WO1993021387A1 - Pavement, pavement material and method of manufacturing same - Google Patents
Pavement, pavement material and method of manufacturing same Download PDFInfo
- Publication number
- WO1993021387A1 WO1993021387A1 PCT/JP1993/000282 JP9300282W WO9321387A1 WO 1993021387 A1 WO1993021387 A1 WO 1993021387A1 JP 9300282 W JP9300282 W JP 9300282W WO 9321387 A1 WO9321387 A1 WO 9321387A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pavement
- thermoplastic resin
- resin powder
- aggregate
- pavement material
- Prior art date
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C7/00—Coherent pavings made in situ
- E01C7/08—Coherent pavings made in situ made of road-metal and binders
- E01C7/30—Coherent pavings made in situ made of road-metal and binders of road-metal and other binders, e.g. synthetic material, i.e. resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C67/00—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
- B29C67/24—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
- B29C67/242—Moulding mineral aggregates bonded with resin, e.g. resin concrete
- B29C67/243—Moulding mineral aggregates bonded with resin, e.g. resin concrete for making articles of definite length
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C13/00—Pavings or foundations specially adapted for playgrounds or sports grounds; Drainage, irrigation or heating of sports grounds
- E01C13/06—Pavings made in situ, e.g. for sand grounds, clay courts E01C13/003
- E01C13/065—Pavings made in situ, e.g. for sand grounds, clay courts E01C13/003 at least one in situ layer consisting of or including bitumen, rubber or plastics
Definitions
- the present invention relates to a pavement used for athletic fields, parks, roads, and the like, in which a large number of aggregates are bonded by a resin, and a pavement material having a predetermined shape such as a block shape or a sheet shape that constitutes the pavement. It relates to a manufacturing method.
- the above-mentioned pavement is prepared by applying a mixture obtained by mixing a hard aggregate such as natural stone or an elastic soft aggregate such as a rubber chip with a liquid curable resin to a construction site, In addition to being cured by the so-called on-site construction method, the mixture is poured into a mold at the factory, and the pavement material having a predetermined shape such as a block shape or a sheet shape obtained by curing the curable resin is used. A method of laying at the construction site and performing construction is also being implemented.
- the conventional pavement using a curable resin has the following various problems in any of the above cases.
- Hot pressing is performed to accelerate the curing reaction of the curable resin, and the pressing time is the biggest factor that affects productivity. Is wearing. Hot pressing can greatly reduce the curing reaction time compared to curing at room temperature, but it still takes a relatively long time to complete the curing reaction, thus improving productivity. However, the effect is still insufficient.
- the viscosity of the curable resin decreases due to the heating at that time, which makes the curable resin easier to flow and accumulates at the lower part, so that the cured product of the curable resin is more in the lower part and less in the upper part. There is also a problem of uneven pavement.
- heat presses require large-scale equipment, which is problematic in terms of equipment costs.
- the curable resin contains a curing agent, a frame, an organic solvent, etc., it has a strong toxicity and a bad smell, and is harmful to worker's health.
- the curable resin at present is a one-part moisture-curable urethane prepolymer made from, for example, toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), etc.
- TDI toluene diisocyanate
- MDI diphenylmethane diisocyanate
- this material is yellowed or brittle when exposed to light, has poor weather resistance, and can only provide a cured product with insufficient elasticity and flexibility.
- An object of the present invention is to provide a novel pavement and a pavement material that does not use a curable resin having various problems as described above, and to provide an efficient production method thereof.
- a large number of aggregates are bonded by a heated melt of a thermoplastic resin powder mixed with the aggregates.
- the method for producing a pavement according to the present invention further comprises the steps of: heating a mixture of the aggregate and a thermoplastic resin powder in an amount sufficient to bond the aggregate during heating and melting to melt the thermoplastic resin powder; The mixture is cooled to form the pavement.
- the pavement material of the present invention is a material in which a large number of aggregates are combined with a heated melt of a thermoplastic resin powder mixed with the aggregates and formed into a predetermined shape.
- a mold is filled with a mixture of an aggregate and a thermoplastic resin powder in an amount sufficient to bind the aggregate at the time of heating and melting. After melting the fat powder, the molten mixture is subjected to cold press molding to produce the pavement material.
- the pavement material and the production method thereof of the present invention since the thermoplastic resin powder is used for bonding the aggregate, the pot life is not restricted as in the case of the curable resin, and the thermoplastic resin powder is not used. Long-term storage is possible in a state in which and aggregate are mixed. In addition, since this mixture does not stick to the device or the like unlike the curable resin and has no effect, the cleaning of the device and the like is hardly performed. Moreover, since the thermoplastic resin can be melted again only by heating, the workability is excellent, such as extension of work time and easy modification after construction. In addition, even if the bonding of the aggregates in the primary molding is incomplete, it can be re-bonded by reheating, and if any part is damaged, it can be repaired only by applying heat with a trowel or the like.
- thermoplastic resin is immediately solidified when cooled to a temperature below the melting point and exhibits a predetermined strength, so that curing and the like are not required, and there is an advantage that forcible cooling can shorten the manufacturing time. . Considering time and temperature, there is no unevenness of the binder above and below as in the case of the curable resin.
- Thermoplastic resins are safe because they do not contain harmful components such as hardeners.They also solidify by a physical phase change from a liquid phase to a solid phase without a complicated curing reaction. It is possible to obtain pavements and pavement materials that always have a certain strength without being affected.
- thermoplastic resin it has higher elasticity than the cured product of curable resin. , Flexibility and weather resistance can be ensured, and the above-mentioned properties can be further improved by blending various additives such as a plasticizer and a stabilizer.
- the thermoplastic resin powder and the aggregate can be uniformly mixed by applying vibration without using a powerful mixer such as a rotary mixer or a universal mixer, and can be separated even if left in a mixed state Therefore, it is possible to obtain a pavement and a pavement material in which the aggregate is uniformly dispersed.
- the pavement material of the present invention can be used for pavement simply by laying the pavement material manufactured at the factory in the field, and the advantage that the on-site construction can be further simplified.o
- the molten mixture of the aggregate and the thermoplastic resin powder is forcibly cooled by a cooling press, and thus is manufactured in comparison with the case where the molten mixture is naturally cooled. You can save time. In addition, since the time for the cooling press is considerably shorter than that for the above-described hot press for curing the thermosetting resin, the productivity can be significantly improved as compared with the conventional case.
- the cooling press does not require a large-scale facility such as a hot press, and may have a simple configuration such as passing cooling water through a press die. Therefore, the equipment for pavement material production only requires a cooling press and a freshening stage for melting the thermoplastic resin powder, and has the advantage that it can be produced with simple equipment.
- the mixture of the liquid curable resin and the aggregate is highly viscous and must be manually poured into the mold as described above.However, the mixture of the thermoplastic resin powder and the aggregate has no viscosity at all, and is granular. Easy to pour into mold. Therefore, the pouring into the mold can be automated, and the production of paved forest can be made more efficient.
- FIG. 1 (a) is an anti-large cross-sectional view showing a mixture of aggregate and thermoplastic resin powder used in the pavement and the method for producing a pavement material of the present invention
- FIG. It is an expanded sectional view which shows the structure of the pavement and pavement material of the present invention obtained by heating.
- FIG. 2 is a diagram illustrating a step of heating and melting a mixture in the steps of the method for producing a pavement material of the present invention.
- FIG. 3 shows the cooling press step of the molten mixture among the steps of the pavement material manufacturing method of the present invention.
- FIG. 4 is a plan view showing a dumbbell-shaped sample prepared for measuring tensile strength and elongation in the example of the pavement material of the present invention.
- FIG. 5 is a graph showing the weather resistance of the pavement material of the present invention and the pavement material according to the ozone deterioration test evaluated by color difference.
- the pavement of the present invention is formed by joining a large number of aggregates R, R ... with a heated melt M of a thermoplastic resin.
- the pavement is heated by heating a mixture of a large number of aggregates R, R ... and thermoplastic resin powders m, m ... Are produced by the production method of the present invention.
- the heating of the mixture can be performed under pressure, if necessary.
- the mixture is heated under pressure, not only can the pavement with low porosity and high density be obtained, but also the porosity and density of the pavement can be controlled by adjusting the pressing force. You can do it.
- the pavement after heating may be forcibly cooled as described above, and in this case, the production time can be further reduced.
- the pavement is applied to the site by spraying a mixture of aggregate and thermoplastic resin powder on the surface of the concrete pavement, asphalt pavement, etc., at the site, through a primer layer, etc., if necessary.
- a direct construction method such as a method of heating using a panel or a method of flattening a pre-heated mixture, followed by compaction, can be adopted, but it is manufactured in a factory or the like according to the method for manufacturing a pavement material of the present invention.
- An indirect construction method of laying the block-like or sheet-like pavement material on the site is more preferably employed.
- a method for manufacturing a pavement material first, as shown in FIG. 2, a mixture 2 obtained by mixing an aggregate and a thermoplastic resin powder is filled in a primary mold 1.
- both the aggregate and the thermoplastic resin powder are solid, even if a strong stirrer such as a universal stirrer is not used, both can be placed in a container such as a washbasin and vibrated by hand. It can be mixed well and the aggregate can be sufficiently dusted with thermoplastic resin powder When filling the primary form with the mixture, the form should be vibrated to ensure uniform charging.
- the primary mold 1 filled with the mixture 2 is placed in an oven 3 ⁇ and heated to melt the thermoplastic resin powder.
- the temperature and time of the fii heat are not particularly limited in the present invention. However, if the heating temperature is too low, the viscosity of the molten resin is so high that it may not reach the entire aggregate, and if the heating temperature is too high, the resin and the aggregate may be decomposed. Also, if the heating time is too short, the molten resin may not spread throughout the aggregate, and if the heating time is too long, the resin and the aggregate may be decomposed. Therefore, it is desirable to set the heating temperature and the heating time to an optimum range that does not cause the above-described problems according to the type of the thermoplastic resin to be used.
- the primary mold 1 taken out of the oven 3 was immediately melted by heating and melting the thermoplastic resin powder and the molten mixture 2 ′ spread over the entire aggregate, and a pair of upper and lower secondary molds was used.
- Pavement material B is obtained by setting the frames 4 1 and 4 2 and cooling and pressing the molten mixture 2 ′ sufficiently.
- the primary form 1 is formed of a material having a small heat capacity and a large heat transfer
- the niches 4 1 and 4 2 are formed of a material that easily absorbs heat. Good to do.
- pavement villages manufactured by the construction method may be used in the form of blocks, directly or bonded to the surface of concrete block, etc., on concrete pavement, asphalt pavement, gravel, etc. at the construction site. It is laid. The sheet-like pavement material is adhered to the surface of concrete pavement, asphalt pavement, or the like via a primer layer or the like as necessary.
- the aggregate various types of conventionally known soft and hard aggregates are used.
- the soft aggregate include rubber chips, urethane chips, waste tire rubber chips, and colloidal particles having a particle size of about 0.05 to 30 quakes and pulverized into granules or strings (hidden shapes).
- Various types of elastic soft aggregates such as wood chips and soft waste plastic chips can be used.
- the hardness of the soft aggregate is not particularly limited, but is preferably 70 or less in JISA hardness in order to secure the elasticity of the pavement.
