WO1993017837A1 - Articulated robot - Google Patents

Articulated robot Download PDF

Info

Publication number
WO1993017837A1
WO1993017837A1 PCT/JP1993/000281 JP9300281W WO9317837A1 WO 1993017837 A1 WO1993017837 A1 WO 1993017837A1 JP 9300281 W JP9300281 W JP 9300281W WO 9317837 A1 WO9317837 A1 WO 9317837A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
robot
drive motor
support member
tool
Prior art date
Application number
PCT/JP1993/000281
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroaki Takechi
Tatsunori Suwa
Takashi Ono
Original Assignee
Kabushiki Kaisha Komatsu Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Komatsu Seisakusho filed Critical Kabushiki Kaisha Komatsu Seisakusho
Publication of WO1993017837A1 publication Critical patent/WO1993017837A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/1005Programme-controlled manipulators characterised by positioning means for manipulator elements comprising adjusting means
    • B25J9/1015Programme-controlled manipulators characterised by positioning means for manipulator elements comprising adjusting means using additional, e.g. microadjustment of the end effector

Definitions

  • the present invention relates to an industrial articulated robot having a new shaft configuration. Background technology
  • the trajectory that can be cut and cut is smaller than the outermost diameter of the gripping device of the processing tool, and the operating range is narrow for the size of the gripping device.
  • the gripping device when such a gripping device is attached to the tip of an articulated robot to cut a work, there is a new problem that the gripping device interferes with the work and becomes an obstacle. Disclosure of Kishimei
  • the present invention does not operate each axis of the conventional 5- or 6-axis robot, but uses a small circle or square formed by the trajectory of two arms that roll on a horizontal plane provided at the end of the robot.
  • the present invention provides a support member fixed to the distal end of a multi-joint robot main body having five or six axes, which supports the base end of the first arm so as to be able to roll around, and the other first arm.
  • a 7- or 8-axis robot is configured by supporting the base end of the second arm that rolls in the same plane at the tip of the arm, and a tool gripping member is provided at the other end of the second arm. .
  • the position is determined by the 5- or 6-axis robot body, and the first arm is turned by the first drive motor.
  • the second drive motor is driven, the second arm is turned with respect to the first arm, thereby drawing an arbitrary trajectory in a plane where the tool gripping member fixed to the distal end side of the second arm extends.
  • the work is cut along the above-mentioned trajectory.
  • both arms are turned by the first drive motor and the second drive motor, and the posture is set so as not to interfere with the work. Cut any trajectory while changing or after changing.
  • you want to cut a wide range of straight lines or curves and add small roundness to the corners first use a straight line or -5 with the S-axis robot body. The curve is cut, and then the small roundness is cut with high precision using the combination of the movements of the first arm and the second arm.
  • FIG. 1 is a side view of an industrial multi-articulated robot according to the present invention
  • FIG. 2 is a plan view showing a main part of the first embodiment of the present invention
  • FIG. 3 is a main view of the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a second embodiment of the present invention
  • FIG. 5 is a cross-sectional view taken along the arrow A in FIG. 4
  • FIG. 6 is a cross-sectional view taken along line BB of FIG. 4
  • FIG. 8 is a plan view showing an essential part of the second embodiment of the invention
  • FIG. 8 is an explanatory view of an operation in the first embodiment shown in FIG. 2
  • FIG. 9 is a flowchart showing an operation of cutting a figure by a plasma cutting torch
  • reference numeral 1 denotes a distal end of a six-axis articulated robot 2
  • reference numeral 3 denotes two surface-turning first arms 6 attached to the distal end portion 1 of the mouth robot 1 via a bracket 4.
  • a tool holding device having a second arm 7.
  • a support member 5 is fixed to the bracket 4, and the base end of the first arm 6 is rotatably supported by the support member 5.
  • the distal end portion of the first arm 6 of the other, and c proximal end of the second arm 7 is rotatably supported, the support member 5 and the second arm 7, the first driving motor 8, respectively
  • the second drive motor 9 is fixed.
  • the output shaft 8a of the first drive motor 8 is connected to a shaft 6a formed at the base end of the first arm 6 via a first reduction gear 10, as shown in FIG. Further, the output shaft 9 a of the second drive motor 9 is connected to a shaft 6 b formed at the tip of the first arm 6 via the second reduction gear 11.
  • the first and second reduction gears 10 and 11 use wave gears (product name: Harmonic Drive), which are compact in configuration and light in weight. Also, a tool gripping member 13 is fixed to the tip of the second arm 7.
  • the first arm 6 is driven via a first reduction gear 10 by a first drive motor 8 fixed to a support member 5.
  • the second arm 7 is driven by a second drive motor 9 ′ fixed to the support member 5, as shown in FIGS. 5 and 6, a second reduction gear 11 ′ composed of belts 15 and 16, etc. It is performed by driving through the.
  • Function 1 When cutting a small diameter circle or square, first position the body with the 6-axis robot 2 and drive the first drive motor 8 to support the support member 5. L, the first arm 6 turns. Further, by driving the second drive motor 9 or 9 ′, the second arm 7 is turned around the tip of the first arm 6, and thereby the tool fixed to the tip of the second arm 7.
  • the axis of gripping member 13 is, for example, With, an arbitrary trajectory can be drawn in the area indicated by the diagonal lines. At this time, the workpiece is cut along the trajectory by holding the plasma cutting or YAG laser torch 12 on the tool holding member 13.
  • Function 3 When cutting a wide range of straight lines or curves and adding small roundness to the corners, first cut the straight lines or curves with the body of the 6-axis robot 2, and then cut the first arm 6 and the second arm. Cutting the small roundness with high precision by combining the rotational movements of the two arms 7
  • the first and second drive motors 8 and 9 Or 9 ' is controlled by a control device (not shown). It is also possible to cut by teaching the control trajectory based on a predetermined calculation formula. The flow chart at this time is shown in FIG. 9 and is implemented by the steps (1) to (10).
  • the length of the first arm 6 is 1, the length of the second arm 7 is 1 2 , and the angle of the first arm 6 from the reference coordinates! , The angle from the reference coordinates of the second arm 7 is z, and the coordinate of the center point of the figure to be cut is X.
  • the tip of the second arm 7 is moved to the teaching point ( ⁇ , ⁇ ).
  • the coordinates of the cutting trajectory are converted into the surface tiling angle of the motor 8, 9 or 9 'of each axis. The conversion into the surface turning angle is performed by the following equation.
  • the posture is changed so that the first arm 6 and the second arm 7 are moved so as not to interfere with the stroke.
  • any shape can be cut.
  • the feature at this time is shown in FIG. 10 and is implemented by the steps (21) to (27).
  • INDUSTRIAL APPLICABILITY The present invention is capable of cutting a plurality of small Rs and squares with high accuracy without moving the articulated robot main body such as a six-axis robot, and is capable of cutting a plurality of small Rs and squares even when approaching a workpiece. This is useful as an industrial articulated robot that can avoid interference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Laser Beam Processing (AREA)

Abstract

An articulated robot, wherein a small circle, small square and the like can be cut with high precision without the motion of a main body of an articulated robot (2), and moreover, an operating space can be enlarged for cutting a large circle, large square and the like. To ensure such operations, the proximal end portion of a first arm (6) is rotatably supported on a support member (5) fixed to the forward end portion (1) of the articulated robot (2), the proximal end portion of a second arm (7) rotatable in a horizontal plane is supported on the other (forward) end portion of the first arm (6) to thereby form a seven- or eight-axial robot, and a tool gripping member (13) is provided at the forward end portion of the second arm (7).

Description

明 細 書 多闋節口ボッ ト  Description Multi-entry bot
技 術 分 野 Technical field
本発明は、 新しい軸構成の工業用多関節ロボッ 卜に関する。 背 景 技 術  The present invention relates to an industrial articulated robot having a new shaft configuration. Background technology
従来の工業用多関節ロボッ トにおいては、 加工工具を支持する把持部の移動が 必要な場合に把持部そのものが移動する構成を有しておらず、 ロボッ ト本体ある いはロボッ ト本体に近いアームを動かすことで把持部を移動させていた。 従って 、 把持部を高速で移動させる時に大きな馬力を必要とし、 且つ位置精度が低いと いう不具合があった。 これに対し、 たとえば特開 6 3 - 2 3 5 0号公報や実開平 1 - 9 2 3 9 2号公報といつたものが提案され、 前記不具合のかなりの部分が解 決できた。  Conventional industrial articulated robots do not have a configuration in which the gripper itself moves when the gripper that supports the processing tool needs to be moved, and it is close to the robot body or the robot body. The grip was moved by moving the arm. Therefore, there is a problem that a large horsepower is required when the gripper is moved at a high speed, and the positional accuracy is low. On the other hand, for example, Japanese Patent Application Laid-Open No. 63-25050 and Japanese Utility Model Application Laid-Open No. 9-23992 have been proposed, and a considerable part of the above-mentioned problems can be solved.
しかし、 前記各公報に開示された技術では、 加工工具の把持部装置の最外径に 比べて切.浙できる軌跡が小さ く、 把持部装置の大きさの割に動作範囲が狭い。 ま た、 この様な把持部装置を多関節ロボッ トの先端部に取付けてワークを切断する 場合に、 この把持部装置がワーク と干渉して邪魔になるという新たな問題点が生 してい 。 癸 明 の 開 示  However, according to the techniques disclosed in the above publications, the trajectory that can be cut and cut is smaller than the outermost diameter of the gripping device of the processing tool, and the operating range is narrow for the size of the gripping device. In addition, when such a gripping device is attached to the tip of an articulated robot to cut a work, there is a new problem that the gripping device interferes with the work and becomes an obstacle. Disclosure of Kishimei
本発明は、 従来の 5または 6軸ロボッ トの各軸を動作させず、 このロボッ ト先 ¾部に設けた水平面内で面転する 2本のアームの軌跡により作られる小さな円や 四角形等を高速でかつ高精度に切断でき、 しかも 5 または 6軸ロボッ トで切断す るときに両アームを面耘させ、 ワーク と干渉しないように姿勢を変化させ得る新 しい軸構成の多関節ロボッ ト提供するこ とを目的と している。 このために、 本発明は、 5または 6軸を有する多関節ロボッ ト本体の先端部に 固着した支持部材には面転自在に第一アームの基端部を支持し、 他方の第一ァー ム先端部には同一平面内で面転する第二アームの基端部を支持して 7または 8軸 ロボッ トを構成すると共に、 他方の第二アーム先端部には工具把持部材を備えて いる。 The present invention does not operate each axis of the conventional 5- or 6-axis robot, but uses a small circle or square formed by the trajectory of two arms that roll on a horizontal plane provided at the end of the robot. Providing a multi-joint robot with a new shaft configuration that can cut at high speed and high precision, and when cutting with a 5- or 6-axis robot, both arms are tapped and the posture can be changed so as not to interfere with the workpiece It is intended to do so. For this reason, the present invention provides a support member fixed to the distal end of a multi-joint robot main body having five or six axes, which supports the base end of the first arm so as to be able to roll around, and the other first arm. A 7- or 8-axis robot is configured by supporting the base end of the second arm that rolls in the same plane at the tip of the arm, and a tool gripping member is provided at the other end of the second arm. .
直径の小さな円や四角形等を切断する場合は 5または 6軸ロボッ ト本体で位置 決めを行い、 第一駆動モータが駆動することにより支持部材に対して第一アーム が面転する。 第二駆動モータが駆動することにより第一アームにたいして第二ァ 一ムが面転し、 これにより第二アームの先端側に固着された工具把持握部材がぁ る平面内で任意の軌跡を描いて駆動される。 そしてこの工具把持部材にプラズマ 切断用 トーチまたは Y A Gレーザ用トーチを取付けることにより、 上記軌跡に沿 つてワークが切断される。  When cutting a small diameter circle or square, the position is determined by the 5- or 6-axis robot body, and the first arm is turned by the first drive motor. When the second drive motor is driven, the second arm is turned with respect to the first arm, thereby drawing an arbitrary trajectory in a plane where the tool gripping member fixed to the distal end side of the second arm extends. Driven. By attaching a plasma cutting torch or a YAG laser torch to this tool gripping member, the work is cut along the above-mentioned trajectory.
また、 従来の口ボッ トと同様に 5または 6軸口ボッ ト本体で切断する場合には 第一駆動モータと第二駆動モータにより両アームを面転させ、 ワークと干渉しな いように姿勢を変化させながら、 または変化させた後に、 任意の軌跡を切断する さらに、 広範囲の直線または曲線を切断して角に小さな丸みをつける場合には 、 先ず- 5または S軸ロボッ ト本体で直線または曲線を切断し、 次に第一アームと 第二アームの運動の合成を用いて角の小さな丸みを高精度で切断する。 図面の簡単な説明  Also, when cutting with the 5- or 6-axis mouth-botting body as in the conventional mouth-botting, both arms are turned by the first drive motor and the second drive motor, and the posture is set so as not to interfere with the work. Cut any trajectory while changing or after changing.In addition, if you want to cut a wide range of straight lines or curves and add small roundness to the corners, first use a straight line or -5 with the S-axis robot body. The curve is cut, and then the small roundness is cut with high precision using the combination of the movements of the first arm and the second arm. BRIEF DESCRIPTION OF THE FIGURES
図 1 は本発明に係る工業用の多闋節ロボッ トの側面図、 図 2は本発明の第 1宾 施例の要部を示す平面図、 図 3は本発明の第 1実施例の要部を示す断面図、 図 は本発明の第 2実施例を示す断面図、 図 5は図 4の A矢視図、 図 6は図 4の B - B線に沿う断面図、 図 7は本発明の第 2実施例の要部を示す平面図、 図 8は図 2 で示す第 1実施例における作用説明図、 図 9はプラズマ切断用 トーチによる図形 切断の作用を示すフローチャー ト、 図 1 0はプラズマ切断用 トーチによる任意の 形状を切断する場合の作用を示すフローチヤ一トである。 発明を実施するための最良の形態 FIG. 1 is a side view of an industrial multi-articulated robot according to the present invention, FIG. 2 is a plan view showing a main part of the first embodiment of the present invention, and FIG. 3 is a main view of the first embodiment of the present invention. FIG. 5 is a cross-sectional view showing a second embodiment of the present invention, FIG. 5 is a cross-sectional view taken along the arrow A in FIG. 4, FIG. 6 is a cross-sectional view taken along line BB of FIG. 4, and FIG. FIG. 8 is a plan view showing an essential part of the second embodiment of the invention, FIG. 8 is an explanatory view of an operation in the first embodiment shown in FIG. 2, FIG. 9 is a flowchart showing an operation of cutting a figure by a plasma cutting torch, FIG. 0 is arbitrary with plasma torch 5 is a flowchart showing an operation when cutting a shape. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の第 1実施例の構成を図 1〜図 3に基づいて説明する。  The configuration of the first embodiment of the present invention will be described with reference to FIGS.
図 1 と図 2において、 1 は 6軸の多関節ロボッ ト 2 の先端部、 3 はこの口ボッ ト先端部 1 にブラケ ッ ト 4を介して装着された 2つの面転する第一アーム 6 と第 二アーム 7を有する工具把持装置である。 ブラケッ ト 4には支持部材 5が固着さ れており、 この支持部材 5 に第一アーム 6の基端部が回転自在に支持されている 。 他方の第一アーム 6の先端部には、 第二アーム 7 の基端部が回転自在に支持さ れている c そして、 支持部材 5 と第二アーム 7 には、 それぞれ第一駆動モータ 8 と第二駆動モータ 9が固着してある。 In FIGS. 1 and 2, reference numeral 1 denotes a distal end of a six-axis articulated robot 2, and reference numeral 3 denotes two surface-turning first arms 6 attached to the distal end portion 1 of the mouth robot 1 via a bracket 4. And a tool holding device having a second arm 7. A support member 5 is fixed to the bracket 4, and the base end of the first arm 6 is rotatably supported by the support member 5. The distal end portion of the first arm 6 of the other, and c proximal end of the second arm 7 is rotatably supported, the support member 5 and the second arm 7, the first driving motor 8, respectively The second drive motor 9 is fixed.
