こ とである。 処 理浴はそれが常に反応する場所に留ま るな らば、 ( 「反応しない場所 J 「反応する場所」 の交互の循環がないな らば) 化成処理反応の進行 に伴い溶液相内の熱力学的エネルギーは蓄積されて く る。 その結果、 処理浴溶液相の液体と しての安定性が失われ、 溶液相内に固体 (ス ラ ッ ジ) を生成するよ う になる。 濾過循環ポ ンプ及び濾過機はそのよ う な溶液の液体と しての熱力学的安定性が失われるのを防ぐために設置 する ものである。 それ故、 濾過機はそれ自体が一定容積を有し、 単に 濾過という機能のみな らず処理浴が反応 していない状態を一定時間以 上保持する こ と によ り 、 反応系全体の溶液相の熱力学的安定性に寄与 する ものである。  The primary purpose of installing the filtration circulation pump and the filtration device is to stabilize the thermodynamic energy state in the solution phase of the reactive solution. If the treatment bath stays in a place where it always reacts (unless there is an alternating circulation of “reacting places J” and “reacting places”), the solution bath in the solution phase as the chemical conversion reaction progresses Thermodynamic energy accumulates. As a result, the stability of the treatment bath solution phase as a liquid is lost, and a solid (sludge) is formed in the solution phase. Filtration circulation pumps and filters are installed to prevent loss of thermodynamic stability of such solutions as liquids. Therefore, the filter itself has a certain volume, and not only a function of filtration but also a state in which the treatment bath is not reacting is maintained for a certain period of time or more. It contributes to the thermodynamic stability of.
処理浴を 「反応しない場所」 と 「反応する場所」 に交互に循環させ 、 溶液相の熱力学的安定性を確保する という こ とはリ ン酸塩化成処理 浴の全反応系 (化 1〜化 8 ) について、 考慮すべきであるが、 その代 表と して、 りん酸の平衡状態について以下説明する。 The treatment bath is circulated alternately between the “non-reactive place” and the “reactive place” However, ensuring the thermodynamic stability of the solution phase should be considered for all the reaction systems (chemical formulas 1 to 8) in the phosphatization treatment bath. The equilibrium state of phosphoric acid will be described below.
リ ン酸塩化成処理浴は、 リ ン酸を多 く 含む P H 2 〜 4程度の溶液で ある。 リ ン酸は P H 2 〜 4では溶液中で、 化 5 の平衡状態にある。  The phosphatization bath is a solution containing a large amount of phosphoric acid and having a pH of about 2 to 4. Phosphoric acid is in solution at pH 2-4 and is in equilibrium with Chemical Formula 5.
そして、 化成処理 (皮膜形成) 反応に伴い化 5 は右に進むこ とにな る。 なぜなら、 皮膜形成は H 3 P 0 4 → H Z P 0 4 — P 0 4 3— と脱 水素したリ ン酸イオンと Z n 2+等の金属イオンが結合し、 Z n 3 ( PThen, with the chemical conversion (film formation) reaction, Chemical 5 proceeds to the right. This is because, the film formation is H 3 P 0 4 → HZP 0 4 - P 0 4 3 - and dehydrogenation was-phosphate ions and metal ions of Z n 2+, etc. are bonded, Z n 3 (P
0 4 ) 2 となる ものであるがらである。 も し溶液が処理槽内のみに留 ま り、 循環しないならば、 その溶液の成分は (化 5 ) が右に移行した 状態に変化して行く 。 その結果、 溶液相の化成処理反応系 (化 1 〜化0 4) 2 If the solution remains only in the treatment tank and does not circulate, the components of the solution change to a state where (Chem. 5) has shifted to the right. As a result, the solution-phase chemical conversion reaction system (Chem.
7 ) は、 スラ ッ ジを生成し易い状態となる。 7) is in a state where sludge is easily generated.
—方、 処理浴を循環させれば、 溶液中の リ ン酸イ オ ンは処理槽から 離れた場所では、 平衡伏態を元に戻す方向 ( (化 5 ) を左へ移.行する 方向) に作用 し、 溶液内の熱力学的エネルギー状態を安定化させる方 向となる。  On the other hand, if the treatment bath is circulated, the phosphoric acid ion in the solution will return to the equilibrium state at the location away from the treatment tank (the direction of (Chem. 5) to the left). ) To stabilize the thermodynamic energy state in the solution.
故に、 溶液相へのスラ ッ ジ析出は抑制されるのである。  Therefore, sludge deposition in the solution phase is suppressed.
なお、 濾過循環ポンプはその回転数を制御し運転する こ とが好ま し い。 循環ポンプを高回転にて作動させる ことは溶液相に高圧力を付加 する ことである。 その結果、 溶液相内のエネルギーが高ま り溶液相は 液体と しての伏態を維持できな く なり、 ついには固体 (スラ ッ ジ) を 析出する。 しかし、 回転数が遅いと大きな容量のポンプを設置する必 要があり、 コ ス ト高になる。 故に、 循環ポンプは通常のうず巻きボン プの場合、 イ ンバータ等を用いポ ンプ回転数を適切に制御し、 溶液相 への圧力を抑え、 循環量を確保するよう にするのが好ま しい。  It is preferable that the filtration circulation pump be operated by controlling its rotation speed. Operating the circulation pump at a high speed means applying a high pressure to the solution phase. As a result, the energy in the solution phase increases, and the solution phase cannot maintain its liquid state, and eventually precipitates a solid (sludge). However, if the rotation speed is low, a large capacity pump must be installed, which increases the cost. Therefore, when the circulating pump is an ordinary spiral-wound pump, it is preferable to appropriately control the pump rotation speed using an inverter or the like, suppress the pressure to the solution phase, and secure the circulating amount.
濾過循環ポンプ及び璩過機設置の第 2 の目的は、 処理浴中に生成し てしま ったスラ ッ ジを除去することである。 生成してしま ったスラ ッ ジ、 特にエネルギー的に不安定なスラ ッ ジを放置しておく と、 処理浴 は容易にスラ ッ ジを生成し易 く なる。 故に生成して しま ったスラ ッ ジ は速やかに除去する こ とが好ま しい。 The second purpose of installing a filtration circulation pump and a filtration unit is to remove sludge generated in the treatment bath. If the sludge that has been generated, especially the sludge that is unstable in energy, is left untreated, Makes it easy to generate sludge. Therefore, it is preferable to remove sludge that has been generated quickly.
また、 化成処理反応シ ステムの温度調整は、 緩やかに行う こ とが好 ま しい。  In addition, it is preferable that the temperature of the chemical conversion reaction system is moderately adjusted.
本発明での化成処理浴の温度は約 2 0 〜 3 5 °Cの範囲である。 その 温度範囲は概ね通常の室内温度と される範囲であ り、 通常の水溶液の 温度である。 しかし、 冬季には所定温度にするために加熱は必要であ る。 こ こで重要なのは、 本発明では加熱を反応の促進に利用 している のではないこ とである。 すなわち、 その 2 0 〜 3 5 °Cと いう化成処理 反応系に係わる温度範囲は化成処理反応を制御するために必要な条件 なのであ り、 熱エネルギーを化成処理反応に直接利用 しているのでは ない。 現在の 4 0 °C以上に加熱した リ ン酸塩化成処理浴の加熱方法は 化成処理浴中にスチーム等を熱源とす.る熱交換器を入れ、 化成処理浴 を直接的に加熱している。 その方法では熱交換器の近 く では非常な高 温となるため、 その付近にて、 熱による化成処理浴成分の分解が促進 されスラ ッ ジが生成される。 その点において、 その加熱の意味は、 あ き らかに異なるのである。  The temperature of the chemical conversion bath in the present invention is in the range of about 20 to 35 ° C. The temperature range is a range generally set to a normal room temperature, which is a normal temperature of an aqueous solution. However, in winter, heating is required to reach the required temperature. It is important to note that the present invention does not use heating to promote the reaction. In other words, the temperature range of 20 to 35 ° C related to the chemical conversion reaction system is a necessary condition for controlling the chemical conversion reaction, and if heat energy is directly used for the chemical conversion reaction, Absent. The current method of heating a phosphate chemical conversion bath heated to 40 ° C or higher is to use a steam or other heat source in the chemical conversion bath, insert a heat exchanger, and directly heat the chemical conversion bath. I have. In this method, the temperature becomes extremely high near the heat exchanger, so that decomposition of the components of the chemical conversion bath by heat is promoted near the heat exchanger and sludge is generated. In that respect, the meaning of the heating is clearly different.
本発明の方法では、 スラ ッ ジ生成の抑制を第 1 に考えている。 故に 、 化成処理浴に直接熱源を投入する こ と は好ま し く はない。 そ して、 化成処理浴はでき るだけ緩やかに、 又間接的に温められるべきである 。 具体的には電解化成処理反応シ ステムの処理浴循環サイ クルに熱交 換器を設置 し、 循環ポ ンプが作動 している時に温める と いう方法が好 ま しい。 また、 処理槽全体を 3 0 〜 4 0 °C程度の水で囲い温める とい う方法も好ま しい。  In the method of the present invention, suppression of sludge generation is considered first. Therefore, it is not preferable to directly input a heat source into the chemical conversion treatment bath. The chemical treatment bath should be warmed as slowly and indirectly as possible. Specifically, a method is preferred in which a heat exchanger is installed in the treatment bath circulation cycle of the electrolytic conversion treatment system, and the system is heated when the circulation pump is operating. It is also preferable to heat the entire treatment tank with water at about 30 to 40 ° C.
本発明の方法では、 化成処理浴の水素イオ ン濃度 ( P H ) 、 酸化還 元電位 ( O R P ) , 電気電導度 ( E C ) , 温度等を計測 し、 その変動 に対応して薬品を注入する こ とで、 化成処理浴の各成分イ オ ンを常に 所定の濃度範囲に維持するのが好ま しい。 また、 P H , O R P , E C , 温度のセ ンサ一の設置場所は処理槽と離れて設置するのが好ま しい 。 本発明では処理槽では外部電源を用いた電解反応が起きている。 故 に処理槽内には電流が流れており、 その事がセ ンサ一に影響を与え正 確な値を表示できないからである。 According to the method of the present invention, the hydrogen ion concentration (PH), redox potential (ORP), electric conductivity (EC), temperature, etc. of the chemical conversion bath are measured, and a chemical is injected according to the fluctuation. In this way, it is preferable to keep each component ion of the chemical conversion treatment bath in a predetermined concentration range at all times. Also, PH, ORP, EC However, it is preferable that the temperature sensor is installed separately from the processing tank. In the present invention, an electrolytic reaction using an external power supply occurs in the processing tank. Therefore, a current flows in the processing tank, which affects the sensor and cannot display an accurate value.
以上の浴の制御によって、 リ ン酸塩化成処理浴内には、 全く スラ ッ ジが堆積しないことがもっ と も好ま しいが、 も し、 反応活性物質が、 化成処理浴中で不可避成分の固型分と して、 エネルギー的に安定な状 態にまで反応を行った後、 処理槽の底部等に堆積した状態であっても 、 浴自信が—にごりのない伏態であればよい。 それは、 それらの安定に 堆積した、 エネルギー的に安定なスラ ッ ジは、 実際に反応が行われる 溶液中のイオン成分には、 ほとんど影響を及ぼすこ とがないからであ る。  By controlling the above bath, it is most preferable that no sludge is deposited in the phosphatization bath. However, if the reaction active substance is an unavoidable component in the Even if the solid component reacts to an energy-stable state and then deposits on the bottom of the treatment tank, etc., it is sufficient if the bathing self-confidence is in a flat state without turbidity. The reason is that these stably deposited, energetically stable sludges have little effect on the ionic components in the solution in which the reaction actually takes place.
なぜなら、 .本発明の場合、 処理浴に電流を印加しているため、 処理 浴は電界 (電場) の中にあり、 これは即ち常時電気的なエネルギーが 印加され、 満たされている状況にあるので、 その中に生成した固型分 はエネルギー的に安定になるまで固型化が進み、 中途半端な状態に留 ま り処理浴中を浮遊する こ と はない。 すなわち処理浴中の各成分はェ ネルギ一的に安定な固型分 (スラ ッ ジ及び皮膜) または、 溶液と して エネルギー的に安定な浴液中の可溶成分のいずれかとなり、 たとえス ラ ッ ジが生成したと しても、 そのスラ ッ ジは安定なものとなり槽の底 部に留まる こと となる。  Because, in the case of the present invention, since a current is applied to the treatment bath, the treatment bath is in an electric field (electric field), which means that electric energy is constantly applied and filled. Therefore, solidification generated in the solidification proceeds until the energy becomes stable, and the solidification remains in an incomplete state and does not float in the treatment bath. In other words, each component in the treatment bath becomes either an energy-stable solid component (sludge and film) or a soluble component in an energy-stable bath solution as a solution. If sludge is produced, the sludge will be stable and will remain at the bottom of the tank.
そのため、 本発明における透明浴の処理浴 対する電解法では、 処 理浴は、 常時安定的に、 不安定な (エネルギー的に中途半端な) スラ ッ ジを含まない状態を維持する ことが可能とする ことができる。  Therefore, in the electrolysis method for the treatment bath of the transparent bath according to the present invention, the treatment bath can maintain a state that is always stable and does not contain an unstable (halfway in energy) sludge. can do.
続いて本発明の特徵である電解方法についてさ らに詳細に説明する 本発明の電解は直流電解である こ とが好ま しい。  Next, the electrolysis method, which is a feature of the present invention, will be described in more detail. The electrolysis of the present invention is preferably DC electrolysis.
その電解は被処理物 (ワーク) を接続する場所 (電極) によ り下記 に区分される。 The electrolysis depends on the location (electrode) where the workpiece (work) is connected. It is divided into
①陽極電解 · · · ワークを陽極と し電解する  (1) Anode electrolysis · · · Performs electrolysis using the workpiece as the anode
②陰極電解 · · · ワークを陰極と し電解する  (2) Cathodic electrolysis · · · Performs electrolysis using the workpiece as the cathode
③陽極電解 +陰極電解  ③Anodic electrolysis + cathodic electrolysis
また、 無電解にて皮膜を形成させる方法に上記のいづれかの電解方 法を組合せてもよい。  Further, any of the above-described electrolysis methods may be combined with the method of forming a film by electroless.
さて、 本発明での電解化成処理システムの方式について、 図 1 〜図 4 に基づいて述べる。  Now, the method of the electrolytic conversion treatment system according to the present invention will be described with reference to FIGS.
本発明では図 1 乃至図 4 の電解方式が考え られる。  In the present invention, the electrolysis systems shown in FIGS. 1 to 4 can be considered.
こ こで、 各図において、 電解化成処理システムは、 処理槽 1 、 循環 ポ ンプ 2 、 濾過機 3 、 セ ンサー 4 、 電源 5 、 電極 6 、 被処理物 7 、 温 調制御システム 8 から構成されている。 電解反応系は、 1 つ以上から 成っており、 2 つ以上の場合には主電解 (反応) 系 Aと副電解 (反応 ) 系 B に分けて設置される。 そ して副電解 (反応) 系 B は同一槽内の 場合もあれば、 別の槽となる場合もある。  Here, in each of the figures, the electrolytic conversion treatment system is composed of a treatment tank 1, a circulation pump 2, a filter 3, a sensor 4, a power supply 5, an electrode 6, an object to be treated 7, and a temperature control system 8. ing. The electrolysis reaction system consists of one or more, and in the case of two or more, it is installed separately in main electrolysis (reaction) system A and sub electrolysis (reaction) system B. The secondary electrolysis (reaction) system B may be in the same tank or in a separate tank.
図 1 は通常の電解処理シ ステムである。 この場合、 電極と被処理物 が入れ替わる場合もある。  Figure 1 shows a typical electrolytic treatment system. In this case, the electrode and the object may be interchanged.
図 2 は主電解系 A及び副電解系 Bから構成される。 そ して、 図 2 は 陰極処理を行う電解処理システムである。  Figure 2 is composed of the main electrolysis system A and the sub electrolysis system B. Figure 2 shows an electrolytic treatment system that performs cathodic treatment.
その構成は主電解系 A には電圧 · 電流を印加するが、 副電解系には 電圧, 電流は直接には印加しないものである。 副電解系 Bでは被処理 物 7 から電極 1 0 、 電極 1 1 等へは電線を経由して外部回路から直接 的に電流が流れないよ う になっている。  The configuration is such that voltage and current are applied to the main electrolytic system A, but voltage and current are not directly applied to the secondary electrolytic system. In the sub-electrolysis system B, current does not flow directly from the external circuit from the object 7 to the electrode 10, the electrode 11, etc. via the electric wires.
主電解系 Aで印加 した電流は、 溶液中で、 被処理物 7 及び副電解系 の対極した電極 1 0、 1 1 へ流れる。 そ して、 副電解系 Bの対極 (電 極 1 0 及び 1 1 ) に流れた電流は、 再び溶液中を経て、 披処理物 7 に 至る。 また、 副電解系 Bの対極に流れた電流のある部分は、 ダイォー ド Dを経由 して被処理物 7 に至る。 主電解系 Aは化成皮膜形成に直接 的に関与する電解反応に作用するのに対し、 副電解系 B はその主反応 を良好に進めるよう作用する ものである。 The current applied in the main electrolytic system A flows in the solution to the object 7 to be treated and the opposite electrodes 10 and 11 of the auxiliary electrolytic system. Then, the current flowing to the counter electrodes (electrodes 10 and 11) of the sub-electrolysis system B passes through the solution again and reaches the treated material 7. In addition, a portion of the sub-electrolysis system B where the current flows to the opposite electrode reaches the workpiece 7 via the diode D. Main electrolytic system A is directly used for chemical conversion film formation The secondary electrolytic system B acts to promote the main reaction satisfactorily, while the secondary electrolytic system B acts on the electrolytic reaction that is locally involved.
その理由は以下である。 図 2 に結線した電解システムでは、 電解処 理 (電流印加) 時の処理浴内電位は主電解系 Aの陽極〉副電解系 Bの 対極 >被処理物 7 となる。 そ して、 主電解系 Aの操作により 、 主電解 系 Aの金属イオンだけでな く 、 副電解系 Bの金属イオンも主電解系 A に連動させて被処理物表面に析出させるこ とが可能となる。  The reason is as follows. In the electrolysis system connected in Fig. 2, the potential in the processing bath during electrolysis (current application) is: anode of main electrolysis system A> counter electrode of sub electrolysis system B> object 7 to be processed. By operating the main electrolytic system A, not only the metal ions of the main electrolytic system A but also the metal ions of the sub electrolytic system B can be precipitated on the surface of the workpiece in conjunction with the main electrolytic system A. It becomes possible.