- Hard aggregates include, for example, natural stone, wood chips, knollemi chips, bamboo scraps, shells, ceramic particles, hard plastic particles, hard plastic crushed materials, etc. Zero or more hard particles are preferably used. Hard aggregates, such as natural stones, that are difficult to mix with the thermoplastic resin powder are preferably used after being surface-treated with, for example, an epoxy resin, but can be used as they are.
- thermoplastic resin powder a conventionally known thermoplastic resin powder, particularly, a thermoplastic resin powder having a melting point of 60 to 200 and an average particle diameter of 10 mesh or less is used. .
- soft materials having excellent weather resistance and water resistance are preferable.
- the melting point of the thermoplastic resin powder is less than 60 ° C, the thermoplastic resin in the completed pavement may be re-melted by the heat of direct sunlight, especially in summer, and the pavement may be deformed. If the temperature exceeds 200 ° C, melting of the thermoplastic resin powder during construction becomes difficult, and aggregate heat, especially aggregates with rubber-like elasticity or hard bone made of hard plastic, is generated by the heat of melting. The material may be deteriorated.
- thermoplastic resin has a vicat softening point of 40 ° C. or higher because it prevents the thermoplastic resin from being re-melted by direct sunlight or the like to deform the pavement.
- thermoplastic resin powder preferably has an average particle size of 10 mesh or less for the following reasons. .
- thermoplastic resin powder exceeds 10 mesh, if the aggregate is not mixed in a state of being heated and melted to a certain extent, the joint between the aggregates is poor and the aggregate becomes very brittle. For this reason, it is necessary to preheat and mix before molding or construction with large equipment such as a heating and mixing device.
- the average particle size of the thermoplastic resin powder is 10 mesh or less, the pavement with good strength and good connection between the aggregates can be obtained without preheating and mixing. . Therefore, there is no need for a large machine such as a heating and mixing device, and the aggregate can be easily mixed, which is advantageous in manufacturing. In addition, if facilities for preheating and mixing such as a heating and mixing device can be used in a factory or the like, there is no limitation on the average particle size of the thermoplastic resin powder.
- thermoplastic resin powders include poly (meth) acrylates such as ethyl methyl acrylate (EMA), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVA), polyurethane, and ethylene monoacetic acid. Powders of soft thermoplastic resins such as vinyl copolymer (EVA) and ethylene-ethyl acrylate copolymer (E EA), butadiene rubber, ethylene-propylene rubber (EPM), ethylene copolymer Thermoplastic rubber powders such as propylene-one rubber (E PDM), styrene butagen rubber (SBR :), nitrile rubber (NBR), olefin rubber, and polyester rubber can also be used.
- E PDM propylene-one rubber
- SBR styrene butagen rubber
- NBR nitrile rubber
- olefin rubber olefin rubber
- polyester rubber can also be used.
- the blending amount of the thermoplastic resin powder is not particularly limited, and is preferably in the range of 3 to 50% by volume based on the total amount of the aggregate.
- the pavement strength may be insufficient. Conversely, if the blending ratio exceeds 50% by volume, the surface of the pavement becomes a layer of thermoplastic resin. In addition, the function of the aggregate to prevent slippage and shock absorption is reduced, and the appearance of the pavement may be impaired.
- a pavement having water permeability can be formed by adjusting the blending ratio of the thermoplastic resin powder to a smaller value within the above range.
- the porosity of the formed pavement is preferably 10 to 40%. If the porosity of the pavement is less than 10%, the water permeability may be insufficient. Conversely, if the porosity exceeds 40%, the strength of the pavement decreases.
- thermoplastic resin powder it is desirable to select a combination of the aggregate and the thermoplastic resin powder in accordance with the characteristics of the pavement to be produced, etc., and in particular, the chemical compatibility of the two.
- ethylene-propylene-gen rubber chips are used as the aggregate, they have the same methylene main chain as the thermoplastic resin powder, and easily adhere to the surface of the aggregate during mixing, and are mixed uniformly.
- the pavement of the present invention uses the thermoplastic resin powder for bonding the aggregate, Eliminates problems when using resin, has uniform strength without fluctuations due to working conditions and climatic conditions during construction, and has excellent weather resistance, elasticity, flexibility, and modification after construction, etc. Since it has excellent characteristics that it is easy, it can be suitably used for pavement such as playgrounds, parks, and roads.
- the pavement material of the present invention can be paved simply by laying a large amount of pavement material on site at the site, the on-site operation can be further simplified.
- the molten mixture of the aggregate and the thermoplastic resin powder is forcibly cooled by the cooling press, so that the productivity can be significantly improved as compared with the conventional method.
- Ethylene-propylene-gen rubber chips (average particle size: 2.5 g, Sumitomo Rubber Industries, Inc. product name “Grip Coat GO Chip”): 300 g, ethylene vinyl acetate acetate copolymer powder (average particle size) 40 mesh, a vinyl acetate content of 25% by weight, and a melt flow rate of 3 g / 1 O min) were introduced into the pad, and the pad was shaken by hand to mix for 1 minute. The resulting mixture is a homogeneous mixture of ethylene-propylene-gengom chips and ethylene-vinyl acetate copolymer powder.
- Example 1 The sheet-like pavement material obtained in Example 1 and Comparative Example 1 was punched into a dumbbell shape, and was subjected to a method similar to the bow filling test described in JIS K6301 for 24 hours immediately after molding and up to 72 hours after molding. each was measured tensile strength T B CkgfZcm 2] and elongation E B (%).
- the length L of the parallel part and the distance L between the marked lines. A dumbbell-shaped sample of 40 thighs was attached to the test specimen grip of the tensile tester, and when pulled at a pulling speed of 500 ⁇ 25 Zmin, the maximum load until cutting F B Ckgf ⁇ N ⁇ ] Was read, and the tensile strength T B Ckgf cm 2 ] was calculated from the numerical value and the cross-sectional area A (cm 2 ) of the test piece by the following equation.
- Table 1 shows the results.
- Comparative Example 1 From the results in Table 1, in Comparative Example 1, the tensile strength is at markedly properly lower stage immediately after molding, rose finally to 7. 0 kf / cm 2 by curing for 4 beta time, its been more high I knew it wouldn't. The elongation rate remained at a low level from immediately after molding to 72 hours later. From this, it was found that Comparative Example 1 using a curable resin requires a long curing time after molding and cannot obtain a pavement having excellent elasticity and the like.
- Example 1 it was found that both the tensile strength and the elongation showed high values immediately after molding, and that the values of the tensile strength did not change with the passage of time thereafter.
- An aggregate having the composition shown in Table 2 below and EVA powder (Frick MK210, trade name, manufactured by Sumitomo Seika Co., Ltd.) as a thermoplastic resin powder are charged into a mixing vessel, and the vessel is vibrated. To produce a homogeneous mixture.
- the soft aggregate in Table 2 is EP DM rubber chip (Grip coat GO chip manufactured by Sumitomo Rubber Industries, Ltd.), and the hard bone is natural stone (trade name, manufactured by Sumitomo Rubber Industries, Ltd.). Bean jam) was used.
- the above mixture 2 is filled into a primary formwork 1 of 130 bandages, 130 thighs, and a depth of 100, and the mold 1 is vibrated to uniformly mix After that, 180 per formwork. It was placed in oven 3 heated to C and heated for 15 minutes.
- the above-mentioned primary form 1 is taken out of the oven 3 together with the molten mixture 2 ′, and as shown in FIG. 3, a pair of well-cooled secondary forms 41 and 42 (50 kg of the upper secondary form 41). Then, the sheet was cooled and pressed under the condition of a press pressure of 0.3 kgZcm 2 for 10 minutes to obtain a sheet-like paving material B.
- the sheet-shaped pavement material obtained in the above Examples and Comparative Examples was punched out into a dumbbell shape, and immediately after molding and up to 72 hours after molding, according to the above-described tensile test described in JISK 6301.
- the tensile strength [kg f Zcm 2 ] and the elongation (%) were measured every 24 hours.
- Ease of preparation The mixture of Comparative Example 2 shows a muddy state and is difficult to be prepared in a mold.
- the mixtures of Examples 2 to 4 are smooth and powdery and easy to ttii.
- Charging time charging the same amount of mixture in the same charging container into the mold The time to end was measured.
- Example 24 measured the time required to cool the molten mixture to room temperature
- Comparative Example 2 measured the time required for the MDI one-part moisture-curable polyurethane resin to heat and cure sufficiently. It was measured.
- Comparative Example 2 needs to be cured for about 48 hours to obtain sufficient strength even after curing, whereas Example 24 does not require curing.
- Comparative Example 2 is toxic because it uses MD I one-part moisture-curable polyurethane resin.
- Example 24 is non-toxic because it contains no toxic components.
- Example 2 9. 7 9 6 5 points 4 points 9 points Comparative example 2 7. 0 5 h 9. div. 2 div. 4 div. Dragon example 3 6. 0 5 0 5 div. 4 div. 9 div. 0 5 fortune 4 fortune 9
- Example 2 had better workability than Comparative Example 2 and could be manufactured in a short time. Also, from the results of Example 2 and Comparative Example 2 using the same soft aggregate, it was found that Example 2 had high bow strength and high elongation.
- Example 2 and Comparative Example 2 using the same soft aggregate were degraded with ozone using Sunshine Weather-Ome overnight, and the degree of discoloration over time was measured using a colorimeter (Minolta Co., Ltd.).
- the evaluation was made based on the color difference ⁇ ⁇ ⁇ * ab, which is the amount of change in the color value (L * a * b *) measured by CR310, manufactured by the company.
- the larger the color difference ⁇ * ab the greater the degree of discoloration, indicating that the deterioration progressed faster.
- Fig. 5 shows the results.
- Example 2 has better weather resistance than Comparative Example 2.
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Ceramic Engineering (AREA)
- Mechanical Engineering (AREA)
- Road Paving Structures (AREA)
Abstract
The present invention relates to a pavement, wherein a multitude of aggregates are joined together by a heated melt made of thermoplastic resin powder, a pavement material and a method of manufacturing the same. Since the thermoplastic resin powder has no limited pot life, and is not influenced by working conditions and weather conditions during the execution of work, the uniform strength can be displayed. Moreover, the thermoplastic resin powder is excellent in weather resistance, elasticity and flexibility. For this reason, the pavement according to the present invention is preferably used for the pavement of a playground, park, road and so forth. Furthermore, improvement after the execution of work is easily performed. Further, according to the manufacturing method of the present invention, the above-described pavement can be manufactured easily and efficiently.
Description
明 細 書 Specification
舗装、 舗装材およびこれらの製造方法 Pavement, pavement material and production method thereof
ぐ技術分野 > Technical field>
本発明は、 運動場、 公園、 道路等に利用される、 多数の骨材が樹脂によって結 合された舗装、 および当該舗装を構成するブロック状あるいはシート状等の所定 形状の舗装材と、 これらの製造方法に関するものである。 The present invention relates to a pavement used for athletic fields, parks, roads, and the like, in which a large number of aggregates are bonded by a resin, and a pavement material having a predetermined shape such as a block shape or a sheet shape that constitutes the pavement. It relates to a manufacturing method.
