,'、 明 細 書 ,', Specification
ア ル ミ ニゥ ム合金粉末の脱ガス及び固化方法 Degassing and solidification of aluminum alloy powder
技術分野 Technical field
本発明 は、 急冷凝固ア ル ミ ニ ウ ム合金粉末の脱ガス及 び固化方法に関す る も のであ る。 The present invention relates to a method for degassing and solidifying rapidly solidified aluminum alloy powder.
背景技術 Background art
従来、 急冷凝固ア ル ミ ニ ウ ム合金粉末を成形固化す る 方法 と して は、 押出法、 H I P法、 粉末鍛造法な ど、 様 々 な方法が取 られてい る。 粉末を固化す る に は ど う して も粉末を加熱 しな く て はな らず、 こ の時粉末の急冷効果 が失われて し ま い、 特性が劣化す る。 こ れを防 ぐ に は急 速 に短時間で加熱す る方法が取 られ る。 こ の よ う に、 急 冷ア ル ミ ニゥ ム合金粉末の固化のための加熱を、 急速に 行 う こ と を主張 してい る特許 と して は Conventionally, various methods have been used as a method for molding and solidifying rapidly solidified aluminum alloy powder, such as an extrusion method, a HIP method, and a powder forging method. In order to solidify the powder, the powder must be heated in any way, and the quenching effect of the powder is lost at this time, and the properties are deteriorated. In order to prevent this, a method of heating quickly and in a short time is used. As described above, there is no patent claiming to rapidly perform heating for solidifying rapidly quenched aluminum alloy powder.
① U S P 4 4 3 5 2 1 3 「 Method for Producing Aluminium Powder Al loy Products Having Improved Strength Properties ; 了 ノレ つ 了 」 ① USP4 4 3 5 2 1 3 "Method for Producing Aluminum Powder Alloy Products Having Improved Strength Properties;
があ り 、 ア ル ミ ニウ ム に限 らず一般の粉末の誘導加熱方 法の特許 と して は Therefore, there is no patent for a method for induction heating of general powders, not only aluminum.
② U S P 5 1 3 4 2 6 0 「 Method and Apparatus for Inductively Heat ing Powders or Powder Compacts for Consol idation :カ ー ネ ギー メ ロ ン大学」 があ り 、 熱風に よ る 急速加熱の方法の特許 と して は (2) USP 5 1 3 4 2 6 0 “Method and Apparatus for Inductively Heating Powders or Powder Compacts for Consolidation: Carnegie Mellon University” is a patent for a method of rapid heating by hot air. Is
③ 特開平 3 - 1 5 8 4 0 1 「急冷凝固粉末の加熱方
法 ; ク ボタ J ③ Japanese Patent Laid-Open No. 3-15804001 "How to heat rapidly solidified powder" Law; Kubota J
があ る。 There is.
上記 した粉末鍛造法や従来公知の押出法、 H I P法な どのいずれに於いて も、 固化前の加熱は、 ①粉末の変形 抵抗を減少させ低い応力で成形加工する、 ②脱ガスをす る、 の二点において必要欠 く べから ざる も のであ る。 In any of the above-mentioned powder forging method, the conventionally known extrusion method, and the HIP method, the heating before solidification is performed by (1) reducing the deformation resistance of the powder and forming with low stress, (2) degassing, It is indispensable in these two respects.
特に脱ガスは、 固化後の製品に現れる ブ リ ス タ ー と呼 ばれる気泡を防止 し、 また粉末鍛造においては粉末同士 を強固に接着する ために必須の手段であ り 、 例えば特開 昭 6 2 — 2 2 4 6 0 2 号公報に記載の方法、 「軽金属 J 3 7 ( 1 0 ) 1 9 8 7 年、 第 6 5 6 〜 6 6 4 頁に記載さ れる方法等の公知技術があ る。 In particular, degassing is an essential means for preventing air bubbles called blisters that appear in a solidified product and for firmly adhering powders to each other in powder forging. There are known techniques such as the method described in Japanese Patent Application Laid-Open No. 2-246264 and the method described in “Light Metal J 37 (10) 1989, pp. 656-6664. You.
公知技術において、 一般に脱ガスは、 C I P 体を缶封 入 し、 真空加熱する又は不活性ガス雰囲気内で 4 0 0 〜 6 0 0 °Cに加熱する こ とによ っ てな さ れるが、 どの方法 において も従来は通常の抵抗加熱炉を用 い、 昇温に 0. 5 〜 2 時間、 所定温度保持に 0. 5 〜 2 時間、 計 1 〜 4 時間 かけて十分な脱ガスを達成し ょ う と していた。 In the known art, degassing is generally performed by enclosing a CIP body in a can and heating it in a vacuum or heating it to 400 to 600 ° C in an inert gas atmosphere. In all methods, conventional resistance heating furnaces are used, and sufficient degassing is achieved in a total of 1 to 4 hours, for 0.5 to 2 hours to raise the temperature and 0.5 to 2 hours to maintain the predetermined temperature. I was trying.
しか し、 上記の脱ガス方法については、 粉末の急速冷 却効果、 即ち通常冷却逮度であれば粗大に析出 して し ま う 元素や相が小さ く 均一に析出する効果や、 結晶が微細 粒 とな る効果が長時間加熱によ っ て失われて、 成形固化 体の特性が劣化する、 更には酸化を防ごう とする と雰囲 気を管理する必要があ るがこ れは コ ス ト高につながる、
と い う 欠点が従来か ら指摘さ れて き た。 However, in the above-mentioned degassing method, the effect of rapid cooling of the powder, that is, the effect that the elements and phases that would normally precipitate if the cooling rate is small are small and uniform, and that the crystals are fine The effect of granulation is lost by prolonged heating, and the properties of the molded solid degrade. In addition, in order to prevent oxidation, it is necessary to control the atmosphere. Leading to higher costs, The disadvantage has been pointed out in the past.
、 ,
型押体の よ う に熱伝導性の低い も のを急冷に均一に加 熱す る こ と は、 一般に は困難 と さ れてい る。 通常、 工業 的には急速加熱に最 も適 した方法は、 誘導加熱であ る 。 例えば特開昭 4 9 一 1 3 4 5 0 3 号公報に は、 鉄系金属 粉末冶金において、 粉末成形品の加熱焼結に高周 波誘導 加熱を利用す る こ とが報告 さ れて い る。 そ して従来は高 周波加熱を、 短時間焼結又は焼結鍛造 (焼結が進行 した プ リ フ ォ ー ム の密度を上げる ための鍛造) の予備加熱の ために利用 して き た。 It is generally difficult to rapidly and uniformly heat an object having low thermal conductivity, such as an embossed body. Usually, the most industrially suitable method for rapid heating is induction heating. For example, Japanese Patent Application Laid-Open No. 491-133453 discloses that high-frequency induction heating is used for heat sintering of powder molded products in iron-based metal powder metallurgy. You. Conventionally, high-frequency heating has been used for preheating of short-time sintering or sintering forging (forging to increase the density of preformed sintering).
しか し、 ア ル ミ ニ ウ ム粉末、 ア ル ミ ニ ウ ム系合金粉末 の粉末成形品の脱ガスに誘導加熱を利用す る こ と は従来 行われていなか っ た。 こ の理由 と して は、 次の こ と が挙 げ られる。 However, the use of induction heating for degassing of aluminum powder and aluminum alloy powder powder molded products has not been conventionally performed. The reasons for this are as follows.
ア ル ミ ニウ ム粉末、 ア ル ミ 系合金粉末の表面に は安定 で電気伝導性の悪いア ル ミ ナ ( A 1 2 0 3 ) 皮膜が存在 してレ、 る ため、 粉末同志の抵抗が大 き く な り 、 その結果、 型押 し体の電気伝導度が小さ く な つ て し ま う こ と と、 ァ ル ミ ニゥ ムの よ う に電気抵抗が低い物質では ジ ュ ー ル熱 が発生 しに く く 、 しか も粉末を固めた も のでは渦電流が 発生 しず ら い こ と、 ア ル ミ ニウ ム 自 体の透磁率が鉄系 と は異な り 小さ い こ とか ら、 誘導加熱では効率よ く 加熱で き ない と考え られて いた ためであ る。 The surface of aluminum powder and aluminum alloy powder has an aluminum (A1203) film that is stable and has poor electrical conductivity. It becomes larger, resulting in a lower electrical conductivity of the embossed body, and in the case of a material having a low electrical resistance, such as aluminum, the heat of the Joule. Eddy currents are unlikely to occur when the powder is hardened, and the permeability of aluminum itself is smaller than that of iron-based ones. This is because it was thought that induction heating could not be performed efficiently.
ま た、 仮に加熱でき た と して も 、 型押 し体の熱伝導性
が悪い こ とから、 型押 し体の表面と中心部の温度差が大 き く な つ て し ま い、 均一な温度に加熱する こ と は不可能 と考え られていたためであ る。 Also, even if heating is possible, the thermal conductivity of the embossed body This was because the temperature difference between the surface and the center of the embossed body became large, and it was thought that heating to a uniform temperature was impossible.
本発明はこ の よ う な現状に鑑み、 誘導加熱をアル ミ 二 ゥム粉末、 アル ミ ニウム合金粉末の成形固化工程の脱ガ ス手段に利用でき る よ う に して、 上記 した従来法の欠点 を解消 したアル ミ ニウ ム合金粉末の脱ガス方法を提供 し よ う とする ものであ る。 In view of the above situation, the present invention provides the above-described conventional method so that induction heating can be used as a degassing means in the molding and solidifying process of aluminum powder and aluminum alloy powder. It is an object of the present invention to provide a method for degassing an aluminum alloy powder which has solved the above disadvantages.
また急冷凝固アル ミ ニゥム合金粉末を固化する際には 以下の こ とに留意 しな く てはな らない。 When solidifying rapidly solidified aluminum alloy powder, the following must be considered.
( A ) 固化のための加熱によ っ て粉末の組織が劣化す るのを最小限に抑える ために、 粉末に加え る熱履歴を最 少にする。 - (A) Minimize the thermal history applied to the powder in order to minimize the deterioration of the powder structure due to heating for solidification. -
( B ) アル ミ ニウ ム粉末同士の結合をな るベ く 強固に する。 (B) Strengthen the bond between the aluminum powders.
( C ) 安いコス トで固化する。 (C) Solidifies at low cost.
こ の う ち、 ( A ) の達成の為には、 上記 3 つの特許に あ る よ う な誘導加熱も熱風加熱によ る急速加熱方法が有 利であ る。 しか し、 急速加熱方法では、 ( B ) のアル ミ ニゥ ム粉末同士が結合 しに く い とい う 欠点があ っ た。 そ のために、 ①の特許の実施例にあ る よ う に、 大気中で加 熱した も のは、 た とえ押し出 し して も破断伸びが低下 し ている。 こ れを補う ために、 急速加熱を不活性ガス中で 行っ た り 、 固化前に真空脱ガスを行っ た り 、 固化'後に大
き な塑性変形を発生 さ せ る押出や据え込み加ェを施 して 固化材の伸 びや破壊靭性値を向上 さ せ る必要力 あ っ た。 ③の特許では、 真空中で急速加熱をす る ための装置を提 供 してい る。 しか し、 こ れ ら の工程の追加 は ( C ) の安 ぃ コ ス ト で固化する、 と い う 目 的を達成でき な い。 In order to achieve (A), the rapid heating method using hot air heating is also advantageous for induction heating as in the above three patents. However, the rapid heating method had a disadvantage that the aluminum powders of (B) were not easily bonded to each other. Therefore, as shown in the example of the patent of (1), the material heated in the air has a low elongation at break even when extruded. To compensate for this, rapid heating is performed in an inert gas, vacuum degassing is performed before solidification, or large after solidification. There was a need to improve the elongation and fracture toughness of the solidified material by extruding and upsetting to generate severe plastic deformation. Patent (3) provides an apparatus for rapid heating in a vacuum. However, the addition of these steps cannot achieve the purpose of solidifying with the safe cost of (C).
本発明は上記問題点 ( A ) ( B ) ( C ) 全ての解決策 を提供する も のであ り 、 従来の どの固化方法 よ り も安価 で、 しか も従来の どの固化法で固化 した も の と比較 して どの機械的性質 も低下さ せずに強度、 靭性の両方が優れ た固化体お よ びそれを得る ための固化方法を提供す る も のであ る。 The present invention provides a solution to all of the above problems (A), (B), and (C), and is less expensive than any conventional solidification method, and solidified by any conventional solidification method. The present invention provides a solidified body having both excellent strength and toughness without deteriorating any mechanical properties as compared with the above, and a solidification method for obtaining the same.
発明の開示 Disclosure of the invention
本発明者等は 、 上記問題点を解決す る ために種 々 の検 討を加えた結果、 誘導加熱を利用 して加熱時間を従来の 約 1 1 0 に短縮 して、 ア ル ミ ニ ウ ム、 ア ル ミ ニ ウ ム合 金粉末の劣化を抑えて脱ガス で き る方法を見出 し、 本発 明に至 っ た。 The present inventors have made various studies to solve the above-mentioned problems, and as a result, have reduced the heating time to about 110 by using induction heating to reduce the aluminum time. The present inventors have found a method for degassing while suppressing the deterioration of the aluminum and aluminum alloy powders, leading to the present invention.
すなわち、 本発明 はア ル ミ ニ ウ ム粉末、 ア ル ミ ニ ウ ム 合金粉末 も し く はア ル ミ ニ ゥ ム複合合金粉末又は こ れ ら と非金属粒子の混合粉末を固化前に脱ガスす る 方法にお いて、 当該粉末体を比抵抗 0. 2 Ω m以下に予備成形 し 該予備成形体を常圧雰囲気中で直接誘導加熱 して 3 0 0 で以上での昇温勾配を 0. 4 °C / s c m 以上 と しつつ 4 0 0 で〜 6 0 0 °Cに昇温す る こ と に よ り 熱分解性蒸発成分を
除去し、 水素含有量を 1 O p p m以下にする こ とを特徴 とする。 That is, the present invention is to remove aluminum powder, aluminum alloy powder, aluminum composite alloy powder, or a mixed powder of these and non-metal particles before solidification. In the gasification method, the powder body is preformed to a specific resistance of 0.2 Ωm or less, and the preformed body is directly induction-heated in a normal pressure atmosphere to raise the temperature rising gradient at 300 above. By increasing the temperature to 400 ° C at 400 ° C while maintaining the temperature at 0.4 ° C / scm or more, the pyrolytic evaporation components can be reduced. It is characterized by reducing the hydrogen content to 1 Oppm or less.
本発明においては、 上記誘導加熱を大気雰囲気中で行 な う こ とができ る。 In the present invention, the above induction heating can be performed in an air atmosphere.
また、 本発明においては、 上記誘導加熱に よ る脱ガス の後、 該予備成形体を不活性ガス雰囲気中で冷却する こ とに よ り 水分の再吸着を防止する こ と も でき る。 Further, in the present invention, after the degassing by the induction heating, the preformed body is cooled in an inert gas atmosphere, so that re-adsorption of moisture can be prevented.
さ ら に、 上記問題点を解決する ために本発明者等は、 種々 の検討を加えた結果、 従来 とは異なる以下の手法が 上記 ( A ) . ( B ) ( C ) の達成に最 も適 している こ とを 見いだ し、 本発明に到 っ た も のであ る。 In order to solve the above problems, the present inventors have made various studies, and as a result, the following methods, which are different from the conventional methods, are the most important for achieving the above (A), (B), and (C). It has been found that they are suitable and has led to the present invention.
( i ) 粉末の加熱に関 しては、 従来どお り 急速加熱とす る。 しかし、 その加熱温度を従来よ り も 3 0 °C以上高 く する。 (i) The powder is heated rapidly as in the past. However, the heating temperature is set to be 30 ° C or more higher than before.
( ) 粉末の固化方法に関 しては、 H I P や押出方法を 用いずに、 粉末鍛造方法とする のがよ り 好ま しい。 () Regarding the method of solidifying the powder, it is more preferable to use the powder forging method without using the HIP or the extrusion method.
( M ) 急速加熱の雰囲気は、 従来の よ う に真空や不活性 ガス雰囲気ではな く 、 安価な停滞常圧雰囲気 (停滞大気 雰囲気) とする。 (M) The atmosphere for rapid heating is not a vacuum or inert gas atmosphere as in the past, but an inexpensive stagnant normal pressure atmosphere (stagnant air atmosphere).
( iv ) 粉末鍛造後に急速に冷却する。 (iv) Rapid cooling after powder forging.
すなわち、 本癸明は、 アル ミ ニウ ム粉末、 アル ミ ニゥ ム合金粉末も し く はアル ミ ニゥ ム複合合金粉末又はこ れ ら と非金属粒子の混合粉末を比抵抗 0. 2 Ω c m以下に予 備成形 し、 該予備成形体を常圧停滞雰囲気中で直接誘導
加熱 して 3 0 0 °C以上での昇温勾配を 0. 4 °C Z s e c 以 上 と しつつ、 上記粉末を押出す る場合に施さ れる 真空脱 ガス温度 よ り も少な く と も 3 0 °C高い温度であ る 4 0 0 °C〜 6 0 0 °C に昇温する こ と に よ り 、 熱分解性蒸発成分 を除去 して含有水素量を 1 O p p m以下 と した後、 直ち に熱間加工で固化す る こ と を特徴 とす る。 That is, the present invention uses an aluminum powder, an aluminum alloy powder, an aluminum composite alloy powder, or a mixed powder of these and non-metal particles in a resistivity of 0.2 Ωcm or less. And pre-formed it directly in a stagnant atmosphere at normal pressure. Heating to raise the temperature gradient above 300 ° C above 0.4 ° CZ sec or more, and at least 30 ° C lower than the vacuum degassing temperature applied when extruding the above powder. By raising the temperature to 400 ° C to 600 ° C, which is a higher temperature by 400 ° C, the hydrogen content is reduced to 1 Oppm or less by removing the pyrolytic evaporation components, and then It is characterized by being solidified by hot working.
こ の加熱温度に関 して言えば、 A 1 の融点は 6 6 0 °C であ るが、 A 1 の融点を下げな い合金元素 ( F e , N i な ど) だけを含有す る合金では、 よ り 高温であ る 4 0 0 て〜融点 とする こ とが可能であ る。 Regarding this heating temperature, the melting point of A1 is 660 ° C, but it contains only alloying elements (such as Fe and Ni) that do not lower the melting point of A1. In the case of alloys, it is possible to set the higher temperature to 400 to the melting point.
本発明の よ り 好ま しい形態 と して、 上記熱間加工 と し て粉末鍛造法を採用す る。 As a more preferred form of the present invention, a powder forging method is employed as the hot working.
本発明では、 上記誘導加熱を、 安価な停滞大気雰囲気 中で行 う こ とができ る。 しか も 固化前に真空脱ガスを行 つ た り 、 固化後に押出な どの塑性加工を施す こ と無 く 、 伸 びや破壊靱性を低下さ せずに、 強度 · 靭性の両方の特 性を従来よ り も 向上さ せ る こ と が出来 る。 In the present invention, the induction heating can be performed in an inexpensive stagnant atmosphere. In addition, there is no need to carry out vacuum degassing before solidification or plastic working such as extrusion after solidification, and to maintain the characteristics of both strength and toughness without reducing elongation and fracture toughness. Can also be improved.
さ ら に、 本発明は上記锻造直後、 1 0 °C / s e c 以上 の速度で急速冷却する か、 室温付近 ま で冷却す る こ と な く 鍛造温度以下、 鍛造温度 - 5 0 °C以上に再加熱 して焼 入溶体化処理す る こ と を特徴 と す る。 Furthermore, immediately after the above-mentioned forging, the present invention cools rapidly at a rate of 10 ° C / sec or more, or does not cool down to around room temperature. It is characterized by reheating and quenching solution treatment.
ま た さ ら に、 上記粉末の予備成型は、 該粉末に有機物 質湿潤剤を添加す る こ と な く 、 成型金型内壁に湿潤剤を 塗布 して行 う こ とが特に好ま しい実施態様 と して挙げ ら
れる。 Further, it is particularly preferable that the pre-molding of the powder is performed by applying a wetting agent to the inner wall of a molding die without adding an organic wetting agent to the powder. As It is.
そ して、 上記誘導加熱のかわ り に、 赤外線加熱ま たは 直接通電加熱を使用する こ と も 出来る。 Then, instead of the induction heating, infrared heating or direct current heating can be used.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1 図は本発明の実施例 2 — 1 ) で得られた鍛造体組 織の図面に代わる S E M顕微鏡写真であ る。 FIG. 1 is a SEM micrograph in place of a drawing of the forged body tissue obtained in Example 2-1) of the present invention.
第 2 図は本発明の実施例 2 — 3 ) で得 られた鍛造体組 織の図面に代わる S E M顕微鏡写真であ る。 FIG. 2 is a SEM micrograph replacing the drawing of the forged body tissue obtained in Example 2-3) of the present invention.
第 3 図は、 比較例 2 — 6 ) で得 られた锻造体組織の図 面に代わる S E M顕微鏡写真であ る。 FIG. 3 is a SEM micrograph as a substitute for the figure of the structural body structure obtained in Comparative Example 2-6).
発明を実施する ための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
従来は、 短時間でしかも型押 し体全体を均一な温度に 加熱する こ とが困難であ る との考えか ら、 抵抗加熱炉で 通常は最低で も 1 時間 とい う 長時間加熱がな されて きた が、 前記 したよ う に高温にさ らす時間が長い為に、 粉末 の急速冷却効果が失われて しま う。 ま た、 大気中の H 2〇 成分が上記 H 2 0離脱反応を妨げた り 、 大気中の 0 2 成 分が粉末を酸化するため、 これを阻止するべ く 、 真空中 や、 低露点 · 低 0 2 濃度雰囲気中、 不活性ガス雰囲気中 での加熱が行われてきた。 Conventionally, since it is difficult to heat the entire embossed body to a uniform temperature in a short time, it is difficult to heat for a long time, usually at least one hour, in a resistance heating furnace. However, as described above, the effect of the high temperature is so long that the rapid cooling effect of the powder is lost. Also, Ri H 2 〇 component in the atmosphere prevented the H 2 0 elimination reaction, since 0 2 Ingredients atmospheric oxidizing the powder, which prevents Surube rather, or in a vacuum, low dew point, during low 0 2 concentration atmosphere, heated in an inert gas atmosphere it has been made.
これに対し、 本発明者 らが鋭意検討の結果見いだ した 条件に よれば、 従来不適 と考え られてきたアル ミ ニウ ム 粉末、 アル ミ ニウ ム合金粉末成形体の誘導加熱に よ る急 逮加熱が可能とな り 、 吸着水、 結晶水の除去は短時間の
加熱で十分に可能であ り 、 しか も短時間化す る こ と に よ り 雰囲気 と の高温での接触時間が短 く な る ために誘導加 熱は大気中での加熱で も十分な脱ガスがで き る。 On the other hand, according to the conditions found by the present inventors as a result of earnest studies, the rapid heating of the aluminum powder or aluminum alloy powder compact, which was conventionally considered unsuitable, by the induction heating. Heating is possible, and the removal of adsorbed water and crystallization water is short. Induction heating is sufficient because heating can be performed sufficiently, and the time required for contact with the atmosphere at high temperatures is shortened by shortening the heating time. I can do it.
すなわち、 粉末同志の電気接触を大 き く す る ために、 型押 し面圧を従来 よ り 2 割程度大 き く す る、 更に は高周 波の磁束の入射方向や周波数を最適にな る よ う に選択す る、 等の条件であ る。 In other words, in order to increase the electrical contact between the powders, the embossing contact pressure should be increased by about 20% compared to the past, and the direction and frequency of the high frequency magnetic flux should be optimized. And so on.
本発明 に用 い る ア ル ミ ニ ウ ム合金粉末 と して は、 特に 急冷凝固合金粉末に限 らず どの よ う な製法に よ る も ので も よ く 、 その組成 も 限定さ れる と こ ろ はな く 、 ア ル ミ 二 ゥ ム複合合金粉末 ( ア ル ミ ニ ウ ム又はア ル ミ ニ ウ ム合金 粉末の内部に非金属又は金属間化合物が分散 して成る 粉 末) であ っ て も よ い。 ま た、 ア ル ミ ニウ ム粉末 も 用 レ、 る こ とができ る。 更には こ れ ら に S i C 粒子や A 1 2 0 a 粒子等の非金属粒子が混合 さ れた粉末であ つ て も よ い。 The aluminum alloy powder used in the present invention is not limited to a rapidly solidified alloy powder, but may be obtained by any method, and its composition is also limited. Instead, it is an aluminum composite alloy powder (a powder in which a nonmetal or an intermetallic compound is dispersed inside aluminum or an aluminum alloy powder). You may. Also, aluminum powder can be used. Furthermore this is found in S i C particles and A 1 2 0 nonmetal particles such as a particle but it may also be one powder der mixed.
ま ずア ル ミ ニ ウ ム粉末、 ア ル ミ ニ ウ ム合金粉末、 ア ル ミ ニゥ ム複合合金粉末、 又は こ れ ら と非金属粒子の混合 粉末を、 その比抵抗が 0. 2 Ω c m以下にな る よ う に密度 を上昇さ せた予備成形体 とす る が、 こ の成形は熱分解性 有機潤滑剤を用 い る こ とな く 、 一軸圧縮法等の型押 し法 あ る いは C I P その他の方法に よれば よ い。 こ れに よ り 、 粉末同士は ミ ク ロ な剪断力 を受けて、 互いに金属接触部 を持つ よ う にな る。 First, an aluminum powder, an aluminum alloy powder, an aluminum composite alloy powder, or a powder mixture of these and non-metal particles, having a specific resistance of 0.2 Ωcm The preformed body is increased in density as shown below, but this molding does not use a thermally decomposable organic lubricant and can be performed by a stamping method such as a uniaxial compression method. Or use CIP or other methods. As a result, the powders are subjected to micro shearing force and have metal contact portions with each other.
比抵抗が 0. 2 Ω c m を越え る と渦電流が流れ難 く な つ
て、 誘導加熱 して も予備成形体の温度がなかなか上昇 し ない。 はや く 上昇させよ う と して電源の出力を上げる と、 抵抗値の大きな予備成形体は熱伝導性も悪いので、 予備 成形体表面と内部との温度差が大き く な つ て、 熱歪に起 因 した亀裂が入っ た り する。 こ の比抵抗 0. 2 Ω c m以下 とい う 値は、 一般には面圧 4 〜 6 t 0 nノ c m 2 で達成 される。 こ の範囲で達成されない場合には高圧の型押 し や、 粉末の温度を上げて変形抵抗を小さ く してか ら型押 しを行な う 。 When the specific resistance exceeds 0.2 Ωcm, it becomes difficult for eddy current to flow. Therefore, the temperature of the preform does not rise easily even when induction heating is performed. If the output of the power supply is increased to increase the temperature quickly, the preformed body having a large resistance value has poor thermal conductivity, so that the temperature difference between the surface of the preformed body and the inside becomes large and the heat is reduced. There are cracks caused by distortion. Resistivity 0. 2 Omega cm will leave less this value is generally achieved at a surface pressure of 4 ~ 6 t 0 n Bruno cm 2. If it is not achieved within this range, embossing should be performed at high pressure, or after the powder temperature has been increased to reduce the deformation resistance.
次に こ の予備成形体を電源を用いて直接誘導加熱する こ とによ り、 3 0 0 で以上での昇温速度を 0. 4 °C / s e c 以上と しつつ 4 0 0 °C〜 6 0 0 でに急速加熱する。 こ の 際の周波数は本発明者らの実験では 3 k H z 前後が好適 であ っ たが、 加熱対象に応 じ最適周波数を選択すればよ い o Next, this preformed body was directly heated by induction using a power source, so that the heating rate at 300 ° C and above was not less than 400 ° C / sec while the heating rate was 0.4 ° C / sec or more. Heat quickly to 600. The frequency at this time was preferably around 3 kHz in the experiments of the present inventors, but the optimal frequency may be selected according to the object to be heated.
急冷凝固粉末の固化に際 しては、 内部と表面における 挙動は異なる。 すなわち、 引張強度や硬さを支配 してい る のは主に内部の状態である。 そ こで、 固化のための熱 履歴を少な く してやれば、 おのず と粉末自体の引張強度 や硬さ は上昇する。 一方、 破断伸びや破壤靱性値な どの 特性を支配 している のは主に急冷凝固粉末の表面の状態 であ る。 When solidifying a rapidly solidified powder, the internal and surface behaviors are different. In other words, it is mainly the internal state that governs the tensile strength and hardness. Therefore, if the heat history for solidification is reduced, the tensile strength and hardness of the powder itself naturally increase. On the other hand, it is mainly the surface condition of the rapidly solidified powder that governs properties such as the elongation at break and the toughness of the soil.
アル ミ ニゥ ム合金粉末の表面には酸化皮膜 =アル ミ ナ ( A 1 2 0 3 ) があ り、 これは非常に安定な化合物であ
る ために還元除去でき ず、 こ の皮膜は ア ル ミ ニ ウ ム合金 粉末同士の強固な結合を阻止す る 。 そ の た め に、 固化後 に、 押出や据え込み と い っ た塑性流動加工を行 う こ と に よ つ て、 こ の酸化皮膜を機械的に破壊 して、 ア ル ミ 二 ゥ ム の新生 ¾ ¾r露出 して結合 さ せ る 方法が取 られて き た。 しか し、 押出方法を用 いて も な お、 固化前の脱ガスが不 十分であれば、 低い伸 び値ゃ靭性値の も の しか得 ら れな レヽ こ とが従来 よ り 知 られてい る 。 こ こ で、 脱ガス につい て説明する o Aluminum Niu arm alloy on the surface of the powder oxide film = Aluminum Na (A 1 2 0 3) there is, this is a very stable compound der This film cannot be reduced and removed, and this film prevents the strong bonding between aluminum alloy powders. For this purpose, after solidification, plastic flow processing, such as extrusion or upsetting, is performed to mechanically break this oxide film and to reduce the aluminum content. The method of exposing and binding the newborn has been taken. However, it is conventionally known that even if the extrusion method is used, if the degassing before solidification is insufficient, only a low elongation value and a toughness value can be obtained. . Here we explain degassing o
ガス 了 ト マ イ ズさ れた急冷凝固ア ル ミ ニゥ ム合金粉末 は、 表面が 5 0 〜 1 0 O Aの酸化皮膜で覆われてお Ό 、 さ ら の表面酸化皮膜は吸着水や結晶水を含有 して い る。 こ の吸着水 V n B日水は固化材の伸 びや靭性値を低下 さ せる原因 とな つ てい る o The surface of the rapidly solidified aluminum alloy powder that has been gas-terminated is covered with an oxide film of 50 to 10 OA, and the surface oxide film is further adsorbed water or crystal water. Contains. This adsorbed water V n B day water causes the elongation and the toughness of the solidified material to decrease.o
れ ら は、 加埶に よ り 以下の反応で除去す る こ と が可 These can be removed by heating in the following reaction.
レ 能であ る 更ミ Check out
H 2. 0 ( 1 i q ) → H 2 0 ( g a s ) H 2.0 (1 iq) → H 2 0 (g a s)
A 1 2 0 3 · 3 H 2 0 → A 1 2 0 3
A 1 2 0 3 - H 2 0 + 2 H 2 〇 ( a sA 1 203-H 2 0 + 2 H 2 〇 (as
A 1 0 3 ■ H 2 0 → A 1 0 3 ■ H 2 0 →
A 1 2 0 3 + H 2 0 ( a s ) A 1 2 0 3 + H 2 0 (a s)
の除去反応は 1 0 0 C〜 4 0 0 °C以上で起 こ り に 3 0 0 で以上では上記反応で発生 した水蒸気がァ 二ゥ ム と直接反応 して水素を放出す る反応が起 こ る 9
なわち、 The removal reaction occurs above 100 ° C. to 400 ° C., and above 300 ° C., a reaction occurs in which the steam generated by the above reaction directly reacts with the air to release hydrogen. This 9 That is,
2 A 】 + 3 H 2 0 → A 1 2 03 + 3 H 2 ( g a s ) の反応であ る σ こ れ ら の反応を促進させる ために取 られ る方法が長時間の加熱 (時間が長い と反応は多 く 進む) や真空中での加熱 (気圧が低い と上記反応は右へ進み易 く な る) や低露点の不活性ガス中での加熱 (低露点では Η 2 0 ( g a s ) が少ないので上記反応は右へ進み易 く な る) である。 不活性ガス雰囲気で行う 目 的は粉末の酸 化を抑えるためであ る。 ' 2 A) + 3 H 2 0 → A 12 03 + 3 H 2 (gas) reaction σ These methods are used to promote these reactions. The reaction proceeds a lot, heating in vacuum (low pressure makes the reaction more likely to move to the right) and heating in an inert gas with a low dew point ((20 (gas) at a low dew point) The reaction is easier to proceed to the right because there is less). The purpose of this treatment is to suppress the oxidation of powder in an inert gas atmosphere. '
こ の よ う な観点か ら考える と、 急速加熱は、 粉末内部 の組織の破壊を抑える ためには有効であ るが、 粉末の表 面酸化皮膜に吸着 した水分や結晶水の離脱を促進させる という 観点か らは不利な こ とがわかる。 従来技術の項で 前述 した特許①の実施例(I)と(2)に於いて、 引張強度は向 上 しているのに伸びと破壊靱性値が低下 している のは こ の よ う な理由による と推測さ れる。 実施例(3)においては 引張強度と伸びの両方が向上 しているが、 こ の例では不 活性ガス中での加熱とその後の真空脱ガスを行っ てお り 、 こ れ らの効果と思われる。 しか し、 こ の例では最後に通 常の熱処理 ( T 7 ) を行ってお り 、 急速加熱の効果は半 減している と推測される。 From this point of view, rapid heating is effective to suppress the destruction of the structure inside the powder, but accelerates the desorption of water and crystal water adsorbed on the surface oxide film of the powder. From this point of view, it is clear that it is disadvantageous. In Examples (I) and (2) of Patent II described above in the section of the prior art, it is like this that the tensile strength is improved but the elongation and the fracture toughness are reduced. Presumed to be due to the reason. In Example (3), both the tensile strength and the elongation were improved, but in this example, heating in an inert gas and subsequent vacuum degassing were performed. It is. However, in this example, normal heat treatment (T7) was performed last, and it is assumed that the effect of rapid heating has been reduced by half.
本発明者等は、 急速加熱を用いて も充分な脱ガスが安 価にでき る方法と して様々 な調査を した結果、 上記分離 反応で発生する水素ガスを利用 して こ れを解決する こ と
を見いだ した。 上記水素ガスの発生は特に高温で起 こ る 。 発生す る水素ガスの量は、 加熱温度に も よ る が約 3 0 p p m であ る。 粉末の圧粉体に は約 2 5 % の空隙があ り 、 大気 圧の下で、 発生す る水素の体積は こ の空隙の体積の 1 0 倍程度にな る。 こ の場合、 水素に圧粉体の空隙に存在す る有害な水蒸気や酸素を追い出 して、 よ り 上記反応が進 み易い よ う にす る働き を担わせる ために、 こ の発生 した 水素を圧粉体空隙内 に と どめて、 不活性ガスを注入 して 圧粉体回 り の雰囲気をかき 回 さ ず、 特に停滞雰囲気にす る必要があ る。 しか も、 こ の水素を一度に多量に発生 さ せる ために、 水素が発生す る 3 0 0 °C以上での加熱を 0. 4 で s e c 以上にす る必要があ る。 さ ら に、 一連の 脱ガス反応で水素を発生を多 く す る ために は出来る だけ 高温ま で、 加熱す る必要があ る。 した力 つ て、 こ の加熱 温度は従来の押出前に行われ る真空脱ガス温度 (一般に は 4 5 0 °C程度に加熱さ れる ) よ り も 少な く と も 3 0 °C 以上、 望ま し く は 5 0 °C以上高い温度にす る必要があ る。 こ の よ う にす る こ と に よ り 、 粉末表面の構造は固着 し易 い も のにな る。 粉末の固着 しやす さ の 目 安 と して、 残留 水素量が 1 0 p p m以下であ る こ とが必要であ る。 The present inventors have conducted various investigations as a method of achieving sufficient degassing at a low cost even by using rapid heating, and as a result, have solved the problem by using hydrogen gas generated in the above separation reaction. thing Was found. The generation of hydrogen gas occurs particularly at high temperatures. The amount of hydrogen gas generated is about 30 ppm, depending on the heating temperature. The powder compact has about 25% voids, and the volume of hydrogen generated under atmospheric pressure is about 10 times the volume of these voids. In this case, hydrogen is generated to remove the harmful water vapor and oxygen existing in the voids of the green compact and to facilitate the above-mentioned reaction. It is necessary to keep the hydrogen in the green compact void and to inject an inert gas to stir the atmosphere around the green compact. However, in order to generate a large amount of hydrogen at a time, it is necessary to increase the heating at 300 ° C or more, at which hydrogen is generated, to 0.4 sec or more. Furthermore, in order to increase the generation of hydrogen in a series of degassing reactions, it is necessary to heat to as high a temperature as possible. Therefore, the heating temperature is desirably at least 30 ° C or higher than the conventional vacuum degassing temperature (typically heated to about 450 ° C) performed before extrusion. Alternatively, the temperature must be higher than 50 ° C. By doing so, the structure of the powder surface can be easily fixed. As a measure of the ease with which the powder adheres, the residual hydrogen content must be 10 ppm or less.
又、 加熱温度を高温にす る と、 た と え急速加熱であ つ て も、 今度は粉末内部の組織が粗大化 しやす く な る ので ( i ) 短時間加熱、 ( ϋ ) 短時間固化、 ( iii ) 固化後の 急速冷却を行 う 必要があ る。
( i ) 短時間加熱を最も有利にする ために、 加熱する ものをでき る限り 小さ く する必要があ る。 こ の点、 押出 法では先端と残り部 (デイ スカ ー ド) を切 り と つ て し ま う ために、 歩留ま り を上げるべ く 一回の押出で複数個の 製品が取れる よ う に大きな圧粉体を使用する ため、 急速 加熱にはおのず と限界があ る。 本発明では一個の圧粉体 が小さいため急速加熱が可能とな る。 押出に用い られる 圧粉体は一般に C I P C Cold Isostatic Pressing)法が 用い られる のに対 して、 粉末鍛造では金型に よ る一軸圧' 縮体が用い られる。 こ の場合、 粉末は等方的に圧縮され る よ り も一軸で圧縮されたほ う が粉末同士のせん断が働 いて、 新生面露出によ る接触が多 く な る。 これによ つ て、 誘導う ず電流がよ り多 く なる と と も に、 圧粉体表面近傍 で発生 した熱が内部までよ り 速 く 伝わ る こ と とな る。 し たがってこ の点でも鍛造法の方が有利であ る。 In addition, when the heating temperature is set to a high temperature, the structure inside the powder tends to become coarser, even if rapid heating is performed, so that (i) short-time heating, (ϋ) short-time solidification (Iii) Rapid cooling after solidification is required. (i) In order to make short-time heating the most advantageous, what needs to be heated must be as small as possible. In this regard, in the extrusion method, since the tip and the remaining part (discard) are cut off, multiple products can be obtained in a single extrusion so as to increase the yield. Due to the use of large green compacts, rapid heating is naturally limited. In the present invention, since one compact is small, rapid heating is possible. In contrast to the green compact used for extrusion, the CIPC Cold Isostatic Pressing) method is generally used, whereas in powder forging, a uniaxially compressed body using a die is used. In this case, when the powder is compressed uniaxially rather than isotropically compressed, the shearing of the powders acts and the contact due to the exposure of the new surface increases. As a result, the induced eddy current becomes larger and the heat generated near the surface of the green compact is transferred to the inside more quickly. Therefore, the forging method is more advantageous in this respect.
C ii ) 短時間固化する のに最 も有効な固化法 も粉末鍛 造法であ る。 押出に要する時間が約 5分間、 H I Pに要 する 時間が約 2 0 分間なのに比べて、 粉末鍛造に要する 時間は約 0· 7秒間であ る。 C ii) Powder forging is the most effective solidification method for solidification in a short time. The time required for powder forging is about 0.7 seconds, compared to about 5 minutes for extrusion and about 20 minutes for HIP.
( iii ) 固化後の急速冷却をする には、 熱間加工後、 加 ェ した工具か ら出来る だけ早 く 分離する必要があ り 、 こ れには粉末緞造が有利であ る。 冷却速度に関 しては、 水 冷 した場合、 約 1 0 0 °CZ s e c を達成出来るが、 脆い 材料では焼き割れが発生する恐れがあ る。 その よ う な時
には冷却空気の吹き 付け (約 1 0 〜 2 0 °C / s e c の冷 却速度) 等をすべき であ る ので こ の冷却速度は 1 0 °C Z s e c 以上 と した。 ま た、 熱処理型合金の中 に は、 鍛造 後の直接冷却だけでは、 充分な溶体化ができ な い場合 も あ る と考え られる ので、 そ の際に も な る ベ く 小 さ な熱履 歴にす る ために、 い っ たん室温 ま で冷却 した後に再加熱 をす る のではな く 、 鍛造直後に再加熱をす る 事が好 ま し い。 こ の時の再加熱温度は、 ブ リ ス タ ー を発生 さ せな い ために、 鍛造温度以下であ り かつ、 充分な溶体化の為 に 鍛造温度一 5 0 °C と規定 した。 (iii) In order to perform rapid cooling after solidification, it is necessary to separate from the applied tool as soon as possible after hot working. Regarding the cooling rate, about 100 ° CZsec can be achieved with water cooling, but fragile materials may cause burning cracks. Such a time Since cooling air should be blown (cooling rate of about 10 to 20 ° C / sec), the cooling rate was set to 10 ° CZsec or more. Also, in some heat-treatable alloys, it is thought that sufficient cooling cannot be achieved only by direct cooling after forging, so a very small heat sink is required. For historical reasons, it is preferable to reheat immediately after forging, rather than reheating after cooling to room temperature. The reheating temperature at this time was specified to be not more than the forging temperature so as not to generate a blister, and to be a forging temperature of 150 ° C. for sufficient solution.
さ ら に、 熱履歴を小さ く す る ために、 固化 した後に塑 性加工をする と、 その塑性加工のための加熱をす る必要 があ り 、 好ま し く ないので こ れは行わないのが好 ま しい。 In addition, if plastic working is performed after solidification to reduce the heat history, it is necessary to heat for the plastic working, which is not desirable, so this is not done. Is preferred.
ま た、 圧粉加熱時の熱伝導性を低下 さ せた り 、 蒸発熱 で急速昇温の妨げ と な る 、 有機物質潤滑剤は添加 しな い。 Further, no organic substance lubricant is added, which lowers the thermal conductivity at the time of heating the green compact and prevents rapid temperature rise due to heat of evaporation.
なお、 急速加熱の方法は誘導加熱が最適であ る が、 そ のほかに も放射加熱や直接通電加熱で も可能であ る。 Induction heating is optimal for rapid heating, but radiation heating or direct energization heating is also possible.
本発明の方法で作 られた固化体は他の方法で作 ら れた も の よ り も、 非平衡相が多 く 含 ま れてい る ため に、 同 じ 組成であ る な ら ば高温 (粉末鍛造温度 と 同程度の温度) において、 変化 しやすい ( X線回折で得 られ る析出物の 構造分布が変化 しやすい。 析出物の形状が変化 しやすい。 析出物の大き さ が粗大化 しやすい。 ) 特徴を有 して い る 。 ま た、 粉末表面か ら放出 さ れ る 水素に よ っ て、 空隙に含
まれる大気 (主に窒素か らな る) を追い出すために、 不 活性ガス中で長時間加熱された後に押出や粉末鍛造さ れ た も のでは]^12 や A r元素が検出 される のに対 して、 本 発明法で固化された も のか ら は、 その よ う な も のは検出 限界以下しか含まれていない。 The solidified body produced by the method of the present invention contains more non-equilibrium phases than those produced by other methods. At the same temperature as the powder forging temperature, it is easy to change (the structure distribution of the precipitate obtained by X-ray diffraction is easy to change, the shape of the precipitate is easy to change, and the size of the precipitate is coarse) It is easy to use.) In addition, due to hydrogen released from the powder surface, To drive off Murrell atmosphere (Ru mainly Nitrogen Rana), were also extruded or powder forging of a is] ^ 1 2 and A r element is detected after being extended heating in an inert gas On the other hand, those solidified by the method of the present invention include only those below the detection limit.
こ の よ う に して本発明で得られた脱ガス粉末は、 表面 は結晶水や吸着水のない清浄な状態であ り 、 加熱状態の ま ま粉末鍛造する こ とが可能であ る。 従っ て、 脱ガス終 了後、 こ れを直ち に公知の鍛造法に よ り 鍛造する。 Thus, the surface of the degassed powder obtained by the present invention is in a clean state without crystallization water or adsorption water, and the powder can be forged while being heated. Therefore, after the degassing is completed, this is immediately forged by a known forging method.
ただ し、 誘導加熱には、 通常の雰囲気加熱炉と比較 し て被加熱物体の温度がばらつ く とい う 欠点があ るので、 温度差が大きな と き には昇温後、 雰囲気加熱炉で所定の 温度に保持する こ とに よ り温度を均一化でき る。 こ の と きの雰囲気は不活性ガス とする こ とが必要であ る。 However, induction heating has the disadvantage that the temperature of the object to be heated fluctuates as compared with a normal atmosphere heating furnace, so if the temperature difference is large, raise the temperature and then use an atmosphere heating furnace. The temperature can be made uniform by maintaining it at a predetermined temperature. The atmosphere at this time must be an inert gas.
こ の よ う に して急速加熱し脱ガス した予備成形体を、 直ち に 2 0 0 で程度の金型内に挿入 し、 面圧 2〜 1 2 t o n Z c m 2 で鍛造する。 The preformed body thus rapidly heated and degassed is immediately inserted into a mold at about 200 and forged at a surface pressure of 2 to 12 ton Z cm 2 .
実施例 Example
以下、 本発明を実施例を挙げてよ り具体的に説明する が、 本発明は これに限定される も のではない。 なお、 以 下の各実験例、 実施例において誘導加熱は 3 k H z前後 で行っ た。 Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto. In the following experimental examples and examples, induction heating was performed at around 3 kHz.
実験例 A Experiment A
A l - 2 5 S i - 2. 5 C u - l M g (重量比) 組成の
エア 一ア ト マ イ ズ粉末約 2 5 0 g (平均粒径約 5 0 m ) を、 面圧 4 t 0 n / c m 2 で直径 1 0 O m m x 高 さ 2 0 m mに型押 し し、 比抵抗 0. 0 2 Ω c m と した後、 以下の A - 1 ) 〜 A — 5 ) に記載す る 各条件で 5 0 0 °C ま で加 熱 し、 加熱が終了 した時点で A r 雰囲気の缶に移 し、 A r 気流に よ る 冷却 ( 1 分以内で 5 0 °C にな つ た) を行 い、 粉末の酸素量、 水素量、 硬度 ( m H V ) 、 初晶 S i 粒径を測定 した。 結果を表 1 に示す A l-25 S i-2.5 Cu-l M g (weight ratio) Air Ichia DOO microstrip's powder about 2 5 0 g (average particle size of about 5 0 m), and then stamping at a surface pressure of 4 t 0 n / cm 2 in diameter 1 0 O mmx height 2 0 mm, After setting the specific resistance to 0.02 Ωcm, the sample was heated up to 500 ° C under the conditions described in A-1) to A-5) below. And cooled by Ar gas flow (at 50 ° C in less than 1 minute), oxygen content, hydrogen content, hardness (mHV), primary Si particles of the powder The diameter was measured. The results are shown in Table 1.
A - 1 ) 大気中誘導加熱 ( 3 2 °C s e c ) A-1) Atmospheric induction heating (32 ° C sec)
- · · 本発明条件 -· · Conditions of the present invention
A - 2 ) 大気中誘導加熱 ( 8. 0 °C / s e c ) A-2) Atmospheric induction heating (8.0 ° C / sec)
• · · 本発明条件 · · · Conditions of the present invention
A - 3 ) 大気中誘導加熱 ( 4. 0 °C s e c ) A-3) Induction heating in air (4.0 ° C sec)
- 本発明条件 -Conditions of the invention
A - 4 ) 大気中誘導加熱 ( 0. 8 °C s e c ) A-4) Induction heating in air (0.8 ° C sec)
- 本発明条件 -Conditions of the invention
A - 5 ) 大気中誘導加熱 ( 0. 2 °C s e c ) A-5) Induction heating in air (0.2 ° C sec)
- · , 本発明条件外 ま た、 比較のために上記 と 同 じ型押 し体を抵抗加熱炉 を用 いて以下の A — 6 ) 〜 A — 8 ) に記載す る 条件で 5 0 0 °C ま で加熱 した。 -·, Out of the conditions of the present invention, and for comparison, the same embossed body as described above was subjected to 500 ° under the conditions described in the following A-6) to A-8) using a resistance heating furnace. Heated to C.
A - 6 ) 真空中抵抗炉加熱 ( 1 時間保持) A-6) Resistance furnace heating in vacuum (hold for 1 hour)
• · · 本発明条件外 · · · Out of conditions of the present invention
A - 7 ) 窒素雰囲気中抵抗炉加熱 ( 1 時間保持)
• · · 本発明条件外 - 8 ) 大気中抵抗炉加熱 ( 1 時間保持) A-7) Resistance furnace heating in nitrogen atmosphere (hold for 1 hour) • Out of the conditions of the present invention-8) Atmospheric resistance furnace heating (hold for 1 hour)
• · · 本発明条件外 以上で得 られた各合金粉末の特定値を表 1 に示す。
Table 1 shows the specific values of each alloy powder obtained above.
加熱 酸素量 水素量 粉末硬度 初晶 S i粒径 条件 (重量 ( P m) (mH v) ( u rn) 本 A - 1 0.27 3 172 3.2 明 A - 2 0.28 4 153 3.1 条 Heating oxygen amount Hydrogen amount Powder hardness Primary crystal Si particle size Condition (weight (Pm) (mHv) (urn) A-1 0.27 3 172 3.2 light A-2 0.28 4 153 Article 3.1
件 A - 3 0.30 3 130 4.0 内 Case A-3 0.30 3 130 4.0
A— 4 0.28 5 115 7.8 本 A - 5 0.33 6 100 10.2 明 A - 6 0.28 3 92 11.2 条 A-4 0.28 5 115 7.8 pcs A-5 0.33 6 100 10.2 Description A-6 0.28 3 92 Article 11.2
件 A - 7 0.28 9 95 10.7 外 Case A-7 0.28 9 95 10.7 Outside
A- 8 0.38 17 102 10.0 注 1 :粉末硬度 (mH v) は 5点の平均値 A- 8 0.38 17 102 10.0 Note 1: Powder hardness (mHv) is the average of 5 points
注 2 :初晶 S i粒径は 3 0個の平均値
表 1 の結果か ら、 本発明の誘導加熱に よ る脱ガスを行 な う こ とによ り 、 1 ) 真空脱ガス と同程度の脱ガス度を 達成でき る、 2 ) 熱履歴が少ないために、 組織が粗大化 してお らず、 硬度も高い、 こ とが明 らかであ る。 Note 2: Primary Si particle size is the average of 30 particles According to the results shown in Table 1, by performing degassing by induction heating according to the present invention, 1) a degassing degree equivalent to that of vacuum degassing can be achieved, and 2) heat history is small. Therefore, it is clear that the structure is not coarse and the hardness is high.
実験例 B Experiment B
原料粉末と してエアーァ ト マイ ズさ れた工業用純アル ミ ニゥム粉末 (平均粒径 5 0 L m ) に平均粒径 1. 5 a m の S i C粒子を 3 0 体積%含む混合粉末を用 いた他は、 実験例 A - 1 ) 、 A - 4 ) 、 A - 5 ) 、 A - 7 ) 、 A - 8 ) の条件と して同様に処理 した。 得られた各粉末の特 性値を表 2 に示す。 粉末硬度はアル ミ 粉末を測定 した結 果を示す。
As a raw material powder, a mixed powder containing 30 vol% of SiC particles having an average particle diameter of 1.5 am in an industrial pure aluminum powder (average particle diameter of 50 Lm) which has been air-atomized. Other than that used, the same processing was performed under the conditions of Experimental Examples A-1), A-4), A-5), A-7), and A-8). Table 2 shows the characteristic values of each powder obtained. The powder hardness indicates the result of measuring the aluminum powder.
実験例 加熱 酸素量 水素量 粉末硬度 初晶 S i粒径 条件 (重量 (ppm) (mHv) 本発明 B一 1 A - 1 0.20 4 95 条件内 B - 2 A— 4 0.19 5 93 Experimental Example Heating Oxygen Content Hydrogen Content Powder Hardness Primary Crystal Si Particle Size Condition (Weight (ppm) (mHv) Present Invention B-1 A-1 0.20 4 95 Within Conditions B-2 A-4 0.19 5 93
B一 3 A - 5 0.26 7 85 B-1 3 A-5 0.26 7 85
本発明 The present invention
B - 4 A - 7 0.21 8 63 B-4 A-7 0.21 8 63
条件外 Out of condition
B - 5 A - 8 0.32 15 62 注 1 :粉末硬度 (mHv) は 5点の平均値
B-5 A-8 0.32 15 62 Note 1: Powder hardness (mHv) is the average of 5 points
実験例 C Experimental example C
原料粉末と してエアーァ ト マイ ズされた A 1 一 2 0 S i — 5 F e — 2 N i 合金粉末 (平均粒径 5 0 z m ) に 平均粒径 0. 5 のアル ミ ナ粉末を含む混合粉末を用い た他は、 実験例 A— 1 ) 、 A - 4 ) 、 A— 5 ) 、 A - 7 ) A - 8 ) の条件と して同様に処理 した。 得 られた各粉末 の特性値を表 3 に示す。 酸素量はアル ミ ナ粒子に含ま れ る酸素の量を計算で除いた量を示す。 ま た、 粉末硬度は アル ミ 合金粉末を測定した結果を示す。 '
As the raw material powder Eaa preparative My's been A 1 one 2 0 S i - containing 2 N i alloy powder Aluminum Na powder (average particle diameter 5 0 zm) to an average particle size of 0. 5 - 5 F e Except for using the mixed powder, the same treatment was performed under the conditions of Experimental Examples A-1), A-4), A-5), A-7) A-8). Table 3 shows the characteristic values of the obtained powders. The amount of oxygen indicates the amount obtained by removing the amount of oxygen contained in the alumina particles by calculation. The powder hardness shows the result of measurement of aluminum alloy powder. '
誦 加熱 酸素量 水素量 粉末硬度 初晶 S i粒径 条件 (重量%) (ppm) (mHv) ( m) 本発明 C - 1 A - 1 0.26 4 186 2.6 条件内 C - 2 A- 4 0.29 3 179 2.4 Recitation Heating oxygen content Hydrogen content Powder hardness Primary crystal Si particle size Condition (wt%) (ppm) (mHv) (m) Present invention C-1 A-1 0.26 4 186 2.6 Within condition C-2 A-4 0.29 3 179 2.4
C一 3 A - 5 0.32 5 145 5.6 本発明 C-1 3 A-5 0.32 5 145 5.6 The present invention
C一 4 A- 7 0.28 10 108 6.8 条件外 C-1 4 A- 7 0.28 10 108 6.8 Out of condition
C - 5 A一 8 0.40 19 113 6.5 注 1 :粉末硬度 (mHv) は 5点の平均値 C-5A-1 8 0.40 19 113 6.5 Note 1: Powder hardness (mHv) is the average of 5 points
注 2 :初晶 S i粒径は 3 0個の平均値
Note 2: Primary Si particle size is the average of 30 particles
実験例 D Experimental example D
A 1 — 2 0 S i — 5 F e - I N i 組成のエア 一ア ト マ ィ ズ粉末約 5 0 0 g (平均粒径 5 0 fi m ) を、 型押 し密 度を表 4 に示すよ う に変えて、 直径 1 0 O m m、 高さ 4 0 m mに型押 し し、 その比抵抗を測定 し、 こ の型押 し 体の中心部 と外周部に温度計測のため る熱電対が入る Φ 1. 0 in mの穴を各 1 個明け、 両者の温度差が 7 0 °C以上 にはな らずに最も速 く 昇温する こ とができ る昇温勾配を 求めた。
A 1 — 20 S i — 5 Fe e-IN i About 500 g of air atomized powder (average particle size 50 fi m) of composition, and the embossing density is shown in Table 4. In this way, the mold is pressed to a diameter of 10 Omm and a height of 40 mm, the specific resistance is measured, and a thermocouple for measuring the temperature is provided at the center and the outer periphery of the stamped body. One hole with a diameter of Φ1.0 inm was drilled, and the temperature gradient was determined so that the temperature could be raised most quickly without the temperature difference between the two reaching 70 ° C or more.
表 4 に示すよ う に、 約 0 . 2 Q c m以上の比抵抗では 昇温効率が悪い。 As shown in Table 4, when the specific resistance is about 0.2 Qcm or more, the heating efficiency is poor.
実施例 1 Example 1
A l - 2 5 S i - 2. 5 C u - l M g (以下すベて重量 比) 組成のエア一ア トマイ ズ粉末 (平均粒径約 5 0 pi m ) を、 直径 1 0 O m m x高さ 4 O m m、 比抵抗 0 . 0 2 Ω c mに型押 し し、 大気中で誘導加熱によ っ て 4 分間で室 温か ら 5 0 0 °Cに昇温 し加熱を行っ た。 こ れを直ち に、 黒鉛潤滑を行っ た金型 ( 2 0 0 °C ) 内に挿入 し、 面圧 8 t 0 n Z c m 2 で粉末鍛造 し、 鍛造後す ぐ に室温の水に つけて冷却を行っ た。 これを 4 曰 間自然自効 し、 ロ ッ ク ゥ エ ル硬度 Bスケール ( H R B ) を計測した と こ ろ、 H R B 8 6 であ っ た。 A l-25 S i-2.5 Cu-l Mg (total weight ratio) composition of air-atomized powder (average particle size of about 50 pim) with a diameter of 10 O mmx The mold was embossed to a height of 4 Omm and a specific resistance of 0.02 Ωcm, and the temperature was raised from room temperature to 500 ° C in air for 4 minutes by induction heating, and heating was performed. The Re this immediately, was inserted into the graphite lubricated conducted mold (2 0 0 ° C) in, and powder forged at a surface pressure of 8 t 0 n Z cm 2, soaked in water at room temperature to immediately after forging Cooling. This was 4曰between natural aging, lock © et le hardness B scale (H R B) This and was measured by filtration and Tsu H R B 8 6 der.
比較のために実施例 1 と同様に作成 した型钾 し体を、 抵抗加熱炉中、 窒素雰囲気下 5 0 0 °Cで 1 時間加熱 し、 加熱終了以降は実施例 1 と同様に鍛造、 冷却、 自効硬化 し、 硬度を測定 した と こ ろ、 H R B 7 9 であ っ た (比較 例 1 ) 。 For comparison, a molded body prepared in the same manner as in Example 1 was heated in a resistance heating furnace at 500 ° C. for 1 hour in a nitrogen atmosphere, and forged and cooled in the same manner as in Example 1 after the completion of heating. , the self effect cure, the Tsu this filtration, H R B 7 9 der and the hardness was measured (Comparative example 1).
実施例 2 Example 2
A 1 一 2 5 S i - 2. 5 C u - l M g組成のエアーァ ト マイ ズ粉末 2 5 0 g (平均粒径約 5 0 a m ) を、 面圧 4 t o n Z c m 2 で直径 1 0 O m m x高さ 2 O m mに型押 し し、 比抵抗 0. 0 2 Q c m と した後、 以下の 2 — 1 ) 〜 2 - 5 ) に記載する各条件で 5 0 0 でまで加熱 し、 加熱
が終了 した時点で : 2 0 0 °Cに加熱 した金型に該加熱型 押 し品を挿入 し、 面圧 8 t o n / c m 2 で粉末鍛造 し、 鍛造後す ぐ に水につけて冷却 した。 そ の後 4 日 間の 自 然 自効を行 っ た。 A 1 one 2 5 S i - 2. 5 C u - l M g Eaa preparative Mai's powder 2 5 0 g of composition (average particle size of about 5 0 am), the surface pressure 4 ton Z cm 2 in diameter 1 0 After embossing to an O mmx height of 2 O mm and setting the specific resistance to 0.02 Qcm, heat the sample to 50,000 under the conditions described in the following 2-1) to 2-5). heating At the time when the heating was completed: The pressed product was inserted into a mold heated to 200 ° C., the powder was forged at a surface pressure of 8 ton / cm 2 , and immediately after forging, was cooled by immersing in water. After that, natural self-efficacy took place for four days.
ま た、 2 — 3 ' ) の 「加湿あ り 」 の も の は、 型押 し体 を加熱 ' 脱ガスす る前に 4 0 て、 9 0 %湿度の雰囲気に 2 4 -時間 さ らす こ と に よ っ て、 粉末表面に多量の吸着水 を付着せ しめ、 そ の後加熱 · 脱ガス以降の工程を同様に 仃 つ た。 In the case of humidification in 2-3 '), the embossed body is heated to 40% before degassing and exposed to an atmosphere of 90% humidity for 24-hours. As a result, a large amount of adsorbed water was made to adhere to the powder surface, and then the steps after heating and degassing were performed in the same manner.
2 — 1 ) 大気中誘導加熱 ( 3 2 。C s e c ) 2 — 1) Induction heating in the atmosphere (32 .C sec)
本発明条件 The present invention conditions
2 - 2 ) 大気中誘導加熱 ( 8. 0 で s e c ) 2-2) Induction heating in the atmosphere (sec at 8.0)
本発明条件 The present invention conditions
2 — 3 ) 大気中誘導加熱 ( . 0 °C s e c ) 2 — 3) Atmospheric induction heating (.0 ° C sec)
本発明条件 The present invention conditions
2 - 3 大気中誘導加熱 ( 4. 0 °C s e c ) 2-3 Atmospheric induction heating (4.0 ° C sec)
加湿あ り · 本発明条件 Humidification
2 4 ) 大気中誘導加熱 ( 0. 8 °C s e c ) 2 4) Atmospheric induction heating (0.8 ° C sec)
本発明条件 The present invention conditions
2 - 5 ) 大気中誘導加熱 ( 0. 2 C s e c ) 2-5) Atmospheric induction heating (0.2 C sec)
• 本発明条件外 ま た、 比較のために上記 と 同 じ型押 し体を抵抗加熱炉 を用 いて以下の 2 — 6 ) 〜 2 — 7 ) に記載す る 条件で 5 0 0 °C ま で加熱を して鍛造 し、 次いで 4 8 5 でで 2 時
間加熱した後水につけて溶体化を行い、 その後 4 日 間の 自然自効を行っ た。 • Out of the conditions of the present invention, and for comparison, the same stamping body as above was heated to 500 ° C under the conditions described in 2-6) to 2-7) below using a resistance heating furnace. Forging by heating at, then 2 at 485 After heating for a while, it was immersed in water to form a solution, followed by a 4 day natural self-efficacy.
2 — 6 ) 窒素雰囲気中抵抗炉加熱 ( 1 時間保持) 2 — 6) Resistance furnace heating in nitrogen atmosphere (hold for 1 hour)
• · · 本発明条件外 2 — 6 ' ) 窒素雰囲気中抵抗炉加熱 ( 1 時間保持) 加湿あ り · · · 本発明条件外• Not in accordance with the present invention 2-6 ') Heating in resistance furnace in nitrogen atmosphere (hold for 1 hour) Humidification is not applicable.
2 - 7 ) 大気中抵抗炉加熱 ( 1 時間保持) 2-7) Atmospheric resistance furnace heating (hold for 1 hour)
• · · 本発明条件外 2 — 7 ' ) 大気中抵抗炉加熱 ( 1 時間保持) • Out of condition of the present invention 2 — 7 ') Atmospheric resistance furnace heating (hold for 1 hour)
加湿あ り · · · 本発明条件外 以上で得られた各合金粉末緞造体の諸特定値を表 5 に 示す。
Humidification is out of the conditions of the present invention. Table 5 shows various specific values of the alloy powder carcasses obtained above.
脱 ガ ス 条 件 鍛 造 体 の 特 性 値 備 Degassing conditions Characteristics of forged body
赫 f¾?考糸里畺 小 7k害糸里量 713K '又 油 IT r uト' 考 加熱手段 雰 囲 気 温度条件 加湿 ¾ ¾ 考 考 7 7 7 7 7 ¾ 7 ¾ ¾ 7 ¾ ¾ ¾
n nn 1 iίv g σ/ / m mmill 2 n nn 1 iίv g σ / / m mmill 2
/0 H n Π R / 0 H n Π R
2 一 1 誘 P7 道 ' τ»加孰 大ノ、 気 中つ / iSSL Γし \) · 0 o Q 1上 * 0 Q ΟQΌ 2 1 1 Invitation P7 Road 'τ »孰 孰 ノ 、 i / iSSL Γ \ 0 · Q1 on * 0 Q ΟQΌ
2 - 2 誘導加熱 大 気 中 8.0。C/sec昇温 なし 0.30 4 50 2.0 85 施 2 - 3 誘導加熱 大 気 中 4.0°C/sec昇温 なし 0.29 3 52 3.0 862-2 Induction heating Atmosphere 8.0. C / sec Temperature rise None 0.30 4 50 2.0 85 Application 2-3 Induction heating Atmosphere 4.0 ° C / sec Temperature rise None 0.29 3 52 3.0 86
2 - 3 ' 誘導加熱 大 気 中 4. (TC/sec昇温 有り 0.76 4 51 1.8 88 例 2-3 'Induction heating Atmosphere 4. (TC / sec temperature rise 0.76 4 51 1.8 88 Example
2 - 4 誘導加熱 大 気 中 8.0°C/sec昇温 なし 0.32 5 50 1.8 85 2-4 Induction heating Atmosphere 8.0 ° C / sec Temperature rise None 0.32 5 50 1.8 85
2 - 5 誘導加熱 大 気 中 0.2°C/sec昇温 なし 0.38 8 45 1.0 83 比 2-5 Induction heating Atmosphere 0.2 ° C / sec Heating None 0.38 8 45 1.0 83 Ratio
2 一 6 抵抗炉加熱 窒素雰囲気中 1時間保持 なし 0.28 9 49 1.8 87 2 1 6 Resistance furnace heating Hold in nitrogen atmosphere for 1 hour None 0.28 9 49 1.8 87
2 - 6 ' 抵抗炉加熱 窒素雰囲気中 1時間保持 有り 0.38 11 32 0.2 822-6 'Resistance furnace heating Nitrogen atmosphere 1 hour hold Yes 0.38 11 32 0.2 82
2 - 7 抵抗炉加熱 大 気 中 1時間保持 なし 0.42 17 30 0.0 75 例 2-7 Resistance furnace heating Atmosphere in air Hold for 1 hour None 0.42 17 30 0.0 75 Example
2 - 7 ' 抵抗炉加熱 大 気 中 1時間保持 有り 0.93 23 23 0.0 65
2-7 'Resistance furnace heating Atmosphere Hold for 1 hour Yes 0.93 23 23 0.0 65
表 5 の結果から、 本発明によれば良好に脱ガスでき、 しか も熱履歴が小さ い こ と によ り 、 原料粉末の急速冷却 効果を損なわず、 硬度、 引張強度、 伸び等の諸特性がバ ラ ンス良い鍛造体が得られている こ とがわかる。 From the results in Table 5, it can be seen that, according to the present invention, good degassing was achieved and the heat history was small, so that the rapid cooling effect of the raw material powder was not impaired and various properties such as hardness, tensile strength and elongation were obtained. This shows that a well-balanced forged body was obtained.
ま た、 2 — 3 ' ) と 2 — 6 ' ) の結果を く らべてみる と、 本発明の よ う に効果の大きい脱ガス法ではた とえ多 量の吸着水 ( これは加熱中にアル ミ ナの結晶水 とな る ) があ っ て も十分に脱ガス (脱吸着水) でき る ので鍛造体 の特性は良好となるが、 2 — 6 ' ) の従来の脱ガス法で はこ のよ う に多量の吸着水を除去し難いために、 得 られ た鍛造体の特性は悪いこ とが明 らかであ る。 In addition, when the results of 2-3 ′) and 2-6 ′) are examined, it is clear that a large amount of adsorbed water (this is The dewatering (desorption water) is sufficient even if there is water for crystallization of aluminum in the forged part), so the properties of the forged body are good, but the conventional degassing method of 2-6 ') It is clear that the properties of the obtained forged body are bad because it is difficult to remove such a large amount of adsorbed water.
上記の本発明によ る実施例 2 — 1 ) 、 2 - 3 ) と従来 法に よ る比較例 2 — 6 ) で得られた鍛造体を、 切断、 研 磨 し、 強めにエ ッ チ ン グした後に S E M (走査電子顕微 鏡) によ って組織の観察を行っ た。 図 1 〜図 3 に各々 の 鍛造体組織の S E M写真を示す。 本発明に よ る鍛造体の 組織が従来品に比べ明 らかに微細であ る こ とがわかる。 実施例 3 The forged bodies obtained in Examples 2-1) and 2-3) according to the present invention described above and Comparative Example 2-6) according to the conventional method are cut, polished, and strongly etched. After that, the tissue was observed by SEM (scanning electron microscope). Figures 1 to 3 show SEM photographs of each forged body structure. It can be seen that the structure of the forged body according to the present invention is clearly finer than the conventional product. Example 3
エア一ア トマイ ズされた A 1 — 2 O S i - 5 F e - 2 N i (平均粒径 5 0 m ) 合金粉末に平均粒径 0· 5 m のアル ミ ナ粉末を含む混合粉末を原料粉末 と した他は実 験例 2 — 1 ) 、 2 — 4 ) 、 比較例 2 — 6 ) 、 2 — 7 ) と それぞれ同様に行っ て、 本発明の鍛造体 3 — 1 ) 、 3 - 2 ) と比較品 3 — 3 ) 、 3 — 4 ) を得た。 実施例 2 と同
様に測定 した各特性値を表 6 に示す。 なお、 酸素量はァ ル ミ ナ粒子に含ま れ る酸素量を計算に よ り 除いた値を示 す。
Atomized A 1 — 2 OS i-5 Fe-2 N i (average particle diameter 50 m) A mixed powder containing aluminum powder with an average particle diameter of 0.5 m in the alloy powder. Except that the powder was used, the same procedures were performed as in Experimental Examples 2-1), 2-4), Comparative Examples 2-6) and 2-7), and the forged bodies 3-1) and 3-2) of the present invention were used. And 3-3) and 3-4). Same as Example 2 Table 6 shows the characteristic values measured in the same manner. Note that the oxygen content indicates a value obtained by excluding the oxygen content contained in the alumina particles by calculation.
表 6 の結果よ り 、 本発明 に よ る鍛造体が良好な諸特性 を有する こ とがわかる。 The results in Table 6 show that the forged body according to the present invention has good various properties.
実施例 4 Example 4
エア ー ア ト マ イ ズさ れた A 1 — 1 2 S i — 5 容量% (平均粒径 2 m ) S i C の ア ル ミ ニ ウ ム複合合金粉末 (平均粒径 5 0 m ) を原料粉末 と した他は実験例 2 — 1 ) 、 2 — 4 ) 、 比較例 2 — 6 ) 、 2 — 7 ) と それぞれ 同様に行っ て、 本発明の鍛造体 4 — 1 ) 、 4 — 2 ) と比 較品 4 — 3 ) 、 4 一 4 ) を得た。 実施例 2 と 同様に測定 した各特性値を表 Ί に示す。
Air-atomized A 1 — 12 Si — 5% by volume (average particle size 2 m) Aluminum complex alloy powder of SiC (average particle size 50 m) Except that the raw material powder was used, the procedure was the same as in Experimental Examples 2-1), 2-4) and Comparative Examples 2-6), 2-7), and the forged bodies 4-1), 4-2) of the present invention were used. And 4-4) and 4-4). Table 2 shows each characteristic value measured in the same manner as in Example 2.
7 7
表 7 の結果 よ り 、 本発明 に よ る鍛造体が良好な諸特性 を有する こ とがわかる。 The results in Table 7 show that the forged body according to the present invention has good various properties.
実施例 5 Example 5
A 1 - 2 5 S i - 2. 5 C u - 1 M g 組成のエア — ア ト マイ ズ粉末約 2 5 0 g (平均粒径約 5 0 u m ) を、 面圧 4 t 0 n / c m 2 で直径 1 0 0 m m 冋 2 0 m m に型 押 し し、 比抵抗 0. 0 2 Ω c m と した後、 以下の 5 - 1 ) 〜 5 一 5 ) に記載す る 各条件で 5 0 0 °C ま で加熱 し、 加 熱が終了 した時点で 2 0 0 °Cに加熱 した金型に挿入 し、 面圧 8 t o n / c m 2 で粉末鍛造を行い、 終了後す ぐ に 水につけて冷却 した その後 4 曰 間の 自然自 効を行 っ た 5 一 1 ) 大気中誘導加熱 ( 3 2 °C / s e c ) A 1-25 S i -2.5 Cu-1 Mg composition air — atomized powder approx. 250 g (average particle size approx. 50 um), surface pressure 4 t0 n / cm 2 embossing and the diameter 1 0 0 mm冋2 0 mm, the after the resistivity 0. 0 2 Omega cm, the following 5 - 1) to each condition you described 5 one 5) 5 0 0 ° was heated at C until, inserted into a mold heated to 2 0 0 ° C when the pressurizing heat has ended, perform the powder forged at a surface pressure of 8 ton / cm 2, cooling dipped in water immediately after the completion 4 After that, natural self-efficacy was carried out for 4 hours 5 1 1) Atmospheric induction heating (32 ° C / sec)
—— · ネ発明条件 —— · Necessary conditions for invention
5 - 2 ) 大気中誘導加熱 ( 8. 0 °C / s e c ) 5-2) Induction heating in air (8.0 ° C / sec)
—— · *発明条件 —— · * Invention conditions
3 ) 大気中誘導加熱 ( 4. 0 °C / s e c ) 3) Induction heating in air (4.0 ° C / sec)
• 本発明条件 • Conditions of the invention
4 ) 大気中誘導加熱 ( 0. 8 °C / S e c ) 4) Atmospheric induction heating (0.8 ° C / S e c)
- 本発明条件 -Conditions of the invention
5 - 5 ) 大気中誘導加熱 ( 0. 2 °C Z s e c ) 5-5) Induction heating in air (0.2 ° C Z sec)
• 本発明条件外 ま た、 比較のために上記 と 同 じ型押 し体を抵抗加熱炉 を用 いて以下の 5 — 6 ) 〜 5 — 7 ) に記載す る 条件で 5 0 0 °Cま で加熱を して緞造 し、 次いで 4 8 5 °Cで 2 時
間加熱 した後水につけて溶体化を行レ その後 4 日 間の 自然自効を行っ た。 • Out of the conditions of the present invention, and for comparison, the same stamping body as described above was heated to 500 ° C under the conditions described in the following 5-6) to 5-7) using a resistance heating furnace. To make the curtain and then at 485 ° C for 2 hours After heating for a while, it was immersed in water to form a solution, and then self-efficient for 4 days.
5 — 6 ) 窒素雰囲気中抵抗炉加熱 ( I 時間保持) 5 — 6) Resistance furnace heating in nitrogen atmosphere (I time holding)
• · · 本発明条件外 5 - 7 ) 大気中抵抗炉加熱 ( 1 時間保持) • Out of the conditions of the present invention 5-7) Atmospheric resistance furnace heating (hold for 1 hour)
• · · 本発明条件外 5 - 8 ) 真空中抵抗炉加熟 ( 1 時間保持) • Out of the conditions of the present invention 5-8) Aging in resistance furnace in vacuum (Hold for 1 hour)
• · , 本発明条件外 以上で得られた各合金粉末の特定値を表 8 に示す。 表 Table 3 shows the specific values of each alloy powder obtained above. table
8 の結果か ら、 本発明によ る ア ル ミ ニウ ム合金粉末鍛造 体が良好な脱ガス と熱履歴が小さ いこ と に よ り 、 原料粉 末の急速冷却効果を損なわず、 硬度、 引張強度、 伸び等 の諸特性がバラ ンス良い鍛造体が得 られてい る こ とがわ かる。
According to the results of Fig. 8, the aluminum alloy powder forging according to the present invention has good degassing and small heat history, so that the rapid cooling effect of the raw material powder is not impaired, and the hardness and tensile strength are not impaired. It can be seen that a forged body with good balance of properties such as strength and elongation was obtained.
実施例 6 Example 6
A l - 2 0 S i - 5 F e - 4 C u - l M g (重量% ) の組成のア トマイ ズ粉末を加圧力 4 t o n / c m 2 にて、 ダイ壁面潤滑成型によ り Φ 5 0 m m X 5 O mm t の形状 に成形 し、 それを誘導加熱にて 4分間で鍛造温度ま で加 熱し、 φ 5 3 mm形状に鍛造 した。 鍛造条件は、 加熱温 度 5 0 0 で、 鍛造圧力 5 t o n Z c m 2 であ っ た。 A l - 2 0 S i - 5 F e - 4 C u - l at M g (% by weight) A Tomai's powder pressing force 4 the composition of ton / cm 2, Φ Ri by the die wall lubrication molding 5 It was formed into a shape of 0 mm X 5 O mmt, heated by induction heating to the forging temperature in 4 minutes, and forged into a φ53 mm shape. The forging conditions were a heating temperature of 500 and a forging pressure of 5 ton Z cm 2 .
鍛造後 T 6熱処理 ( 4 9 0 でで 1. 5 時間保持 した後、 水中に投入 し、 1 8 0 でにて 6 時間時効処理) を施 し、 強度評価を行っ た。 引張強度は n = 2で評価 した と こ ろ、 5 3 k g / m m 2 . 5 1 k g /mm 2 であ っ た。 After forging, T6 heat treatment (held for 1.5 hours at 490, put into water, and aged for 6 hours at 180) was performed to evaluate the strength. This and the tensile strength was evaluated at n = 2 filtrate, 5 3 kg / mm 2. 5 1 kg / mm was 2 Tsu Der.
比較のため従来の潤滑剤混合、 電気炉加熱によ っ て同 粉末の粉末鍛造を行っ た と こ ろ、 引張強度は n = 2で 4 8 k g Zmm 2 であ っ た。 For comparison, when the powder was forged by conventional lubricant mixing and electric furnace heating, the tensile strength was 48 kg Zmm 2 at n = 2.
こ の結果から、 原料粉末中には潤滑剤を混合せずに、 ダイ 内壁に潤滑剤を塗布 して予備成形する方が好結果を 得られる こ とがわかる。 From these results, it can be seen that better results can be obtained by applying the lubricant to the inner wall of the die and preforming without mixing the lubricant into the raw material powder.
なお、 以上の実施例では急冷凝固粉末を例に挙げて説 明 しているが、 本発明の方法は急冷凝固粉末以外の粉末 に対する脱ガスに適用 してコ ス ト低下に有効であ る。 In the above embodiments, the rapidly solidified powder is described as an example. However, the method of the present invention is effective for reducing the cost by applying the method to degassing of powders other than the rapidly solidified powder.
実施例 7 Example 7
ガスア トマイ ズ粉末 (A l — 7. 3 N i — 2. 9 F e ) を Φ 7 0 m m X 2 5 mm t に面圧 4 t o n Z c m 2 で 3 つ 型押し、 2分間で 5 5 0 でまで 1 つは誘導加熱、 1 つは
放射加熱、 1 つは直接通電加熱に付 し、 0 7 2 m m に鍛 造 した。 鍛造面圧 8 t 0 n / c m 2 。 鍛造後、 水冷 した。 Three gas atomized powders (A l-7.3 Ni-2.9 Fe) were pressed into a Φ 70 mm X 25 mm t with a surface pressure of 4 ton Z cm 2 , and pressed for 5 minutes in 2 minutes. Up to one is induction heating and one is Radiation heating and one for direct current heating were forged to 0.72 mm. Forging surface pressure 8 t 0 n / cm 2. After forging, it was water-cooled.
誘導加熱品の室温での引張強 さ 6 2. 3 k g / m m 2 、 伸 び 1 3. 5 %、 K 1 C 2 8. O k g / m m 2 ^ m。 Tensile strength 6 2. 3 kg / mm 2 at room temperature for induction heating products, elongation 1 3. 5%, K 1 C 2 8. O kg / mm 2 ^ m.
放射加熱品の室温での引張強 さ 6 0. 1 k g / m m 2 、 伸 び 1 3. 0 % Tensile at room temperature radiant heating products strength 6 0. 1 kg / mm 2, elongation 1 3.0%
直接通電加熱品の室温での引張強さ 6 3. 4 k g / m m 伸 び 1 3. 6 % Tensile strength of directly heated product at room temperature 63.4 kg / mm elongation 13.6%
実施例 8 Example 8
ガスア ト マィ ズ粉末 ( A 1 — 8. 8 F e — 3. 7 C e ) を 0 7 0 m m X 2 5 m m t に面圧 4 t o n / c m 2 で型押 し、 1. 5 分間で 5 5 0 °C ま で誘導加熱 した。 0 7 2 m m に鍛造 した。 鍛造面圧は 8 t 0 n / c m 2 と した。 鍛造 後、 水冷 した Gasua DOO Mai's powder (A 1 - 8. 8 F e - 3. 7 C e) was embossed with a surface pressure of 4 ton / cm 2 to 0 7 0 mm X 2 5 mmt , 1. 5 minutes 5 5 Induction heating up to 0 ° C. Forged to 0.72 mm. Forging surface pressure was 8 t 0 n / cm 2. After forging, water cooled
での引張強 さ 6 5. 2 k g Z m m 伸 び 1 6. 2 % 実施例 9 Tensile strength at 65.2 kg Z mm elongation 16.2% Example 9
ガスア ト マ ィ ズ粉末 ( A l - 8 Z n - 2. 5 M g - 1 Gas atomized powder (Al-8Zn-2.5Mg-1
C υ - 1. 6 C o ) を ø 7 0 m m x 2 5 m m t に面圧 4 t o n / c m 2 で型押 し、 1 分間で 5 3 0 °C ま で誘導加 熱 した 7 2 m m に鍛造 した。 锻造面圧は 8 t o n / c m 2 と した。 鍛造後、 温度が 4 6 0 °C ま で下が っ て い たので 1 分間で 5 2 0 °C ま で誘導加熱に よ り 再加熱後水 冷 し、 4 曰 間 自然時効 した後に特性を調査 した。 C υ - 1. 6 C o) a ø 7 0 mmx 2 5 was embossed at a surface pressure of 4 ton / cm 2 to mmt, were forged to 7 2 mm induced pressurized heat for 1 minute at 5 3 0 ° C or .锻 The surface pressure was 8 ton / cm 2 . After forging, the temperature had dropped to 460 ° C, so it was cooled down to 50 ° C in 1 minute by induction heating, then water-cooled, and after 4 natural aging characteristics investigated.
室温での引張強 さ 7 0. 2 k g Z m m 2 、 伸 び 1 2. 5 %
実施例 I 0 Tensile strength at room temperature 70.2 kg Z mm 2 , elongation 12.5% Example I 0
A 1 一 2 5 S i 一 3 C u - l M gの組成を有するエア —ア トマイ ズ粉末、 1 0 gを 1 0 X 1 8 x 3 O mmに面 圧 4 t o n Z c m 2 で圧粉 した。 これを停滞大気中で赤 外線誘導加熱法で 5 1 0 でまで 4分間で加熱後鍛造 した。 金型温度は 4 0 0 °Cで、 I 0. 5 X 1 0. 5 m mの金型を用 いた。 鍛造面圧は 8 t 0 n / c m 2 と した。 鍛造後水冷 した。 熱処理な しで特性を調査 した。 A1-25Si13Cu-lMg Air with composition of atomized powder, 10 g of 10 g into 10 X 18 x 3 O mm with a surface pressure of 4 ton Z cm 2 did. This was heated in a stagnant atmosphere by infrared induction heating to 510 for 4 minutes and then forged. The mold temperature was 400 ° C., and a mold of I0.5 × 10.5 mm was used. Forging surface pressure was 8 t 0 n / cm 2. After forging, it was water-cooled. The characteristics were investigated without heat treatment.
室温での引張強さ 5 8 k g /m m 2 、 破断伸び 3.' 0 %。 同 じ圧粉体を窒素気流中 ( 7 リ ツ ト ル Z分) で 5 1 0 でまで 4分間で加熱後鍛造。 条件は上記と同様 と した。 Tensile strength at room temperature 58 kg / mm 2 , elongation at break 3. '0%. The same compact was heated in a nitrogen stream (7 liters Z) to 510 for 4 minutes and then forged. The conditions were the same as above.
室温での引張強さ 5 1 k g / m m 2 、 破断伸び 2. 1 %。 実施例 1 1 Tensile strength at room temperature 51 kg / mm 2 , elongation at break 2.1%. Example 1 1
A 1 - 1 7 S i — 5 F e — 3 C u — l M gの組成を有 するエアーア トマイズ粉末、 2 0 k gを C I P (面圧 2 t o n / c m 2 ) して ø 1 8 0 x 3 0 0 mmの圧粉体を 作成 した。 A 1-17 S i — 5 Fe — 3 Cu — l M g Air atomized powder with a composition of 20 mg, CIP (contact pressure 2 ton / cm 2 ) ø180 x 3 A green compact of 00 mm was produced.
こ れを①窒素気流中で雰囲気加熱 ( 4 5 0 °C X 4 時間) This is heated in an atmosphere of nitrogen (450 ° C x 4 hours).
( 4 9 0 °C X 4 時間) ②大気中で誘導加熱 ( 4 6 0 °Cまでに 1 6 分間 をかけて昇温) (490 ° C x 4 hours) ②Induction heating in air (16 minutes to 450 ° C)
( 5 0 0 °Cまでに 1 6 分間 をかけて昇温) (The temperature rises to 500 ° C over 16 minutes)
こ れ らを 0 2 0 0 の コ ンテナで 0 4 4 に押出 (押出比
2 1 ) 成形 した。 押出後、 す ぐ に冷却、 F 材の特性を調 查 し、 その後 T 6 処理 ( 4 7 0 °C X 2 時間→水冷 1 7 5 °C X 6 時間) を して特性を調査 した。 These are extruded to 044 with a 0200 container (extrusion ratio 2 1) Molded. Immediately after the extrusion, the material was cooled and the properties of the F material were adjusted. After that, T6 treatment (470 ° CX for 2 hours → water-cooling 175 ° CX for 6 hours) was performed to investigate the properties.
ま た 、 押出後 4 8 5 °Cの炉に 1 0 分間入れて水冷 した 後、 1 7 5 °C X 6 時間の時効処理を した も のを再加熱 し こ れを再加熱 して T 6 材 とす る。 After the extrusion, it was placed in a furnace at 485 ° C for 10 minutes, cooled with water, then aged at 175 ° C for 6 hours, reheated, and reheated to obtain T6 material. It shall be.
③同様に、 粉末 2 5 0 g を ø 8 O m m に型押 し ③ Similarly, press 250 g of powder to ø8 O mm
(金型壁面潤滑 : 面圧 4 t o n Z c m 2 ) し、 大気中で 誘導加熱 ( 5 2 0 °C ま でに 2 . 5 分間をかけて昇温) し 、 こ れを ø 8 2 の金型に入れて面圧 8 t o n / c m 2 で 粉末鍛造 した。 鍛造後す ぐ に水冷 した。 こ れを F 材 とす る 0 (Mold wall lubrication: surface pressure: 4 ton Z cm 2 ), induction heating in the air (temperature rise to 500 ° C over 2.5 minutes), and this is done with ø82 metal. The powder was forged in a mold at a surface pressure of 8 ton / cm 2 . It was water-cooled immediately after forging. Use this as F material 0
鍛造後 4 8 5 で ま で 1 分間で誘導加熱 して水冷 した後 After forging Induction heating up to 485 for 1 minute and water cooling
1 7 5 °C X 6 時間の時効処理を した も のを急再加熱 T 6 材 とす る o Rapidly reheat T 6 material after aging treatment at 1 75 ° C for 6 hours o
鍛造後 4 8 5 °Cの炉に 1 0 分間入れて水冷 した後、 1 7 5 °C X 6 時間の時効処理を した も のを再加熱 T 6 材 とする O After forging, put it in a furnace at 485 ° C for 10 minutes, water-cool it, and then reheat it after aging at 1775 ° C for 6 hours.
鍛造後す ぐ に.水冷 した後 こ れを T 6 処理 (すなわち、 4 8 5 eC X 2 時間処理後水冷 し、 1 7 5 で X 6 時間処理 する) を した も のを T 6 材 とす る。 Immediately after forging, water-cooled, T6 treated (ie, treated with 485 eCX for 2 hours, then water-cooled, and treated with X175 for 17 hours) is used as T6 material. You.
上記の各試料について、 特性を調査 した結果を表 9 に 示す。
表 9 Table 9 shows the results of an investigation of the characteristics of each of the above samples. Table 9
注) 表中の固化材の頭に付した〇内番号①〜③は、 実施例 1 1中の本文中の①Note) The numbers in ① to ③ attached to the head of the solidified material in the table indicate ① in the text in Example 11 1.
③の処理をしたことに対応する。
以上の結果に よ り 、 以下の こ とが分か る 。 Corresponds to the processing of (3). From the above results, the following can be understood.
( 1 ) 押出 において本発明急速加熱法を用 いて も 有効で め る。 (1) It is effective to use the rapid heating method of the present invention in extrusion.
( 2 ) 押出 において低い温度に急速加熱 した も の は伸 び が出ない。 (2) In extrusion, the material heated rapidly to a low temperature does not elongate.
( 3 ) 押出において低い温度に急速加熱 した も の は残留 水素量が多い。 (3) Extrusion heated rapidly to a low temperature has a large residual hydrogen content.
( 4 ) 本発明急速加熱押出を した も の は、 通常の T 6 を する よ り も再加熱 T 6 を したほ う が特性が良い。 (4) In the case of the rapid heating extrusion of the present invention, the characteristics are better when reheating T 6 is performed than when performing normal T 6.
( 5 ) 本発明急速加熱粉末鍛造を した も のは F材で も 充 分な特性が得 られる。 (5) Sufficient properties can be obtained with the F material for the rapid heating powder forging of the present invention.
( 6 ) 本発明急速加熱粉末鍛造を した も の は T 6 材 ょ り も再加熱 T 6 材のほ う が、 再加熱 T 6 材よ り も 再急加熱 T 6 材のほ う が特性が良好な こ と がわか る。 (6) The T6 material that has been subjected to the rapid heating powder forging according to the present invention has properties that are similar to those of the reheated T6 material, and of the reheated T6 material more than the reheated T6 material. You can see good things.
( 7 ) 本発明品は、 従来材に く らべ、 引張強 さ と破断伸 びの両方を同時に向上 さ せる こ とが分かる。 (7) It can be seen that the product of the present invention improves both tensile strength and breaking elongation simultaneously with the conventional material.
実施例 1 2 Example 1 2
上記 2 材 と 1 1 材の 3 0 0 °Cでの引張強 さ と伸 びを調 ベた。 The tensile strength and elongation at 300 ° C of the above two materials and the eleven materials were examined.
2 材 • • • S S k g Zm m 2 3 . 5 %伸 び 比較例 1 1 材 · ' · 2 8 1ς Ε Ζιη πι 2 5 , 6 %伸 び 本発明 こ の よ う に、 本発明品は耐熱性において も 優れて い る こ とが分かる。 2 material • • • SS kg Zm m 2 3. Ni would Yo 5% elongation Comparative Example 1 1 material · '· 2 8 1ς Ε Ζιη πι 2 5, 6% elongation present invention this, the product of the present invention heat It can be seen that the properties are also excellent.
実施例 1 3
A 1 一 8 F e — 4 M o の組成を有する 回転円盤ア ト マ ィ ズ粉末、 2 5 Q gを φ 8 O m mに型押 し (金型壁面潤 滑 : 面圧 4 t o n Z c m 2 ) Example 13 A 18 F e — Rotating disk atomized powder having a composition of 4 Mo, 25 Qg is pressed into φ8 O mm (mold wall lubrication: surface pressure 4 ton Z cm 2 )
大気中で誘導加熱した ( 5 1 0 でまでに 1 . 0 分間を かけて昇温) Induction heating in air (temperature rises over 5 minutes by 1.0 minutes)
( 6 5 0 でまでに 1 . 0 分間を かけて昇温) (The temperature rises over 1.0 minute by 65 0)
これを ø 8 2 m mの金型に入れて面圧 8 t o n / c m 2 で粉末鍛造 した。 And powder forging at a surface pressure of 8 ton / cm 2 take this into mold ø 8 2 mm.
鍛造後す ぐ に水冷 して特性を調査 した。 得 られた結果 を表 1 0 に示す。 Immediately after forging, it was cooled with water and its properties were investigated. Table 10 shows the obtained results.
表 1 0 Table 10
こ の よ う に、 高融点のアル ミ 合金では 6 0 0 でを越え た温度に加熱する こ とが良好な場合があ る。 As described above, in the case of aluminum alloys having a high melting point, heating to a temperature exceeding 600 in some cases is favorable.
産業上の利用可能性 Industrial applicability
この よ う に本発明によれば、 従来よ り も簡単な工程で 安価に、 しか も低熱履歴で充分な脱ガスができ る ために
引張強度、 伸び、 破壊靭性値の全てを、 不活性雰囲気中 加熱や、 真空脱ガスや、 固化後の塑性変形加工を行 う こ と な しに向上さ せる こ とができ る ので、 産業上有効な方 法であ る。
As described above, according to the present invention, it is possible to perform sufficient degassing with a low heat history at a low cost with a simpler process than before. All of the tensile strength, elongation, and fracture toughness values can be improved without heating in an inert atmosphere, vacuum degassing, or plastic deformation after solidification. This is an effective method.