主電解系 Aは、 亜鉛等リ ン酸塩被膜をつ く る主たる金属を、 陽極側 の電極 6 と し、 また被処理物 7 を陰極と して構成される。 副電解系 B は処理浴中に鉄及びニッ ケル等リ ン酸塩化成被膜の副成分と して構成 する金属材料を浸漬させこれを電極と して構成される。 その結果、 主 電解系 Aの作用によ り、 処理浴中に鉄及びニッ ケルも溶解し、 その溶 解したイオンは被処理物表面に ¾鉛と と もにリ ン酸塩と して析出 し、 皮膜となる。 :  The main electrolytic system A is configured such that a main metal for forming a phosphate film such as zinc is used as the electrode 6 on the anode side, and the workpiece 7 is used as a cathode. The secondary electrolytic system B is constructed by immersing a metal material, such as iron and nickel, which constitutes a secondary component of the phosphate conversion coating in a treatment bath, and using this as an electrode. As a result, due to the action of the main electrolytic system A, iron and nickel are also dissolved in the treatment bath, and the dissolved ions are precipitated on the surface of the workpiece as lead and phosphate as phosphate. To form a film. :
また、 鉄, ニッケル等の金属材料を図 2 のよう に接続せず、 単に浴 に浸漬した場合には、 鉄は電解系の中に、 浸漬 · 放置された状態とな り、 その結果、 鉄の溶解 · 析出量が多 く なり、 皮膜が粗雑化し、 その 性能が劣化する。 すなわち、 その場合には、 鉄の溶解 · 析出は図 2 の 場合に比較して、 亜鉛の溶解 · 析出に連動する ことが少な く なる。  In addition, when metal materials such as iron and nickel are not connected as shown in Fig. 2 but simply immersed in a bath, iron is immersed and left in the electrolytic system, and as a result, iron The amount of dissolution / precipitation increases, the film becomes coarse, and its performance deteriorates. That is, in this case, the dissolution / precipitation of iron is less linked to the dissolution / precipitation of zinc as compared with the case of FIG.
リ ン酸塩皮膜形成において、 鉄イオンが重要な役割を行う という事 はよ く 知られた事であるが、 その量が多すぎても不都合である。  It is well known that iron ions play an important role in the formation of phosphate films, but too much is inconvenient.
図 2 の如 く 、 結線する ことによ り、 主電解系. ( Z n電極—被処理物 間) Aに印加された電流は、 同 じ処理浴中で電極 1 0 、 電極 1 1 にも 印加されるが、 その電流は処理浴に放出される部分と、 鉄、 ニッ ケル から外部結線を経由して、 被処理物 7 に電流が流れる部分とから構成 されるよう になる。 このこ とによって、 化成処理浴中での電解による 鉄の溶解は鉄電極から浴に直接電流が流れる場合に比較し、 抑制され る こ とになる。 その結果形成する化成皮膜は鉄成分を制御したものと な り、 緻密な ものとなる。 As shown in Fig. 2, by connecting the wires, the current applied to the main electrolytic system. (Between the Zn electrode and the object to be processed) A is applied to the electrodes 10 and 11 in the same processing bath. Although the current is applied, the current is composed of a part discharged to the treatment bath and a part where the current flows to the object 7 through the external connection from iron or nickel. As a result, the dissolution of iron by electrolysis in the chemical conversion bath is suppressed as compared with the case where current flows directly from the iron electrode to the bath. The resulting conversion coating is based on the control of the iron component. In other words, it becomes elaborate.
なお副電解系 Bの電極 1 0 、 1 1 には鉄, ニ ッ ケルを併用 して用い る場合もあ り、 また単独で用いてもよい し、 また、 他の金属を用いて もよい。 また、 図 2 のダイ オー ド Dの向きを逆に して もよい。  The electrodes 10 and 11 of the sub electrolytic system B may be used in combination with iron and nickel, may be used alone, or may be made of another metal. The direction of the diode D in FIG. 2 may be reversed.
図 3 は主電解系 A と副電解系 B を別の槽で行う ものである。  Figure 3 shows the main electrolysis system A and sub electrolysis system B performed in separate tanks.
この場合には、 主電解槽 1 3 で連続的に被処理物 (鉄) 7 を 0 . 5 V以下の電圧で、 陽極処理した場合、 反応系には過剰の第 1 鉄イ オ ン ( F e 2+ ) が溶解するが、 陽極処理電圧が低い時、 溶解した F e 2+は 第 2 鉄イオ ン ( F e 3+) までは、 酸化されない。 その結果、 処理浴の 電気化還元電位 ( O R P ) は低下するよ う になる。 処理浴の O R Pを 5 6 0 m V以上に制御 しょ う とする と、 後で詳細に説明するよ う に F e 2+→ F e 3+とする こ とが必要である。 In this case, when the object to be treated (iron) 7 is continuously anodized in the main electrolytic cell 13 at a voltage of 0.5 V or less, the excess ferrous ion (F e 2+ ) dissolves, but when the anodizing voltage is low, the dissolved F e 2+ is not oxidized until ferric ion (F e 3+ ). As a result, the electro-reduction potential (ORP) of the treatment bath decreases. To control the ORP of the treatment bath to 560 mV or more, it is necessary to change F e 2+ → F e 3+ as described later in detail.
図 3 の副電解槽 1 4 はそのよ う な目的で設置するのである。 すなわ ち、 主電解槽 1 3 での電解反応によ り反応系に溶出 した過剰の F e 2+ は副電解槽 1 4 でよ り大きな電圧、 電流での電解によ り、 F e 2+→ F e 3+と され、 処理浴の O R P は 5 6 O m V以上の所定の範囲に制御で き るよ う になる。 The secondary electrolyzer 14 in Fig. 3 is installed for such a purpose. Chi words, the main electrolytic cell 1 excess F e 2+ is good Ri large voltage in secondary electrolytic cell 1 4 eluted by Ri reaction system to the electrolytic reaction at the 3, Ri by the electrolysis at a current, F e 2 + → Fe 3+, and the ORP of the treatment bath can be controlled to a predetermined range of 56 OmV or more.
図 4 は、 主電解系 Aを複数設置する ものである。 陽極は亜鉛を用い た電極 7 およびその他金属 (鉄等) を用いた電極 1 5 と し、 被処理物 6 を陰極と して接続する。 そ して、 複数の金属を同時に電解処理し、 化成 · 皮膜を形成する ものである。  Figure 4 shows the installation of multiple main electrolytic systems A. The anode is an electrode 7 using zinc and an electrode 15 using other metals (such as iron), and the object 6 is connected as a cathode. Then, a plurality of metals are electrolytically treated at the same time to form a chemical conversion film.
次いで、 電流, 電圧の印加方法について説明する。 電源 5 による浴 への電流、 電圧の印加方法は、 下記の方法が上げられる。  Next, the method of applying current and voltage will be described. The following methods can be used to apply the current and voltage to the bath by the power supply 5.
図 5 ( a ) ~ ( d ) にその概要を示す。  Figures 5 (a) to (d) show the outline.
( a ) 定電流電解 , · · 一定電流を印加する方法である (パルス電 解も含む)  (a) Constant current electrolysis, a method of applying a constant current (including pulse electrolysis)
( b ) 定電圧電解 · · · 一定電圧を印加する方法である (パルス電 解も含む) ( c ) 電流走査電解 * · ' 所定の時間後に所定の電流となるよ-う、 ファ ンク シ ョ ンジェネ レータ等を用いて 印加電流を制御 (走査) し印加する電解 方法。 n回繰返すこと もある。 (b) Constant voltage electrolysis · · · · A method of applying a constant voltage (including pulse electrolysis) (c) Current scanning electrolysis * · 'An electrolysis method in which the applied current is controlled (scanned) using a function generator or the like so that the current becomes a predetermined current after a predetermined time. It may be repeated n times.
( d ) 電圧走査電解 · · · 所定の時間後に、 所定の電圧となるよ う フ ァ ンク シ ョ ンジェネ レータ等を用いて 印加電圧を制御 (走査) し、 印加する電 解方法。 n回繰返すこと もある。  (d) Voltage-scanning electrolysis: An electrolysis method in which the applied voltage is controlled (scanned) using a function generator or the like so that the voltage becomes a predetermined voltage after a predetermined time, and the voltage is applied. It may be repeated n times.
( a ) , ( b ) , ( c ) , ( d ) の電解方法は、 陽極及び陰極にて 行う こ とが可能であ り、 実際には表 1 に示す 8通りの方法が可能であ る。  The electrolysis methods (a), (b), (c), and (d) can be performed with the anode and the cathode, and in fact, the eight methods shown in Table 1 are possible .
実用的には、 その 8通りの方法の 1つを単独で用いてもよい し、 そ の 8通りの中から複数の方法を組合せて一連の工程と してもよい。 ま.た、 無電解の方法と、 上記の電解方法を組合せて使用 してもよい 表 1 電解方式の組合せ  Practically, one of the eight methods may be used alone, or a plurality of the eight methods may be combined into a series of steps. In addition, the electroless method and the above electrolysis methods may be used in combination.Table 1 Combinations of electrolysis methods
Figure imgf000020_0001
Figure imgf000020_0001
なお、 本発明の電解処理は、 無電解浴の場合より もスラ ッ ジ生成が 生じに く い。 それは、 浴に電気エネルギーが供給される こ と になるの で、 浴全体の電気化学的なエネルギー レベルが上昇し、 個々 の成分ィ オ ンの安定性を増すこ とができたためである。 すなわち、 透明な電解 浴では、 溶液相へ電子 ( e ) が供給される こ とが、 溶液相の各種ィ ォ ンの存在の安定化に寄与する。 従って、 透明な この電解浴は各種ィ ォ ンが安定であるため、 溶液は熱力学的に もまた安定である。 そのため 、 被膜形成等の相転移 (この場合には Γ液一固」 反応に相当) を起こ すためには、 透明な無電解浴に比較 し大きな電気化学的エネルギーを 必要とする。 そのため、 本発明の電解処理は、 無電解浴の場台よ り も 溶液と して安定であ り スラ ッ ジ生成が生じに く い。 Note that the electrolytic treatment of the present invention produces sludge more than in the case of an electroless bath. Hard to occur. This is because the electrical energy supplied to the bath increased the electrochemical energy level of the entire bath and increased the stability of each component ion. That is, in a transparent electrolytic bath, the supply of electrons (e) to the solution phase contributes to stabilization of the presence of various ions in the solution phase. Therefore, the solution is thermodynamically stable, since various ions are stable in this transparent electrolytic bath. Therefore, in order to cause a phase transition such as film formation (corresponding to a “liquid-solid” reaction in this case), a large amount of electrochemical energy is required as compared with a transparent electroless bath. Therefore, the electrolytic treatment of the present invention is more stable as a solution than the electroless bath, and is less likely to generate sludge.
電解処理時に印加する電圧, 電流は 0 . 1 V〜 : L 0 V , 1 0 mk/ dm 2 〜 4 A dm2 程度が好ま しい。 そ して、 好ま しい電解は多 く の電流 を、 でき るだけ低い電圧にて確保し行う こ とである。 The voltage and current applied during the electrolytic treatment are 0.1 V or more: L 0 V, preferably 10 mk / dm 2 to 4 A dm 2 . The preferred electrolysis is to ensure that a large amount of current is provided at as low a voltage as possible.
本発明の リ ン酸塩化成処理浴の酸化還元電位 ( A g C 1 電極電位で 表示) は 2 5 0 〜 6 5 0 mVであるのが望ま しい。 そ して、 本発明の 2 5 0 〜 6 5 O m Vは水素標準電極電位では 4 6 0 〜 8 6 O m Vである こ とが好ま しい。  The oxidation-reduction potential (indicated by the AgC1 electrode potential) of the phosphatization bath of the present invention is preferably from 250 to 65 mV. The 250-65 OmV of the present invention is preferably 450-86 OmV at the hydrogen standard electrode potential.
鉄鋼材料に限定して処理する場合、 化成処理浴の酸化還元電位は、 処理浴中に種々ある平衡系の全体を反映するのであるが、 F e 2+ィォ ンに関連しては、 ィヒ 4 を反映している。 すなわち、 可溶性の金属ィォ ン、 特に F e 2+が多ければ、 酸化還元電位は低く なり 、 逆に、 可溶性 の金属イ オ ン、 特に F e 2+が少なければ、 酸化還元電位は高 く なる。 そ して、 無電解で加熱等のエネルギー供給がない場合には酸化還元電 位 5 6 0 m V以上と はな らない。 何故な らば、 本発明の A g C 1 電極 電位は水素標準電極電位マイナス約 2 1 O m Vであ り、 O R P 5 6 0 m V ( A g C 1 電極電位) は、 水素標準電極電位にて、 7 7 O m Vを 示し、 その電位は、 When the treatment is limited to steel materials, the oxidation-reduction potential of the chemical treatment bath reflects the whole of various equilibrium systems in the treatment bath, but in relation to Fe 2+ ion, Reflects Ehi 4. That is, if the amount of soluble metal ions , particularly Fe 2+, is large, the oxidation-reduction potential is low. Conversely, if the amount of soluble metal ions , especially F e 2+ is small, the redox potential is high. Become. If there is no electrolysis and no energy supply such as heating, the oxidation-reduction potential does not exceed 560 mV. The reason is that the Ag C1 electrode potential of the present invention is the hydrogen standard electrode potential minus about 21 OmV, and the ORP 560 mV (AgC1 electrode potential) is the hydrogen standard electrode potential. At 77 OmV, and the potential is
【化 1 0 】 F e 2+i F e 3+ + e + 0. 7 7 V [Formula 10] F e 2+ i F e 3+ + e + 0.7 7 V
の平銜を反映するからである。  This is because it reflects the flat mouth.
すなわち、 0 R P 5 6 0 ra V以上とするためには、 鉄素材から溶解 した第 1鉄イオン ( F e 2+ ) を更に、 酸化する ことが必要である。 し かしながら、 無電解浴で加熱エネルギーを直接被膜形成に利用 しない 場合には、 処理浴に供給されるエネルギーは、 鉄の溶解 (化 3 ) に伴 うエネルギーのみである。 そ して、 そのエネルギーのみでは、 (化 1 0 ) の平銜を右側へ進める こ とができないからである。 That is, in order to obtain 0 RP 560 raV or more, it is necessary to further oxidize the ferrous ion (Fe 2+ ) dissolved from the iron material. However, when heating energy is not directly used for film formation in an electroless bath, the energy supplied to the treatment bath is only the energy associated with the dissolution (formula 3) of iron. And because of the energy alone, the flat mouth of (Chemical Formula 10) cannot be moved to the right.
しかし、 本発明では電解処理により電気エネルギーが供給されるた め、 鉄は、 化 3及び化 1 0 により溶解、 酸化され、 処理浴は F e 2+及 び F e 3+を含むことになり、 O R Pは 5 6 O mV以上であってもよい 。 そ して、 皮膜形成 (化 4 ) の反応も進み、 化成皮膜形成が行われる 。 O R P 5 6 0 mV以上の浴では F e 3+が安定に存在する ことから形 成する化成処理被膜は F e 2+と と もに、 F e 3+の形の鉄も含んだリ ン 酸塩化成被膜と考えられる。 However, in the present invention, since electric energy is supplied by the electrolytic treatment, iron is dissolved and oxidized by the chemical formulas 3 and 10, and the treatment bath contains Fe 2+ and Fe 3+. The ORP may be greater than 56 OmV. Then, the reaction of film formation (Chem. 4) proceeds, and a chemical conversion film is formed. F e 3+ is chemical conversion coating F e 2+ and the monitor,-phosphate containing also iron in the form of F e 3+ that form because it exists stably in the ORP 5 6 0 mV or more baths Probably a conversion coating.
また、 2 5 O m V"以下では可溶性金属イオンが多 く なり、 その結果 、 処理浴中で安易にスラ ッ ジが生成するため、 化成処理浴の透明度維 持は困難となる。 そのため、 強固な化成皮膜の形成はできない。  In addition, if it is less than 25 OmV ", the amount of soluble metal ions increases, and as a result, sludge is easily generated in the treatment bath, so that it is difficult to maintain the transparency of the chemical conversion treatment bath. It is not possible to form a chemical conversion film.
鉄鋼以外の金属材料を処理する場合でも、 化成処理浴の酸化還元電 位は概ね 2 5 0〜 6 5 · 0 m Vの範囲である。 なぜならば酸化還元電位 は処理浴中の化 1 , 2 , 4 , 8 の酸化還元のバラ ンスを反映したもの であるが、 化 3 を化 8 に置換し、 一般化しても、.ィヒ 1 , 2 , 4の酸化 —還元のバラ ンスは大き く 変動しないためである。  Even when treating metal materials other than steel, the oxidation-reduction potential of the chemical conversion bath is generally in the range of 250 to 65 · mV. This is because the oxidation-reduction potential reflects the redox balance of the chemical baths 1, 2, 4, and 8 in the treatment bath. This is because the balance between oxidation and reduction of 2, 4 does not fluctuate significantly.
なお、 本発明にかかる化成皮膜処理浴中の リ ン酸イオンは、 概ね 4 g Z £ (グラム/リ ッ トル) 以上、 皮膜形成金属イオンは、 概ね 1 . 5 gZ 以上、 硝酸イオンは、 概ね 3 gZ i以上必要である こ とが好 ま しい。 逆に、 リ ン酸イオンの上限は、 概ね 1 5 0 g 程度、 皮膜 形成金属イオ ンの上限は、 概ね 4 0 g Z ^程度、 硝酸イオ ンの上限は 、 概ね 1 5 O g Z ^ 程度である こ とが好ま しい。 また、 最も好ま しい イ オ ン濃度は、 リ ン酸イ オ ンでは概ね 5 〜 8 0 g / ·β 程度、 皮膜形成 金属イ オ ンでは概ね 2 ~ 3 O g / 1 程度、 硝酸イ オ ンでは概ね 1 0 ~ 6 0 g Z ^ 程度である こ とが好ま しい。 The phosphate ion in the chemical conversion coating bath according to the present invention is approximately 4 g Z £ (gram / liter) or more, the film-forming metal ion is approximately 1.5 gZ or more, and the nitrate ion is approximately. Preferably more than 3 gZi is required. Conversely, the upper limit for phosphate ions is approximately 150 g, the upper limit for film-forming metal ions is approximately 40 g Z ^, and the upper limit for nitrate ions is approximately Preferably, it is approximately 15 OgZ ^. In addition, the most preferable ion concentration is about 5 to 80 g / .beta. For phosphoric acid ion, about 2 to 3 Og / 1 for film forming metal ion, and about nitrate ion. In this case, it is preferable that the value be about 10 to 60 g Z ^.
化成処理浴の管理は酸化還元電位の制御が基本であ る。 故に、 酸化 還元電位の変動に対応 し、 主剤 ( リ ン酸、 硝酸、 亜鉛等を含む酸性の 薬品) を投入するのが望ま しいが、 よ り確実な化成処理浴の管理のた めに、 化成処理浴の他の電気化学パラ メ ータである水素イオ ン濃度 ( P H ) 、 電気電導度 ( E C ) と併用 して使用する こ とが好ま しい。 水素イオ ン濃度 ( P H ) は 2 . 5 〜 4 . 0 程度の範囲内に有する こ とが好ま しい。  The control of the chemical conversion bath is based on the control of the oxidation-reduction potential. Therefore, it is desirable to add a base agent (an acidic chemical containing phosphoric acid, nitric acid, zinc, etc.) in response to fluctuations in the oxidation-reduction potential, but for more reliable control of the chemical treatment bath, It is preferable to use it in combination with other electrochemical parameters such as hydrogen ion concentration (PH) and electric conductivity (EC). The hydrogen ion concentration (P H) is preferably in the range of about 2.5 to 4.0.
P Hを上昇させるには、 苛性ソーダ等の処理浴をアル力 リ 側へ移行 させる薬品を、 注入し対応する。 逆に P Hを低下させるには、 リ ン酸 , 硝酸, 亜鉛等を含む酸性の薬品である主剤を、 注入する こ とで対処 する。  To raise the pH, inject a chemical such as caustic soda to transfer the treatment bath to the alkaline side. Conversely, pH can be reduced by injecting a base material that is an acidic chemical containing phosphoric acid, nitric acid, zinc, and the like.
電気電導度は、 化成処理浴の種類によ り 、 その適切な範囲は変わる 。 硝酸イ オ ン等活性なイオ ンを多 く 含む浴では高めに設定するが、 硝 酸イオ ン等が少な く リ ン酸イ オ ンの多い浴では低めに設定する こ とが 好ま しい。 一般に電導度設定値下限にて、 主剤を添加し、 化成処理浴 の電導度を一定範囲に管理する こ とが好ま しい。 なお、 電気電導度は 、 化成処理浴のイオ ンの構造によ っても変動し、 溶液中のイオ ンの構 造化が進む程同 じ成分組成であっても電導度は低下する。 前記したこ とを考慮し、 化成処理浴の電導度は 1 0 〜 2 0 0 ms - cm-1程度に管理 するのが好ま しい。 The appropriate range of the electric conductivity varies depending on the type of the chemical treatment bath. It is preferable to set a higher value for a bath containing a large amount of active ions such as ion nitrate, but to set a lower value for a bath containing a small amount of nitrate ions and a large amount of phosphate ions. In general, it is preferable to add a base agent at the lower limit of the electric conductivity set value and control the electric conductivity of the chemical conversion treatment bath within a certain range. The electric conductivity varies depending on the structure of the ions in the chemical conversion treatment bath, and the conductivity decreases as the structure of the ions in the solution progresses, even if the composition is the same. In consideration of the above, it is preferable to control the electric conductivity of the chemical conversion treatment bath to about 10 to 200 ms-cm- 1 .
本発明では、 どのよ う な導電性を有する金属材料の表面に対しても 、 十分な膜厚を有する リ ン酸塩化成被膜を施すこ と のでき る リ ン酸塩 化成処理方法を提供する こ とができ る。 図面の簡単な説明 According to the present invention, there is provided a phosphate conversion treatment method capable of applying a phosphoric acid conversion coating film having a sufficient film thickness to the surface of a metal material having any conductivity. be able to. BRIEF DESCRIPTION OF THE FIGURES
図 1 はリ ン酸塩化成処理電解処理構成システム図、 図 2 はリ ン酸塩 化成処理電解処理構成システム図、 図 3 は リ ン酸塩化成処理電解処理 構成システム図、 図 4 はひ ン酸塩化成処理電解処理構成システム図、 図 5 )、 (b)、 (c)、 (d)は電流電圧印加状態を示す特性図、 図 6 は実施例 1 の方法で得られた リ ン酸塩皮膜の結晶構造の S E M写真図、 図 7 は 実施例 1 の方法で得られた リ ン酸皮膜の蛍光分析線図、 図 8 は実施例 1 の方法で得られた リ ン酸皮膜の X線回折チ ャー ト図、 図 9 は実施例 2 の方法で得られた リ ン酸塩皮膜の結晶構造の S E M写真図、 図 1 0 は実施例 2 の方法で得られた リ ン酸皮膜の蛍光 X線分析線図、 図 1 1 は実施例 2 の方法で得られた リ ン酸皮膜の X線回折チャー ト図、 図 1 2 は実施例 3 の方法で得られた リ ン酸塩皮膜の結晶構造の S E M写真 図、 図 1 3 は実施例 3 の方法で得られた リ ン酸皮膜の蛍光 X線分析線 図、 図 1 4 は実施例 3 の方法で得られた リ ン酸皮膜の X線回折チ ヤ一 ト図、 図 1 5 は実施例 4 の方法で得られたリ ン酸塩皮膜の锆晶構造の S E M写真図、 図 1 6 は実施例 4 の方法で得られた リ ン酸皮膜の蛍光 X線分析線図、 図 I 7 は実施例 4 の方法で得られた リ ン酸皮膜の蛍光 X回折チャー ト図、 図 1 8 は実施例 5 の方法で得られた リ ン酸塩皮膜 の結構構造の S E M写真図、 図 1 9 は実施例 5 の方法で得られたリ ン 酸塩皮膜の X線解析チヤ一 ト図、 図 2 0 は実施例 6 の方法で得られた リ ン酸塩皮膜の锆構構造の S E M写真図、 図 2 1 は実施例 6 の方法で 得られた リ ン酸塩皮膜の X線解析チヤ一ト図、.図 2 2 は比較例の方法 で得られた リ ン酸塩皮膜の結晶構造の S E M写真図、 図 2 3 は実施例 7 で使用 した部品の概要図、 図 2 4 は実施例 8 の方法で得られた リ ン 酸塩皮膜の結晶構造の S E M写真図、 図 2 5 は実施例 8 の方法で得ら れたリ ン酸塩皮膜の X線解忻チャー ト図、 図 2 6 は実施例 9 の方法で 得られたリ ン酸塩皮膜の結晶構造の S E M写真図、 図 2 7 は実施例 9 の方法で得られた リ ン酸塩皮膜の X線解析チヤ一ト図、 図 2 & は実施 例 1 0 の方法で得られた リ ン酸塩皮膜の結晶構造の S E M写真図、 図 2 9 は実施例 1 0 の方法で得られた リ ン酸塩皮膜の X線解析チ ヤ一 ト 図、 図 3 0 は実施例 1 1 に用いたセグメ ン トの概略図、 図 3 1 は実施 例 1 1 のコアを示す概略図、 図 3 2 は実施例 1 1 のコアからなるバル ブを示す断面図、 図 3 3 は従来のコアを示す概略図、 図 3 4 は従来の コアよ りなるバルブを示す断面図、 図 3 5 は実施例 1 1 の特性を示す 特性図、 図 3 6 は実施例 1 2 を説明する説明図、 図 3 7 は実施例 1 2 の特性を示す特性図、 図 3 8 (a)、 (b)は実施例 1 3 を示すコ アの正面図 および側面図、 図 3 9 は実施例 1 3 の コ アの一部拡大図、 図 4 0 は従 来のコアの一部拡大図、 図 4 1 は実施例 1 4 の電流、 電圧特性を示す 特性図である。 発明を実施するための最良の形態 Fig. 1 is a schematic diagram of the phosphatization electrolytic treatment system, Fig. 2 is a diagram of the phosphatization electrolytic treatment system, Fig. 3 is a diagram of the phosphatization electrolytic treatment system, and Fig. 4 is Fig. 5), (b), (c), (d) are characteristic diagrams showing the state of current and voltage application, and Fig. 6 is phosphoric acid obtained by the method of Example 1. SEM photograph of the crystal structure of the salt film, Fig. 7 is a fluorescence analysis diagram of the phosphoric acid film obtained by the method of Example 1, and Fig. 8 is X-ray image of the phosphoric acid film obtained by the method of Example 1. X-ray diffraction chart, FIG. 9 is an SEM photograph of the crystal structure of the phosphate film obtained by the method of Example 2, and FIG. 10 is the image of the phosphoric acid film obtained by the method of Example 2. X-ray fluorescence analysis diagram, Fig. 11 is the X-ray diffraction chart of the phosphoric acid film obtained by the method of Example 2, and Fig. 12 is the re- sult obtained by the method of Example 3. SEM photograph of the crystal structure of the phosphate film, Fig. 13 is an X-ray fluorescence analysis diagram of the phosphoric acid film obtained by the method of Example 3, and Fig. 14 is a photoreceptor obtained by the method of Example 3. X-ray diffraction chart of the phosphoric acid film, Fig. 15 is an SEM photograph of the crystalline structure of the phosphate film obtained by the method of Example 4, and Fig. 16 is the method of Example 4. X-ray fluorescence analysis diagram of the obtained phosphoric acid film, Fig. I7 is a fluorescence X-ray diffraction chart of the phosphoric acid film obtained by the method of Example 4, and Fig. 18 is the method of Example 5. SEM micrograph of the fine structure of the obtained phosphate film. Fig. 19 is an X-ray analysis chart of the phosphate film obtained by the method of Example 5, and Fig. 20 is Example 6 Fig. 21 is an X-ray analysis chart of the phosphate film obtained by the method of Example 6, and Fig. 21 is an SEM photograph of the structure of the phosphate film obtained by the method of Fig. 2. 2 is the ring obtained by the method of the comparative example. SEM photograph of the crystal structure of the phosphate film, Figure 23 is a schematic diagram of the parts used in Example 7, and Figure 24 is an SEM photograph of the crystal structure of the phosphate film obtained by the method of Example 8. Fig. 25 and Fig. 25 are X-ray X-ray charts of the phosphate film obtained by the method of Example 8, and Fig. 26 is the crystals of the phosphate film obtained by the method of Example 9. SEM micrograph of the structure, Fig. 27 is an X-ray analysis chart of the phosphate film obtained by the method of Example 9, and Fig. 2 & SEM micrograph of the crystal structure of the phosphate film obtained by the method of Example 10; Fig. 29 is an X-ray analysis chart of the phosphate film obtained by the method of Example 10 FIG. 30 is a schematic diagram of the segment used in Example 11, FIG. 31 is a schematic diagram showing the core of Example 11, and FIG. 32 is a valve made of the core of Example 11 FIG. 33 is a schematic diagram showing a conventional core, FIG. 34 is a cross-sectional view showing a valve made of a conventional core, FIG. 35 is a characteristic diagram showing the characteristics of Example 11, and FIG. FIG. 37 is a characteristic diagram showing characteristics of Example 12; FIGS. 38 (a) and (b) are front and side views of a core showing Example 13; FIG. 39 is a partially enlarged view of the core of Example 13; FIG. 40 is a partially enlarged view of the conventional core; and FIG. 41 is a characteristic diagram showing current and voltage characteristics of Example 14; is there. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施例 1 ~ 6及び 8〜 1 0 では、 被処理剤と して縦, 横, 厚さそれぞれ ( A ) 1 5 cm, 7 cm, 1 mmの板状のテス ト ピース又は ( B ) 7 . 5 cm, 3 . 5 cm, 1 mmのテス ト ピースを使用 し、 対極には縦 , 横, 厚さそれぞれ 2 O cm, 5 cm, 1 ~ 2 mmの板状の ものを使用 した また、 実施例 7 は自動車エア コ ンディ シ ョ ナ一用 コ ンプ レ ッ サーの ク ラ ッ チ部品を用いた。  In Examples 1 to 6 and 8 to 10 of the present invention, the test agent was a plate-like test piece (A) of 15 cm, 7 cm, or 1 mm in length, width, or thickness, respectively. ) Test pieces of 7.5 cm, 3.5 cm, 1 mm were used, and the opposite electrode was a 2 Ocm, 5 cm, 1 to 2 mm plate-shaped one each in vertical, horizontal, and thickness directions. In Example 7, a clutch component of a compressor for an automobile air conditioner was used.
実施例 1 1 は自動車用燃料噴射ポ ンプを制御するためのソ レ ノ ィ ド 用ステ一夕 コアを形成する磁性材料 ( I L S S ), 部品 (コアセグメ ン ト) を用いた。  In Example 11, a magnetic material (ILSS) and a component (core segment) forming a core for a solenoid for controlling a fuel injection pump for an automobile were used.
実施例 1 2 は、 実施例 1 1 で使用 したソ レ ノ ィ ドコアセ グメ ン トを 塑性加工する前の長さ 5 0 0 mm, 巾 2 8 mm, 厚さ 2 mmの磁性材 ( I L S S ) を用いた。  In Example 12, a magnetic material (ILSS) having a length of 500 mm, a width of 28 mm, and a thickness of 2 mm before plastic working of the solenoid core segment used in Example 11 was used. Using.
実施例 1 3 は自動車用オルタネー夕のステ一タ コアを用いた。 処理 に使用 した処理浴の量はいづれも約 2 0 リ ッ ト ルである。 各実施例のテン ト ピースは、 脱脂—水洗 水洗—酸洗い ( 1〜 2 % H N 03 常温 1〜 2分) →水洗→水洗—表面調整 (日本パーカライ ジ ング社製 P L— Z T 0. 1 〜 0. 2 %) → リ ン酸塩化成処理→水洗 —水洗で、 各工程のタ ク ト時間はリ ン酸塩化成処理を除き、 各 2分で 行った。 リ ン酸塩化成処理は各実施例及び比較例にて処理時間は異な る。 なお、 脱脂後の水洗は、 水洗終了後、 新鮮な工業用水をスプ レー 散布する こ とで、 確実な水洗が行えるよう に した。 Example 13 used a stator core of an automotive alternator. The volume of the treatment bath used for the treatment was about 20 liters. The tent pieces in each example are degreased, rinsed with water, rinsed with water and pickled (1-2% HN03 at room temperature for 1 to 2 minutes) → rinsed with water → rinsed with water (surface adjustment) (0.2%) → Phosphoric acid conversion treatment → Rinsing—Washing was performed in 2 minutes for each step except for the phosphoric acid conversion treatment. The treatment time of the phosphoric acid conversion treatment differs in each of Examples and Comparative Examples. After degreasing, after washing, fresh industrial water was sprayed to ensure reliable washing.
また、 実施例 5 , 6 , 実施例 7〜 1 3及び比較例では酸洗い及びそ の後の水洗を行っていな'い。  In Examples 5 and 6, Examples 7 to 13 and Comparative Example, no pickling and subsequent water washing were performed.
なお、 実施例および比較例の概要をまとめて表 2及び表 3 に示した また、 実施河に表わす 0 R P (酸化還元電位) は全て A g C l 電極 電位である。 そ して、 A g C 1 電極電位を水素標準電極電位に置き替 える場合は、 約 2 l O mVプラスする。  The outlines of the examples and comparative examples are shown in Tables 2 and 3. In addition, 0 R P (oxidation-reduction potential) shown in the examples is all Ag Cl electrode potentials. When replacing the Ag C 1 electrode potential with the hydrogen standard electrode potential, add about 2 l O mV.
また、 各実施例によって得られた リ ン酸塩化成処理皮膜の S E M写 真である、 図 &、 図 9、 図 1 2、 図 1 5、 図 1 8、 図 2 0 、 図 2 2、 図 2 4、 図 2 6及び図 2 8 は、 1 0 0 0倍の拡大写真である。  Also, SEM photographs of the phosphatized chemical conversion coating films obtained in the respective examples are shown in Figs. &, 9, 9, 12, 15, 18, 18, 20 and 22, 24, FIG. 26 and FIG. 28 are magnifications of 1000 times.
(以下余白) (Hereinafter the margin)
表 2 Table 2
Figure imgf000027_0001
Figure imgf000027_0001
* - 1 無電解にて実施  *-1 Conducted without electrolysis
*- 2 図一 5での区分 表 3 *-2 Classification in Fig. 1-5 Table 3
Figure imgf000028_0001
Figure imgf000028_0001
*-2 図— 5での区分  * -2 Classification in Figure 5
*一 3 図一 2の(主)→主電解系, (副)副電解系とする (実施例 1 ) * 1 3 (Main) → Main electrolysis system, (Sub) sub electrolysis system (Example 1)
被処理剤と して鉄鋼材 ( S P C C ) を使用 した。 リ ン酸塩化成処理 は、 まず第 1 ステ ッ プと して無電解の化成処理を 2分行った。  A steel material (SPCC) was used as the treatment agent. In the phosphoric acid conversion treatment, first, an electroless chemical conversion treatment was performed for 2 minutes as the first step.
使用 した リ ン酸塩化成処理浴は、 Z n 2+を 3. 0 g / 1 , H 3 P 0 4 を 8 g / l , N 03 — を 3 2 g / l , N i 2+を 0. 8 g / l , F一 を 0. l g Z l のものである。 処理浴の P H , O R Pおよび温度は、 3. 2 0 , 4 0 0 - 5 0 0 mVおよび 3 0 °Cであ り 、 全酸度, 遊離酸度 および促進剤濃度は 1 6 p t , 0〜 0. 1 2 p t および 6 p t であ つ た。 また、 処理浴の透視度は 3 0 cm以上であ り 、 化成処理浴はス ラ ッ ジを含まないものであった。 -Phosphate salt chemical treatment bath used was the Z n 2+ 3. 0 g / 1 , H 3 P 0 4 to 8 g / l, N 0 3 - a 3 2 g / l, the N i 2+ 0.8 g / l, F-one is for 0.1 lg Zl. The pH, ORP and temperature of the treatment bath are 3.20, 400-500 mV and 30 ° C, and the total acidity, free acidity and accelerator concentration are 16 pt, 0-0. They were 1 2 pt and 6 pt. Further, the transparency of the treatment bath was 30 cm or more, and the chemical conversion treatment bath did not contain sludge.
ついで、 被処理材を陰極, 亜鉛板を陽極と して、 電解処理を行っ た 。 使用 した リ ン酸塩化成処理浴は、 Z n 2+を 3. 0 g / 1 , H 3 P 0 4 を 1 6 gノ し N 03 — を 1 7 g / l , 1^ ! 2+を 2.. 4 2 1 , F 一 を 0. l g / l . M n を 4 . O g Z l の ものである。 処理浴の P H . 0 R Pおよび温度は、 3. 2 0 , 4 0 0〜 5 0 011^ぉょび 2 8 であり、 全酸度, 遊離酸度および促進剤濃度は 1 6 p t 、 0〜 0 , 0 . 0 1 t および 6 p t であ った。 また処理浴の透視度は 3 0 cm以上 であった。 Next, electrolytic treatment was performed using the material to be treated as a cathode and the zinc plate as an anode. Li phosphate salt chemical treatment bath used was, Z n 2+ a 3. 0 g / 1, H 3 P 0 4 to 1 6 g raised to the power of N 0 3 -! The 1 7 g / l, 1 ^ 2+ Is 2 .. 4 2 1, F is 0.lg / l.Mn is 4.OgZl. The pH and RP of the treatment bath were 3.20, 400 to 5001 11 and 28, and the total acidity, free acidity and accelerator concentration were 16 pt, 0 to 0, 0.01 t and 6 pt. The transparency of the treatment bath was 30 cm or more.
霉解処理は、 電圧 0 . 5〜 1 . 5 V , 電流 0. Z AZ d m2 , 時間 4 0分の条件で行った。 電解方法 (電解処理システムおよび電流電圧 印加方法) は表 2 に示す。 以下の実施例も電解方法の内容は表 2及び 表 3 に示す。 霉解treatment was performed at a voltage 0.. 5 to 1. 5 V, the current 0. Z AZ dm 2, time 4 0 min conditions. Table 2 shows the electrolysis method (electrolysis treatment system and current voltage application method). The contents of the electrolysis method are also shown in Tables 2 and 3 in the following examples.
こ の処理によ り、 膜厚 2 T rn , J I S K 6 9 1 1 による絶縁破壊 電圧 2 5 0 V以上の リ ン酸塩化成皮膜が得られた。 なお、 膜厚はケ ッ ト科学 (製) 電磁式厚膜計 L Ε — 3 0 0 で測定 した値である。 以下、 鉄鋼材料の膜厚は全て実施例 1 と同 じ方法によ り測定している。 得ら れた リ ン酸塩化成皮膜の S Ε Μ写真および蛍光 X線分析線図を図 6 お よび図 7 に示す。 又、 X線回析図を図 8 に示す。 尚、 図 8 中、 〇印は 、 Z n 3 ( P 04 ) z · 4 H 2 0および Z n 3 ( P 04 ) の ピークを 示す。 By this treatment, a phosphoric acid conversion coating film with a film thickness of 2 T rn and a dielectric breakdown voltage of 250 V or more according to JIS K 6911 was obtained. The film thickness is a value measured with a KET SCIENCE (manufactured) electromagnetic thick film meter LΕ-300. Hereinafter, the thicknesses of the steel materials are all measured by the same method as in Example 1. Figs. 6 and 7 show S-ray micrographs and X-ray fluorescence analysis diagrams of the obtained phosphoric acid chloride conversion coating. Fig. 8 shows the X-ray diffraction diagram. In Fig. 8, the symbol 〇 Shows a peak of Z n 3 (P 04) z · 4 H 2 0 and Z n 3 (P 0 4) .
実施例 1で得られた皮膜はニッ ケル, マ ンガン, 亜鉛を含む厚膜の 耐電圧に優れた皮膜と言える。  It can be said that the film obtained in Example 1 is a thick film containing nickel, manganese, and zinc with excellent withstand voltage.
(実施例 2 ) (Example 2)
被処理材と してアル ミ ニウ ム板 (A l 1 0 0 ) を使用 し、 対極に鉄 鋼板を使用 した。 リ ン酸塩化成処理浴と して、 実施例 1 の電解処理で 使用 した処理浴と同じ Z n 2+を 3. 0 g / 1 , H 3 P 04 を 1 6 gZ 1 , 03 - ¾ 1 7 g / 1 , N i'2+を 2. 4 g / 1 , F を 0. 1 g Z l , M n を 4. 0 gノ 1 の リ ン酸塩化成^理浴を使用 した。 処理 浴の P H, O R Pおよび温度は、 3. 0 0〜 3. 4 0 , 5 6 0〜 5 7 0 mVおよび 2 5〜 3 0 °Cであ り、 全酸度, 遊離酸度および促進剤濃度 は 1 8 p t , 0. 1 p tおよび 6 p tであった。 さ ら-にまた、 処理浴 の透視度は 3 0 cm以上であり、 処理浴はスラ ッ ジを含まないもので.あ つた。 An aluminum plate (Al100) was used as the material to be treated, and a steel plate was used as the counter electrode. As a-phosphate salt chemical treatment bath, the same Z n 2+ processing bath used in the electrolytic process of Example 1 3. 0 g / 1, H 3 P 0 4 to 1 6 gZ 1, 03 - ¾ 1.7 g / l, 2.4 g / l for Ni'2 + , 0.1 g for F, 4.0 g for Zl and Mn2 ÷ did. The pH, ORP and temperature of the treatment bath were 3.00 to 3.40, 560 to 570 mV and 25 to 30 ° C, and the total acidity, free acidity and accelerator concentration were They were 18 pt, 0.1 pt and 6 pt. In addition, the treatment bath had a transparency of 30 cm or more, and the treatment bath was free of sludge.
電解処理は、 まず、 被処理材であるアル ミ ニウ ム板を陽極と し鉄鋼 板を陰極と して、 電圧 1〜 3 V, 電流 0. 3〜 0. 6 A / d m 2 , 0 . 5〜 1分間処理し、 続いて同じ処理浴を用い、 被処理材であるアル ミ ニゥム板を陰極, 鉄鋼板を陽極と して、 電圧 1 〜 3 V, 電流 0. 3 〜 0. 6 A Z d m 2 で 5分間処理した。 In the electrolytic treatment, first, an aluminum plate, which is a material to be treated, is used as an anode and a steel plate is used as a cathode, and a voltage of 1 to 3 V and a current of 0.3 to 0.6 A / dm 2 , 0.5 are used. For 1 minute, then using the same treatment bath, using the aluminum plate as the material to be treated as the cathode and the steel plate as the anode, voltage 1-3 V, current 0.3-0.6 AZ dm Treated with 2 for 5 minutes.
この処理により、 被膜重量 6. 1 2 g / d m 2 の リ ン酸塩皮膜をァ ルミ ニゥム板表面に形成した。 . By this treatment, a phosphate film having a coating weight of 6.12 g / dm 2 was formed on the surface of the aluminum plate. .
得られた リ ン酸塩化成皮膜の S E M写真および蛍光 X線分析図を図 9および図 1 0 に示す。 また、 被膜の X線回析図を図 1 1 に示す。 尚 、 図 1 1 中の〇印は、 図 8 と同様、 Z n 3 ( P 04 ) 2 · 4 H 2 0お よび Z n 3 ( P 04 ) のピークを示し、 また、 厶印は、 A 1 のピーク を示す。 Figures 9 and 10 show an SEM photograph and an X-ray fluorescence analysis of the resulting phosphoric acid chloride conversion coating. Figure 11 shows the X-ray diffraction diagram of the coating. Incidentally, .smallcircle in FIG. 1, similar to FIG. 8, a peak of Z n 3 (P 0 4) 2 · 4 H 2 0 Contact and Z n 3 (P 04), also厶印is The peak of A 1 is shown.
実施例 2で得られた被膜は、 マ ンガン, ニッケル, 亜鉛を含むリ ン 酸塩化成皮膜である と言える。 The coating obtained in Example 2 was a phosphor containing manganese, nickel and zinc. It can be said that this is an acid conversion coating.
(実施例 3 )  (Example 3)
被処理材と してステ ン レ ススチール板 ('S U S 3 0 4 ) を使用 し、 対極に鉄鋼板を使用 した。 リ ン酸塩化成処理浴と して、 実施例 2 と同 じ Z n 2+を 3 . 0 g / 1 , H 3 P 04 を 1 6 g / l , N 03 を 1 7 g / 1 , N i 2+を 2. 4 g / 1 . F を 0. l g Z l , M n 2+を 4. O g Z l のものを使用 した。 処理浴の P H , O R Pおよび温度は 3 . 0 0〜 3. 4 0, 5 6 0〜 5 7 0 mVおよび 2 5〜 3 0 °Cであ り、 全酸 度, ' 遊離酸度および促進剤濃度は .1 8 p t , 0. 1 p t および 6 p t であった。 また、 処理浴の透視度は 3 0 cm以上であ り 、 処理浴はスラ ッ ジを含まない ものであ っ た。 A stainless steel plate ('SUS304) was used as the material to be treated, and a steel plate was used as the counter electrode. As a-phosphate salt chemical conversion treatment bath, Examples 2 and 3 the same Z n 2+. 0 g / 1 , H 3 P 0 4 to 1 6 g / l, N 0 3 to 1 7 g / 1 the n i 2+ 2. 4 g / 1 . F to 0. lg Z l, was used a M n 2+ of 4. O g Z l. The pH, ORP and temperature of the treatment bath are 3.00 to 3.40, 560 to 570 mV and 25 to 30 ° C, and the total acidity, free acidity and accelerator concentration Were .18 pt, 0.1 pt and 6 pt. Further, the transparency of the treatment bath was 30 cm or more, and the treatment bath did not contain sludge.
電解処理は、 まず、 被処理材であるステ ン レス鋼を陽極と し鉄鋼板 を陰.極と して、 電圧 1 〜 3 V, 電流 0. 3〜 0. 6 AZ d m2 , 時間 1 分間で処理し、 続いて同 じ処理浴を用い、 被処理材であるステ ン レ ススチール板を陰極と して、 電圧 1 ~ 3 V, 電流 0. 3 ~ 0. 6 A/ d m2 で 1 0分間処理した。 Electrolytic process, first, and stearyl down-less steel and an anode of the steel plate and shadow. Poles to be processed material, voltage 1 ~ 3 V, the current 0. 3~ 0. 6 AZ dm 2, time 1 minute Then, using the same treatment bath, using a stainless steel plate as the material to be treated as a cathode, a voltage of 1 to 3 V and a current of 0.3 to 0.6 A / dm 2 Treated for 0 minutes.
こ の処理によ り 、 ステ ン レススチール板表面に被膜重量 1 3. 2 7 / d m 2 の リ ン酸塩化成皮膜が得られた。 By this treatment, a phosphoric acid conversion coating film having a coating weight of 13.27 / dm 2 was obtained on the surface of the stainless steel plate.
得られた リ ン酸塩化成被膜の S E M写真および蛍光 X線分析線図を 図 1 2 および図 1 3 に示す。 また、 皮膜の X線回析図を図 1 4 に示す 。 尚、 図 1 4 中の〇印は、 図 8 と同様、 Z n 3 ( P 04 ) 2 · 4 H 2 0および Z n 3 ( P 04 ) の ピーク を示す。 . Figures 12 and 13 show SEM photographs and X-ray fluorescence analysis diagrams of the obtained phosphoric acid conversion coating. Fig. 14 shows the X-ray diffraction diagram of the film. Incidentally, .smallcircle in FIG. 4, similar to FIG. 8 shows a peak of Z n 3 (P 04) 2 · 4 H 2 0 and Z n 3 (P 0 4) . .
実施例 3で得られた皮膜は亜鉛を含む リ ン酸塩化成皮膜である。 (実施例 4 )  The film obtained in Example 3 was a zinc phosphate conversion film containing zinc. (Example 4)
被処理材と して無酸素銅 ( C 1 0 2 0 ) の銅板を使用 し、 対極に鉄 鋼板を使用 した。 リ ン酸塩化成処理浴と して、 実施例 2 と同 じ Z n 2+ を 3. 0 g / 1 , H 3 P 04 を 1 6 g Z l , N 03 を 1 7 g Z l , N i 2+を 2. 4 g / 1 , F を 0. l g Z l , M n 2+を 4 . 0 g / 1 のものを使用した。 処理浴の P H, O R Pおよび温度は 3. 0 0〜 3 - 4 0 , 5 6 0 - 5 7 0 mVおよび 2 5〜 3 0 °Cであ り、 全酸度, 遊離 酸度および促進剤濃度は 1 8 p t, 0. 1 p tおよび 6 p tであった 。 また、 処理浴の透視度は 3 0 cm以上であり、 処理浴はスラ ッ ジを含 ないものであった。 Oxygen-free copper (C1020) copper plate was used as the material to be treated, and iron steel plate was used as the counter electrode. As a-phosphate salt chemical treatment bath, the same Z n 2+ as in Example 2 3. 0 g / 1, H 3 P 0 4 to 1 6 g Z l, N 0 3 to 1 7 g Z l , N i 2+ 2.4 g / 1, F 0 .lg Z l, M n 2+ 4.0 g / 1 Was used. The pH, ORP, and temperature of the treatment bath were 3.00 to 3-40, 560-570 mV and 25 to 30 ° C, and the total acidity, free acidity, and accelerator concentration were 1 They were 8 pt, 0.1 pt and 6 pt. The treatment bath had a transparency of 30 cm or more, and the treatment bath did not contain sludge.
電解処理は、 まず、 被処理林である銅板を陽極と し、 電圧 1〜 3 V , 電流 0. 3〜 0. 6 A/ d m 2 , 時間 3 0秒間で処理し、 続いて同 じ処理浴を用い、 被処理材である銅板を陰極と して、 電圧 1〜 3 V, «流 0. 3 ~ 0. 6 Aノ d m 2 で 1 0分間処理した。 Electrolytic process, first, a copper plate to be processed forest as an anode and the voltage. 1 to 3 V, the current 0. 3~ 0. 6 A / dm 2 , was treated at time 3 0 seconds, followed by the same treatment bath The substrate was treated for 10 minutes at a voltage of 1 to 3 V and a high current of 0.3 to 0.6 A dm 2 using a copper plate as a material to be treated as a cathode.
この処理により、 銅板上に皮膜重量 6. 6 7 gZm2 の リ ン酸塩化 成皮膜が得られた。 By this treatment, a phosphoric acid conversion coating film with a coating weight of 6.67 gZm 2 was obtained on the copper plate.
得られた リ ン酸塩化成被膜の S E M写真および蛍光 X線分析線図を 図 1 5および図 1 6 に示す。 また、 被膜の X線回折図を図 1 7 に示す 。 尚、 図- 1 7中の O印は、 図 8 と同.様、 Z n 3 ( P 04 ) 2 · 4 H 2 0および Z n 3 ( P 04 ) のピークを示す。 Figures 15 and 16 show SEM photographs and X-ray fluorescence analysis diagrams of the obtained phosphoric acid conversion coating. Fig. 17 shows the X-ray diffraction diagram of the coating. Incidentally, FIG - O mark in 1 7 shows a peak in the same manner as FIG. 8, Z n 3 (P 04 ) 2 · 4 H 2 0 and Z n 3 (P 0 4) ..
実施例 4で得られた皮膜はマ ンガン, 亜鉛を含むリ ン酸塩化成皮膜 と言元る。  The coating obtained in Example 4 is called a phosphoric acid conversion coating containing manganese and zinc.
(実施例 5 )  (Example 5)
被処理材と して鉄鋼扳 ( S P C C ) を使用 し、 対極に鉄鋼板を使用 した。 リ ン酸塩化成処理浴と して、 Z n 2+を 4. 0 g / 1 , H 3 P 0 4 を 1 2 g/ l , N 03 を 4 0 g / し N i 2+を 6 g / l , F を 0. 2 g / 1 , Μ η 2+を 5 g / l のものを使用した。 処理浴の P H, 0 R Pおよび温度は 2. 7 0 , 3 0 0〜 4 0 0 m Vおよび 2 2 °Cであ り、 全酸度および促進剤濃度は 1 5. 8 p t , し— 6 p tであった。 また、 処理浴の透視度は 3 0 cm以上であり、 処理浴はスラ ッ ジを含ま ないものであった。 Steel plate (SPCC) was used as the material to be treated, and steel plate was used as the counter electrode. As a-phosphate salt chemical conversion treatment bath, Z n 2+ to 4. 0 g / 1, H 3 P 0 4 to 1 2 g / l, the N 0 3 4 0 g / a N i 2+ 6 g / l and F were 0.2 g / l and Μη 2+ were 5 g / l. PH, 0 RP and temperature of the treatment bath are 2.70, 300 to 400 mV and 22 ° C, total acidity and accelerator concentration are 15.8 pt, and 6 pt Met. The transparency of the treatment bath was 30 cm or more, and the treatment bath contained no sludge.
電解処理は、 まず、 被処理材である鉄鋼板を陽極と し、 電圧 2. 5 ~ 3. 5 V, 電流 0. O AZ d m2 で 3 0秒通電しその後 1 0秒通電を切った状態を保持する と い う処理を 1 2 回繰り返 し、'全体 で約 8分間処理した。 その後、 被処理材の陰極処理は行わなかっ た。 この処理によ り、 膜厚 2〜 3 mの緻密な リ ン酸塩化成被膜が得ら れた。 得られた リ ン酸塩化成被膜の S E M写真および X線回析チ ヤ一 ト を図 1 8 および図 1 9 に示す。 In the electrolytic treatment, first, a steel sheet, which is the material to be treated, was used as the anode, and a voltage of 2.5 to 3.5 V, a current of 0. The process of maintaining the state where the power was turned off for 0 seconds was repeated once or twice, and the entire process was performed for about 8 minutes. Thereafter, the cathode treatment of the material to be treated was not performed. By this treatment, a dense phosphoric acid conversion coating film with a thickness of 2 to 3 m was obtained. Figures 18 and 19 show SEM photographs and X-ray diffraction charts of the obtained phosphoric acid conversion coating.
実施例 5で得られた被膜は緻密な リ ン酸塩皮膜である。  The coating obtained in Example 5 is a dense phosphate coating.
(実施例 6 )  (Example 6)
被処理材と して鉄鋼板 ( S P C C ) を使用 し、 対極に も同 じ鉄鋼板 を使用 した。 リ ン酸塩化成処理浴と して、 実施例 5 と同 じ Z n 2+を 4 . 0 g / 1 , H 3 P 04 を 1 2 g Z l , N 03 を 4 0 g Z l , i 2+を 6 g Z l, F を 0. 2 g Z し ¾^ 11 2+を 5 ノ 1 の ものを使用 した。 処理浴の P H, O R Pおよび温度は 2. 7 0, 3 0 0〜 4 0 0 mおよび 2 3 °Cであ り、 全酸度, 促進剤濃度は 1 6 p t , 1 . 6 p t であった。 また、 処理浴の透視度は 3 0 cm以上であ り、 処理浴はスラ ッ ジを含まないものであった。 The steel plate (SPCC) was used as the material to be treated, and the same steel plate was used for the counter electrode. As a-phosphate salt chemical conversion treatment bath 4 the same Z n 2+ as in Example 5. 0 g / 1, H 3 P 0 4 to 1 2 g Z l, N 0 3 a 4 0 g Z l , i 2 + was 6 g Zl, F was 0.2 g Z, and ¾ ^ 11 2+ was 5 no 1. The pH, ORP and temperature of the treatment bath were 2.70, 300 to 400 m and 23 ° C, and the total acidity and accelerator concentration were 16 pt and 1.6 pt. Also, the transparency of the treatment bath was 30 cm or more, and the treatment bath did not contain sludge.
電解処理は、 まず、 被処理材である鉄鋼板を陽極と し、 電圧 1 . 5 〜 2. 5 V , 電流 0. 5 A/ d m 2 で 3 0秒通電しその後 1 0秒通電 を切った状態を保持する と いう処理を 1 2回繰り返し、 全体で約 8分 間処理した。 続いて同じ処理浴を用い、 被処理材である鉄鋼板を陰極 と して、 電圧 1 . 5〜 2. 5 V , 電流 0. 5 AZ d m 2 で 3 0秒通電 しその後 1 0秒通電を切った状態で処理を 1 2.回繰り返し、 全体で約 8分間処理した。 In the electrolytic treatment, first, a steel sheet, which is the material to be treated, was used as the anode, and a voltage of 1.5 to 2.5 V, a current of 0.5 A / dm2 was applied for 30 seconds, and then the current was turned off for 10 seconds. The process of maintaining the state was repeated once or twice, and the entire process was performed for about 8 minutes. Then, using the same treatment bath, with the steel sheet to be treated as the cathode, a voltage of 1.5 to 2.5 V and a current of 0.5 AZ dm2 were applied for 30 seconds, and thereafter, the current was applied for 10 seconds. The treatment was repeated 12.times. With the cut off, and the treatment was performed for about 8 minutes in total.
この処理によ り、 膜厚 7 m , J I S K 6 9 1 1 による絶縁破壊電 圧 2 5 0 V以上の リ ン酸塩化成皮膜が得られた。  By this treatment, a phosphoric acid conversion coating film with a thickness of 7 m and a dielectric breakdown voltage of 250 V or more with JIS K 6911 was obtained.
得られた リ ン酸塩化成被膜の S Ε Μ写真および X線回折チ ヤ一 トを 図 2 0および図 2 1 に示す。  S-ray micrographs and X-ray diffraction charts of the obtained phosphoric acid conversion coating are shown in FIGS. 20 and 21.
実施例 6で得られた皮膜は、 絶縁性を有する リ ン酸塩化成被膜であ る。 The coating obtained in Example 6 was a phosphate conversion coating having insulating properties. You.
(比較例)  (Comparative example)
電解処理を実施しなかった例を比較例と して示す。  An example in which no electrolytic treatment was performed is shown as a comparative example.
被処理材と して鉄鋼板 ( S P C C ) を使用 した。 リ ン酸塩化成処理 と して、 Z n 2+を 3 . 2 g Z l , H 3 P C を 8 g / l , N 0 3 一 を 3 2 g Z l, ^ 1 2+を 0 . 8 g / 1 , F— を 0 . 2 g Z l の ものを 使用 した。 処理浴の P H , 0 R Pおよび温度は 3 . 2 0 , 5 1 0〜 5 4 0 in Vおよび 2 8 °Cであり、 全酸度, 遊離酸度および促進剤濃度は 1 6 p t , 0 ~ 0 . l p t および 6 p tであった。 また、 処理浴の透 視度は 3 0 cm以上であ り、 処理浴はスラ ッ ジを含まないものであった 被処理材をこの処理浴に 8 分浸漬して処理した。 A steel sheet (SPCC) was used as the material to be treated. As a-phosphate salt chemical conversion treatment, 3 Z n 2+. 2 g Z l , H 3 PC to 8 g / l, N 0 3 scratch 3 2 g Z l, ^ 1 2+ a 0.8 g / 1, F— of 0.2 g Zl was used. PH, 0 RP and temperature of the treatment bath were 3.20, 510 to 54 in V and 28 ° C, and total acidity, free acidity and accelerator concentration were 16 pt, 0 to 0. lpt and 6 pt. The treatment bath had a transparency of 30 cm or more. The treatment bath contained no sludge. The material to be treated was immersed in this treatment bath for 8 minutes.
この処理により、 膜厚 1 m, J I S K 6 9 1 1 による絶縁破壌電 圧 5.0 Vの リ ン酸塩化成被膜が得られた。  As a result of this treatment, a phosphoric acid conversion coating with a dielectric breakdown voltage of 5.0 V with a thickness of 1 m and a JIS K 6911 was obtained.
得られた リ ン酸塩化成皮膜の S E M写真を図 2 2 に示す。  Figure 22 shows an SEM photograph of the resulting phosphoric acid chloride conversion coating.
比較例で得られたリ ン酸塩化成被膜は無電解法で一般的に得られる ものであり、 浸漬時間を長く しても皮膜の膜厚増加及び耐電圧の向上 は期待できないものと言える。  The phosphoric acid conversion coating obtained in the comparative example is generally obtained by an electroless method, and it can be said that even if the immersion time is lengthened, an increase in the film thickness and an improvement in the withstand voltage cannot be expected.
(実施例 7 )  (Example 7)
被処理材と して、 図 2 3 に示す如く 、 自動車エアコ ンディ シ ョナー のコ ンプレッサーク ラ ッチに用いる鉄鋼部品を使用 し、 対極にも同じ 鉄鋼板を使用 した。 - この鉄鋼部品は、 直径 9 6 mm、 厚さ 2 7 mmの略中空形状をなす リ ン酸塩化成処理浴と して、 Z n 2+を 4 . 2 g / \ , H a P 0 4 を 8 g l , N 03 — を 2 4 . 1 g / 1 , N i 2+を 2 . 6 g / 1 , F - を 0 . l gノ 1 のものを使用した。 処理浴の P H , O R Pおよび温度 は 2 . 9 3 , 5 8 0〜 5 9 0 mVおよび 2 7 °Cであり、 全酸度, 促進剤 濃度は 2 0 p t , 6 . 0 p t であった。 また処理浴の透視度は 3 0 cm 以上であ り、 ス ラ ッ ジを含有しなかった。 As shown in Fig. 23, the steel material used for the compressor clutch of the car air conditioner was used as the material to be treated, and the same steel plate was used for the counter electrode. -. The steel parts, as a-phosphate salt chemical conversion treatment bath in a substantially hollow shape having a diameter of 9 6 mm, thickness 2 7 mm, 4 to Z n 2+ 2 g / \, H a P 0 4 8 gl, N 0 3 — was 24.1 g / l, Ni 2+ was 2.6 g / l, and F− was 0.1 g. The pH, ORP and temperature of the treatment bath are 2.93, 580-590 mV and 27 ° C, total acidity, accelerator The concentrations were 20 pt and 6.0 pt. The transparency of the treatment bath was 30 cm or more, and it did not contain sludge.
電解処理は図 3 の方法で、 被処理部品を陽極と し、 鉄板を陰極と し て主電解系に電圧 0 . 3 V〜 1 . 0 V , 電流 0 . 0 1 A ~ 0 . 1 4 A ノ処理材で図 5 ( a ) の方法で 2 分行っ た。  Electrolytic treatment is performed using the method shown in Fig. 3, with the part to be treated as the anode and the iron plate as the cathode, with a voltage of 0.3 V to 1.0 V and a current of 0.01 A to 0.14 A in the main electrolytic system. This was performed for 2 minutes using the treated material as shown in Fig. 5 (a).
副電解系 B は処理浴の 0 R Pが約 5 6 0 mVに低下した時、 図 5 ( c ) の方法にて電流走査電解を行い、 処理浴中に溶解した F e 2+を浴中 から除去し、 O R Pを高めるために行っ た。 こ の後、 カオチ ン電着塗 装 (日本ペイ ン ト製, ノ、。ワー ト ッ プ U 5 6 ) を行い、 1 9 0 °Cにて約 2 5 分焼付を行った。 塗装した被処理材は 2 4 H r以上放置 した後、 平面部 2 0 と外周部 2 1 にカ ッ ターナイ フ にて素地に達するまでの傷 を入れた後、 5 5 °Cの 5 %食塩水に 2 4 0 H r 浸漬する塩水浸漬試験 を行った。 2 4 O H r経過 した被処理材を水で洗浄し、 約 2 H r 空中 に放置 した後、 粘着テープをカ ッ ターナ イ フで傷つけた塗膜面に貼り 、 強く 剥がした。 テープにて剝離した塗膜の巾を測定 したと こ ろ、 平 面部 2 0 および外周面 2 1 と も 5 mm以下であ った。 When the 0 RP of the processing bath drops to about 560 mV, the secondary electrolytic system B performs current scanning electrolysis according to the method shown in Fig. 5 (c), and removes Fe 2+ dissolved in the processing bath from the bath. Removed and performed to increase ORP. After this, Kao-tin electrodeposition coating (Nippon Paint Co., Ltd., Wartop U56) was performed, and baking was performed at 190 ° C for about 25 minutes. After leaving the coated material for 24 Hr or more, scratch the flat surface 20 and the outer peripheral portion 21 with a cutter knife until the base material is reached, and then add 5% sodium chloride at 55 ° C. A saltwater immersion test was performed by immersion in water for 240 Hr. The treated material that had passed 24 OH r was washed with water and left in the air for about 2 H r, and then an adhesive tape was applied to the coating surface damaged with a cutter knife and strongly peeled off. When the width of the coating film separated by the tape was measured, it was found that both the flat surface portion 20 and the outer peripheral surface 21 were 5 mm or less.
無電解処理で同様な浴 (但し、 0 R P値は 5 6 0 mV以下となる) を 用い、 2 分間浸漬し化成処理及び同 じ塗装を行った ものについて、 同 じ塗膜の評価試験を行ったと ころ平面部 2 0 は 5 mm以下であ 'るか、 外 周面 2 1 は 8 〜 1 2 mm程度の塗膜の剥離を生じた。  Using the same bath (however, 0 RP value is less than 560 mV) in electroless treatment, immersion for 2 minutes, chemical conversion treatment and the same coating were performed, and the same coating film evaluation test was performed. At this time, the flat portion 20 was 5 mm or less, or the outer peripheral surface 21 was peeled off by about 8 to 12 mm.
上記の評価から、 本発明の方法は、 外周部 2 1 において、 塗装後の 耐食性良好である と言える。 外周面 2 1 は本部品をプ レ ス加工にて形 成する時、 その変形が大き い部分であ り 、 従来の無電解の方法では、 化成処理が困難と されている。 そのため、 無電解化成処理では塗装耐 食性が劣るのであるが、 実施例 7 では陽極電解を行う こ と で、 従来素 材の溶解が困難と されていた部分について も、 素材の溶解を行い化成 処理を可能と し、 塗装耐食性を向上させた。  From the above evaluation, it can be said that the method of the present invention has good corrosion resistance after coating in the outer peripheral portion 21. The outer peripheral surface 21 is a portion that is greatly deformed when this part is formed by press working, and it is considered that the chemical conversion treatment is difficult with the conventional electroless method. Therefore, the corrosion resistance of the coating is poor in the electroless chemical conversion treatment.However, in Example 7, the anodic electrolysis is performed to dissolve the material even in a portion where it was conventionally difficult to dissolve the material, and the chemical conversion treatment is performed. And improved coating corrosion resistance.
また同 じ処理浴, 同 じ電解処理システムにて同 じ部品を用い電解化 成処理方法のみ図 5 ( c ) の方法に変更し、 電 :流 O A→ 0. 0 1 Aを 3 0秒で立上げ、 その電流を 3 0秒間保持した後、 6 0秒かけて 0. 0 1 A→ 0 Aとする方法で 2分間電解処理を した。 その後塗装し、 上 記と同様な塩水浸漬試験を行つた。 その結果、 平面部 2 0、 外周面 2 1両面と も、 テープ剥離巾は 5 mm以下であり、 塗装耐食性は無電解の ものより良好であった。 Electrolysis using the same parts in the same treatment bath and the same electrolytic treatment system Only the processing method was changed to the method shown in Fig. 5 (c), and the current : OA → 0.01 A was started in 30 seconds, and the current was held for 30 seconds. Electrolysis was performed for 2 minutes in a manner of changing from 0 A to 0 A. Thereafter, it was painted and subjected to the same salt water immersion test as described above. As a result, the tape peeling width was 5 mm or less for both the flat portion 20 and the outer peripheral surface 21, and the coating corrosion resistance was better than that of the non-electrolytic one.
上記実施例 7 においては、 副電解系を用いる こ とによって、 素材の 溶解を行ったが、 陽極処理条件 (電流、 電圧組成等) によって、 不要 となる場合もある。 .  In Example 7 described above, the material was dissolved by using the sub-electrolysis system, but it may not be necessary depending on the anodic treatment conditions (current, voltage composition, etc.). .
(実施例 8 ) .  (Example 8).
被処理材と して鉄鋼板 ( S P C C ) を使用 し、 対極に陽極処理では 鉄を、 陰極処理では副電解系で鉄を主電解系で亜鉛を用いた。  A steel sheet (SPCC) was used as the material to be treated. Iron was used for the anodizing on the counter electrode, iron was used for the secondary electrolytic system for the cathodic treatment, and zinc was used for the main electrolytic system.
リ ン酸塩化成処理浴と して Z n 2+を 了 . 6 gZ し H a P 04.を 2 8. 3 g X 1 , N 03 を 2 7. 1 / 1 , N i 2+を 1. 4 4 g / l , F を 0. 1 g Z 1 のものを用いた。 処理浴の P H , O R Ρ , 温度 はそれぞれ 3. 0 3, 5 7 3 mV, 2 7 °Cであ り、 全酸度, 遊離酸度及 び促進剤濃度はそれぞれ 3 8. 4 p t , 1 . 6 p tおよび 5. O p t であった。 また、 処理浴の透視度は 3 0 cm以上であり、 処理浴はスラ ッ ジを含まないものであった。 As a-phosphate salt chemical conversion treatment bath Z n 2+ to completion. 6 gZ and H a P 0 4. The 2 8. 3 g X 1, N 0 3 a 2 7. 1/1, N i 2+ 1.44 g / l and F 0.1 g Z 1 were used. The pH, OR temperature, and temperature of the treatment bath were 3.03, 573 mV and 27 ° C, respectively, and the total acidity, free acidity, and accelerator concentration were 38.4 pt and 1.6, respectively. pt and 5. Opt. The transparency of the treatment bath was 30 cm or more, and the treatment bath did not contain sludge.
電解処理は、 最初に被処理材を陽極と し、 図 1 の如 く 、 鉄を陰極と し、 図 5 ( a ) の定電流電解を電流 0. 0 5 A/ d m2 (電圧 0. 1 3 V ) となるよう 1分間行う。 続いて同 じ処理.浴を用い、 被処理材を 陰極と して、 亜鉛を陽極とする主電解系を形成する。 Electrolytic process, first the workpiece as the anode, of如rather 1, iron as a cathode, Figure 5 current constant current electrolysis of (a) 0. 0 5 A / dm 2 ( voltage 0.1 3 min) for 1 minute. Subsequently, a main electrolytic system is formed using the same bath, using the material to be treated as a cathode and zinc as an anode.
また、 被処理物と鉄電極の間を配線するが、 その配線は鉄電極から 被処理物への方向へのみ電流が流れるよう配線する。 その被処理物と 鉄との経路は副電解系とする。  In addition, wiring is performed between the workpiece and the iron electrode, and the wiring is made so that current flows only in the direction from the iron electrode to the workpiece. The route between the material to be treated and iron is a secondary electrolytic system.
図 2の主電解系 Aの陰極処理は、 電流走査電解で行い、 主電解系 A の電極間に 0 A Z d m 2 → 1. 5 A / ά m 2 とするのに 5分間かけて 序々 に印加 してゆ く こ とを行った。 その時の最大印加電圧は 4. 5 V であった。 そ して、 その同 じ操作を 6 サイ ク ル繰り返し、 合計 3 0 分 の陰極処理を行った。 Cathode process in the main electrolysis system A in FIG. 2 performs a current scanning electrolysis, over 5 minutes to a 0 AZ dm 2 → 1. 5 A / ά m 2 between the electrodes of the main electrolysis system A The application was performed gradually. The maximum applied voltage at that time was 4.5 V. Then, the same operation was repeated for six cycles, and the cathode treatment was performed for a total of 30 minutes.
こ の処理によ り、 鉄鋼板表面に 1 5〜 3 0 mの膜厚の リ ン酸塩化 成皮膜を形成 した。 (膜厚はケ ッ ト科学㈱製, 電磁式膜厚計 L E — 3 0 0 で測定した値である。 ) こ の皮膜の耐絶縁性を東亜電波㈱製超絶 縁計 S M— 8 2 1 0 で計測 した。 なお、 計測は超絶縁計の棒状のプロ ーブ (正極, 負極) を軽 く 表面に接触し行った。 その結果、 鋼板の平 面部, エツ ヂ部と も直流 5 0 0 V以上の耐絶縁性'を有した。  By this treatment, a 15- to 30-m-thick phosphoric acid conversion coating was formed on the steel sheet surface. (The film thickness is the value measured with an electromagnetic film thickness meter LE-300 manufactured by Ket Kagaku Corporation.) The insulation resistance of this film was measured by a super-insulation meter SM-8210 manufactured by Toa Denpa Co., Ltd. Measured at The measurement was performed by lightly contacting the rod-shaped probe (positive electrode, negative electrode) of the super insulation meter with the surface. As a result, both the flat surface and the edge of the steel sheet had an insulation resistance of 500 V DC or more.
得られた リ ン酸塩化成皮膜の S E M写真及び X線回折チ ヤ一 トを図 2 4 及び図 2 5 に示す。 尚、 図 2 5 の〇印は、 図 8 と同様、 Z n 3 ( P 04 ) 2 · 4 H 2 0および Z n 3 ( P 04 ) の ピークを示す。 Figs. 24 and 25 show SEM photographs and X-ray diffraction charts of the obtained phosphoric acid chloride conversion coating. Incidentally, .smallcircle in FIG. 5, similar to FIG. 8 shows a peak of Z n 3 (P 04) 2 · 4 H 2 0 and Z n 3 (P 04).
(実施例 9 )  (Example 9)
被処理材と して鉄鋼板 ( S P C C ) を使用 し、 対極に陽極処理では 鉄を、 陰極処理では主電解系 Aでは亜鉛を、 副電解系 Bでは鉄とニ ッ ゲルを用いた。  A steel plate (SPCC) was used as the material to be treated. Iron was used for the anodizing process on the counter electrode, zinc was used for the main electrolytic system A for the cathodic treatment, and iron and nigel were used for the sub electrolytic system B.
リ ン酸塩化成処理浴と して Z n 2+を 7 . 0 g / し H a P 04 を 4 5 . 0 g / 1 , N 03 - を 2 6 . 0 g / 1 , N i 2+を 1 . 4 g し F を 0 . l g Z l のものを用いた。 処理浴の P H , O R P , 温度は それぞれ 3 . 0 2, 5 6 5 mV, 2 4 . 5 °Cであ り、 全酸度, 遊離酸度 及び促進剤濃度はそれぞれ 5 1 . 8 p t , 2 . 4 p t および 5 . 6 p t であった。 また、 処理浴の透視度は 3 0 cm以上であ り、 処理浴はス ラ ッ ジを含まないものであ った。 . 7 Z n 2+ as a-phosphate salt chemical conversion treatment bath 0 g / and H a P 04 of 4 5 0 g / 1, N 0 3 -.. A 2 6 0 g / 1, N i 2 + Was used in 1.4 g and F was used in 0.1 g Zl. The pH, ORP and temperature of the treatment bath were 3.02, 565 mV and 24.5 ° C, respectively, and the total acidity, free acidity and accelerator concentration were 51.8 pt and 2.4, respectively. pt and 5.6 pt. Also, the transparency of the treatment bath was 30 cm or more, and the treatment bath did not contain sludge.
電解処理は、 最初に図 1 の装置において、 被処理材を陽極と し、 鉄 を陰極と し、 図 5 ( a ) の定電流電解を電流 0 . 0 5 Aノ d m 2 (電 圧 0 . 3 V ) となるよ う 1 分間行う。 Electrolysis treatment, the first device of Figure 1, the workpiece as the anode, iron as a cathode, the current constant current electrolysis in Fig. 5 (a) 0. 0 5 A Roh dm 2 (voltage 0. 3 min) for 1 minute.
続いて同 じ処理浴を用い、 図 2 の装置を用いる。 即ち、 被処理材 7 を陰極と して、 亜鉛を陽極とする主電解系 Aを形成する。 また、 彼処 理物 7 と鉄及び二ッ ケルである電極 1 0、 1 1 の間を配線するが、'そ の配線は鉄及びニッケル電極から被処理物の方向へのみ電流が流れる よう に配線する。 その被処理物 7 と電極 1 0、 1 1 との経路は副電解 系 B とする。 Subsequently, the same treatment bath is used, and the apparatus shown in Fig. 2 is used. That is, the main electrolytic system A is formed using the material to be treated 7 as a cathode and zinc as an anode. Also The wiring is made between the physical material 7 and the electrodes 10 and 11, which are iron and nickel. The wiring is made so that current flows only from the iron and nickel electrodes to the object to be processed. The path between the object 7 and the electrodes 10 and 11 is the auxiliary electrolytic system B.
そ して、 主電解系 Aの陰極処理は、 電流走査電解で行い、 主電解系 Aの電極間に 0 A Z d m 2 — 2. 0 A / d m 2 とするのに 5分間かけ て序々 に印加してい く こ とを行った。 その時の最大印加電圧は 4. 9 Vであった。 そして、 その同じ操作を 6サイクル行い、 合計 3 0分の 陰極処理を行った。 ― Its to the cathode process in the main electrolysis system A is carried out at a current scanning electrolysis, primarily between electrodes in the electrolytic system A 0 AZ dm 2 - applying s ordinal over 5 minutes to a 2. 0 A / dm 2 I went to work. The maximum applied voltage at that time was 4.9 V. Then, the same operation was performed for 6 cycles, and a total of 30 minutes of cathode treatment was performed. ―
こ の処理により、 鉄鋼板表面に 1 5〜 3 0 mの膜厚の リ ン酸塩化 成皮膜を形成した。 (膜厚はチッ ト科学㈱製, 電磁式膜厚計 L E— 3 0 0で測定した値である。 ) この皮膜の耐絶縁性を東亜電波㈱製超絶 縁計 S M— 8 2 1 0で計測した。  By this treatment, a 15- to 30-m-thick phosphoric acid conversion coating was formed on the steel sheet surface. (The film thickness is a value measured by an electromagnetic film thickness meter LE-300 manufactured by Chit Kagaku Corporation.) The insulation resistance of this film was measured by a super-insulation meter SM-8210 manufactured by Toa Denpa Co., Ltd. did.
なお、 計測は超絶縁計のプローブ (正極, 負極) を軽く 表面に接触 し行った。  The measurement was performed by lightly touching the probe (positive electrode, negative electrode) of the super insulation meter to the surface.
その結果、 鋼板の平面部, エツヂ部と も直流 5 0 0 V以上の耐絶縁 性を有した。  As a result, both the flat part and the edge part of the steel sheet had an insulation resistance of 500 V DC or more.
得られた リ ン酸塩化成皮膜の S E M写真及び X線回析チヤ一 トを図 2 6及び図 2 7 に示す。 尚、 図 2 7中の〇印は、 図 8 と同様、 Z n 3 ( P 04 ) 2 · 4 H 2 0および Z n 3 ( P 04 ) のピークを示す。 (実施例 1 0 ) SEM photographs and X-ray diffraction charts of the obtained phosphoric acid chloride conversion coating are shown in Figs. 26 and 27. Incidentally, .smallcircle in FIG. 7, similarly to FIG. 8 shows a peak of Z n 3 (P 0 4) 2 · 4 H 2 0 and Z n 3 (P 04). (Example 10)
被処理材と して鉄鋼板 ( S P C C ) を使用 し、 .対極に陽極処理では 鉄を、 陰極処理では亜鉛用いた。  A steel plate (SPCC) was used as the material to be treated. Iron was used for the anodizing process on the counter electrode, and zinc was used for the cathodic process.
そ して、 鉄の電極板は電源から锆線を外し、 浴中に浸漬した状態で 設置した。 リ ン酸塩化成処理浴と して, Z n 2+を 7. 0 g / 1 , H 3 P 04 を 4 5. 0 g / 1 , N 03 を 2 6. 0 g Z 1, N i 2+を 1. 4 g / 1 , F— を 0. l g Z l の-ものを用いた。 処理浴の P H, O R P , 温度はそれぞれ 3. 0 2 , 5 6 9 mV, 2 了 . 5 °Cであ り 、 全酸度 , 遊離酸度及び促進剤濃度はそれぞれ 5 1 . 8 p t , 2 . 4 p t およ び 5 . 6 p t であった。 また、 処理浴の透視度は 3 0 c m以上であ り、 処理浴はスラ ッ ジを含まない ものであっ た。 Then, the iron electrode plate was removed from the power supply and the wire was immersed in the bath. As a-phosphate salt chemical conversion treatment bath, Z n 2+ to 7. 0 g / 1, H 3 P 0 4 to 4 5. 0 g / 1, N 0 3 a 2 6. 0 g Z 1, N 1.4 g / 1 for i 2+ and 0. lg Z l for F— were used. The pH, ORP and temperature of the treatment bath were 3.02, 569 mV and 2 ° C, respectively, and the total acidity was , Free acidity and accelerator concentration were 51.8 pt, 2.4 pt and 5.6 pt, respectively. Also, the transparency of the treatment bath was 30 cm or more, and the treatment bath did not contain sludge.
電解処理は、 最初に、 図 1 示す装置の如 く 、 被処理材を陽極と し、 鉄を陰極と し、 図 5 ( a ) の定電流電解を電流 0 . 0 5 Aノ d m 2 ( 電圧 0 . 8 V ) となるよ う 1 分間行う。 In the electrolytic treatment, first, as in the apparatus shown in Fig. 1, the material to be treated is used as the anode, iron is used as the cathode, and the constant current electrolysis shown in Fig. 5 (a) is performed with a current of 0.05 A A dm 2 (voltage 0.5 min) for 1 minute.
続いて同 じ処理浴を用い、 被処理材 7 を陰極と して、 亜鉛を陽極と する電解系を形成する。 その時、 鉄鋼板をよ く つ中に浸漬した。 鉄鋼 板が処理浴中に浸瀆されている と、 その鉄鋼板は電解反応系の中に存 在する こ と となる。 すなわち、 鉄鋼板から鉄が容易に溶解 し、 その溶 解した F e 2 +は化成皮膜と して被処理物表面に付着する。 こ のため、 化成皮膜の膜厚は実施例 8 , 9 に比較 し大巾に増える。 主電解系 Aの 陰極処理は、 電流走査電解で行い、 主電解系 Aの電極間に 0 Aノ d m 2 → 2 . 0 A / d m 2 とするのに 5 分間かけて序々 に.印加してゆ く こ とを行った。 その時の最大印加電圧は 5 . 8 Vであっ た。 そ して、 そ の同 じ操作を 6 サイ クル行い、 合計 3 0 分の陰極処理を行った。 Subsequently, the same treatment bath is used to form an electrolytic system using the material to be treated 7 as a cathode and zinc as an anode. At that time, steel sheets were often immersed in them. If the steel sheet is immersed in the treatment bath, the steel sheet exists in the electrolytic reaction system. That is, iron is easily dissolved from the steel sheet, and the dissolved Fe 2 + adheres to the surface of the workpiece as a chemical conversion film. For this reason, the film thickness of the chemical conversion film is significantly increased as compared with Examples 8 and 9. The cathodic treatment of the main electrolytic system A is performed by current scanning electrolysis, and it is applied gradually over 5 minutes to make 0 A dm 2 → 2.0 A / dm 2 between the electrodes of the main electrolytic system A. I went there. The maximum applied voltage at that time was 5.8 V. Then, the same operation was performed for 6 cycles, and the cathode treatment was performed for a total of 30 minutes.
こ の処理によ り、 鉄鋼板表面に 5 0〜 6 0 mの膜厚の リ ン酸塩化 成皮膜を形成した。 (膜厚はチ ッ ト科学㈱製, 電磁式膜厚計 L E — 3 0 0 で測定した値である。 ) こ の皮膜の耐絶縁性を東亜電波㈱製超絶 縁計 S M— 8 2 1 0 で計測した。 なお、 計測は超絶縁計のプローブ ( 正極, 負極) を軽く 表面に接触し行った。 その結果、 鋼板の平面部は 、 直流 5 0 0 V以上の耐絶縁性を有した。 し力、.し、 エツ ヂ部は耐圧 2 5 0 V程度であった。 また、 皮膜の下地への密着性も、 前記実施例 8 及び 9 よ り劣っていた。 これらの事から化成処理浴中の F e イオ ンを 制御する事が厚膜タ イ プの絶縁性化成皮膜を形成するために必要であ る と言える。  By this treatment, a phosphoric acid chloride film with a thickness of 50 to 60 m was formed on the steel sheet surface. (The film thickness is a value measured with an electromagnetic film thickness meter LE-300, manufactured by Chit Kagaku Corporation.) The insulation resistance of this film was measured by Toa Denpa Co., Ltd., a super-insulation meter SM-8210. Was measured. The measurement was performed by lightly contacting the probe (positive electrode, negative electrode) of the super insulation meter with the surface. As a result, the flat part of the steel sheet had an insulation resistance of DC 500 V or more. The pressure resistance was about 250 V in the edge part. Further, the adhesion of the film to the base was also inferior to those of Examples 8 and 9. From these facts, it can be said that it is necessary to control the Fe ions in the chemical conversion bath in order to form a thick type insulating chemical conversion film.
得られた リ ン酸塩化成皮膜の S E M写真及び X線回折チ ヤ一 トを図 2 8 及び図 2 9 に示す。 尚、 図 2 9 中の〇印は、 図 8 と同様、 Z n 3 ( P 04 ) 2 · 4 H 2 0および Z n 3 ( P 04 ) のピークを示す。 (実施例 1 1 ) SEM photographs and X-ray diffraction charts of the obtained phosphoric acid chloride conversion coating are shown in Figs. Note that the symbol 〇 in FIG. 29 indicates Z n 3 (P 04) shows a peak of 2 · 4 H 2 0 and Z n 3 (P 04). (Example 11)
被処理材と して : 図 3 0 に示す、 磁性材 ( 1 L S S , S i 1 %含有 ) である自動車の燃料噴射ポンプに用いる ソ レノィ ド用スデータ コア 用セグメ ン ト 3 0 を用いた。  As the material to be treated: As shown in Fig. 30, a magnetic material (containing 1 L S S, 1% Si) and a segment 30 for a solenoid core used for a fuel injection pump of an automobile were used.
対極に陽極処理では鉄を、 陰極処理では鉄と亜鉛を用いた。 リ ン酸 塩化成処理浴と して、 Z n 2+を 1 2 g Zし N i 2+を 1. 6 g Z l 含 むリ ン酸塩化成処理浴を甩いた。 (他に、 N 03 ― , H 3 P 04 一 ,At the counter electrode, iron was used for anodizing, and iron and zinc were used for cathodic processing. As a-phosphate salt chemical conversion treatment bath was甩I a a Z n 2+ 1 2 g Z to the N i 2+ 1. 6 g Z l including-phosphate salt chemical conversion treatment bath. (In addition, N 03-, H 3 P 04 one,
F一 を用いているが、 測定していない。 ) 処理浴の P H , 0 R P , 温 度はそれぞれ 2. 9 6 ~ 3. 0 2 , 5 7 7〜 5 8 1 mV, 2 6〜 2 8 °C であり、 全酸度, 促進剤濃度はそれぞれ 4 0 p t , 3. 0 tであつ た。 (遊離酸度は計測していない。 ) また、 処理浴は透視度 3 0 cm以 上であり、 スラ ッ ジを.含まないものであった。 F-1 is used but not measured. ) The pH and temperature of the treatment bath were 2.96 to 3.02, 5777 to 581 mV and 26 to 28 ° C, respectively, and the total acidity and accelerator concentration were respectively It was 40 pt and 3.0 t. (The free acidity was not measured.) The treatment bath had a transparency of 30 cm or more and contained no sludge.
化成処理は、 図 3 0のセグメ ン ト 3 0 を 2 0 0個、 アク リ ル樹脂製 の小型バレルに入れ、 バレル内で電解処理をする方法で行った。  The chemical conversion treatment was performed by putting 200 segments 30 shown in Fig. 30 into a small barrel made of acrylic resin and performing electrolytic treatment inside the barrel.
処理は合計 4バレル行い、 計 8 0 0 ケの部品を処理した。 バレルは 2 R P Mにて回転させ、 浴の流動を容易とするよ う に側面に 5 mXm の穴を多数あけている。  Processing was performed for a total of 4 barrels, for a total of 800 parts. The barrel is rotated at 2 RPM and has many 5 mXm holes on the sides to facilitate bath flow.
電解処理は、 最初に被処理材を陽極と し、 鉄を陰極と して、 図 1 の 接続システムで図 5 ( a ) の定電流電解を行った。  In the electrolytic treatment, the material to be treated was first used as the anode, and iron was used as the cathode, and the constant current electrolysis shown in Fig. 5 (a) was performed using the connection system shown in Fig. 1.
その時の電流は 0. 0 6 A バレルであり、 電圧は 1 . 2 V力、ら 3 . 5 Vの間であった。 なお 1 バレル当たりの表面積は 6 2 d m2 に 相当する。 陽極処理は 5分行い、 その後 2. 5分電源を O F F と した 陰極処理は鉄と亜鉛を陽極と し、 被処理物の入ったバレルを陰極と して、 図 4の電解システムを形成し、 図 5 ( c ) の電流走査電解法に て行った。 The current at that time was 0.06 A barrel and the voltage was between 1.2 V force and 3.5 V. Incidentally surface area per barrel corresponds to 6 2 dm 2. Anodizing was performed for 5 minutes, and then the power was turned off for 2.5 minutes.Cathode processing was performed using iron and zinc as anodes and the barrel containing the object to be treated as the cathode to form the electrolysis system in Fig. 4. The current scanning electrolysis method shown in Fig. 5 (c) was used.
その時の鉄電極は 0 A (ア ンペア) バレル→ 0. 0 6 A ~ 0. 1 A バレルが 9 0秒で順次印加するよ う に し、 亜鉛電極は 0 A バレ ル 0 . 5 〜 1 . 0 Aノバレルが同 じ く 9 0 秒で順次印加するよ う に し、 その同 じ操作を 1 5 サイ ク ル行った。 The iron electrode at that time is 0 A (ampere) barrel → 0.06 A ~ 0.1 The A-barrel is applied sequentially in 90 seconds, and the zinc electrode is applied in 0-barrel 0.5-1.0 A novar in 90 seconds, and the same. The operation was performed for 15 cycles.
こ の処理によ り、 セグメ ン ト 3 0 の表面である磁性材料表面に 3 〜 1 0 mの化成皮膜を形成 した。 (膜厚はケ ッ ト科学製電磁膜厚計で 計測 した。 )  By this treatment, a conversion film of 3 to 10 m was formed on the surface of the magnetic material, which is the surface of the segment 30. (The film thickness was measured with an electromagnetic film thickness meter manufactured by Ket Kagaku.)
こ の皮膜の耐絶縁性を東亜電波㈱製超絶縁計で計測 した。 計測方法 は実施例 8 〜 1 0 と同 じ方法で行っ た。 その結果、 平面部において 1 0 0 V ( D C ) 以上の耐絶縁性を得た。 The insulation resistance of this film was measured with a super insulation meter manufactured by Toa Denpa Co., Ltd. The measurement method was the same as in Examples 8 to 10. As a result, an insulation resistance of 100 V (D C) or more was obtained in the plane portion.
0 図 3 0 の本実施例 1 1 で用いたソ レ ノ ィ ドステ一夕 コア用セ グメ ン ト 3 0 を積層 し、 図 3 1 のステ一夕 コ ア 3 1 を作成した。 0 The core 30 of the solenoid stay core used in Example 11 of FIG. 30 was laminated to form the stay core 31 of FIG. 31.
そ して、 図 3 2 に示す如 ぐ、 そのステ一夕 コア 3 1 に卷線加工及び 組付加工を行い.自動車燃料 (軽油) 噴射ポ ンプの注入量を制御するバ ルブ 3 2 を作成した。 Then, as shown in Fig. 32, winding and assembling are performed on the core 31, and a valve 32 for controlling the injection amount of the automotive fuel (light oil) injection pump is created. did.
5 なお、 従来のソ レノ ィ ドステータ コア用セグメ ン ト 3 5 及びそれを 用いたステ一夕 コア 3 6 を図 3 3 に示す。 5 Figure 33 shows a conventional solenoid stator core segment 35 and a stationary core 36 using the same.
従来のセグメ ン ト 3 5 は既に絶縁処理を実施している F型のセグメ ン 卜 (材質 G 0 9 ) である。  The conventional segment 35 is an F-type segment (material G09) that has already been insulated.
従来の磁性材の絶縁処理は素材を塑性加工 (変形) できないため、0 従来のステ一夕 コア 3 6 は打抜いた板材を積層 した形となっている。  Conventional insulation processing of magnetic materials cannot plastically deform (deform) the material, so the conventional steel core 36 has a shape in which punched sheet materials are laminated.
そのステ一夕 コア 3 6 を用いて、 図 3 4 に示す如 く 、 燃料噴射ポ ンプ バルブ 3 7 を作成した。 .  Using the core 36, a fuel injection pump valve 37 was created as shown in FIG. .
こ の時、 図 3 2 の実施例 1 1 に関連するバルブ 3 2 と図 3 4 の従来 のバルブ 3 7 の大き さ (寸法) は同 じである。 At this time, the size (dimensions) of the valve 32 related to the embodiment 11 in FIG. 32 and the conventional valve 37 in FIG. 34 are the same.
5 各バルブ 3 2 、 3 4 の性能の比較を図 3 5 に示す。 5 Figure 35 shows a comparison of the performance of each valve 32 and 34.
~ 駆動電流 ( A ) に対する静的吸引力にて評価した結果、 バルブ 3 2 (図 3 5 中の実線) は、 バルブ 3 7 (図 3 5 中の破線) に比較 し、 同 一体格であ っても ソ レノ ィ ドの吸引 (作動) 能力に優れている こ と を 確認することができた。 ~ As a result of the evaluation based on the static suction force with respect to the drive current (A), the valve 32 (solid line in Fig. 35) is of the same type as the valve 37 (dashed line in Fig. 35). And that it has excellent solenoid (suction) capability. I was able to confirm.
(実施例 1 2 )  (Example 12)
被処理材と して、 実施例 1 1 で使用したソ レノ ィ ドコアセグメ ン ト 3 0 を塑性加工する前の、 長さ 5 0 0 mm, 巾 2 8 mm, 厚さ 2 mmの磁性 材 ( I L S S ) を用いた。  As a material to be processed, a magnetic material (ILSS) having a length of 500 mm, a width of 28 mm, and a thickness of 2 mm before plastic working of the solenoid core segment 30 used in Example 11 was used. ) Was used.
対極に鉄を用い、 陽極処理次いで陰極処理を行った。 リ ン酸塩化成 処理浴と して Z n 2+を 6 g / 1 , N i 2+を 6 g Z 1 含む浴を用いた。 処理浴の F Hは 3 . 0 3 , O R P は 5 7 6 m V , 温度は 2 5 ~ 3 0 °C であり、 全酸度は 4 4 p t , 促進剤濃度は 5 . 2 p t であった。 (遊 離酸度は計測していない。 ) また、 処理浴の透視度は 3 0 c m以上で あ り、 スラ ッ ジを含まないものであった。 Anodizing and then cathodic treatment were performed using iron as the counter electrode. Using Z n 2+ to 6 g / 1, N i 2+ to 6 g Z 1 comprises a bath with a-phosphate salt chemical conversion treatment bath. The treatment bath had an FH of 3.03, an ORP of 576 mV, a temperature of 25 to 30 ° C, a total acidity of 44 pt, and a promoter concentration of 5.2 pt. (The free acidity was not measured.) The transparency of the treatment bath was 30 cm or more and did not contain sludge.
電解化成処理は、 最初に被処理剤を陽極と し、 鉄を陰極と し図 1 の 電解システムで、 図 5 ( a ) の定電流電解を 1 分行った。 その時の電 流は、 0 . 4 A Z被処理剤で.あ り、 電圧は 2 . 4 Vであった。  In the electrolytic conversion treatment, first, the agent to be treated was used as the anode and iron was used as the cathode, and the constant current electrolysis shown in Fig. 5 (a) was performed for 1 minute using the electrolysis system shown in Fig. 1. The current at that time was 0.4 AZ to be treated, and the voltage was 2.4 V.
陰極処理は、 同じ浴で被処理物を陰極と し、 鉄を陽極と して陽極処 理と同じ電解システムの電流印加方法にて 3 分行った。 その時の電流 は 0 . 4 A /被処理剤であ り、 電圧は 2 , 4 Vであった。 皮膜を形成 した被処理剤は水洗—乾燥後、 ステリ ン酸ナ ト リ ゥム 5 %の 8 0 °C溶 液に 1 0分間浸漬し、 その表面にステア リ ン酸亜鉛の金属セ ッゲン膜 を得た。  The cathodic treatment was performed for 3 minutes in the same bath, using the object to be treated as the cathode and iron as the anode, using the same electrolytic system current application method as for the anodizing. The current at that time was 0.4 A / treatment agent, and the voltage was 2.4 V. The treated agent with the film formed is washed with water and dried, then immersed in a solution of 5% sodium stearate at 80 ° C for 10 minutes, and a metal seggen film of zinc stearate is applied on the surface. I got
この被処理材を図 3 6 のよう に、 中心部の板厚を薄く する方向で圧 延加工を行った。 >  As shown in Fig. 36, this material was rolled in the direction of reducing the thickness at the center. >
圧延加工は 2 0 0 ト ンのプ レスにて 1 回当り 6 0 ト ン及び 7 0 ト ン の荷重をかけ、 1 回当 り 1 ひ mmずつ移動させ、 計 6 回の圧延加工にて 到達する,薄み板厚 ( t i ) を測定したものである。  Rolling is performed with a press of 200 tons, applying a load of 60 tons and 70 tons at a time, and moving by 1 mm per turn, reaching a total of 6 times of rolling. The thin plate thickness (ti) was measured.
図 3 7 にその結果を示す。  Figure 37 shows the results.
図 3 7 の (A) は本発明の化成皮膜処理を行ったものである。 圧延 の比較例と して化成皮膜を形成せず、 加工油 (杉村化学 (製) , D 2 0 0 — A ) のみを用いた場合を図 3 4 の ( B ) に示した。 · 図 3 7 から、 磁性材の圧延加工には本発明の化成皮膜を用いた方が 従来の加工油のみの場合よ り優れている こ とが分かった。 (A) in FIG. 37 shows the result of the chemical conversion treatment of the present invention. As a comparative example of rolling, no conversion coating was formed and processing oil (Sugimura Chemical Co., Ltd.) The case where only 0 0 — A) was used is shown in (B) of FIG. · From Fig. 37, it was found that the use of the chemical conversion coating of the present invention for the rolling of magnetic materials is superior to the conventional processing oil alone.
(実施例 1 3 )  (Example 13)
被処理材と して、 図 3 8 に示す自動車用オルタ ネー夕 のステータ コ ァ 4 0 を用いた。  As a material to be treated, a stator core 40 of an automotive alterna- ble shown in Fig. 38 was used.
このコア 4 0 は、 1 枚の板厚が 0 . 5 m mのセグヘメ ン 卜 4 1 を複 数枚積層 したものである。  The core 40 is formed by laminating a plurality of segments 41 each having a thickness of 0.5 mm.
このコア 4 0 の処理時において、 リ ン酸塩化成処理浴は、 Z n 2+ 5 g / 1 , H 2 P 0 -4 2 5 g / 1 , N i 0 . 8 g / 1 , N 03 - 1 6 g / 1 , F - 0 . l g Z l の組成のものを用いた。 During processing of the core 4 0,-phosphate salt chemical conversion treatment bath, Z n 2+ 5 g / 1 , H 2 P 0 -. 4 2 5 g / 1, N i 0 8 g / 1, N 0 A composition having a composition of 3 to 16 g / 1 and F-0. Lg Zl was used.
処理浴の P Hは 3 . 3 0 、 O R P は 5 4 0 〜 5 5 0 m V , 温度は 2 8 °Cであ り、 全酸度は 3 5 p t , 遊離酸度は 0 . 2 p t , 促進剤濃度 : は 4 〜 6 p t であった。 また、 処理浴の透視度は 3 0 c m以上であ り 、 処理浴はスラ ッ ジを含まない ものであ った。  The pH of the treatment bath is 3.30, the ORP is 540 to 550 mV, the temperature is 28 ° C, the total acidity is 35 pt, the free acidity is 0.2 pt, and the accelerator concentration : Was 4-6 pt. Further, the transparency of the treatment bath was 30 cm or more, and the treatment bath did not contain sludge.
電解処理は、 最初に被処理剤を陽極と し、 鉄を陰極と し、 図 1 、 図 一 5 ( a ) の定電流電解を電流 0 . 4 A Z被処理物 (電圧 1 . 8 V ) となるよ う 5 分間行う。 続いて同 じ処理浴を用い、 被処理材を陰極と して、 亜鉛及び鉄を陽極とする主電解系を形成する。  In the electrolysis treatment, the treatment agent is first used as the anode, iron is used as the cathode, and the constant current electrolysis shown in Fig. 1 and Fig. Run for 5 minutes. Subsequently, using the same treatment bath, a main electrolytic system is formed using zinc and iron as anodes with the material to be treated as a cathode.
そ して、 図 4 の装置の如 く 、 電解処理シ ステムを形成し、 陰極処理 を行う。 陰極処理は、 電流走査電解で行い、 亜鉛電解系の電極間に 0 A -* 1 . 2 5 A /被処理物とするのに 4 0 秒力、.けて序々 に印加 してゆ く こ とを行った。 また、 鉄電解系の電極間に 0 A→ 0 . 4 Aノ被処理 物とするのに 4 0 秒かけて、 序々 に印加 した。 そ して、 亜鉛と鉄の電 解は同時に行った。 そ して、 その同 じ操作を 2 0 〜 3 0 サイ クル行い 、 合計 1 3 ~ 2 0 分の陰極処理を行った。  Then, as in the apparatus shown in FIG. 4, an electrolytic treatment system is formed, and a cathodic treatment is performed. The cathodic treatment is performed by current scanning electrolysis, and 0 A-* 1.25 A is applied between the electrodes of the zinc electrolytic system for 40 seconds to produce the object to be treated. And went. In addition, it was gradually applied for 40 seconds to make the object to be treated 0 A → 0.4 A between the electrodes of the iron electrolytic system. The electrolysis of zinc and iron was carried out simultaneously. Then, the same operation was performed for 20 to 30 cycles, and the cathode treatment was performed for a total of 13 to 20 minutes.
こ の処理によ り、 被処理物表面に 2 0 - 2 5 mの膜厚の リ ン酸塩 化成皮膜を形成した。 (膜厚はチ ッ ト科学㈱製, 電磁式膜厚計 L E — 3 0 0 で測定した値である。 ) この皮膜の耐絶縁性を東亜電波㈱製超 絶縁計 S M— 8 2 1 9 で計測 した。 なお、 計測は超絶縁計のプローブ (正極, 負極) を軽 表面に接触し行った。 その結果、 被処理物表面 は直流 5 0 0 V以上の耐絶縁性を有した。 By this treatment, a phosphate conversion film having a thickness of 20 to 25 m was formed on the surface of the object to be treated. (The film thickness is manufactured by Chit Kagaku Corporation, electromagnetic film thickness meter LE — It is a value measured at 300. ) The insulation resistance of this film was measured with a super insulation meter SM-8219 manufactured by Toa Denpa Co., Ltd. The measurement was performed by bringing the probe (positive electrode, negative electrode) of the super insulation meter into contact with the light surface. As a result, the surface of the workpiece had an insulation resistance of 500 V DC or more.
この被処理物は、 続いて日本ペイ ン ト㈱パワー T O P , U - 6 0 0 E にて、 有機皮膜の膜厚が 4 0〜 5 0 u mとなるよう カオチ ン電着塗 装した。 焼付は 1 8 0 °C X 3 0 分保持にて行った。  The workpiece was then electrocoated with Nippon Paint @ Power TOP, U-600E so that the thickness of the organic film was 40 to 50 μm. The baking was performed at 180 ° C for 30 minutes.
このよ う にして、 5 0〜 7 0 inの厚さの絶縁処理総を有するオル タネ一タステータ コア 4 0 を得た。  In this way, an alternator stator core 40 having a total insulation thickness of 50 to 70 in was obtained.
この実施例 1 3 に関するステ一夕 コア 4 0 を用いて、 スロ ッ ト部 4 4 に機械巻線を行った。  Using the stay core 40 of the embodiment 13, mechanical winding was performed on the slot section 44.
卷線 4 2 は全自動で線径 1 . 4 mmの巻線を 1 2本 Zスロ ッ ト当り巻 きつける ものである。  The winding 42 automatically winds 12 windings of 1.4 mm in diameter per Z slot.
卷線 4 2の加工後のスロ ッ ト部 4 4 内の状況を図 3 9 に示す。  Figure 39 shows the inside of the slot part 44 after the winding 42 is processed.
巻線 4 2 の加工後、 ゥヱ ッ ジ 4 3 を設ける'こ と によ っ て、 巻線 4 2 の脱落を防止した。  After the winding 42 was machined, a page 43 was provided to prevent the winding 42 from falling off.
その後、 巻線部 4 2 とステ一夕 コア 4 0本体とのアース (絶縁の破 れ) を検査するため A C 6 0 0 Vを印加するか、 本処理品は耐圧 6 0 0 V ( A C ) 以上を有する機械卷線加工に耐える ものであった。  After that, apply AC 600 V to check the ground (breakage of insulation) between the winding part 42 and the stay core core 40 body, or apply this product to withstand voltage 600 V (AC). It was able to withstand the mechanical winding process described above.
なお、 実施例 1 3 の化成処理でない、 従来の無電解化成処理を行い 、 実施例 1 3 と同様のカオチン電着塗装を行ったものは、 上記の機械 巻線加工にて絶縁総が破壊され A C 6 0 0 Vを維持できないものであ つた。 そのことから、 本発明の無機絶縁膜はオルタネータ絶縁処理に 有効である と言える。  The conventional electroless chemical conversion treatment, which was not the chemical conversion treatment of Example 13, and was subjected to the same electroplating coating as in Example 13 resulted in the destruction of the entire insulation by the mechanical winding process described above. The AC 600 V could not be maintained. Thus, it can be said that the inorganic insulating film of the present invention is effective for alternator insulating treatment.
さ らに、 従来のオルタネータステ一タ コア 4 5 の絶縁処理は、 図 4 0 に示す如く 、 コア 4 5 と卷線 4 6 との間に、 ペーパーイ ンシュ レー 夕 (有機絶縁紙) 4 7 を用い、 その後、 ゥェ ッ ジ 4 8 にて、 卷線 4 6 を封止している。 しかしながら、 ペーパーイ ンシユ レ一夕の膜厚は 2 0 0 z mあり、 その分、 コア 4 0 の小型化が妨げられて しま う 。 そ し て、 ペーパーイ ンシユ レ一夕 は 2 0 0 m以下では機械巻線加工で破 れて しま う と いう 問題が生じる。 Further, as shown in FIG. 40, the conventional alternator stator core 45 is provided with a paper insulator (organic insulating paper) 47 between the core 45 and the winding 46. Thereafter, the winding 46 is sealed with a page 48. However, the thickness of the paper insulation was 2 0 zm, which hinders downsizing of the core 40. In addition, there is a problem that the paper insulation breaks at less than 200 m due to mechanical winding.
故に、 実施例 1 3 の絶縁処理は膜厚 5 0 〜 7 0 i mと従来方法よ り 薄 く する こ とができ、 絶縁効果も十分である。  Therefore, the insulation treatment of Example 13 can be made thinner than the conventional method, with a film thickness of 50 to 70 im, and the insulation effect is sufficient.
そのため、 コア 4 0 の如 く 、 絶縁の必要な箇所に本発明の リ ン酸塩 化成処理方法を採用する こ と によ って、 従来の絶縁部材を廃止する こ とが可能とな り、 様々 な用途への使用が可能となる。  Therefore, by adopting the phosphate conversion treatment method of the present invention in a place requiring insulation, such as the core 40, it is possible to abolish the conventional insulation member. It can be used for various applications.
' 最後に、 本発明の透明な処理浴においての電解化成処理法と従来の 無電解化成処理法との電気化学的な相違を表 4 にま とめる。  'Finally, Table 4 summarizes the electrochemical differences between the electrolytic treatment in the transparent treatment bath of the present invention and the conventional electroless treatment.
(以下余白) (Hereinafter the margin)
表 4 電解処理法 無電解処理法 処理浴の電気化 高 低 Table 4 Electrolytic treatment method Electroless treatment method Electrification of treatment bath High Low
学的エネルギー 外部電源からの電子の 電子の供給は鉄の溶解 レベル 供給あ り のみ 鉄イオンの存在 Fe3+ 有り Fe 無し F e 3 + 無し 形態 Fez+ 有り Fe2+ 有り F e 2 + 有り 処理浴の酸化還 5 δ 0 m V 5 6 0 m V Electron energy from an external power supply Electron is supplied only at the level of dissolution of iron Only with iron ion Fe 3+ with Fe without F e 3 + without Form Fe z + with Fe 2+ with F e 2 + with Treatment Bath redox 5 δ 0 m V 5 6 0 m V
元電位 ( A g C 以 上 以 下 5 6 0 m V以下 1 電極電位) Original potential (Ag C or more and below 560 mV or less 1 electrode potential)
上記表 4 の如 く 、 電解処理法 (透明浴) では 0 R P 5 6 0 m V以上 の場合と、 5 6 O m V以下の場合がある。 As shown in Table 4 above, in the electrolytic treatment method (transparent bath), there are cases where the pressure is 0 RP 560 mV or more and cases where it is 56 OmV or less.
O R P 5 6 O m V以上の処理浴を確保するには、 O R P 5 6 O m V 以上では処理浴が常磁性イオ ン ( F e 3+ ) を含んでいる こ とから、 循 環経路について下記留意が必要である。 In order to secure a processing bath of ORP 56 OmV or higher, since the processing bath contains paramagnetic ions (Fe 3+ ) at ORP 56 OmV or higher, Care must be taken.
即ち、 循環経路への磁場の影響を及ぼさない こ とである。 磁場が処 理浴に作用する と、 それは常磁性成分 ( F e 3+) に作用 し、 の結果 F e 3+は各処理浴中に溶解して存在できな く な り、 各処理浴は F e 3+ を含有しな く なる。 そのため必然的に 0 R P は 5 6 0 m V以下となる c That is, the magnetic field does not affect the circulation path. When a magnetic field acts on the treatment baths, it acts on the paramagnetic component (F e 3+ ), such that F e 3+ dissolves and cannot be present in each treatment bath, and It does not contain Fe 3+ . Therefore, 0 RP is necessarily less than 560 mV c
0 R P 5 6 O m V以上の浴は F e 3+を含むこ とから、 従来の無電解 浴 ( F e 3+を含まない浴) と比較し、 電解質的傾向が強い。 そ して、 その性質が、 アル ミ , ステ ン レス等表面に不働体皮膜を有した金属材 料への.化成皮膜形成を容易と している ものと考え られる。 すなわち、 電解質的傾向が強いため、 電解処理にて表面の不働体皮膜に作用 し、 溶解, 皮膜形成を行う こ とができ る と考え られる。 また、 5 6 O m V 以下の浴から形成される皮膜は、 F e 3+を含まない皮膜であ り、 従来 の無電解化成皮膜と同 じ性質である。 ただ し、 本発明の方法ではその 膜厚を制御する こ とが可能である。 0 and a this RP 5 6 O m V or more baths containing the F e 3+, compared with conventional electroless bath (F e 3+ containing no bath), electrolytic qualitative tendency is strong. It is considered that the property facilitates the formation of a chemical conversion film on a metal material having a passivation film on the surface such as aluminum or stainless steel. In other words, it is considered that the electrolyte has a strong tendency to act on the passive film on the surface by the electrolytic treatment, so that dissolution and film formation can be performed. The film formed from a bath of 56 OmV or less does not contain Fe3 + and has the same properties as conventional electroless chemical conversion films. However, the film thickness can be controlled by the method of the present invention.
また、 以下に本発明の構成する電解処理に関する要点を説明する。 本発明の電解についての要点は、  In addition, the following is a description of the essential points of the electrolysis treatment according to the present invention. The point about the electrolysis of the present invention is
① 「主電解系」 と 「副電解系」 と に電解反応.系を分離し、 被膜形成 に関与する F e 分を制御する こ と  ① Electrolytic reaction between the “main electrolytic system” and the “sub-electrolytic system”. Separating the systems and controlling the Fe content involved in film formation.
②電流走査電解を行う こ と  ② Performing current scanning electrolysis
であ り、 その理由をさ らに も う一度以下に述べる。  The reason is described again below.
①の理由  Reason for ①
電解反応に関与する F e イ オ ンの制御が必要であ り、 「副電解系 j がその役割を行う。 特に、 陰極処理では、 被処理物を陰極とするため 、 F e イオンをどのよう に溶解し被処理物表面に析出させるかが'重要 である。 そ して、 F e を電極材料と して使用する場合、 F e電極に対 する、 電流、 電圧の印加方法を具体的にどのよう にするかが重要であ る。 副電解系は主に、 鉄イ オ ンの溶解、 折出を制御し、 主電解系と組 み合わせて良好な被膜を形成するために有効である。 It is necessary to control the Fe ion involved in the electrolytic reaction, and the “sub-electrolyte system j plays the role. In particular, in the cathodic treatment, the object to be treated is a cathode. It is important how the Fe ions are dissolved and precipitated on the surface of the workpiece. When using Fe as an electrode material, it is important how to apply current and voltage to the Fe electrode specifically. The secondary electrolytic system is effective mainly for controlling the dissolution and precipitation of iron ions and for forming a good film in combination with the main electrolytic system.
②の理由  Reason for ②
これは、 被膜を厚く するために必要な条件である。  This is a necessary condition for thickening the coating.
こ こで、 電流走査電解の一実施例を実施例 1 4 と して、 図 4 1 に示 す。  An example of current scanning electrolysis is shown in FIG.
図 4 1 は、 図 2 の装置において、 図 5 ( c ) の電流印加をした場合 の被処理材 7 と電極 6 との間の 「主電解系」 の電圧変化 I (電極 6 か ら被処理材 7 への方向を正とする) および被処理材 7 と電極 1 0、 1 1 との間の 「副電解系」 の電圧変化 H (被処理材 7 から電極 1 0、 1 1方向を正とする) を示す。  Fig. 41 shows the voltage change I of the "main electrolytic system" between the material 7 to be treated and the electrode 6 when the current shown in Fig. 5 (c) is applied in the device of Fig. 2 (from the electrode 6 to the Voltage change in the “sub-electrolysis system” between the material 7 and the electrodes 10 and 11 (the direction from the material 7 to the electrodes 10 and 11 is positive). ).
こ こで、 図 4 1 は 3 0 0秒かけて、 図 5 ( c ) の如く 、 外部電源か ら主電解系に印加する電流を 0 A→ 4 . 0 A Z cnMこ順次印加している 図 4 1 の如く 、 このよう な条件の場合には、 3 0 0秒の電流の印加 の最初の 9 0〜 1 0 0秒の間は、 電流が外部から印加されているにも かわわらず、 電圧変化 I は、 負の電圧を示し、 電圧変化 Hはほぼゼロ の値を示す。  Here, Fig. 41 shows that the current applied from the external power supply to the main electrolytic system is 0 A → 4.0 AZ cnM sequentially over 300 seconds, as shown in Fig. 5 (c). Under such conditions, as in 41, during the first 90 to 100 seconds of the application of the current for 300 seconds, the current is applied from the outside, The voltage change I indicates a negative voltage, and the voltage change H indicates a value of almost zero.
このこ とは、 電流が印加されていない場合、 .も し く は電流が印加さ れてもそれが微少の場合には、 化成処理浴中の電極の電位は、  This means that if no current is applied, or if the current is applied but is small, the potential of the electrode in the chemical conversion bath is
被処理物 ^副電解系の対極 ( F e · N i ) >主電解系の対極 ( Z n )  Object to be processed ^ Counter electrode of secondary electrolytic system (F e · Ni)> Counter electrode of main electrolytic system (Z n)
である ことを示す。  It indicates that
すなわち、 化成処理浴はそれ自体電解浴であるので、 その中で浸漬 した電極 (材料) 相互間に電位差を生じる。 そ して、 電流を印加して いない時の電位差を反映した浴の状態が化成処理浴と して最も安定な 状態である と言える。 That is, since the chemical conversion bath itself is an electrolytic bath, a potential difference is generated between the electrodes (materials) immersed in the bath. And apply a current It can be said that the state of the bath that reflects the potential difference when it is not present is the most stable state as a chemical conversion bath.
図 4 1 の電圧変化 I がマ イ ナ ス電位を示 している期間は、 外部電源 から電流を入力 しているに もかかわらず、 主電電解系 Aの陽極 ( Z n ) と陰極 (被処理物) 間に電流は流れない。 しか し、 そ の電流は溶液 内成分に作用 している と見做すこ とができ る。 そ して、 そのよ う な溶 液内成分への作用は緻密な皮膜形成に非常に重要である。 図 4 1 の電 圧変化 I は、 そのよ う な経過を経て、 主電解系に電流が流れ皮膜が形 成される こ とを示 している。  During the period in which the voltage change I in Fig. 41 indicates the negative potential, the anode (Zn) and the cathode (coated) of the main electrolysis system A regardless of the input of current from the external power supply. No current flows between the processed products. However, the current can be considered to be acting on the components in the solution. Such action on the components in the solution is very important for forming a dense film. Voltage change I in Fig. 41 indicates that the current flows through the main electrolytic system and a film is formed through such a course.
そ して、 電圧変化 I に電流が流れる と同時に、 図 4 1 の電圧変化 II の電圧はマイナスとなるが、 それは主電解系の図 2 の電極 6 の陽極か らの電流が、 副電解系 Bの図 2 の電極 1 0 , 1 1 の対極に作用 してい る こ とを示す。  Then, at the same time as the current flows through the voltage change I, the voltage of the voltage change II in FIG. 41 becomes negative, but the current from the anode of the electrode 6 in FIG. This shows that it acts on the counter electrode of electrodes 10 and 11 in Fig. 2 of B.
すなわち、 図 2 の電極 6 の陽極から流れた電流は図 2 のの電極 1 1 , 1 2 を経由 し、 ダイオー ド Dを経て、 被処理物に流れるためにマイ ナスの電位を示すものである。 こ のよ う に電圧変化 I と H は連動 して い る。  That is, the current flowing from the anode of the electrode 6 in FIG. 2 passes through the electrodes 11 and 12 in FIG. 2, passes through the diode D, and flows to the object to be processed, indicating a negative potential. . Thus, the voltage changes I and H are linked.
その こ と は、 主電解系 Aの Z n の電解が、 副電解系 B の F e , N i 等の電解を制御している こ とを示している。 そ して、 それらの繰り返 しによ つて皮膜を形成するのである。  This indicates that the electrolysis of Zn in the main electrolysis system A controls the electrolysis of Fe and Ni in the sub electrolysis system B. Then, a film is formed by these repetitions.
以上よ り、 図 2 の装置において、 図 5 ( c ) に示す如 く 、 主電解系 にて陰極処理電流走査電解を施すこ と によ つて.、 常に浴がエネルギー 的に安定した状態に戻り、 その状態から出発 し、 皮膜形成ができ る と と もに、 副電解系 Bの電極 1 0 , 1 1 の溶解を主電解系 Aの電極 6 の 電解で制御でき る こ と によ っ て、 電極 1 0、 1 1 の過剰の溶解を制御 する こ とができ る。 そのため、 被処理材に形成される皮膜を、 緻密な 皮膜とする こ とが可能となるのである。  As described above, in the apparatus of Fig. 2, by performing the cathodic current-scanning electrolysis in the main electrolysis system as shown in Fig. 5 (c), the bath always returns to an energy stable state. Starting from that state, the film can be formed, and the dissolution of the electrodes 10 and 11 of the secondary electrolytic system B can be controlled by the electrolysis of the electrode 6 of the main electrolytic system A. In addition, excessive dissolution of the electrodes 10 and 11 can be controlled. Therefore, it is possible to form a dense film on the material to be treated.
電解方法の比較と して、 図 5 ( a ) の定電流電解と比較すれば、 そ れは、 明確である。 When comparing the electrolysis method with the constant current electrolysis shown in Fig. 5 (a), This is clear.
図 5 ( a ) の方法では、 電流は直ちに所定の設定電圧となる。 そ し て、 電解反応は、 行われるが、 それは、 電気めつき等の良導体被膜形 成のそれと同じであり、 あき らかに図 5 ( c ) の方法とは異なってい る。 図 5 ( a ) の方法では、 電解に伴うエネルギー伏態は、 常に図 4 1 の電圧変化 I の最大電圧を示す状態となる。 故に、 溶液は、 常に強 い電流が印加された状態となっている。 そ して、 電流が被処理物の常 に決まった場所に多 く 流れる と となり (例えばエッ ジ部^) 、 その結 果、 そのような場所の密着性が悪化する。  In the method shown in Fig. 5 (a), the current immediately reaches the predetermined set voltage. Then, the electrolysis reaction is performed, but it is the same as that of the formation of a good conductor film such as electroplating, which is clearly different from the method of Fig. 5 (c). In the method of Fig. 5 (a), the energy breakdown associated with electrolysis always shows the maximum voltage of the voltage change I in Fig. 41. Therefore, the solution is always in a state where a strong current is applied. Then, a large amount of current flows to a predetermined place on the object to be processed (for example, an edge portion), and as a result, the adhesiveness of such a place is deteriorated.
本発明の、 電流走査電解は、 被膜形或において、 溶液内成分の反 に関連して、 溶液を電解しない初期状態から常に出発する という電解 被膜形成反応を繰り返し、 行う ことで、 定電流電解とは大き く 異なつ ている。 そ して、 そのような工夫が被膜の密着性にも大き く 関与する のである 産業上の利用可能性  In the current scanning electrolysis of the present invention, in the film form or in relation to the components in the solution, the electrolytic film forming reaction of always starting from an initial state in which the solution is not electrolyzed is performed by repeating and carrying out the reaction. Are very different. In addition, such measures greatly affect the adhesion of the coating.
以上のよう に、 本発明にかかる リ ン酸塩化成処理方法は、 ステ一夕 等の金属材料を冷鍛処理する前の前処理と して用いられる リ ン酸塩化 成処理方法である。  As described above, the phosphoric acid conversion treatment method according to the present invention is a phosphoric acid conversion treatment method used as a pretreatment before cold forging a metal material such as a steel plate.

Claims

請求の範囲 The scope of the claims
1 . 少な く と も リ ン酸イ オ ン、 窒素を含むォキソ酸イオ ンおよび化 成皮膜形成金属イ オ ンを含む リ ン酸塩化成処理液に、 導電性を有する 金属材料を接触させて前記金属材料表面に リ ン酸塩化成皮膜を形成す る方法であ って、  1. Bring a conductive metal material into contact with a phosphoric acid conversion treatment solution containing at least ion phosphate, oxo acid ion containing nitrogen, and metal ion forming a chemical conversion film. A method for forming a phosphate conversion film on the surface of the metal material, comprising:
前記リ ン酸塩化成処理浴は、 不可避成分以外の固型分を含有しない 浴である と と もに、 前記リ ン酸塩化成処理浴中にて、 前記金属材料を 電解処理する こ とを特徴とする リ ン酸塩化成処理方法。  The phosphatization bath is a bath that does not contain solid components other than inevitable components, and the metal material is subjected to electrolytic treatment in the phosphatization bath. Characteristic phosphoric acid conversion treatment method.
2 . 前記金属材料を陽極と して電解処理をする こ とを特徴とする請 1 0 求項 1 記載の リ ン酸塩化成処理方法。  2. The phosphoric acid conversion treatment method according to claim 1, wherein the metal material is used as an anode for electrolytic treatment.
3 . 前記金属材料を陰極と して、 被膜形成金属を陽極と して電解処 ― 理をする こ とを特徴とする請求項 1 記載の リ ン酸塩化成処理方法。  3. The phosphoric acid conversion treatment method according to claim 1, wherein the metal material is used as a cathode and the film-forming metal is used as an anode for electrolytic treatment.
4 . 最初に、 前記金属材料を陽極ど して電解処理し、 その後前記金 属材料を陰極と して電解処理をする こ とを特徵とする請求項 1 記載の 4. The method according to claim 1, wherein first, the metal material is subjected to an electrolytic treatment using an anode, and then the electrolytic treatment is performed using the metal material as a cathode.
1 5 リ ン酸塩化成処理方法。 15 Phosphoric acid conversion treatment method.
5 . 前記電解処理は、 電流を印加する方法である こ とを特徴とする 請求項 1 記載のリ ン酸塩化成処理方法。  5. The phosphoric acid conversion treatment method according to claim 1, wherein the electrolytic treatment is a method of applying a current.
6 . 化成処理浴の有する酸化還元電位が 2 5 0 〜 6 5 0 m V (銀一 塩化銀電極電位) の範囲にある こ とを特徵とする請求項 1 記載の リ ン 0 酸塩化成処理方法。  6. The phosphate conversion treatment according to claim 1, wherein the oxidation-reduction potential of the chemical conversion bath is in the range of 250 to 65OmV (silver-silver chloride electrode potential). Method.
7 . 前記金属材料は、 銅、 アル ミ ニウム、 鉄の少な く と も一種であ る こ とを特徴とする請求項 1 記載の リ ン酸塩化成処理方法。  7. The phosphoric acid conversion treatment method according to claim 1, wherein the metal material is at least one of copper, aluminum, and iron.
8 . リ ン酸イオ ン、 硝酸イオ ン、 化成皮膜形成金属イオ ンおよび酸 化剤を含む リ ン酸塩化成処理浴に鉄鋼、 銅、 アル ミ 材の少な く と も一 8. At least one of steel, copper, and aluminum materials should be added to the phosphatization bath containing ion phosphate, ion nitrate, conversion film forming metal ion, and oxidizing agent.
25 つを接触させ、 被膜形成反応を生じ させる こ と によ っ て、 該金属表面 ― に リ ン酸塩化成皮膜を形成する方法であって、 25. A method for forming a phosphoric acid conversion coating on the metal surface by contacting 25 components to cause a coating formation reaction,
前記リ ン酸塩化成処理浴全体が、 前記リ ン酸塩化成処理浴の液体と してのエネルギー状態を熱力学的に安定にする安定化手段によ っ て、 エネルギー状態を安定に維持されている と と もに、 前記リ ン酸塩化成 処理浴中において、 前記金属材料を電解処理する ことを特徴とする リ ン酸塩化成処理方法。 The stabilizing means for thermodynamically stabilizing the energy state of the phosphatization bath as a liquid as a whole of the phosphatization bath, A phosphoric acid conversion treatment method, wherein the metal material is electrolytically treated in the phosphoric acid conversion treatment bath while the energy state is stably maintained.
9 . 前記リ ン酸塩化成処理浴は、 前記リ ン酸塩化成処理浴を有する 浴槽中より、 前記リ ン酸塩化成処理浴の一部を取り 出 し、 前記 リ ン酸 塩化成処理浴の液体と してのエネルギー状態を熱力学的に安定にする 安定化手段によって、 エネルギー状態を安定に した後、 再び前記浴槽 に戻すことを特徵とする請求項 8記載の リ ン酸塩化成処理方法。  9. The phosphoric acid conversion treatment bath is obtained by taking out a part of the phosphoric acid conversion treatment bath from a bath having the phosphoric acid conversion treatment bath, 9. The phosphatization treatment according to claim 8, wherein the energy state as a liquid is thermodynamically stabilized, and the energy state is stabilized by a stabilizing means, and then the liquid state is returned to the bathtub. Method.
1 0 . 前記安定化手段は、 前言さリ ン酸塩化成処理浴が液体のみの状態 を維持しつつ、 かつ前記液体が有する内部二ネルギーを熱力学的に安 定化させる ことを特徵とする請求項 8記載の リ ン酸液化成処理方法。  10. The stabilizing means is characterized in that the phosphate chemical conversion treatment bath thermodynamically stabilizes the internal energy of the liquid while maintaining the state of only the liquid. The phosphoric acid liquid conversion treatment method according to claim 8.
1 1 - 前記電解処理は、 電流を印加する方法であるこ とを特徵とする 請求項 8記載の リ ン酸塩化成処理方法。 . 1 2 . 化成処理浴の有する酸化還元電位が 2 5 0〜 6 5 0 m V (銀一 塩化銀電極電位) の範囲にある こ とを特徴とする請求項 8 記載の リ ン 酸塩化成処理方法。 11. The phosphoric acid conversion treatment method according to claim 8, wherein the electrolytic treatment is a method of applying a current. 12. The phosphate conversion chemical according to claim 8, wherein the oxidation-reduction potential of the chemical conversion treatment bath is in the range of 250 to 65OmV (silver-silver chloride electrode potential). Processing method.
1 3 . リ ン酸イ オ ン, 硝酸イ オ ン, 化成彼膜形成金属イオンおよび酸 化剤を含む 4 0 °C以下に維持されたリ ン酸塩化成処理浴に鉄鋼 · 銅 · アルミ を接触させ、 前記リ ン酸塩化成処理浴と前記鉄鐧材料間に被膜 形成反応を生じさせる ことによって、 鉄鋼 · 銅 · アルミ 表面に リ ン酸 塩化成処理被膜を形成する方法において、  13 3. Iron, steel, copper, and aluminum were added to a phosphatization bath maintained at 40 ° C or less containing ion phosphate, ion nitrate, metal ions forming a chemical film, and an oxidizing agent. A method for forming a phosphoric acid chemical conversion treatment film on the surface of steel, copper, and aluminum by contacting and causing a film formation reaction between the phosphoric acid chemical treatment bath and the iron-based material;
前記リ ン酸塩化成処理浴の一部を取り出 し、 該取り出 した リ ン酸塩 化成処理浴を再び戻すという循環経路を設ける と と もに、 前記循環経 路中には、 S i 0 2 、 A 1 2 0 3 を基本構成化合物と してもつ無機物 よりなるフ ィ ルタを設ける とと もに、 前記金属材料を電解処理する こ とを特徵とする リ ン酸塩化成処理方法。 A part of the phosphatization bath is taken out, and a circulating route is provided to return the taken-out phosphating bath again. 0 2, a 1 2 0 3 and the provision of the full I filter consisting of inorganic material having as a basic structure compound and Moni,-phosphate salt chemical conversion treatment method of the Toku徵that you electrolytically treating the metal material.
1 . 前記電解処理は、 電流を印加する方法である こ とを特徵とする 請求項 1 3記載の リ ン酸塩化成処理方法。 1. The electrolytic treatment is a method of applying a current. 14. The phosphoric acid conversion treatment method according to claim 13.
1 5 . 化成処理浴の有する酸化還元電位が 2 5 0 - 6 5 0 m V (銀一 塩化銀電極電位) の範囲にある こ とを特徴とする請求項 1 3 記載の リ ン酸塩化成処理方法。  15. The phosphate chemical conversion according to claim 13, wherein the oxidation-reduction potential of the chemical conversion treatment bath is in the range of 250-650 mV (silver-silver chloride electrode potential). Processing method.
1 6 . リ ン酸イオ ン、 硝酸イ オ ン、 化成皮膜形成金属イ オ ンおよび酸 化剤を含む リ ン酸塩化成処理浴に鉄鋼、 銅、 アル ミ 材の少な く と も一 つを接触させ、 被膜形成反応を生じさせる こ と によ っ て、 該金属表面 に リ ン酸塩化成皮膜を形成する方法であって、 16. At least one of steel, copper, and aluminum is added to a phosphatization bath containing ion phosphate, ion nitrate, conversion film forming metal ion, and an oxidizing agent. A method of forming a phosphoric acid conversion coating film on the metal surface by causing the film to undergo a film forming reaction.
前記リ ン酸塩化成処理浴中の リ ン酸塩化成^理 (皮膜形成) 反応を' 、 前記金属表面のみで相転移を伴う前記金属表面の固梠 -液相間電気 化学 (酸化—還元) 反応と前記リ ン酸塩化成処理浴中で相転移を伴わ ない液相一液相間の電気化学反応のみとする こ とを特徴とする リ ン酸 塩化成処理方法。  The phosphoric acid conversion treatment (film formation) reaction in the phosphoric acid conversion treatment bath is performed by a solid-liquid interphase electrochemical (oxidation-reduction) on the metal surface accompanied by a phase transition only on the metal surface. ) A phosphoric acid conversion treatment method characterized in that only a reaction and an electrochemical reaction between a liquid phase and a liquid phase without phase transition in the phosphoric acid conversion treatment bath.
PCT/JP1993/000593 1992-04-30 1993-04-30 Phosphating process WO1993022481A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU42719/93A AU663599B2 (en) 1992-04-30 1993-04-30 Phosphating process
CA002112592A CA2112592C (en) 1992-04-30 1993-04-30 Phosphate chemical treatment method
EP93911970A EP0597131B1 (en) 1992-04-30 1993-04-30 Phosphating process
KR1019930704062A KR100261953B1 (en) 1992-04-30 1993-04-30 Phosphating process
DE69316160T DE69316160T2 (en) 1992-04-30 1993-04-30 PHOSPHATION PROCEDURE
JP5518742A JP3060537B2 (en) 1992-04-30 1993-04-30 Phosphate conversion treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP13783392A JPH05306497A (en) 1992-04-30 1992-04-30 Phophatizing chemical conversion treatment
JP4/137833 1992-04-30

Publications (1)

Publication Number Publication Date
WO1993022481A1 true WO1993022481A1 (en) 1993-11-11

Family

ID=15207902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000593 WO1993022481A1 (en) 1992-04-30 1993-04-30 Phosphating process

Country Status (7)

Country Link
EP (1) EP0597131B1 (en)
JP (2) JPH05306497A (en)
KR (1) KR100261953B1 (en)
AU (1) AU663599B2 (en)
CA (1) CA2112592C (en)
DE (1) DE69316160T2 (en)
WO (1) WO1993022481A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000036191A1 (en) * 1998-12-17 2000-06-22 Denso Corporation Electrolytic phosphating process and composite coating formed on steel surface
JP2002322593A (en) * 2001-02-23 2002-11-08 Denso Corp Electrolytic phosphate chemical conversion treatment method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7704562B2 (en) * 2006-08-14 2010-04-27 Cordani Jr John L Process for improving the adhesion of polymeric materials to metal surfaces
DE102013220043A1 (en) * 2013-10-02 2015-04-02 Robert Bosch Gmbh Stator laminated core and method for coating a laminated stator core
JP6274556B2 (en) * 2013-12-03 2018-02-07 スズキ株式会社 Electrolytic plating method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468481A (en) 1987-08-19 1989-03-14 Metallgesellschaft Ag Phosphate treatment of metal
JPH02153098A (en) * 1988-12-05 1990-06-12 Toshiyuki Ota Phosphating method
JPH02190478A (en) 1988-11-25 1990-07-26 Metallges Ag Formation of phosphate film
JPH0336296A (en) 1989-06-29 1991-02-15 Nippon Parkerizing Co Ltd Surface treatment of stainless steel
JPH04120294A (en) 1990-09-11 1992-04-21 Toyota Motor Corp Method for undercoating treatment for stainless steel
JPH04268096A (en) * 1991-02-22 1992-09-24 Nippon Paint Co Ltd Formation of chemical conversion film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043491A (en) * 1983-08-19 1985-03-08 Nippon Denso Co Ltd Formation of phosphate film on iron and steel surfaces
JP2739864B2 (en) * 1991-05-01 1998-04-15 株式会社デンソー Phosphate conversion treatment method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468481A (en) 1987-08-19 1989-03-14 Metallgesellschaft Ag Phosphate treatment of metal
JPH02190478A (en) 1988-11-25 1990-07-26 Metallges Ag Formation of phosphate film
JPH02153098A (en) * 1988-12-05 1990-06-12 Toshiyuki Ota Phosphating method
JPH0336296A (en) 1989-06-29 1991-02-15 Nippon Parkerizing Co Ltd Surface treatment of stainless steel
JPH04120294A (en) 1990-09-11 1992-04-21 Toyota Motor Corp Method for undercoating treatment for stainless steel
JPH04268096A (en) * 1991-02-22 1992-09-24 Nippon Paint Co Ltd Formation of chemical conversion film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0597131A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000036191A1 (en) * 1998-12-17 2000-06-22 Denso Corporation Electrolytic phosphating process and composite coating formed on steel surface
JP2002322593A (en) * 2001-02-23 2002-11-08 Denso Corp Electrolytic phosphate chemical conversion treatment method

Also Published As

Publication number Publication date
AU663599B2 (en) 1995-10-12
EP0597131A4 (en) 1995-01-25
EP0597131A1 (en) 1994-05-18
CA2112592A1 (en) 1993-11-11
EP0597131B1 (en) 1998-01-07
CA2112592C (en) 2002-05-21
JP3060537B2 (en) 2000-07-10
DE69316160D1 (en) 1998-02-12
AU4271993A (en) 1993-11-29
DE69316160T2 (en) 1998-08-06
KR100261953B1 (en) 2000-07-15
JPH05306497A (en) 1993-11-19

Similar Documents

Publication Publication Date Title
Wang et al. Electrodeposition mechanism and characterization of Ni–Cu alloy coatings from a eutectic-based ionic liquid
JP4419905B2 (en) Electrolytic phosphate chemical treatment method
TWI297041B (en) Method for treating the surface of magnesium or magnesium alloy
JPS6121317B2 (en)
Smirnova et al. Study of anode processes during development of the new complex thiocarbamide-citrate copper plating electrolyte
US5645706A (en) Phosphate chemical treatment method
KR100695999B1 (en) Anodizing method for matal surface using high-frequency pluse
JPS6270592A (en) Aluminum electroplating bath and plating method by said plating bath
WO1993022481A1 (en) Phosphating process
JP2002322593A (en) Electrolytic phosphate chemical conversion treatment method
JPS6270593A (en) Aluminum electroplating bath and plating method by said plating bath
JPH09195083A (en) Tin halide composition and electroplating method
US7422629B1 (en) Nonsludging zinc phosphating composition and process
KR100400522B1 (en) Electrolytic phosphating process and composite coating formed on steel surface
JP3678096B2 (en) Electrolytic phosphate chemical treatment method and method for forming composite film formed on steel surface
JP2014224280A (en) Composition for phosphate chemical-conversion treatment bath and method for forming phosphate chemical-conversion film
JPH0240751B2 (en)
JP2000511594A (en) Method for pickling alloy products in the absence of nitric acid, method for recovering waste liquid from pickling, and apparatus therefor
EP0244417B1 (en) Method for pickling iron or steel objects
KR102350114B1 (en) Eco-friendly aluminum electrolytic chromate treatment method
JP4475057B2 (en) Surface-treated metal material and manufacturing method thereof
WO2021099556A1 (en) An electrolytic treatment device for preparing plastic parts to be metallized and a method for etching plastic parts
JP2000282296A (en) Steel sheet for coating excellent in hydrogen brittleness resistance and corrosion resistance and its production
JPH0220720B2 (en)
JP2020153013A (en) Film formation method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019930704062

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1993911970

Country of ref document: EP

Ref document number: 2112592

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1993911970

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1994 175416

Country of ref document: US

Date of ref document: 19940809

Kind code of ref document: A

WWG Wipo information: grant in national office

Ref document number: 1993911970

Country of ref document: EP