<背景技術 > <Background technology>
従来上記舗装は、 自然石等の硬質骨材や、 あるいはゴムチップ等の弾力性のあ る軟質骨材を液状の硬化性樹脂と混合して得られた混合物を、 施工現場に塗布し 、 硬化性樹脂を硬化させる、 いわゆる現場施工方法により施工される他、 工場に おいて上記混合物を型内に流し込み、 硬化性樹脂を硬化させて得たプロック状、 シート状等の所定形状の舗装材を、 施工現場に敷き詰めて施工する方法も実施さ れている。 ところが硬化性樹脂を使用した従来の舗装は、 上記何れの場合にも、 以下のような種々の問題があつた。 Conventionally, the above-mentioned pavement is prepared by applying a mixture obtained by mixing a hard aggregate such as natural stone or an elastic soft aggregate such as a rubber chip with a liquid curable resin to a construction site, In addition to being cured by the so-called on-site construction method, the mixture is poured into a mold at the factory, and the pavement material having a predetermined shape such as a block shape or a sheet shape obtained by curing the curable resin is used. A method of laying at the construction site and performing construction is also being implemented. However, the conventional pavement using a curable resin has the following various problems in any of the above cases.
1) 硬化性樹脂は、 硬化反応の開始から反応が進行して流動性が失われるまでの 時間的な制限、 いわゆるポットライフの制限があるので、 作業性が悪レ、。 すなわ ち硬化性樹脂は、 硬化剤を配合したり、 硬化を促進する湿気、 熱等を加えたりす ると直ちに硬化反応が開始されるので、 混合状態での長期の保存が不可能である '。 また、 液状の硬化性棚旨が、 その混合や施工等に使用した装置や器具等にへば りついて硬化するため、 これら装置類の頻繁な洗浄が必要となる。 さらに、 硬化 後の修正は不可能に近レ、ので、 硬化反応が進行して流動性が失われる前に全ての 作業を完了しなければならないという問題もある。 1) The curability of the resin is limited from the start of the curing reaction until the reaction progresses and the fluidity is lost. In other words, the curing reaction of a curable resin starts immediately when a curing agent is added or when moisture or heat that promotes curing is added, so that long-term storage in a mixed state is impossible. '. In addition, since the liquid curable shelf sticks to the equipment and utensils used for its mixing and construction, it hardens, and frequent cleaning of these equipment is required. Furthermore, since the correction after curing is almost impossible, there is a problem that all operations must be completed before the curing reaction proceeds and the fluidity is lost.
2) 硬化性樹脂の硬化物は、 所定の強度を得るために硬化後も長期間の養生が必 要で、 その間、 完成した舗装を使用できないので、 とくに現場施工において他の 作業の障害となるおそれがある。 またブロックやシートの場合には、 養生が完了 して所定の強度が得られるまでの間、 製品の移動、 輸送に十分な注意を払わねば ならないため、 生産性の点で問題が生じる。 2) The cured product of the curable resin needs to be cured for a long time after curing in order to obtain the required strength, and during that time, the finished pavement cannot be used. There is a risk. In the case of blocks and sheets, sufficient attention must be paid to the movement and transportation of products until curing is completed and the required strength is obtained, which raises a problem in terms of productivity.
3) 工場でブロックやシートを作製する時、 硬化性樹脂の硬化反応を速めるため に熱プレスが行われており、 そのプレス時間が生産性を左右する最大の要因とな
つている。熱プレスを行えば、 常温で硬化させる場合に比べて硬化反応の時間を 大幅に短縮できるが、 それでも、 硬化反応が完了するまでには比較的長時間を要 するので、 生産性向上の点で、 いま一つ効果が不十分である。 また熱プレスを行 うと、 その際の加熱によって硬化性樹脂の粘度が低くなつて流れ易くなり、 下の 方に溜まるので、 硬化性樹脂の硬化物が下の方に多く上の方に少なレ、不垮一な舗 装になるという問題もある。 しかも、 熱プレスには大掛かりな設備が必要である ため、 設備費の点でも問題がある。 3) When making blocks and sheets in factories, hot pressing is performed to accelerate the curing reaction of the curable resin, and the pressing time is the biggest factor that affects productivity. Is wearing. Hot pressing can greatly reduce the curing reaction time compared to curing at room temperature, but it still takes a relatively long time to complete the curing reaction, thus improving productivity. However, the effect is still insufficient. In addition, when hot pressing is performed, the viscosity of the curable resin decreases due to the heating at that time, which makes the curable resin easier to flow and accumulates at the lower part, so that the cured product of the curable resin is more in the lower part and less in the upper part. There is also a problem of uneven pavement. In addition, heat presses require large-scale equipment, which is problematic in terms of equipment costs.
4) 硬化性樹脂の硬化物は、 再度流動状態になることがない上、 他の材料との相 溶性が悪いので、 手直しや破損箇所の修復等ができない。 また、 修復できたとし ても、 新たに骨材等を追加することになるので、 その部分だけ色違いになって目 立つという問題もある。 4) The cured product of the curable resin does not flow again and has poor compatibility with other materials, so it is not possible to repair it or repair damaged parts. In addition, even if it can be repaired, there is a problem that the aggregate will be newly added, and only that part will be different color and stand out.
5) 硬化性樹脂は、 硬化剤、 架欄、 有機溶媒等を含むので、 毒性や悪臭が強く 、 作業者の健康にとって有害である。 5) Since the curable resin contains a curing agent, a frame, an organic solvent, etc., it has a strong toxicity and a bad smell, and is harmful to worker's health.
6) 硬化性樹脂は、 条件によって硬化反応の程度に差が生じるため、 混合、 攪拌 、 施工、 «等の ί«条件、 あるいは、 施工、 成形、 養生の際の、 気温、 湿度等 の気候条件によって、 舗装の強度が大きくばらついてしま; 5おそれがある。 6) The degree of curing reaction of curable resin varies depending on the conditions. Therefore, mixing, stirring, construction, «, etc., or climatic conditions such as temperature, humidity, etc. during construction, molding, curing, etc. Depending on the strength of the pavement can vary greatly;
7) 現状の硬化性樹脂は、 例えばトルエンジイソシァネート (TD I ) 、 ジフエ ニルメタンジイソシァネート (MD I )等を原料とした、 一液湿気硬化型ウレタ ンプレポリマーであるが、 このものは、 光によって黄変したり脆くなつたりしゃ すく耐候性に劣る上、 弾力性、 柔軟性も不十分な硬化物しか得られないものが多 い。 7) The curable resin at present is a one-part moisture-curable urethane prepolymer made from, for example, toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), etc. In many cases, this material is yellowed or brittle when exposed to light, has poor weather resistance, and can only provide a cured product with insufficient elasticity and flexibility.
8) 固体の骨材と液状の硬化性樹脂とは、 均一に攪拌するのが難しく、 施工され た舗装中に、 骨材の多レ、部分と少ない部分ができてしまうおそれがある。 また、 骨材と硬化性樹脂との混合物は粘性の高い泥状を呈するので、 とくに工場でプロ ックゃシートを作製する時、 型に流し込む作業を自動化するのが困難で、 手作業 によらねばならないという問題もある。 8) It is difficult to stir uniformly the solid aggregate and the liquid curable resin, and there is a possibility that many or few aggregates may be formed in the pavement. In addition, since the mixture of the aggregate and the curable resin has a highly viscous muddy shape, it is difficult to automate the work of pouring the mold into a mold, especially when manufacturing a block sheet at a factory. There is also the problem that it must be done.
本 明の目的は、 上記のように種々の問題を有する硬化性樹脂を使用しない新 親な舗装および舗装材と、 これらの効率的な製造方法を提供することである。 〈発明の開示〉
本発明の舗装は、 多数の骨材が、 当該骨材と混合された熱可塑性樹脂粉末の加 熱溶融物により結合されたものである。 An object of the present invention is to provide a novel pavement and a pavement material that does not use a curable resin having various problems as described above, and to provide an efficient production method thereof. <Disclosure of the Invention> In the pavement of the present invention, a large number of aggregates are bonded by a heated melt of a thermoplastic resin powder mixed with the aggregates.
また本発明の舗装の製造方法は、 骨材と、 加熱溶融時に当該骨材を結合するに 足る量の熱可塑性樹脂粉末との混合物を加熱して熱可塑性樹脂粉末を溶融させた 後、 この溶融混合物を冷却して、 上記舗装を形成するものである。 The method for producing a pavement according to the present invention further comprises the steps of: heating a mixture of the aggregate and a thermoplastic resin powder in an amount sufficient to bond the aggregate during heating and melting to melt the thermoplastic resin powder; The mixture is cooled to form the pavement.
また本発明の舗装材は、 多数の骨材が、 当該骨材と混合された熱可塑性樹脂粉 末の加熱溶融物により結合され、 かつ所定の形状に成形されたものである。 さらに本発明の舗装材の製造方法は、 骨材と、 加熱溶融時に当該骨材を結合す るに足る量の熱可塑性樹脂粉末との混合物を型枠に充塡し、 加熱して熱可塑性樹 脂粉末を溶融させた後、 この溶融混合物を冷却プレス成形して、 上記舗装材を製 造するものである。 Further, the pavement material of the present invention is a material in which a large number of aggregates are combined with a heated melt of a thermoplastic resin powder mixed with the aggregates and formed into a predetermined shape. Further, in the method for producing a pavement material of the present invention, a mold is filled with a mixture of an aggregate and a thermoplastic resin powder in an amount sufficient to bind the aggregate at the time of heating and melting. After melting the fat powder, the molten mixture is subjected to cold press molding to produce the pavement material.
かかる本発明の舗装、 舗装材およびこれらの製造方法によれば、 熱可塑性樹脂 粉末を骨材の結合に使用しているので、 硬化性樹脂のようにポットライフの制限 がなく、熱可塑性樹脂粉末と骨材とを混合した状態で長期の保存が可能である。 またこの混合物は、 硬化性樹脂のように装置等にへばりついて効果することがな いので、 装置等の洗浄の手間がほとんどかからない。 しかも、 熱可塑性樹脂は加 熱するだけで再度溶融できるので、 作業時間の延長や施工後の修正等も容易であ る等、 作業性にすぐれている。 また、 一次成形で骨材の結合が不完全でも、 再加 熱により再結合できる他、 一部が破損した場合には、 コテ等で熱を加えるだけで 、 修復が可能である。 According to the pavement, the pavement material and the production method thereof of the present invention, since the thermoplastic resin powder is used for bonding the aggregate, the pot life is not restricted as in the case of the curable resin, and the thermoplastic resin powder is not used. Long-term storage is possible in a state in which and aggregate are mixed. In addition, since this mixture does not stick to the device or the like unlike the curable resin and has no effect, the cleaning of the device and the like is hardly performed. Moreover, since the thermoplastic resin can be melted again only by heating, the workability is excellent, such as extension of work time and easy modification after construction. In addition, even if the bonding of the aggregates in the primary molding is incomplete, it can be re-bonded by reheating, and if any part is damaged, it can be repaired only by applying heat with a trowel or the like.
さらに、 熱可塑性樹脂は、 融点以下に冷却すれば直ちに固化して所定の強度を 発揮するので、 養生等が不要となる上、 強制的に冷却すれば、 製造時間を短縮で きるという利点もある。 時間と温度を考慮すれば、 硬化性樹脂の時のように、 上 下での結合剤の不均一はおこさない。 Furthermore, the thermoplastic resin is immediately solidified when cooled to a temperature below the melting point and exhibits a predetermined strength, so that curing and the like are not required, and there is an advantage that forcible cooling can shorten the manufacturing time. . Considering time and temperature, there is no unevenness of the binder above and below as in the case of the curable resin.
熱可塑性樹脂は、 硬化剤等の有害成分を含まないので安全性が高い上、 複雑な 硬化反応によらず、 液相から固相への物理的な相変化により固化するので、 周囲 の条件によって左右されることなく、 常に一定の強度を有する舗装や舗装材が得 られる。 Thermoplastic resins are safe because they do not contain harmful components such as hardeners.They also solidify by a physical phase change from a liquid phase to a solid phase without a complicated curing reaction. It is possible to obtain pavements and pavement materials that always have a certain strength without being affected.
熱可塑性樹脂は、 種類を選択すれば、 硬化性樹脂の硬化物に比べて高い弾力性
、 柔軟性、 耐候性を確保することが可能であり、 しかも、 可塑剤や安定剤等の、 種々の添加剤の配合により、 上記各特性を、 さらに向上することもできる。 熱可塑性樹脂粉末と骨材とは、 回転式のミキサ一や万能攪拌機等の強力な攪拌 機を使用しなくても、 振動を与えるだけで均一に混合できる上、 混合状態で放置 しても分離することがないので、 骨材が均一に分散した舗装や舗装材を得ること ができる。 If you select the type of thermoplastic resin, it has higher elasticity than the cured product of curable resin. , Flexibility and weather resistance can be ensured, and the above-mentioned properties can be further improved by blending various additives such as a plasticizer and a stabilizer. The thermoplastic resin powder and the aggregate can be uniformly mixed by applying vibration without using a powerful mixer such as a rotary mixer or a universal mixer, and can be separated even if left in a mixed state Therefore, it is possible to obtain a pavement and a pavement material in which the aggregate is uniformly dispersed.
また本発明の舗装材は、 工場で:^に製造したものを現場に敷き詰めるだけで 舗装を施工できるので、 現場での施工^ mをより一層簡略化できるという利点が める o In addition, the pavement material of the present invention can be used for pavement simply by laying the pavement material manufactured at the factory in the field, and the advantage that the on-site construction can be further simplified.o
さらに本発明の舗装材の製造方法においては、 骨材と熱可塑性樹脂粉末との溶 融混合物を冷却プレスで強制的に冷却してレ、るので、 溶融混合物を自然冷却する 場合に比べて製造時間を短縮できる。 しかも、 上記冷却プレスの時間は、 前述し た、 熱硬化性樹脂を硬化させるための熱プレスに比べてかなりの時間短縮になる ので、 従来よりも生産性を著しく向上できる。 Further, in the method for manufacturing a pavement material of the present invention, the molten mixture of the aggregate and the thermoplastic resin powder is forcibly cooled by a cooling press, and thus is manufactured in comparison with the case where the molten mixture is naturally cooled. You can save time. In addition, since the time for the cooling press is considerably shorter than that for the above-described hot press for curing the thermosetting resin, the productivity can be significantly improved as compared with the conventional case.
また、 上記冷却プレスには熱プレスのような大掛かりな設備が不要で、 プレス 型に冷却水を通す等の簡単な構成でよい。 したがって、 舗装材製造のための設備 は、 冷却プレスと、 熱可塑性樹脂粉末を溶融させるための加鮮段だけでよく、 簡易的な設備で製造できるという利点もある。 The cooling press does not require a large-scale facility such as a hot press, and may have a simple configuration such as passing cooling water through a press die. Therefore, the equipment for pavement material production only requires a cooling press and a freshening stage for melting the thermoplastic resin powder, and has the advantage that it can be produced with simple equipment.
液状の硬化性樹脂と骨材の混合物は、 前記のように粘性が高く手作業で型内に 流し込まねばならないが、 熱可塑性樹脂粉末と骨材との混合物は粘性が全くない 粒状であるため、 型内に流し込むのが容易である。 したがって、 型内への流し込 み«を自動化することも可能で、 舗装林の製造をより一層効率化できる。 く図面の簡単な説明〉 The mixture of the liquid curable resin and the aggregate is highly viscous and must be manually poured into the mold as described above.However, the mixture of the thermoplastic resin powder and the aggregate has no viscosity at all, and is granular. Easy to pour into mold. Therefore, the pouring into the mold can be automated, and the production of paved forest can be made more efficient. Brief description of drawings>
図 1 (a) は、 本発明の舗装および舗装材の製造方法において使用される、 骨材 と熱可塑性樹脂粉末との混合物を示す抗大断面図、 図 1 (b) は、 上記混合物を加 熱して得られた、 本発明の舗装および舗装材の構造を示す拡大断面図である。 図 2は本発明の舗装材の製造方法の工程のうち、 混合物の加熱溶融工程を説明 する図である。 FIG. 1 (a) is an anti-large cross-sectional view showing a mixture of aggregate and thermoplastic resin powder used in the pavement and the method for producing a pavement material of the present invention, and FIG. It is an expanded sectional view which shows the structure of the pavement and pavement material of the present invention obtained by heating. FIG. 2 is a diagram illustrating a step of heating and melting a mixture in the steps of the method for producing a pavement material of the present invention.
図 3は本発明の舗装材の製造方法の工程のうち、 溶融混合物の冷却プレス工程
を説明する図である。 Fig. 3 shows the cooling press step of the molten mixture among the steps of the pavement material manufacturing method of the present invention. FIG.
図 4は本発明の舗装材の実施例において、 引張強度および伸び率測定のために 作製したダンベル状のサンプルを示す平面図である。 FIG. 4 is a plan view showing a dumbbell-shaped sample prepared for measuring tensile strength and elongation in the example of the pavement material of the present invention.
図 5は本発明の舗装材の実施例と比較例のオゾン劣化試験による耐候性を、 色 差によって評価したグラフである。 FIG. 5 is a graph showing the weather resistance of the pavement material of the present invention and the pavement material according to the ozone deterioration test evaluated by color difference.
く発明を実施するための最良の形態〉 BEST MODE FOR CARRYING OUT THE INVENTION>
本発明を、 添付の図面にしたがってより詳細に説明する。 The present invention will be described in more detail with reference to the accompanying drawings.
本発明の舗装は、 図 1 (b) に示すように、 多数の骨材 R, R…が、 熱可塑性樹 脂の加熱溶融物 Mにより結合されることで構成されている。 As shown in FIG. 1 (b), the pavement of the present invention is formed by joining a large number of aggregates R, R ... with a heated melt M of a thermoplastic resin.
上記舗装は、 図 1 (a) に示すように、 多数の骨材 R, R…と熱可塑性樹脂粉末 m, m…とが混合された混合物を加熱して、 当該熱可塑性樹脂粉末 m, m…を溶 融させる、 本発明の製造方法により製造される。 As shown in Fig. 1 (a), the pavement is heated by heating a mixture of a large number of aggregates R, R ... and thermoplastic resin powders m, m ... Are produced by the production method of the present invention.
混合物の加熱は、 必要に応じて加圧下で行うこともできる。 加圧下で混合物の 加熱を行った場合には、 空隙率の小さい、 密度の高い舗装を得ることができるだ けでなく、 加圧力を調整することで、 舗装の空隙率、 密度を制御することもでき る。 さらに、 加熱後の舗装は、 前述したように強制的に冷却しても良く、 この場 合には、 製造時間をより短縮することが可能となる。 The heating of the mixture can be performed under pressure, if necessary. When the mixture is heated under pressure, not only can the pavement with low porosity and high density be obtained, but also the porosity and density of the pavement can be controlled by adjusting the pressing force. You can do it. Further, the pavement after heating may be forcibly cooled as described above, and in this case, the production time can be further reduced.
舗装の現場への施工法としては、 骨材と熱可塑性樹脂粉末との混合物を、 施工 現場のコンクリート舗装、 アスファルト舗装等の表面に、 必要に応じてプライマ 一層等を介して散布したのち、 熱盤等を用いて加熱する方法や、 事前に加熱した 混合物を敷均した後に転圧する方法等の、 直接的な施工法も採用できるが、 工場 等において、 本発明の舗装材の製造方法に従って製造したプロック状またはシ一 ト状の舗装材を現場に敷き詰める間接的な施工法が、 より好ましく採用される。 舗装材の製造方法の具体例としては、 まず図 2に示すように、 骨材と熱可塑性 樹脂粉末とを混合して得られた混合物 2を一次型枠 1内に充塡する。 The pavement is applied to the site by spraying a mixture of aggregate and thermoplastic resin powder on the surface of the concrete pavement, asphalt pavement, etc., at the site, through a primer layer, etc., if necessary. A direct construction method such as a method of heating using a panel or a method of flattening a pre-heated mixture, followed by compaction, can be adopted, but it is manufactured in a factory or the like according to the method for manufacturing a pavement material of the present invention. An indirect construction method of laying the block-like or sheet-like pavement material on the site is more preferably employed. As a specific example of a method for manufacturing a pavement material, first, as shown in FIG. 2, a mixture 2 obtained by mixing an aggregate and a thermoplastic resin powder is filled in a primary mold 1.
骨材と熱可塑性樹脂粉末は共に固体であるため、 万能攪拌機等の強力な攪拌機 を使用しなくても、 両者を、 たとえば洗面器等の容器の中に入れ、 手で振動を与 える程度で十分に混合でき、 骨材に熱可塑性樹脂粉末を十分にまぶすことができ
混合物を一次型枠に充填する際には、 型枠に振動を与えて均一に仕込むように すればょレ、。 Since both the aggregate and the thermoplastic resin powder are solid, even if a strong stirrer such as a universal stirrer is not used, both can be placed in a container such as a washbasin and vibrated by hand. It can be mixed well and the aggregate can be sufficiently dusted with thermoplastic resin powder When filling the primary form with the mixture, the form should be vibrated to ensure uniform charging.
つぎに、 混合物 2が充填された一次型枠 1をオーブン 3內.に入れ、 加熱して熱 可塑性樹脂粉末を溶融させる。 Next, the primary mold 1 filled with the mixture 2 is placed in an oven 3 內 and heated to melt the thermoplastic resin powder.
fii熱の温度や時間は、 本発明では特に限定されない。 但し、 加熱温度が低過ぎ ると溶融樹脂の粘度が高くて、 骨材全体に行き渡らないおそれがあり、 逆に加熱 温度が高過ぎると、 樹脂や骨材の分解が起こる危険性がある。 また、 加熱時間が 短過ぎると、 溶融樹脂が骨材全体に行き渡らないおそれがあり、 長過ぎると、 樹 脂や骨材の分解が起こる危険性がある。 したがって、 加熱温度や加熱時間は、 使 用する熱可塑性樹脂の種類に合わせて、 上記の問題の起こらない最適な範囲に設 定することが望ましい。 The temperature and time of the fii heat are not particularly limited in the present invention. However, if the heating temperature is too low, the viscosity of the molten resin is so high that it may not reach the entire aggregate, and if the heating temperature is too high, the resin and the aggregate may be decomposed. Also, if the heating time is too short, the molten resin may not spread throughout the aggregate, and if the heating time is too long, the resin and the aggregate may be decomposed. Therefore, it is desirable to set the heating temperature and the heating time to an optimum range that does not cause the above-described problems according to the type of the thermoplastic resin to be used.
つぎに、 オーブン 3から取り出した一次型枠 1を直ちに、 図 3に示すように、 熱可塑性樹脂粉末が加熱溶融して骨材全体に行き渡った溶融混合物 2 ' ごと、 上 下一対の二次型枠 4 1 , 4 2にセットして冷却プレスし、 溶融混合物 2 ' を十分 に冷却すると、 舗装材 Bが得られる。 Next, as shown in FIG. 3, the primary mold 1 taken out of the oven 3 was immediately melted by heating and melting the thermoplastic resin powder and the molten mixture 2 ′ spread over the entire aggregate, and a pair of upper and lower secondary molds was used. Pavement material B is obtained by setting the frames 4 1 and 4 2 and cooling and pressing the molten mixture 2 ′ sufficiently.
二次型枠 4 1 , 4 2の冷却には、 内部に冷却水を通す等の、 直接的な冷却方法 の他、 使用前の二次型枠 4 1 , 4 2を、 予め十分に冷やしておいて冷却プレスに 使用する等の間接的な冷却方法を採用することもできる。 To cool the secondary forms 4 1 and 4 2, besides using a direct cooling method such as passing cooling water inside, cool down the secondary forms 4 1 and 4 2 before use sufficiently beforehand. It is also possible to adopt an indirect cooling method, such as using a cooling press.
なお、 舗装材の生産性をより一層向上するには、 一次型枠 1を熱容量が小さく 熱伝裤の大きい材料で形成し、 ニ醒枠 4 1 , 4 2を熱を吸収しやすい材料で 形成するのがよい。 In order to further improve the productivity of the paving material, the primary form 1 is formed of a material having a small heat capacity and a large heat transfer, and the niches 4 1 and 4 2 are formed of a material that easily absorbs heat. Good to do.
上言2¾造方法で製造された舗装村は、 ブロック状の場合、 直接に、 またはコン クリ一トブロツク等の表面に接着した状態で、 施工現場のコンクリート舗装、 ァ スフアルト舗装、 砂利等の上に置き敷される。 また、 シート状の舗装材は、 必要 に応じてプライマー層等を介して、 コンクリート舗装、 アスファルト舗装等の表 面に接着される。 As mentioned above, pavement villages manufactured by the construction method may be used in the form of blocks, directly or bonded to the surface of concrete block, etc., on concrete pavement, asphalt pavement, gravel, etc. at the construction site. It is laid. The sheet-like pavement material is adhered to the surface of concrete pavement, asphalt pavement, or the like via a primer layer or the like as necessary.
骨材としては、軟質および硬質の、 従来公知の種々の骨材が使用される。 軟質骨材としては、 例えば粒径 0. 0 5〜3 0震程度の、 粒状または紐状(ひ じき状) に粉砕されたゴムチップ、 ウレタンチップ、 廃タイヤゴムチップ、 コル
ク、 軟質廃プラスチックチップ等、 弾力性のある種々の軟質骨材を使用すること ができる。 上記軟質骨材の硬度はとくに限定されないが、 J I S A硬度で 7 0 以下であることが、 舗装の弾性を確保する上で好ましい。 As the aggregate, various types of conventionally known soft and hard aggregates are used. Examples of the soft aggregate include rubber chips, urethane chips, waste tire rubber chips, and colloidal particles having a particle size of about 0.05 to 30 quakes and pulverized into granules or strings (hidden shapes). Various types of elastic soft aggregates such as wood chips and soft waste plastic chips can be used. The hardness of the soft aggregate is not particularly limited, but is preferably 70 or less in JISA hardness in order to secure the elasticity of the pavement.
—方硬質骨材としては、 例えば自然石、 木片、 クノレミ片、 竹屑、 貝殻、 セラミ ック粒、 硬質プラスチック粒、 硬質プラスチック粉砕物等の、 粒径 0 5〜3 0薩、 J I S D硬度 3 0以上の硬質粒子が好適に使用される。 自然石のように 熱可塑性樹脂粉末と混合しにくい硬質骨材は、 例えばエポキシ樹脂等で表面処理 を施した状態で使用するのが好ましいが、 そのままでも使用できる。 — Hard aggregates include, for example, natural stone, wood chips, knollemi chips, bamboo scraps, shells, ceramic particles, hard plastic particles, hard plastic crushed materials, etc. Zero or more hard particles are preferably used. Hard aggregates, such as natural stones, that are difficult to mix with the thermoplastic resin powder are preferably used after being surface-treated with, for example, an epoxy resin, but can be used as they are.
熱可塑性樹脂粉末としては、 従来公知の種々の熱可塑性樹脂製の粉末の中から 、 とくに、 融点 6 0〜 2 0 0で、 平均粒径 1 0メッシュ以下の熱可塑性樹脂粉末 が に使用される。 とくに耐候性、 耐水性にすぐれ、 軟質なものが好ましい。 熱可塑性樹脂粉末の融点が 6 0 °C未満では、 完成した舗装中の熱可塑性樹脂が 、 とくに夏場に、 直射日光の熱によって再び溶融して、 舗装が変形するおそれが あり、 逆に、 融点が 2 0 0 °Cを超えると、 施工時の熱可塑性樹脂粉末の溶融が困 難になる上、 溶融時の熱で骨材、 特にゴム状弾性を有する骨材や硬質プラスチッ ク製の硬質骨材が劣化するおそれがある。 As the thermoplastic resin powder, a conventionally known thermoplastic resin powder, particularly, a thermoplastic resin powder having a melting point of 60 to 200 and an average particle diameter of 10 mesh or less is used. . In particular, soft materials having excellent weather resistance and water resistance are preferable. If the melting point of the thermoplastic resin powder is less than 60 ° C, the thermoplastic resin in the completed pavement may be re-melted by the heat of direct sunlight, especially in summer, and the pavement may be deformed. If the temperature exceeds 200 ° C, melting of the thermoplastic resin powder during construction becomes difficult, and aggregate heat, especially aggregates with rubber-like elasticity or hard bone made of hard plastic, is generated by the heat of melting. The material may be deteriorated.
なお、 熱可塑性樹脂のビカツト軟化点は、 熱可塑性樹脂が直射日光等によって 再溶融して舗装が変形するのを防ぐという理由から、 4 0 °C以上であることが好 ましい。 It is preferable that the thermoplastic resin has a vicat softening point of 40 ° C. or higher because it prevents the thermoplastic resin from being re-melted by direct sunlight or the like to deform the pavement.
熱可塑性樹脂粉末の平均粒径が 1 0メッシュ以下であるのが好ましいのは、 以 下の理由による。 . The thermoplastic resin powder preferably has an average particle size of 10 mesh or less for the following reasons. .
熱可塑性樹脂粉末の平均粒径が 1 0メッシュを超えると、 ある程度加熱して溶 融した状態で骨材を混合しないと、 骨材間の継がりが悪く、 非常に脆いものとな る。 このため、 加熱混合装置のような大型な設備で、 成形または施工前に予熱混 合しておく必要がある。 If the average particle size of the thermoplastic resin powder exceeds 10 mesh, if the aggregate is not mixed in a state of being heated and melted to a certain extent, the joint between the aggregates is poor and the aggregate becomes very brittle. For this reason, it is necessary to preheat and mix before molding or construction with large equipment such as a heating and mixing device.
これに対し、 熱可塑性樹脂粉末の平均粒径が 1 0メッシュ以下の場合には、 予 熱混合しなくても、 骨材間の継がりが良く、 強度にすぐれた舗装を得ることがで きる。 したがって、 加熱混合装置のような大型機械が不要で、 簡単に骨材を混合 でき、 製造上メリットがある。
なお、 工場等で、 加熱混合装置等の、 予熱混合のための設備が使用可能な場合 には、 熱可塑性樹脂粉末の平均粒径に制限はない。 On the other hand, if the average particle size of the thermoplastic resin powder is 10 mesh or less, the pavement with good strength and good connection between the aggregates can be obtained without preheating and mixing. . Therefore, there is no need for a large machine such as a heating and mixing device, and the aggregate can be easily mixed, which is advantageous in manufacturing. In addition, if facilities for preheating and mixing such as a heating and mixing device can be used in a factory or the like, there is no limitation on the average particle size of the thermoplastic resin powder.
好ましい熱可塑性樹脂粉末としては、 ェチルメチルァクリレート (EMA) 等 のポリ (メタ) アクリル酸エステル類、 ポリエチレン (P E)、 ポリプロピレン (P P) 、 ポリ塩化ビニル(PVA) 、 ポリウレタン、 エチレン一酢酸ビニル共 重合体(EVA)、 エチレン一ェチルァクリレート共重合体 (E EA) 等の軟質 熱可塑性樹脂の粉末が挙げられる他、 ブタジエンゴム、 エチレン一プロピレンゴ ム (E PM) 、 エチレン一プロピレン一ジェンゴム (E PDM) 、 スチレンーブ タジェンゴ厶 (S BR:) 、 二トリルゴム (NBR) 、 ォレフィン系ゴム、 ポリエ ステル系ゴム等の熱可塑性ゴムの粉末を使用することもできる。 Preferred thermoplastic resin powders include poly (meth) acrylates such as ethyl methyl acrylate (EMA), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVA), polyurethane, and ethylene monoacetic acid. Powders of soft thermoplastic resins such as vinyl copolymer (EVA) and ethylene-ethyl acrylate copolymer (E EA), butadiene rubber, ethylene-propylene rubber (EPM), ethylene copolymer Thermoplastic rubber powders such as propylene-one rubber (E PDM), styrene butagen rubber (SBR :), nitrile rubber (NBR), olefin rubber, and polyester rubber can also be used.
熱可塑性樹脂粉末の配合量はとくに限定されないか '、 骨材の合計量に対して、 3〜 5 0体積%の範囲内であることが好ましい。 The blending amount of the thermoplastic resin powder is not particularly limited, and is preferably in the range of 3 to 50% by volume based on the total amount of the aggregate.
熱可塑性樹脂粉末の配合割合が 3体棲%未満では、 舗装の強度が不十分になる おそれがあり、 逆に、 配合割合が 5 0体積%を超えると、 舗装の表面が熱可塑性 樹脂の層で覆われてしまい、 骨材による滑り止めや衝撃吸収の機能が低下する上 、 舗装の外観が損なわれるおそれがある。 If the blending ratio of the thermoplastic resin powder is less than 3% by weight, the pavement strength may be insufficient. Conversely, if the blending ratio exceeds 50% by volume, the surface of the pavement becomes a layer of thermoplastic resin. In addition, the function of the aggregate to prevent slippage and shock absorption is reduced, and the appearance of the pavement may be impaired.
なお、 本発明においては、熱可塑性樹脂粉末の配合割合を、上記範囲内でより 少な目に調整することにより、 透水性を有する舗装を形成することもできる。 こ の場合には、 形成された舗装の空隙率が 1 0〜4 0 %であるのが好ましい。 舗装の空隙率が 1 0 %未満では、 透水性が不十分になるおそれがあり、 逆に、 空隙率が 4 0 %を超えると、 舗装の強度が低下する。 In the present invention, a pavement having water permeability can be formed by adjusting the blending ratio of the thermoplastic resin powder to a smaller value within the above range. In this case, the porosity of the formed pavement is preferably 10 to 40%. If the porosity of the pavement is less than 10%, the water permeability may be insufficient. Conversely, if the porosity exceeds 40%, the strength of the pavement decreases.
骨材と熱可塑性樹脂粉末とは、 製造する舗装の特性等の他、 とくに、 両者の化 学的な相性に応じて、 組み合わせを選択することが望ましい。 例えば、 骨材とし て、 エチレン一プロピレンージェンゴムのチップを使用する場合には、 熱可塑性 樹脂粉末として、 同じメチレン主鎖を持ち、 混合時に骨材の表面に付着し易く、 均一に混合し易い上、加熱溶融後の鶴強度が高い、 エチレン-酢酸ビニル共重 合体、軟質ポリエチレン、 ブタジエンゴムが、 髓に使用される。 It is desirable to select a combination of the aggregate and the thermoplastic resin powder in accordance with the characteristics of the pavement to be produced, etc., and in particular, the chemical compatibility of the two. For example, if ethylene-propylene-gen rubber chips are used as the aggregate, they have the same methylene main chain as the thermoplastic resin powder, and easily adhere to the surface of the aggregate during mixing, and are mixed uniformly. Ethylene-vinyl acetate copolymer, soft polyethylene, and butadiene rubber, which are easy to use and have high crane strength after heating and melting, are used in the pulp.
〈產 の利用可能性〉 <Availability of 產>
本発明の舗装は、 熱可塑性樹脂粉末を骨材の結合に使用しているので、 硬化性
樹脂を使用した場合の問題点が解消され、 施工時の作業条件や気候条件によるば らつきのない均一な強度を有するとともに、 耐候性、 弾力性、 柔軟性にすぐれ、 しかも施工後の修正等も容易であるというすぐれた特性を有するものであるため 、 運動場、 公園、 道路等の舗装に好適に使用することができる。 Since the pavement of the present invention uses the thermoplastic resin powder for bonding the aggregate, Eliminates problems when using resin, has uniform strength without fluctuations due to working conditions and climatic conditions during construction, and has excellent weather resistance, elasticity, flexibility, and modification after construction, etc. Since it has excellent characteristics that it is easy, it can be suitably used for pavement such as playgrounds, parks, and roads.
また本発明の製造方法によれば、 上記のようなすぐれた特性を有する舗装を、 より簡単に製造することが可能となる。 Further, according to the production method of the present invention, it is possible to more easily produce a pavement having the above-mentioned excellent characteristics.
また本発明の舗装材は、 工場で大量に製造したものを現場に敷き詰めるだけで 舗装を施工できるので、 現場での施工作業をより一層簡略化できる。 Further, since the pavement material of the present invention can be paved simply by laying a large amount of pavement material on site at the site, the on-site operation can be further simplified.
さらに、 本発明の舗装材の製造方法によれば、 骨材と熱可塑性樹脂粉末との溶 融混合物を冷却プレスで強制的に冷却しているので、 従来よりも生産性を著しく 向上できる。 Furthermore, according to the pavement material manufacturing method of the present invention, the molten mixture of the aggregate and the thermoplastic resin powder is forcibly cooled by the cooling press, so that the productivity can be significantly improved as compared with the conventional method.
ぐ実施例 > Examples>
以下実施例および比較例をあげて本発明を詳細に説明するが、 本発明はこれら の実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to only these Examples.
実施例 1 Example 1
ェチレン一プロピレン一ジェンゴムのチップ(平均粒径 2 . 5讓、 住友ゴムェ 業社製の商品名 「グリップコート G Oチップ」 ) 3 0 0 gと、 エチレン一酢酸ビ ニル共重合体粉末(平均粒径 4 0メッシュ、 酢酸ビニル含有量 2 5重量%、 メル トフローレ一ト 3 g/ 1 O min ) 6 0 gとをパッド中に投入し、 パッドを手で振 動させて 1分間混合した。 得られた混合物は、 エチレン一プロピレンージェンゴ ムのチップとエチレン一酢酸ビニル共重合体粉末とが均一に混合したものであつ つぎにこの混合物を、 縦 2 0 0難、 横 2 0 0画、 深さ 1 0腿の型内に充塡し、 型ごと、 2 0 0でに加熱されたオーブン中で 1 5分間の加熱を行った後、 脱型、 放冷して、 シート状の舗装材を得た。 この舗装材の空隙率を、 その体積と、 原料 であるエチレン一プロピレン一ジェンゴムの比重(d = 1 . 3 ) およびエチレン 一酢酸ビニル共重合体の比重(d = 0 . 9 ) とから求めたところ、 3 2 %であつ た。 Ethylene-propylene-gen rubber chips (average particle size: 2.5 g, Sumitomo Rubber Industries, Inc. product name “Grip Coat GO Chip”): 300 g, ethylene vinyl acetate acetate copolymer powder (average particle size) 40 mesh, a vinyl acetate content of 25% by weight, and a melt flow rate of 3 g / 1 O min) were introduced into the pad, and the pad was shaken by hand to mix for 1 minute. The resulting mixture is a homogeneous mixture of ethylene-propylene-gengom chips and ethylene-vinyl acetate copolymer powder. , Filled into a mold with a depth of 10 thighs, heated for 15 minutes in an oven heated at 200, then removed from the mold, allowed to cool, and paved in sheet form Wood was obtained. The porosity of this pavement material was determined from the volume, the specific gravity of the raw material ethylene-propylene-gen rubber (d = 1.3) and the specific gravity of the ethylene-vinyl acetate copolymer (d = 0.9). However, it was 32%.
比較例 1
上記ェチレン一プロピレン一ジェンゴムのチップ 260 gと、 MD I系一液湿 気硬化型ウレタン樹脂(住友ゴム工 ¾?土製の商品名 「グリップコート C一 928 J ) S7gとを、万能攪拌機を使って攙拌、混合して混合物を得た。 Comparative Example 1 Using a universal stirrer, 260 g of the above ethylene-propylene-gen rubber chips and MD I one-component moisture-curable urethane resin (Sumito Rubber Co., Ltd., product name "Grip Coat C-1 928 J") S7g The mixture was stirred and mixed to obtain a mixture.
つぎに、得られた混合物を、縦 190mm、横 190腿、深さ 10腿の型枠内に 、鏝を使って十分に押さえて仕込み、型枠ごと、 150で加熱されたオーブン中 で 20分間の加熱、加圧を行った後、脱型、放冷して、 シート状の舗装材を得た o この舗装材の享 率を、 その体積と、原料であるエチレン一プロピレンージェ ンゴムの比重(d=I. 3)および硬化性樹脂の硬化物の比重(d = 0, 9) と から求めたところ、 33%であった。 Next, the obtained mixture is placed in a 190 mm tall, 190 thigh horizontal, 10 thigh deep formwork by pressing it sufficiently using a trowel, and the whole form is placed in an oven heated at 150 for 20 minutes. After heating and pressurization, demolding and cooling were performed to obtain a sheet-like pavement material. O The rate of this pavement material was determined by its volume and specific gravity (d) of the raw material ethylene-propylene-gen rubber (d = I. 3) and the specific gravity (d = 0, 9) of the cured product of the curable resin were 33%.
上記実施例 1、比較例 1で得られたシート状の舗装材をダンベル状に打抜き、 JIS K6301所載の弓漲試験に準じた方法で、成形直後と、成形後 72時 間後まで 24時間ごとに、 引張強さ TB CkgfZcm2〕 および伸び率 EB (%) を測定した。 The sheet-like pavement material obtained in Example 1 and Comparative Example 1 was punched into a dumbbell shape, and was subjected to a method similar to the bow filling test described in JIS K6301 for 24 hours immediately after molding and up to 72 hours after molding. each was measured tensile strength T B CkgfZcm 2] and elongation E B (%).
すなわち図 4に示す全長 a = 120腿、幅 b = 25腿、 中央の平行部分の幅 c = 10mm.平行部分の長さと標線間の距離 L。 =40腿のダンベル状のサンプル を、 引張試験機の試験片つかみに取り付け、 引張速さ 500 ±25画 Zminで引 つ張った際に、切断に至るまでの最大荷重 FB Ckgf {N} 〕 を読み取り、 その 数値と、試験片の断面積 A (cm2 ) とから、下記式により引張強さ TB Ckgf cm2〕 を計算した。
That is, the total length a = 120 thighs, the width b = 25 thighs, the width of the central parallel part c = 10 mm shown in Fig. 4. The length L of the parallel part and the distance L between the marked lines. = A dumbbell-shaped sample of 40 thighs was attached to the test specimen grip of the tensile tester, and when pulled at a pulling speed of 500 ± 25 Zmin, the maximum load until cutting F B Ckgf {N}] Was read, and the tensile strength T B Ckgf cm 2 ] was calculated from the numerical value and the cross-sectional area A (cm 2 ) of the test piece by the following equation.
また、上記切断時の標線間の長さ (mm)を測定し、 その数値と、前記引張 試験前の標線間の距離 L。 =40腿とから、下記式により伸び率 EB (%)を計 算した。 ,
The length (mm) between the marked lines at the time of the above cutting was measured, and the numerical value and the distance L between the marked lines before the tensile test were measured. = From 40 thigh was calculated elongation E B (%) by the following equation. ,
結果を表 1に示す。
表 1 Table 1 shows the results. table 1
上記表 1の結果より、 比較例 1においては、 引張強さが、 成形直後の段階で著 しく低く、 4 β時間の養生によってやっと 7. 0 k f /cm2 まで上昇したが、 そ れ以上高くならないことがわかった。 また、 伸び率は、 成形直後から 7 2時間後 まで、 低いレベルで推移した。 このことから、 硬化性樹脂を使用した比較例 1で は、 成形後に長時間の養生が必要な上、 弾力性等にすぐれた舗装を得られないこ とが判明した。 From the results in Table 1, in Comparative Example 1, the tensile strength is at markedly properly lower stage immediately after molding, rose finally to 7. 0 kf / cm 2 by curing for 4 beta time, its been more high I knew it wouldn't. The elongation rate remained at a low level from immediately after molding to 72 hours later. From this, it was found that Comparative Example 1 using a curable resin requires a long curing time after molding and cannot obtain a pavement having excellent elasticity and the like.
これに対し、 実施例 1においては、 引張強さ、 伸び率ともに、 成形直後から高 い値を示し、 し力、も、 その値が、 その後の時間経過によって変化しないことが判 明した。 On the other hand, in Example 1, it was found that both the tensile strength and the elongation showed high values immediately after molding, and that the values of the tensile strength did not change with the passage of time thereafter.
実施例 2〜4 Examples 2 to 4
下記表 2に示す配合の骨材と、 熱可塑性樹脂粉末としての E VA粉末 (住友精 化社製の商品名フローセン MK 2 0 1 0 ) とを混合容器内に投入し、 容器に振動 を与えて均一な混合物を作製した。 なお、 表 2中の軟質骨材としては E P DMゴ ムチップ(前記住友ゴム工業(株)製のグリップコート G Oチップ) 、 硬質骨と しては自然石(住友ゴム工業(株)製の商品名マメジャリ) を使用した。 ただ、 骨材と E VA粉末の混合比は、 体積換算で、 骨材: E VA= 5 : 1とした。
表 2 An aggregate having the composition shown in Table 2 below and EVA powder (Flosen MK210, trade name, manufactured by Sumitomo Seika Co., Ltd.) as a thermoplastic resin powder are charged into a mixing vessel, and the vessel is vibrated. To produce a homogeneous mixture. The soft aggregate in Table 2 is EP DM rubber chip (Grip coat GO chip manufactured by Sumitomo Rubber Industries, Ltd.), and the hard bone is natural stone (trade name, manufactured by Sumitomo Rubber Industries, Ltd.). Bean jam) was used. However, the mixing ratio of the aggregate and the EVA powder was calculated as volume: aggregate: EVA = 5: 1. Table 2
つぎに上記混合物 2を、 図 2に示すように、 縦 130匪、 横 130腿、 深さ 1 0賺の一次型枠 1に充塡し、型枠 1を振動させて均一に ί±^んだ後、 型枠 1ごと 、 180。Cに加熱されたオーブン 3に入れて 15分間加熱した。 Next, as shown in FIG. 2, the above mixture 2 is filled into a primary formwork 1 of 130 bandages, 130 thighs, and a depth of 100, and the mold 1 is vibrated to uniformly mix After that, 180 per formwork. It was placed in oven 3 heated to C and heated for 15 minutes.
つぎに、上記一次型枠 1を溶融混合物 2 ' ごとオーブン 3から取り出し、 図 3 に示すように、 よく冷やされた一対の 2次型枠 41, 42 (上側の 2次型枠 41 の 50kg) にセットして、 プレス圧 0. 3kgZcm2 の条件で 10分間冷却プ レスして、 シート状の舗装材 Bを得た。 Next, the above-mentioned primary form 1 is taken out of the oven 3 together with the molten mixture 2 ′, and as shown in FIG. 3, a pair of well-cooled secondary forms 41 and 42 (50 kg of the upper secondary form 41). Then, the sheet was cooled and pressed under the condition of a press pressure of 0.3 kgZcm 2 for 10 minutes to obtain a sheet-like paving material B.
得られた舗装材の空隙率を、 その体積と、 原料であるエチレン一プロピレン一 ジェンゴムの JtE (d= 1. 3)、 エチレン一酢酸ピニル共重合体の比重 (d = 0. 9) および自然石の比重 (d = 2. 3) とから求めたところ、 実施例 2〜4 はいずれも 25%であった。 The porosity of the obtained pavement material is determined by its volume, JtE (d = 1.3) of ethylene-propylene-digen rubber as raw material, specific gravity of ethylene monoacetate copolymer (d = 0.9) and natural The specific gravity of the stone (d = 2.3) was found to be 25% in Examples 2 to 4 in all cases.
比較例 2 Comparative Example 2
E P DMゴムチップ 822 gと、 MD I系一液湿気硬化型ゥレ夕ン樹脂 87 g とを万能攪拌機で攙拌した後、 混合物を縦 300腿、 横 300腿、 深さ 10咖の 型枠内に充填し、 鏝を使って十分に押さえて ffiiんだ後、 型枠を熱プレス装置に セットし、 プレス圧 1. OkgZcm2 、 150°Cの条件で 20分間熱プレスして、 シート状の舗装材を得た。 この舗装材の空隙率を、 その体積と、 原料であるェチ レン一プロピレン一ジェンゴムの比重 (d=l. 3)および硬化,脂の硬化物 の比重(d=0. 9) とから求めたところ、 25%であった。 After mixing 822 g of EP DM rubber chip and 87 g of MD I one-component moisture-curable resin with a universal stirrer, the mixture is placed in a 300 thigh, 300 thigh, 10 mm deep mold. And press it sufficiently using a trowel to make it ffii. Then, set the formwork in a hot press machine, and press hot for 20 minutes under the conditions of 1.OkgZcm 2 and 150 ° C, Paving material was obtained. The porosity of this pavement material is determined from its volume, the specific gravity of the raw materials ethylene-propylene-gen rubber (d = l.3) and the specific gravity of the cured product of fats and oils (d = 0.9). It was 25%.
上記実施例、 比較例で得られたシ一ト状の舗装材について以下の各試験を行い
、 その特性を評価した。 The following tests were performed on the sheet-like pavement material obtained in the above Examples and Comparative Examples. The properties were evaluated.
引張強度試験 Tensile strength test
上記実施例、 比較例で得られたシート状の舗装材をダンベル状に打抜き、 前述 した J I S K 6 3 0 1所載の引張試験に準じた方法で、 成形直後と、 成形後 7 2時間後まで 2 4時間ごとに、 引張強さ 〔kg f Zcm2 〕 および伸び率 (%) を測 定した。 The sheet-shaped pavement material obtained in the above Examples and Comparative Examples was punched out into a dumbbell shape, and immediately after molding and up to 72 hours after molding, according to the above-described tensile test described in JISK 6301. The tensile strength [kg f Zcm 2 ] and the elongation (%) were measured every 24 hours.
作業性評価 Workability evaluation
舗装材製造作業のし易さのパラメータとして、 攪拌作業のし易さ、 および型へ の仕込み易さを、 実際に製造作業に携わっている作業者に、 下記の 5段階で評価 してもらった。 Workers who were actually involved in the manufacturing work evaluated the ease of mixing work and the ease of preparing the mold as parameters for ease of paving material manufacturing work in the following five stages. .
易: 0 、 Ease: 0,
やや易: 4点 Slightly easy: 4 points
並: 3点 Average: 3 points
やや難: 2点 Somewhat difficult: 2 points
難: 1点 Difficulty: 1 point
また作業者に上記両作業の感想を求めたところ下記の回答が得られた。 The following responses were obtained when the workers were asked for their impressions of both operations.
攪拌のし易さ:比較例 2は、 粒状の E P DMゴムチップと液状の MD I系一液 湿気硬化型ウレタン樹脂という、 相の違う 2成分を混合するので、 均一に攪拌す るのが難しい。 実施例 2〜4は、 粒状の骨材と EVA粉末という同じ固相のもの を混合するので均一に攪拌するのが容易。 Ease of Stirring: In Comparative Example 2, it is difficult to stir uniformly because two different components, a granular EPDM rubber chip and a liquid MDI one-component moisture-curable urethane resin, are mixed. In Examples 2 to 4, the same aggregates of granular aggregate and EVA powder as EVA powder are mixed, so that uniform stirring is easy.
仕込み易さ:比較例 2の混合物は泥濘状を示し、 型内に仕込み難い。 実施例 2 〜4の混合物はさらさらの粉末状で ttiiみ容易。 Ease of preparation: The mixture of Comparative Example 2 shows a muddy state and is difficult to be prepared in a mold. The mixtures of Examples 2 to 4 are smooth and powdery and easy to ttii.
作業時間測定 Work time measurement
舗装材製造作業の各工程のうち、 下記の各作業の時間を測定した。 In each step of the pavement material manufacturing work, the time of each of the following works was measured.
攪拌時間:実施例 2〜4については、 骨材と EVA粉末とを混合容器内に投入 し、 容器に振動を与えた際に均一な混合物となる時間を測定し、 比較例 2につい ては、 E P DMゴムチップと MD I系一液湿気硬化型ウレタン樹脂とを万能攪拌 機で攪拌した際に均一な泥濘状混合物となるまでの時間を測定した。 Stirring time: In Examples 2 to 4, the aggregate and EVA powder were put into a mixing container, and the time required to form a uniform mixture when the container was vibrated was measured. For Comparative Example 2, The time required to form a uniform muddy mixture when the EP DM rubber chip and the MDI one-component moisture-curable urethane resin were stirred with a universal stirrer was measured.
仕込み時間:同一の仕込み容器に入れた同量の混合物を、 前記型枠内に仕込み
終わるまでの時間を測定した。 Charging time: charging the same amount of mixture in the same charging container into the mold The time to end was measured.
プレス時間:実施例 2 4は溶融混合物を室温まで冷却するのに要した時間を 測定し、比較例 2は MD I系一液湿気硬化型ゥレタン樹脂が十分に加熱硬化する のに要した時間を測定した。 Pressing time: Example 24 measured the time required to cool the molten mixture to room temperature, and Comparative Example 2 measured the time required for the MDI one-part moisture-curable polyurethane resin to heat and cure sufficiently. It was measured.
その他、下記の各観点から、実施例 2 4と比較例 2の誧装材を製造する作業 の ί«性を評冊した。 In addition, from the following viewpoints, the performance of manufacturing the packaging materials of Example 24 and Comparative Example 2 was evaluated.
可使時間:比較例 2は MD I系一液湿気硬化型ゥレタン樹脂の可使時閭( 3 0 分)が制限されるが、実施例 2 4は可使時間の制限なし。 Pot life: In Comparative Example 2, the pot life (30 minutes) of the MD I one-component moisture-curable polyurethane resin is limited, but in Example 24, the pot life is not limited.
養生時間:比較例 2は硬化後も、十分な強度を得るために 4 8時間程度養生さ せる必要があるのに対し、実施例 2 4は養生の必要なし。 Curing time: Comparative Example 2 needs to be cured for about 48 hours to obtain sufficient strength even after curing, whereas Example 24 does not require curing.
毒性:比較例 2は MD I系一液湿気硬化型ゥレタン樹脂を用いているので毒性 あり。実施例 2 4は毒性のある成分を含まないので毒性なし。 Toxicity: Comparative Example 2 is toxic because it uses MD I one-part moisture-curable polyurethane resin. Example 24 is non-toxic because it contains no toxic components.
以上の結果を表 3、表 4に示す。 Tables 3 and 4 show the above results.
表 3 Table 3
引張強さ 伸び率 體性評価 Tensile strength Elongation Physical properties evaluation
(kgf/cm2) (%) 攪 拌 仕込み 合計点 (kgf / cm 2 ) (%)
実施例 2 9. 7 9 6 5点 4点 9点 比較例 2 7. 0 5 ひ 9.占 2占 4占 龍例 3 6. 0 5 0 5占 4占 9占 実施例 4 5. 5 2 0 5占 4占 9占
Example 2 9. 7 9 6 5 points 4 points 9 points Comparative example 2 7. 0 5 h 9. div. 2 div. 4 div. Dragon example 3 6. 0 5 0 5 div. 4 div. 9 div. 0 5 fortune 4 fortune 9
表 4 Table 4
上記表 3、 4の結果より、 実施例 2〜4は何れも、 比較例 2に比べて作業性が 良く、 かつ短時間で製造できることがわかった。 また、 同じ軟質骨材を使用した 実施例 2と比較例 2の結果から、 実施例 2は弓【張強さが高く、 かつ伸び率も高い ことがわかった。 From the results in Tables 3 and 4, it was found that all of Examples 2 to 4 had better workability than Comparative Example 2 and could be manufactured in a short time. Also, from the results of Example 2 and Comparative Example 2 using the same soft aggregate, it was found that Example 2 had high bow strength and high elongation.
耐候性試験 Weather resistance test
同じ軟質骨材を使用した実施例 2、 比較例 2の舗装材を、 サンシャインゥェザ —オメ一夕を用いてオゾン劣化させ、 その時間経過に伴う変色の度合いを、 色彩 色差計 (ミノルタ社製の CR 31 0) で測定した色彩値 (L* a* b* ) の変化 量である色差 ΔΕ* abにて評価した。 色差 ΔΕ* a bが大きいほど変色度合い が大きく、 劣化が速く進行したことを示している。 結果を図 5に示す。 The pavement materials of Example 2 and Comparative Example 2 using the same soft aggregate were degraded with ozone using Sunshine Weather-Ome overnight, and the degree of discoloration over time was measured using a colorimeter (Minolta Co., Ltd.). The evaluation was made based on the color difference Δ あ る * ab, which is the amount of change in the color value (L * a * b *) measured by CR310, manufactured by the company. The larger the color difference ΔΕ * ab, the greater the degree of discoloration, indicating that the deterioration progressed faster. Fig. 5 shows the results.
図 5の結果より、 実施例 2は比較例 2に比べて耐候性にすぐれていることがわ ヽっ τこ。
From the results shown in FIG. 5, it can be seen that Example 2 has better weather resistance than Comparative Example 2.
Claims
1 . 多数の骨材が、 当該骨材と混合された熱可塑性樹脂粉末の加熱溶融物により 1. A large number of aggregates are heated and melted by thermoplastic resin powder mixed with the aggregates.
r 結合されてなることを特徵とする舗装。 r Pavement characterized by being combined.
2. 空隙率が 1 0〜 4 0 %である請求項 1記載の舗装。 2. The pavement according to claim 1, wherein the porosity is 10 to 40%.
3 . 骨材と、 加熱溶融時に当該骨材を結合するに足る量の熱可塑性樹脂粉末との 混合物を加熱して熱可塑性樹脂粉末を溶融ざせた後、 この溶融混合物を冷却して 、 上記請求項 1記載の舗装を形成することを特徵とする舗装の製造方法。 3. After heating the mixture of the aggregate and the thermoplastic resin powder in an amount sufficient to bind the aggregate at the time of heating and melting, the thermoplastic resin powder is melted, and then the molten mixture is cooled. Item 6. A method for producing a pavement, which comprises forming the pavement according to Item 1.
4. 骨材の粒径がひ. 0 5〜3 0腿の範囲内で、 かつ加熱溶融前の熱可塑性樹脂 粉末の粒径が 1 0メッシュ以下である請求項 3記載の舗装の製造方法。 4. The pavement manufacturing method according to claim 3, wherein the aggregate has a particle size of 0.5 to 30 thighs, and the thermoplastic resin powder before heating and melting has a particle size of 10 mesh or less.
5 . 熱可塑性樹脂粉末の融点が 6 0〜 2 0 0での範囲内で、 かつビカ、グト軟化点 が 4 0 °C以上である請求項 3記载の舗装の製造方法。 5. The pavement manufacturing method according to claim 3, wherein the melting point of the thermoplastic resin powder is in the range of 60 to 200, and the bica and gut softening points are 40 ° C or more.
6. 骨材総量に対する熱可塑性樹脂粉末の配合割合が 3 0〜5 0体積%である請 求項 3記載の舗装の製造方法。 6. The pavement manufacturing method according to claim 3, wherein a mixing ratio of the thermoplastic resin powder to the total amount of the aggregate is 30 to 50% by volume.
7. 多数の骨材が、 当該骨材と混合された熱可塑性樹脂粉末の加熱溶融物により 結合され、 かつ所定の形状に成形されてなることを特徴とする舗装材。 7. A pavement material in which a large number of aggregates are combined by a heated melt of a thermoplastic resin powder mixed with the aggregates and formed into a predetermined shape.
& . 空隙率が 1 0〜4 0 %である請求項 7記載の舗装材。 The pavement material according to claim 7, wherein the porosity is 10 to 40%.
9 . ブロック状またはシート状である請求項 7記載の舗装材。 9. The pavement material according to claim 7, which is in a block shape or a sheet shape.
10. 骨材と、 加熱溶融時に当該骨材を結合するに足る量の熱可塑性樹脂粉末との 混合物を型捽に充塡し、 加熱して熱可塑性樹脂粉末を溶融させた後、 この溶融混 合物を冷却プレス成形して、 上記請求項 記載の舗装材を製造することを特徴と する舗装材の製造方法。 10. A mold is filled with a mixture of aggregate and thermoplastic resin powder in an amount sufficient to bind the aggregate during heating and melting, and then heated to melt the thermoplastic resin powder. A method for producing a pavement material, characterized by producing the pavement material according to the above claim, by subjecting the compound to cold press molding.
11. 骨材の粒径が 0 . 0 5〜3 0隨の範囲内で、 かつ加熱溶融前の熱可塑性樹脂 粉末の粒径が 1 0メッシュ以下である請求項 10記載の舗装材の製造方法。 11. The method for producing a pavement material according to claim 10, wherein the particle size of the aggregate is in the range of 0.05 to 30 and the particle size of the thermoplastic resin powder before heating and melting is 10 mesh or less. .
12. 熱可塑性樹脂粉末の融点が & 0〜2 0 0 °Cの範囲内で、 かつビカツト軟化点 が 4 0 °C以上である請求項 10記載の舗装材の製造方法。 12. The method for producing a pavement material according to claim 10, wherein the melting point of the thermoplastic resin powder is in the range of & 0 to 200 ° C, and the vicat softening point is 40 ° C or more.
13. 骨材総量に対する熱可塑性樹脂粉末の配合割合が 3 0〜5 0体積%である請 求項 10記載の舗装材の製造方法。
13. The method for producing a pavement material according to claim 10, wherein a mixing ratio of the thermoplastic resin powder to the total amount of the aggregate is 30 to 50% by volume.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4391631T DE4391631T1 (en) | 1992-04-09 | 1993-03-05 | Plaster, plaster material and process for making the plaster and the plaster material |
DE4391631A DE4391631C2 (en) | 1992-04-09 | 1993-03-05 | Paving stone and method of making the paving stone |
US08/163,545 US5403117A (en) | 1992-04-09 | 1993-12-09 | Pavement, a paving material and methods of producing said pavement and said paving material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8907292A JPH0598603A (en) | 1991-08-08 | 1992-04-09 | Pavement, pavement constituent body and manufacture thereof |
JP4/89072 | 1992-04-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1993021387A1 true WO1993021387A1 (en) | 1993-10-28 |
Family
ID=13960652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1993/000282 WO1993021387A1 (en) | 1992-04-09 | 1993-03-05 | Pavement, pavement material and method of manufacturing same |
Country Status (2)
Country | Link |
---|---|
DE (2) | DE4391631C2 (en) |
WO (1) | WO1993021387A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1035170C (en) * | 1992-09-19 | 1997-06-18 | 三星综合化学株式会社 | Water-permeable resinous composition for road paving of high strength, and blocks and pavement thereof |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19808866A1 (en) * | 1998-03-03 | 1999-09-09 | Ihle | Road surface construction method for all vehicle types in which bitumen is replaced by a thermoplastic matrix |
DE19808867A1 (en) * | 1998-03-03 | 1999-09-09 | Ihle | Track construction method for rail guided vehicles of all types in which bitumen is replaced by a thermoplastic matrix |
DE102007039650A1 (en) * | 2007-08-22 | 2009-02-26 | Henkel Ag & Co. Kgaa | Glued flooring |
DE102008019439A1 (en) * | 2008-04-17 | 2009-10-22 | Henkel Ag & Co. Kgaa | Method for bonding granules |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51131141A (en) * | 1975-05-09 | 1976-11-15 | Naado Kenkiyuushiyo Kk | Secondary paving method for road |
JPS5335227A (en) * | 1976-09-14 | 1978-04-01 | Sekisui Chemical Co Ltd | Method of paving water permeability |
JPS5396232A (en) * | 1977-02-01 | 1978-08-23 | Utarou Tsujimoto | Civil building block material |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH530945A (en) * | 1968-05-31 | 1972-11-30 | Haniel Ag Franz | Material suitable for building purposes |
DE3533625A1 (en) * | 1985-09-20 | 1987-04-02 | Frenzelit Werke Gmbh & Co Kg | Lightweight material, and process for the production thereof |
DE3603664C2 (en) * | 1985-12-06 | 1994-09-01 | Rang Kg Haus Moderner Fusboede | Process for producing a possibly floating floor covering |
DE3814968A1 (en) * | 1988-05-03 | 1989-11-16 | Basf Ag | DENSITY DENSITY 0.1 TO 0.4 G / CM (UP ARROW) 3 (UP ARROW) |
-
1993
- 1993-03-05 DE DE4391631A patent/DE4391631C2/en not_active Expired - Fee Related
- 1993-03-05 WO PCT/JP1993/000282 patent/WO1993021387A1/en active Application Filing
- 1993-03-05 DE DE4391631T patent/DE4391631T1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51131141A (en) * | 1975-05-09 | 1976-11-15 | Naado Kenkiyuushiyo Kk | Secondary paving method for road |
JPS5335227A (en) * | 1976-09-14 | 1978-04-01 | Sekisui Chemical Co Ltd | Method of paving water permeability |
JPS5396232A (en) * | 1977-02-01 | 1978-08-23 | Utarou Tsujimoto | Civil building block material |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1035170C (en) * | 1992-09-19 | 1997-06-18 | 三星综合化学株式会社 | Water-permeable resinous composition for road paving of high strength, and blocks and pavement thereof |
Also Published As
Publication number | Publication date |
---|---|
DE4391631C2 (en) | 2003-05-08 |
DE4391631T1 (en) | 1994-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20030001325A (en) | Paving material for footways and method of producing the same | |
US5403117A (en) | Pavement, a paving material and methods of producing said pavement and said paving material | |
US9068299B2 (en) | Tough, water-permeable paver | |
CN106536446A (en) | Low water content plastic composition comprising hydraulic cement and method for manufacturing same | |
CN102219437B (en) | Cement concrete material for rapid repairing of road and preparation method thereof | |
WO1993021387A1 (en) | Pavement, pavement material and method of manufacturing same | |
JP3722093B2 (en) | Pavement material for walking path and method for manufacturing the same | |
JPH0598603A (en) | Pavement, pavement constituent body and manufacture thereof | |
JP3145353B2 (en) | Method for producing composite synthetic resin composition | |
CN110540688A (en) | Method for preparing rubber brick by regenerating environment-friendly water glue and waste rubber | |
WO2007049136A2 (en) | Method of making constructional elements | |
DE19651749A1 (en) | Production and/or pre-finishing of carrier layer or wear layer of road surface | |
JPH02105828A (en) | Colored elastic powdery rubber composite material and its production | |
IL190352A (en) | Method for consolidating blocks or slabs made of building material | |
JPH0612906Y2 (en) | Asphalt molding | |
JP2002356804A (en) | Elastic paving body and its execution method | |
JPH0387401A (en) | Paving material | |
JPS63145347A (en) | Vulcanized rubber powder molding | |
JPH1088000A (en) | Asphalt mixture | |
JP2000038519A (en) | Water-permeable block, structure, pavement structure and paving process using composite synthetic resin composition | |
JPH05171608A (en) | Manufacture of water-permeable pavement | |
JP2004083715A (en) | Fiber-mixed resin and its production method | |
EP0898017A1 (en) | Fiberized resin and structure produced therefrom by molding | |
CN116396014A (en) | Rubber powder epoxy asphalt cement for expansion joint, prefabricated structure, preparation method and application thereof | |
JPH08183049A (en) | Method for continuous compression molding of rubber pieces |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): DE US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 08163545 Country of ref document: US |
|
RET | De translation (de og part 6b) |
Ref document number: 4391631 Country of ref document: DE Date of ref document: 19940505 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 4391631 Country of ref document: DE |