第一駆動モータ 8 の出力軸 8 a は、 図 3に示すように第一減速機 1 0を介して 第一アーム 6 の基端部に構成された軸部 6 a に連結されている。 また、 第二駆動 モータ 9の出力軸 9 a は、 第二減速機 1 1を介して第一アーム 6の先端部に構成 された軸部 6 bに連結されている。 なお、 第一及び第二減速機 1 0 , 1 1 は、 構 成がコ ンパク トであり、 かつ重量も軽い波動歯車 (商品名 : ハーモニック ドライ ブ) を用いている。 また、 第二アーム 7 の先端部には工具把持部材 1 3が固着さ れている。  The output shaft 8a of the first drive motor 8 is connected to a shaft 6a formed at the base end of the first arm 6 via a first reduction gear 10, as shown in FIG. Further, the output shaft 9 a of the second drive motor 9 is connected to a shaft 6 b formed at the tip of the first arm 6 via the second reduction gear 11. The first and second reduction gears 10 and 11 use wave gears (product name: Harmonic Drive), which are compact in configuration and light in weight. Also, a tool gripping member 13 is fixed to the tip of the second arm 7.
次に、 本発明の第 2実施例の構成を図 4 -図 7 に基づいて説明する。 但し、 第 1実施例と同じ構成は同じ符号を付して説明を省略する。  Next, a configuration of a second embodiment of the present invention will be described with reference to FIGS. However, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
図 4 と図 7 において、 第一アーム 6 の駆動は、 支持部材 5 に固着された第一駆 動モータ 8 により第一減速機 1 0を介して行う。 第二アーム 7 の駆動は、 支持部 材 5 に固着された第二駆動モータ 9 ' により、 図 5 と図 6 に示すようにベル ト 1 5 と 1 6等からなる第二減速機 1 1 ' を介して駆動するこ とにより行う。  In FIGS. 4 and 7, the first arm 6 is driven via a first reduction gear 10 by a first drive motor 8 fixed to a support member 5. The second arm 7 is driven by a second drive motor 9 ′ fixed to the support member 5, as shown in FIGS. 5 and 6, a second reduction gear 11 ′ composed of belts 15 and 16, etc. It is performed by driving through the.
次に、 かかる第 1 実施例または第 2実施例の構成において作用を説明する。 作用 1 : 直径の小さな円や四角形等を切断する場合 、 先ず 6軸ロボッ ト 2 の本 体で位置決めを行い、 第一駆動モータ 8を駆動する こ とにより支持部材 5 に対し L, て第一アーム 6が面転する。 また、 第二駆動モータ 9または 9 ' を駆動すること により第一アーム 6の先端部に対して第二アーム 7が面転し、 これにより第二ァ —ム 7の先端部に固着された工具把持部材 1 3 の軸心が、 例えば図?で斜線で示 される領域内で任意の軌跡を描く ことができる。 この時、 工具把持部材 1 3に プラズマ切断用または Y A Gレーザ用 ト一チ 1 2を把持することにより、 上記軌 跡に沿ってワークが切断される。 Next, the operation of the configuration of the first embodiment or the second embodiment will be described. Function 1: When cutting a small diameter circle or square, first position the body with the 6-axis robot 2 and drive the first drive motor 8 to support the support member 5. L, the first arm 6 turns. Further, by driving the second drive motor 9 or 9 ′, the second arm 7 is turned around the tip of the first arm 6, and thereby the tool fixed to the tip of the second arm 7. The axis of gripping member 13 is, for example, With, an arbitrary trajectory can be drawn in the area indicated by the diagonal lines. At this time, the workpiece is cut along the trajectory by holding the plasma cutting or YAG laser torch 12 on the tool holding member 13.
作用 2 :従来のロボッ トと同様に 6軸ロボッ ト 2の本体で切断する場合には、 第 —アーム 6と第二アーム 7を動かしてこれらがワークと干渉しない姿勢に変更し 、 その後第一駆動モータ 8 と第二駆動モータ 9または 9 ' は動かさずに、 工具把 持部材 1 3と支持部材 5 との位置を一定に保って 6軸ロボッ ト 2の各軸を制御す ることにより、 任意の形状を切断する。 この場合、 第一アーム 6と第二アーム了 は、 ワークと干渉するようなことがなければ、 6敏ロボッ ト 2の本体で切断中は その姿勢を変える必要がない。 Function 2: When cutting with the main body of the 6-axis robot 2 in the same way as the conventional robot, the # 1 arm 6 and the second arm 7 are moved to change the posture so that they do not interfere with the work. By controlling the respective axes of the 6-axis robot 2 while keeping the positions of the tool holding member 13 and the support member 5 constant without moving the drive motor 8 and the second drive motor 9 or 9 ′, Cut any shape. In this case, if the first arm 6 and the second arm end do not interfere with the workpiece, it is not necessary to change their postures while cutting with the main body of the 6-robot 2.
しかしながら、 図 2において 6軸ロボッ ト 2の先端部 1を矢印 A方向に移動し 、 第二アーム Ίの先端部もこれと平行に矢印 Bの方向に移動させた場合、 上記移 動方向の行手に障害物 1 4がある時は、 第二アーム 7の基端部が上記障害物 1 4 に干渉する。 -従って、 第二アーム ?の先端部に把持されたトーチ 1 2を上記障害 物 1 4の近くまで移動できず、 切断等の加工範囲にデッ ドスペースが生じる。 こ のような場合には、 図 8に示すように第一アーム 6 と第二アーム Ίの姿勢を逆向 きにして、 第二アーム 7の先嬙部を障害物 1 4側へ向けて上記作業を行なう こと により、 デフ ドスペースをなくすることができる。  However, in FIG. 2, when the tip 1 of the 6-axis robot 2 is moved in the direction of arrow A and the tip of the second arm 移動 is also moved in the direction of arrow B in parallel with this, When there is an obstacle 14 in the hand, the base end of the second arm 7 interferes with the obstacle 14. -So the second arm? The torch 12 gripped by the tip of the torch cannot move close to the obstacle 14, and a dead space is generated in a processing range such as cutting. In such a case, as shown in FIG. 8, the first arm 6 and the second arm Ί are turned in the opposite direction, and the leading end of the second arm 7 is directed to the obstacle 14 side. By doing so, the default space can be eliminated.
作用 3 :広範囲の直線または曲線の切断を行い、 且つ角に小さな丸みを付ける場 合には、 先ず 6軸ロボッ ト 2の本体で直線または曲線を切断し、 次いで第一ァー ム 6と第二アーム 7の回転運動の合成により角の小さな丸みを高精度で切断する なお、 作用 1の平面內に小さな Rや四角形等を切断する場合には、 第一、 第二 の駆動モータ 8 , 9または 9 ' を図示しないコ ン ト ロール装置で制御し-. かつそ の制御軌跡を所定の計算式に基づいて教示することにより切断するこ ともできる このときのフローチャー トが図 9であって、 ステップ ( 1 ) 乃至ステップ ( 1 0 ) の工程により実施される。 教示と しては、 第一アーム 6の县さを 1 , 、 第二 アーム 7の县さを 1 2 、 第一アーム 6 の基準座標からの角度を ! , 第二アーム 7 の基準座標からの角度を z と し、 また切断する図形の中心点の座標を X。 、 Yo と したときに、 ステップ ( 3 ) では第二アーム 7 の先端部を教示点 (Χ ο 、 Υο ) へ移動する。 また、 ステップ ( 5 ) では切断軌跡の座標を各軸のモータ 8 , 9または 9 ' の面耘角に換算するが、 この面転角への換算は次式によって行わ れる。 Function 3: When cutting a wide range of straight lines or curves and adding small roundness to the corners, first cut the straight lines or curves with the body of the 6-axis robot 2, and then cut the first arm 6 and the second arm. Cutting the small roundness with high precision by combining the rotational movements of the two arms 7 When cutting a small R or square on the plane の of the operation 1, the first and second drive motors 8 and 9 Or 9 'is controlled by a control device (not shown). It is also possible to cut by teaching the control trajectory based on a predetermined calculation formula. The flow chart at this time is shown in FIG. 9 and is implemented by the steps (1) to (10). As teaching, the length of the first arm 6 is 1, the length of the second arm 7 is 1 2 , and the angle of the first arm 6 from the reference coordinates! , The angle from the reference coordinates of the second arm 7 is z, and the coordinate of the center point of the figure to be cut is X. In step (3), the tip of the second arm 7 is moved to the teaching point (Χο, Υο). In step (5), the coordinates of the cutting trajectory are converted into the surface tiling angle of the motor 8, 9 or 9 'of each axis. The conversion into the surface turning angle is performed by the following equation.
X ( 1 , + 1 2 COS Θ z ) + Y 1 2 Sin Θ X (1, + 1 2 COS Θ z) + Y 1 2 Sin Θ
COS  COS
1 .2- 1 2 1 , lz COS^ 2 . 1 2 - 1 2 1, l z COS ^ 2
! X 一 Y 1 ιζ- 1 ! X one Y 1 ι ζ -1
θ COS  θ COS
2 1 , 1  2 1, 1
また、 作用 2の従来の口ボッ ト と同様に 6軸ロボッ ト 2 の本体で切断する場合 には、 第一アーム 6 と第二アーム 7を動かしてヮ一ク と干渉しないように姿勢を 変更しながら 6軸ロボッ ト 2の各軸を制御する ことにより、 任意の形状を切断す る。 このときのフ ーチャー トが図 1 0であって、 ステップ ( 2 1 ) 乃至ステ ソ プ ( 2 7 ) の工程により実施される。 産業上の利用可能性 本発明は、 6軸等の多関節ロボッ ト本体を動かさないで小さな Rや四角等を高 精度で複数個切断することができ、 且つワークと接近してもこれとの干渉を避け 得る工業用の多関節ロボッ トとして有用である。 Also, when cutting with the main body of the 6-axis robot 2 in the same way as the conventional mouth robot of function 2, the posture is changed so that the first arm 6 and the second arm 7 are moved so as not to interfere with the stroke. By controlling each axis of the 6-axis robot 2 while cutting, any shape can be cut. The feature at this time is shown in FIG. 10 and is implemented by the steps (21) to (27). INDUSTRIAL APPLICABILITY The present invention is capable of cutting a plurality of small Rs and squares with high accuracy without moving the articulated robot main body such as a six-axis robot, and is capable of cutting a plurality of small Rs and squares even when approaching a workpiece. This is useful as an industrial articulated robot that can avoid interference.

Claims

請求の範囲 The scope of the claims
1 . 5 または 6軸を有する多関節ロボッ ト本体の先端部に固着した支持部材には 面転自在に第一アームの基端部を支持し、 他方の第一アーム先端部には水平面內 で回転を行う第二アームの基端部を支持して 7 または 8軸ロボッ トを構成すると 共に、 他方の第二アーム先端部には工具把持部材を備えたことを特徵とする多関 節ロボッ ト。 The support member fixed to the distal end of the multi-joint robot body having 1.5 or 6 axes supports the base end of the first arm so that it can turn freely, and the other end of the first arm has a horizontal plane. A multi-joint robot characterized by comprising a 7- or 8-axis robot by supporting the base end of a rotating second arm and a tool gripping member at the other end of the second arm. .
2 . 前記第一アームの駆動は、 前記多闋節ロボッ ト本体の先端部に固着した支持 部材に取付けられた第一駆動モータにより減速機を介して行う と共に、 前記第二 アームの駆動は、 前記第一アームの先端部に固着された第二駆動モータにより減 速機を介して行う こ とを特徴とする請求の範囲 1記載の多関節ロボッ ト。 2. The first arm is driven via a speed reducer by a first drive motor attached to a support member fixed to the distal end of the multi-joint robot main body, and the second arm is driven. 2. The multi-joint robot according to claim 1, wherein the control is performed via a speed reducer by a second drive motor fixed to a distal end of the first arm.
3 . 前記第一駆動モータ とその减速機は、 前記第二駆動モータ とその減速機に対 し、 第一アームの中心で軸対象位置に配置されているこ とを特徵とする請求の範 囲 1記載の多関節ロボッ ト。 3. The first drive motor and the speed reducer thereof are arranged at an axis symmetric position at the center of the first arm with respect to the second drive motor and the speed reducer thereof. The articulated robot described in 1.
4 . 前記第一アームの駆動は、 前記多関節ロボッ ト木体の先端部に固着した支持 部材に取付けられた第一駆動モータにより第一減速機を介して行う と共に、 前記 第二アームの駆動は、 支持部材に取付けられた第二駆動モータにより第二減速機 を介して駆動するこ とにより行う ことを特徵とする請求の範囲 1記載の多閡節ロ ホ フ Γ 4. The first arm is driven via a first reduction gear by a first drive motor attached to a support member fixed to the tip of the articulated robot wooden body, and the second arm is driven. 2. The multi-joint roller hood according to claim 1, wherein the driving is performed by a second drive motor attached to the support member via a second reduction gear.
5 . 前記工具把持部材に取付ける工具はブラズマ トーチまたは Y A G レーザ トー チであり、 ワーク切断前に前記工具先端とワーク との距離を測定するセ ンサを有 し、 この距離の測定結果からワ ークの変形量を計測してロボッ トの教示点を補正 すると共に、 ワーク切断中は前記工具先端とワーク との隙間が一定となるように この工具先嬙の位置を移動させることを特徵とする請求の範囲 1記載の多蘭節口 5. The tool to be attached to the tool gripping member is a plasma torch or a YAG laser torch, which has a sensor to measure the distance between the tool tip and the workpiece before cutting the workpiece. The teaching point of the robot is corrected by measuring the amount of deformation of the robot, and the gap between the tool tip and the workpiece is kept constant while the workpiece is being cut. The multi-lane entrance according to claim 1, wherein the position of the tool tip is moved.
PCT/JP1993/000281 1992-03-06 1993-03-05 Articulated robot WO1993017837A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4083040A JPH068182A (en) 1992-03-06 1992-03-06 Articulated robot
JP4/83040 1992-03-06

Publications (1)

Publication Number Publication Date
WO1993017837A1 true WO1993017837A1 (en) 1993-09-16

Family

ID=13791103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000281 WO1993017837A1 (en) 1992-03-06 1993-03-05 Articulated robot

Country Status (2)

Country Link
JP (1) JPH068182A (en)
WO (1) WO1993017837A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113275765A (en) * 2021-05-31 2021-08-20 奇瑞新能源汽车股份有限公司 Robot laser cutting mechanism

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101160059B1 (en) * 2010-09-07 2012-06-26 삼성중공업 주식회사 Method and Device for cutting gap maintain of Plasma cutter
EP2688706B1 (en) * 2011-03-21 2015-11-25 Electronics And Computer Highlights - Produção, Reparação E Serviços LDA Apparatus for laser working of flat elements
JP5486105B1 (en) * 2013-04-09 2014-05-07 テクノコート株式会社 Laser overlay welding method, laser welding method, laser cutting method, laser quenching method, laser overlay welding apparatus, laser welding apparatus, laser cutting apparatus and laser quenching apparatus
JP6138722B2 (en) * 2014-04-10 2017-05-31 スターテクノ株式会社 Work processing equipment
CN106270944B (en) * 2016-09-07 2018-08-03 江苏菲达宝开电气股份有限公司 A kind of swing welding equipment
JP7286531B2 (en) * 2019-12-27 2023-06-05 川崎重工業株式会社 Multi-axis robot and its control method
WO2022215197A1 (en) * 2021-04-07 2022-10-13 ファナック株式会社 Tool drive device and robot

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57189785A (en) * 1981-05-20 1982-11-22 Nippon Electric Co Industrial robot
JPS5973299A (en) * 1982-10-21 1984-04-25 株式会社神戸製鋼所 Wrist mechanism of industrial robot, etc.
JPS6084280U (en) * 1983-11-14 1985-06-11 株式会社神戸製鋼所 industrial robot
JPS61253506A (en) * 1985-05-02 1986-11-11 Kawasaki Heavy Ind Ltd Method for correcting teaching point of industrial robot

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57189785A (en) * 1981-05-20 1982-11-22 Nippon Electric Co Industrial robot
JPS5973299A (en) * 1982-10-21 1984-04-25 株式会社神戸製鋼所 Wrist mechanism of industrial robot, etc.
JPS6084280U (en) * 1983-11-14 1985-06-11 株式会社神戸製鋼所 industrial robot
JPS61253506A (en) * 1985-05-02 1986-11-11 Kawasaki Heavy Ind Ltd Method for correcting teaching point of industrial robot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113275765A (en) * 2021-05-31 2021-08-20 奇瑞新能源汽车股份有限公司 Robot laser cutting mechanism
CN113275765B (en) * 2021-05-31 2023-02-21 安徽必达新能源汽车产业研究院有限公司 Robot laser cutting mechanism

Also Published As

Publication number Publication date
JPH068182A (en) 1994-01-18

Similar Documents

Publication Publication Date Title
CN107921647B (en) Robot gripper
WO1990004487A1 (en) Articulated robot for laser work
KR102026785B1 (en) Robot arm and robot wrist
WO2018088447A1 (en) Work device and double-arm-type work device
WO1993017837A1 (en) Articulated robot
JP2001054889A (en) Vertical articulated robot for assembly
JP2019198960A (en) Articulated robot using link operation device
JP2001038656A (en) Articulated manipulator
JP2020171989A (en) Robot teaching system
JPH11156769A (en) Double-arm type scalar robot
JP2536338B2 (en) Robot workpiece gripping mechanism
JP5080357B2 (en) robot
CN113359614B (en) Parallel robot and circular motion track interpolation method thereof
JP2020082220A (en) Workpiece holding hand, hand system, and robot system
WO2001026865A1 (en) Horizontal articulated manipulator
JPH03502306A (en) industrial robot
JP5348298B2 (en) robot
JPH11254357A (en) Robot having horizontal arm
JPH0677205B2 (en) Robot control method
JP2607558Y2 (en) Articulated robot
JPS5851088A (en) Industrial robot
JP3057123B2 (en) Portable industrial robot
JP4268035B2 (en) Industrial robot and control method thereof
JPH06143183A (en) Handling robot and control method therefor
JP3054555U (en) Handling robot

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase