WO1993013367A1 - Solar cooling apparatus - Google Patents

Solar cooling apparatus Download PDF

Info

Publication number
WO1993013367A1
WO1993013367A1 PCT/JP1992/001732 JP9201732W WO9313367A1 WO 1993013367 A1 WO1993013367 A1 WO 1993013367A1 JP 9201732 W JP9201732 W JP 9201732W WO 9313367 A1 WO9313367 A1 WO 9313367A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
evaporator
pressure
heat
vapor
Prior art date
Application number
PCT/JP1992/001732
Other languages
French (fr)
Japanese (ja)
Inventor
Seishi Watanabe
Original Assignee
Seishi Watanabe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seishi Watanabe filed Critical Seishi Watanabe
Publication of WO1993013367A1 publication Critical patent/WO1993013367A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/362Pervaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/14Sorption machines, plants or systems, operating continuously, e.g. absorption type using osmosis

Definitions

  • the present invention relates to a cooling device, and relates to a solar cooling device using solar heat as a power source thereof.
  • cooling systems using solar heat have been developed for the purpose of energy saving.
  • an absorption cooling system using an aqueous solution of lithium bromide has been developed.
  • Components such as an evaporator, an absorber, a steam generator, a solar water heater, and a condenser were connected by piping.
  • pumps and expansion valves were provided in the middle of the piping to supply liquid for absorbing water vapor and maintain low pressure.
  • the conventional apparatus has to be a large fixed facility due to a large number of pipes and devices. Therefore, it is usually limited to use as an indirect cooling device that is a supply source of cold water. In addition, power is required in addition to solar heat as a power source for the equipment.
  • the present invention has been made in view of such circumstances, requires no power source other than solar heat, and has all of the above functions integrated, is compactly movable, and is directly movable. It aims to provide a cooling type solar cooling device.
  • the solar thermal cooling system of the present invention has a low-pressure evaporator and normal-pressure steam.
  • the semi-permeable membrane which is a partition wall between the absorption generator and the condenser, serves as a wall for each of the above-mentioned components and also serves as a pipe connecting them.
  • the water vapor generated by the absorption passes through the semipermeable membrane, which is a partition, and is absorbed by the aqueous solution of the solution stored in the upper vapor absorption generator.
  • the heat taken by the evaporator is condensed and sensible heat Release as The water generated by the condensation of the water vapor is evaporated by the condensed sensible heat and the solar heat radiated to the vapor absorption generator, and becomes water vapor again.
  • This water vapor touches the radiator plate protected by the radiation shield plate at the top of the condenser at the same atmospheric pressure, and is cooled again by external air outside the radiator plate to become water again.
  • the water returns to the evaporator again through the semipermeable membrane separating the condenser and the evaporator.
  • the water moves into the evaporator when the concentration of the aqueous solution becomes lower than the osmotic pressure equal to the differential pressure between the condenser and the evaporator due to the condensed water.
  • the concentration of the aqueous solution increases, and when the solution concentration exceeds the osmotic pressure, the movement of water stops.
  • the airtightness of the semipermeable membrane is maintained by the presence of the dilute aqueous solution in the condenser at all times, the evaporator ⁇ ⁇ is maintained at a low pressure, and the heat transfer is repeated. The evaporator is continuously cooled.
  • the semi-permeable membrane is used for the partition wall between the low-pressure component and the normal-pressure component.
  • FIG. 1 is a diagram showing a solar cooling device.
  • FIG. 1 denotes a solar heat cooling device having an evaporator 2. a vapor absorption generator 3 and a condenser 4.
  • the evaporator 2 maintained at a pressure of about 0 mm ⁇ ⁇ is provided with an evaporative cooling plate 21 and a superabsorbent resin 22, and the water impregnated in the superabsorbent resin 22 is under low pressure and low temperature. Evaporates into water vapor
  • the water vapor passes through the semi-permeable membrane 3 1 which is a partition wall between the low-pressure evaporator 2 and the normal pressure, and impregnates the superabsorbent resin 3 2 provided in the vapor absorption generator 3 It is absorbed by the saturated aqueous solution of saturated ruthenium.
  • the steam absorption generator 3 further includes a solar heat absorbing plate 33 and a semipermeable membrane supporting floor 34.
  • the water in the aqueous chloridium solution evaporates by the heat absorbed from the solar heat absorbing plate 33 and the condensed sensible heat of the steam from the evaporator 2 to become steam.
  • the condenser 4 is provided with a semipermeable membrane 41 as a partition wall with the evaporator 2, a superabsorbent resin 42, a heat sink 43, a shielding plate 44, and a semipermeable membrane supporting floor 45. .
  • the superabsorbent resin 42 is impregnated with a low-concentration aqueous solution of chloridized sodium chloride.
  • the water vapor contacts the heat sink 43 and is cooled and condensed into water.
  • the heat absorbed by the evaporator 2 and the solar heat absorbing plate 33 is When, f ⁇ ⁇ water released into the atmosphere, the superabsorbent polymer 4 2 after absorption, the ⁇ Ru c to the evaporator 2 through the semipermeable membrane 4 1
  • the semi-permeable membranes 3 1 and 4 i are membranes such as ⁇ -cell acetate, supported by the membrane support beds 3 4 and ⁇ 45, respectively, with the low-pressure evaporator 2 and the normal-pressure vapor absorption.
  • Generator 3 and condenser 4 are provided.
  • the present invention separates the evaporator having a cooling function kept at a low pressure from the vapor absorption generator and the condenser at a normal pressure with a semi-permeable membrane to thereby provide a pipe and a pump.
  • a compact cooling device that does not require an expansion valve and that uses only solar ripening as a power source.
  • the structure that integrates all necessary components is suitable for cooling not only fixed objects but also objects that are constantly moving. Therefore, automobiles, houses, public telephone boxes and Portable cooler
  • the present invention can be used and positively prevented when solar heat itself causes a high temperature, such as in automobiles, homes, and public telephone boxes in summer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

A compact and transportable solar cooling apparatus having no pipes, no pumps and no expansion valves and using solar heat only as a power source. Semi-permeable membranes are provided as a partition wall between a low-pressure evaporator (2) and a normal-pressure vapor absorption generator (3), and as a partition wall between the low-pressure evaporator (2) and a normal-pressure condenser (4). The solvent in the evaporator (2) absorbs heat and turns into solvent vapor, which permeates through a semi-permeable membrane (31) to be absorbed into the solution in the vapor absorption generator (3) and changed into solvent. The solvent then turns into solvent vapor again owing to the condensation sensible heat occurring at this time and solar heat, and then enters the condenser (4). The solvent vapor in contact with a heat radiating plate (43) radiates heat to the outside and turns into a solvent at once, which permeates through a semi-permeable membrane (41), the solvent then returning to the evaporator (2) again. The above processes are repeated, and the evaporator is cooled continuously.

Description

]  ]
明 細 害  Harm
発明の名称 Title of invention
太陽熱冷却装罱  Solar cooling equipment
技術分野 Technical field
この発明は、 冷却装置に関し、 その動力源と して太陽熱を用い た太陽熱冷却装置に関する。  The present invention relates to a cooling device, and relates to a solar cooling device using solar heat as a power source thereof.
背景技術 Background art
従来から省エネルギ—の目的で、 太陽熱を利用 した冷却装置の 開発が行われて来た ., その代表的な例と して、 臭化リ チウ ム水溶 液等を用いた吸収式冷却装置では、 蒸発器、 吸収器、 水蒸気発生 器、 太陽熱温水器、 および凝縮器等の構成機器を配管で結んでい た。 そ して、 配管の途中にポン プや膨張弁を設けて、 水蒸気吸収 のための送液や低圧維持をしていた。  Conventionally, cooling systems using solar heat have been developed for the purpose of energy saving. As a typical example, an absorption cooling system using an aqueous solution of lithium bromide has been developed. Components such as an evaporator, an absorber, a steam generator, a solar water heater, and a condenser were connected by piping. In addition, pumps and expansion valves were provided in the middle of the piping to supply liquid for absorbing water vapor and maintain low pressure.
この様に、 従来の装置は、 数多 く の配管や機器のため大型の ^ 定設備にならざるを得ない。 そのため、 通常は冷水の供給源であ る間接冷却装置と しての用途に限られている。 また、 装置の動力 源と して太陽熱以外に電力も必要と している .,  As described above, the conventional apparatus has to be a large fixed facility due to a large number of pipes and devices. Therefore, it is usually limited to use as an indirect cooling device that is a supply source of cold water. In addition, power is required in addition to solar heat as a power source for the equipment.
発明の開示 ' 本発明はこのよ うな実情に鑑みてなされたもので、 太陽熱以外 には動力源は不要で、 しかも前記の機能をすベて一体化した、 コ ンパク 卜で移動可能な、 直接冷却方式の太陽熱冷却装置を提供す るこ とを目的と している,, ' DISCLOSURE OF THE INVENTION '' The present invention has been made in view of such circumstances, requires no power source other than solar heat, and has all of the above functions integrated, is compactly movable, and is directly movable. It aims to provide a cooling type solar cooling device.
この発明の太陽熱 '冷却装置では、 低圧の蒸発器と、 常圧の蒸気 吸収発生器および凝縮器との間の隔壁である半透膜は、 前記各構 成部の壁であると同時に、 それらを連結する配管の役割も果たし ている .、 低圧の蒸発器で熱を吸収して発生した水蒸気は、 隔壁で ある前記半透膜を通つて、 上部の蒸気吸収発生器に貯留された溶 質の水溶液に吸収され、 この時、 蒸発器で奪った熱を凝縮顕熱と して放出する。 前記の水蒸気の凝縮によって生成した水は、 凝縮 顕熱と蒸気吸収発生器に輻射される太陽熱によつて蒸発させられ て、 再び水蒸気となる。 The solar thermal cooling system of the present invention has a low-pressure evaporator and normal-pressure steam. The semi-permeable membrane, which is a partition wall between the absorption generator and the condenser, serves as a wall for each of the above-mentioned components and also serves as a pipe connecting them. The water vapor generated by the absorption passes through the semipermeable membrane, which is a partition, and is absorbed by the aqueous solution of the solution stored in the upper vapor absorption generator. At this time, the heat taken by the evaporator is condensed and sensible heat Release as The water generated by the condensation of the water vapor is evaporated by the condensed sensible heat and the solar heat radiated to the vapor absorption generator, and becomes water vapor again.
この水蒸気は、 同じ常圧の凝縮器上部の輻射遮蔽板によつて守 られた放熱板に触れ、 放熱板の外側の外部空気によって冷却され て再度水となる。 この水は、 凝縮器と蒸発器を隔てている前記半 透膜を通って、 再び蒸発罴に戻る。 凝縮器内に少量の溶質を加え ておく ことによ り 、 凝縮水によつて凝縮器と蒸発器の差圧に等し い浸透圧以下の水溶液濃度になる と、 水は蒸発器内に移動する この結果、 水溶液濃度は上昇し、 上記浸透圧以上の液濃度にな る と水の移動は停止する。 このよ う にして凝縮器内には、 常に希 薄水溶液が存在するこ とにより半透膜の気密性が保たれ、 蒸発器 內は低圧に維持され続け、 前記の熱の移動が繰り返され、 蒸発器 は連続的に冷却される。  This water vapor touches the radiator plate protected by the radiation shield plate at the top of the condenser at the same atmospheric pressure, and is cooled again by external air outside the radiator plate to become water again. The water returns to the evaporator again through the semipermeable membrane separating the condenser and the evaporator. By adding a small amount of solute in the condenser, the water moves into the evaporator when the concentration of the aqueous solution becomes lower than the osmotic pressure equal to the differential pressure between the condenser and the evaporator due to the condensed water. As a result, the concentration of the aqueous solution increases, and when the solution concentration exceeds the osmotic pressure, the movement of water stops. In this way, the airtightness of the semipermeable membrane is maintained by the presence of the dilute aqueous solution in the condenser at all times, the evaporator 続 け is maintained at a low pressure, and the heat transfer is repeated. The evaporator is continuously cooled.
このよ う に、 低圧の構成部と常圧の構成部との隔壁に半透膜を. 用いるこ とによ り 、 太陽熱冷却システム全体を効果的に、 しかも コ ンパ'ク ト に一体化する こ とができる。  In this way, the semi-permeable membrane is used for the partition wall between the low-pressure component and the normal-pressure component. By using this, the entire solar thermal cooling system can be effectively and integrated into a compact. be able to.
図面の簡単な説明 第 1 ^は、 太陽熱冷却装置を示す図である。 BRIEF DESCRIPTION OF THE FIGURES First ^ is a diagram showing a solar cooling device.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明をよ り詳細に記述するために、 以下添付図面に ¾έ つて説 明する。 第 1 図中符号 ] は、 太陽熱冷却装置であり、 蒸発器 2 . 蒸気吸収発生器 3および凝縮器 4を有している。  In order to describe the present invention in more detail, the following description is made with reference to the accompanying drawings. Reference numeral in FIG. 1] denotes a solar heat cooling device having an evaporator 2. a vapor absorption generator 3 and a condenser 4.
圧力が約 ] 0 m m Η ίΐに維持された蒸発器 2 には、 蒸発冷却板 2 1 と高吸水性樹脂 2 2を設け、 高吸水性樹脂 2 2 に含浸された 水は低圧、 低温の下で蒸発して水蒸気となる  The evaporator 2 maintained at a pressure of about 0 mm Η を is provided with an evaporative cooling plate 21 and a superabsorbent resin 22, and the water impregnated in the superabsorbent resin 22 is under low pressure and low temperature. Evaporates into water vapor
この水蒸気は、 低圧の蒸発器 2 と常圧の蒸気吸収発生.器 3 との 隔壁である半透膜 3 1 を通って、 蒸気吸収発生器 3 に備えられた 高吸水性樹脂 3 2 に含浸された飽和塩化力ルシ ュゥム水溶液に吸 収される。  The water vapor passes through the semi-permeable membrane 3 1 which is a partition wall between the low-pressure evaporator 2 and the normal pressure, and impregnates the superabsorbent resin 3 2 provided in the vapor absorption generator 3 It is absorbed by the saturated aqueous solution of saturated ruthenium.
蒸気吸収発生器 3 は、 更に、 太陽熱吸収板 3 3 と半透膜支持床 3 4を備えている。  The steam absorption generator 3 further includes a solar heat absorbing plate 33 and a semipermeable membrane supporting floor 34.
塩化力ルシ ュ ゥム水溶液中の水は、 太陽熱吸収板 3 3から吸収 した熱と、 蒸発器 2からの水蒸気の凝縮顕熱によって蒸発して、 水蒸気となる。  The water in the aqueous chloridium solution evaporates by the heat absorbed from the solar heat absorbing plate 33 and the condensed sensible heat of the steam from the evaporator 2 to become steam.
常圧の部分と して、 この他に凝縮器 4がある。 凝縮器 4 には、 蒸発器 2 との隔壁である半透膜 4 1 、 高吸水性樹脂 4 2 、 放熱板 4 3、 遮蔽板 4 4およぴ半透膜支持床 4 5が設けてある。  As part of the normal pressure, there is also a condenser 4. The condenser 4 is provided with a semipermeable membrane 41 as a partition wall with the evaporator 2, a superabsorbent resin 42, a heat sink 43, a shielding plate 44, and a semipermeable membrane supporting floor 45. .
高吸水性樹脂 4 2 には、 低濃度の塩化力ルシゥム水溶液が含浸 してある。 前記水蒸気は、 放熱板 4 3 に接触して冷却され凝縮し て水となる。 蒸発器 2 と太陽熱吸収板 3 3 にて吸収した熱は、 こ の時、 大気に放出される f Μ ΐΰ水は、 高吸水性樹脂 4 2 に吸収さ れた後、 半透膜 4 1 を通って蒸発器 2に苠る c The superabsorbent resin 42 is impregnated with a low-concentration aqueous solution of chloridized sodium chloride. The water vapor contacts the heat sink 43 and is cooled and condensed into water. The heat absorbed by the evaporator 2 and the solar heat absorbing plate 33 is When, f Μ ΐΰ water released into the atmosphere, the superabsorbent polymer 4 2 after absorption, the苠Ru c to the evaporator 2 through the semipermeable membrane 4 1
半透膜 3 1 および 4 i は、 酢酸セル σ —ス等の膜で、 それぞれ ^透膜支持床 3 4および- 4 5 に支えられて、 低圧の蒸発器 2 と、. 常圧の蒸気吸収発生器 3および凝縮器 4を仕 ¾つている。  The semi-permeable membranes 3 1 and 4 i are membranes such as σ-cell acetate, supported by the membrane support beds 3 4 and −45, respectively, with the low-pressure evaporator 2 and the normal-pressure vapor absorption. Generator 3 and condenser 4 are provided.
産業上の利 ¾可能性  Industrial potential
この発明は以上説明したよう に、 低圧に保たれた冷却機能をも つ蒸発器と、 常圧の蒸気吸収発生器および凝縮器とを半透膜で仕 切るこ とによ り 、 配管、 ポンプおよび膨張弁が不要でかつ、 太陽 1 0 熟のみを動力源とするコ ンパク 卜な冷却装置を実現することがで さる  As described above, the present invention separates the evaporator having a cooling function kept at a low pressure from the vapor absorption generator and the condenser at a normal pressure with a semi-permeable membrane to thereby provide a pipe and a pump. And a compact cooling device that does not require an expansion valve and that uses only solar ripening as a power source.
このよ う に、 必要な構成要素を全て一体化した構造のため、 固 定物だけではなく 、 常に移動する対象物の冷却にも適している , よって、 自動車、 住宅、 公衆電話ポッ ク スおよび携帯用クーラ— In this way, the structure that integrates all necessary components is suitable for cooling not only fixed objects but also objects that are constantly moving. Therefore, automobiles, houses, public telephone boxes and Portable cooler
1 5 ボ クス等の数多くの用途がある c There are many uses such as 15 box c
特に、 夏季の自動車、 住宅、 公衆電話ポッ クスの中のように、 太陽熱そのものが高温化の原因となる場合には、 この発明を用い れぱ、 それを積極的に防止できる .  In particular, the present invention can be used and positively prevented when solar heat itself causes a high temperature, such as in automobiles, homes, and public telephone boxes in summer.
¾上に述べたよう に、 小型のヒー 卜ポンプであるこの発明を利 ? 用すれば、 非常に効果的な種々の局所冷却装置が可能である。  よ う As mentioned above, does this invention, a small heat pump, benefit from this invention? If used, a variety of very effective local cooling devices are possible.

Claims

請 求 の 範 囲  The scope of the claims
熱吸収によ り溶媒が蒸発する低圧の蒸発器と、 該溶媒蒸気が吸 収されかつ前記吸収熱と太陽熱とによつて再び溶媒が蒸発する常 圧の蒸気吸収発生器との分離隔壁と して、 又、 同じく 前記の低圧 M の蒸発器と、 前記蒸気吸収発生器から流入する溶媒蒸気を凝縮さ せて溶媒とする常圧の凝縮器との分離隔壁と して、 共に、 溶質に は不透過性であるが、 その溶媒蒸気および溶媒には透過性である 半透膜の仕切り壁 ( 3 1 ) および ( 4 1 ) を有するこ とを特徴と する太陽熱冷却装置。  A separating partition between a low-pressure evaporator in which the solvent evaporates due to heat absorption and a normal-pressure vapor absorption generator in which the solvent vapor is absorbed and the solvent evaporates again by the absorption heat and solar heat. And a separation wall for the low-pressure M evaporator and a normal-pressure condenser for condensing the solvent vapor flowing from the vapor absorption generator and using the solvent as a solvent. A solar cooling device characterized by having semi-permeable membrane partition walls (31) and (41) which are impermeable but permeable to the solvent vapor and solvent.
0 0
PCT/JP1992/001732 1991-12-24 1992-12-21 Solar cooling apparatus WO1993013367A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3/361308 1991-12-24
JP3361308A JPH0784965B2 (en) 1991-12-24 1991-12-24 Solar cooling system

Publications (1)

Publication Number Publication Date
WO1993013367A1 true WO1993013367A1 (en) 1993-07-08

Family

ID=18473047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/001732 WO1993013367A1 (en) 1991-12-24 1992-12-21 Solar cooling apparatus

Country Status (2)

Country Link
JP (1) JPH0784965B2 (en)
WO (1) WO1993013367A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2088389A1 (en) * 2008-02-05 2009-08-12 Evonik Degussa GmbH Absorption cooling machine
US8069687B2 (en) 2005-06-17 2011-12-06 Evonik Degussa Gmbh Working media for refrigeration processes
US8500892B2 (en) 2009-02-02 2013-08-06 Evonik Degussa Gmbh CO2 absorption from gas mixtures using an aqueous solution of 4-amino-2,2,6,6-tetramethylpiperidine
US8696928B2 (en) 2009-12-07 2014-04-15 Evonik Degussa Gmbh Operating medium for an absorption refrigeration device
US8784537B2 (en) 2010-11-12 2014-07-22 Evonik Degussa Gmbh Amine-containing absorption medium, process and apparatus for absorption of acidic gases from gas mixtures
US8932478B2 (en) 2008-02-05 2015-01-13 Evonik Degussa Gmbh Process for the absorption of a volatile substance in a liquid absorbent
US9630140B2 (en) 2012-05-07 2017-04-25 Evonik Degussa Gmbh Method for absorbing CO2 from a gas mixture
US9840473B1 (en) 2016-06-14 2017-12-12 Evonik Degussa Gmbh Method of preparing a high purity imidazolium salt
US9878285B2 (en) 2012-01-23 2018-01-30 Evonik Degussa Gmbh Method and absorption medium for absorbing CO2 from a gas mixture
US10105644B2 (en) 2016-06-14 2018-10-23 Evonik Degussa Gmbh Process and absorbent for dehumidifying moist gas mixtures
US10138209B2 (en) 2016-06-14 2018-11-27 Evonik Degussa Gmbh Process for purifying an ionic liquid
US10493400B2 (en) 2016-06-14 2019-12-03 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10500540B2 (en) 2015-07-08 2019-12-10 Evonik Degussa Gmbh Method for dehumidifying humid gas mixtures using ionic liquids
US10512881B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10512883B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
WO2022117956A1 (en) * 2020-12-04 2022-06-09 Alpinov X Evaporator for a refrigeration installation delimiting two evaporation chambers, one at high pressure and one at low pressure, these being separated by a filtration screen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130648A (en) * 1974-09-07 1976-03-16 Kajima Corp HANTOMAKURYONOKYUSHUSHIKI REITOKI
DE3143534A1 (en) * 1981-11-03 1983-06-01 Joachim 2930 Varel Rieder Continuously running absorption refrigeration unit without a refrigerant distillation process
JPS60179103A (en) * 1984-02-27 1985-09-13 Hitachi Ltd Process and apparatus for concentrating aqueous solution and process and apparatus for recovering heat
JPS61107096A (en) * 1984-10-31 1986-05-24 Nippon Oil Co Ltd Method of transferring heat energy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130648A (en) * 1974-09-07 1976-03-16 Kajima Corp HANTOMAKURYONOKYUSHUSHIKI REITOKI
DE3143534A1 (en) * 1981-11-03 1983-06-01 Joachim 2930 Varel Rieder Continuously running absorption refrigeration unit without a refrigerant distillation process
JPS60179103A (en) * 1984-02-27 1985-09-13 Hitachi Ltd Process and apparatus for concentrating aqueous solution and process and apparatus for recovering heat
JPS61107096A (en) * 1984-10-31 1986-05-24 Nippon Oil Co Ltd Method of transferring heat energy

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8069687B2 (en) 2005-06-17 2011-12-06 Evonik Degussa Gmbh Working media for refrigeration processes
WO2009098155A1 (en) * 2008-02-05 2009-08-13 Evonik Degussa Gmbh Absorption type refrigerating machine
US8932478B2 (en) 2008-02-05 2015-01-13 Evonik Degussa Gmbh Process for the absorption of a volatile substance in a liquid absorbent
EP2088389A1 (en) * 2008-02-05 2009-08-12 Evonik Degussa GmbH Absorption cooling machine
US8500892B2 (en) 2009-02-02 2013-08-06 Evonik Degussa Gmbh CO2 absorption from gas mixtures using an aqueous solution of 4-amino-2,2,6,6-tetramethylpiperidine
US8500867B2 (en) 2009-02-02 2013-08-06 Evonik Degussa Gmbh CO2 absorption from gas mixtures using an aqueous solution of 4-amino-2,2,6,6-tetramethylpiperidine
US8623123B2 (en) 2009-02-02 2014-01-07 Evonik Degussa Gmbh CO2 absorption from gas mixtures using an aqueous solution of 4-amino-2,2,6,6-tetramethyl piperidine
US8696928B2 (en) 2009-12-07 2014-04-15 Evonik Degussa Gmbh Operating medium for an absorption refrigeration device
US8784537B2 (en) 2010-11-12 2014-07-22 Evonik Degussa Gmbh Amine-containing absorption medium, process and apparatus for absorption of acidic gases from gas mixtures
US9878285B2 (en) 2012-01-23 2018-01-30 Evonik Degussa Gmbh Method and absorption medium for absorbing CO2 from a gas mixture
US9630140B2 (en) 2012-05-07 2017-04-25 Evonik Degussa Gmbh Method for absorbing CO2 from a gas mixture
US10500540B2 (en) 2015-07-08 2019-12-10 Evonik Degussa Gmbh Method for dehumidifying humid gas mixtures using ionic liquids
US10105644B2 (en) 2016-06-14 2018-10-23 Evonik Degussa Gmbh Process and absorbent for dehumidifying moist gas mixtures
US10138209B2 (en) 2016-06-14 2018-11-27 Evonik Degussa Gmbh Process for purifying an ionic liquid
US10493400B2 (en) 2016-06-14 2019-12-03 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US9840473B1 (en) 2016-06-14 2017-12-12 Evonik Degussa Gmbh Method of preparing a high purity imidazolium salt
US10512881B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10512883B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
WO2022117956A1 (en) * 2020-12-04 2022-06-09 Alpinov X Evaporator for a refrigeration installation delimiting two evaporation chambers, one at high pressure and one at low pressure, these being separated by a filtration screen
FR3117199A1 (en) * 2020-12-04 2022-06-10 Alpinov X Evaporator for refrigeration installation delimiting two evaporation enclosures respectively at high pressure and low pressure and separated by a filtration screen

Also Published As

Publication number Publication date
JPH0784965B2 (en) 1995-09-13
JPH074775A (en) 1995-01-10

Similar Documents

Publication Publication Date Title
WO1993013367A1 (en) Solar cooling apparatus
US3390672A (en) Solar heating device
US4287721A (en) Chemical heat pump and method
US8613839B2 (en) Water distillation method and apparatus
US4956977A (en) Adsorption apparatus used as an electro-heating storage
CN113544446B (en) Climate control system with absorption chiller
WO1997048646A1 (en) Desalination apparatus and method of operating the same
JP2959141B2 (en) Absorption refrigeration equipment
CA2044292A1 (en) Environmental control system condensing cycle
WO2020099950A1 (en) System and method for cooling photovoltaic panel with atmospheric water
KR102035098B1 (en) Solar evaporative desalination aparatus of sea water using heat pump
US9951977B2 (en) Adsorbing heat exchanger
JP2000353774A (en) Water evaporating-type heating body cooling device
US11828201B2 (en) Enhanced thermoutilizer
JP6246046B2 (en) Waste heat storage air-conditioning heat source system using chemical heat storage
JP2009174783A (en) Adsorption type heat pump system using low temperature waste heat
CA1279483C (en) Air conditioning process and apparatus
JP3207138B2 (en) Water evaporative cooling system
JPH11223411A (en) Adsorption heat pump
US2273108A (en) Method and apparatus for treating air
GB2076523A (en) Absorption heat pump
JP2004233030A (en) Cooling device
JPH06313650A (en) Absorption type cooler-heater
Enayatollahi et al. Mathematical modeling of a solar powered humidification dehumidification desalination prototype
JPH10170092A (en) Absorbing type cooling or heating machine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase