JPS61194101A - Method for degassing al powder and al alloy powder - Google Patents

Method for degassing al powder and al alloy powder

Info

Publication number
JPS61194101A
JPS61194101A JP60032457A JP3245785A JPS61194101A JP S61194101 A JPS61194101 A JP S61194101A JP 60032457 A JP60032457 A JP 60032457A JP 3245785 A JP3245785 A JP 3245785A JP S61194101 A JPS61194101 A JP S61194101A
Authority
JP
Japan
Prior art keywords
powder
degassing
alloy
air
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60032457A
Other languages
Japanese (ja)
Inventor
Kiyoaki Akechi
明智 清明
Atsushi Kuroishi
黒石 農士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60032457A priority Critical patent/JPS61194101A/en
Publication of JPS61194101A publication Critical patent/JPS61194101A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To degas efficiently Al powder, Al alloy powder or a mixture thereof with simple equipment in a reduced number of stages as compared with conventional vacuum degassing by heating the powder in the air. CONSTITUTION:Al powder, Al alloy powder or a mixture thereof is compression-molded and degassed by heating at 200 deg.C- the m.p. of the powder in the air to manufacture a billet for extruion or a perform for casting. The heating is preferably carried out in dehumidified dry air.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はAlもしくはAl合金の粉体の脱ガス処理に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to the degassing treatment of Al or Al alloy powder.

更に詳細には本発明はブリスターのない真密度Al合金
材料の原材料として好適に使用できるAlもしくはAl
合金粉末の経済的かつ簡便な脱ガス処理方法に関する。
More specifically, the present invention provides Al or Al that can be suitably used as a raw material for true density Al alloy material without blisters.
This invention relates to an economical and simple degassing method for alloy powder.

従来の技術 Al粉およびへ1合金粉、それらの混合粉を圧縮成形し
、それらを熱間押出加工によって真密度Al合金材料と
する合金製造法は新素材開発方法として注目されている
。しかしながら、この場合、粉末に吸着したガスが押出
加工後にブリスター(気泡)となったり、あるいは押出
材の熱処理時にブリスターや気孔となるため、脱ガス処
理が不可欠である。
BACKGROUND OF THE INVENTION An alloy manufacturing method in which Al powder, He1 alloy powder, and a mixed powder thereof are compressed and hot extruded into a true density Al alloy material is attracting attention as a new material development method. However, in this case, degassing treatment is essential because the gas adsorbed to the powder becomes blisters (bubbles) after extrusion processing, or becomes blisters or pores during heat treatment of the extruded material.

このようなブリスターや気孔の発生の防止のため従来技
術においては、粉末あるいは成形体を缶に入れて真空中
で加熱し脱ガス後封缶したり、あるいは粉末を真空中で
ホットプレスすることで脱ガスと同時に圧縮成形するこ
とによって、押出用のビレットとしていた。しかしなが
ら、このような方法による脱ガス処理は工数が増えるば
かりではなく、缶入り押出の場合には素材の歩留りも著
しく低下する欠点を有している。
In order to prevent the formation of such blisters and pores, conventional techniques include placing the powder or molded body in a can, heating it in a vacuum, degassing it, and then sealing the can, or hot pressing the powder in a vacuum. A billet for extrusion was made by compression molding at the same time as degassing. However, degassing treatment by such a method not only increases the number of man-hours, but also has the disadvantage that, in the case of canned extrusion, the yield of the material decreases significantly.

発明の解決すべき問題点 本発明は、ブリスターや気孔のない真密度AtまたはA
l合金を経済的に製造可能な方法を提供することを目的
とする。さらに詳細には本発明は、真密度AlまたはA
l合金の材料であるAl粉およびAl合金粉、それらの
混合粉の脱ガス処理を経済的かつ簡便に実施する方法を
提供することを目的とする。
Problems to be Solved by the Invention The present invention provides true density At or A without blisters or pores.
The object of the present invention is to provide a method for economically producing L alloys. More specifically, the present invention provides true density Al or A
It is an object of the present invention to provide an economical and simple method for degassing Al powder, Al alloy powder, and mixed powder thereof, which are materials for l-alloy.

問題点を解決する手段 本発明は、従来粉末が酸化するため非常識とされていた
空気中加熱だけによって脱ガス処理を行うことによって
、ブリスター等の欠陥のないAl合金押出素材やAl合
金粉末鍛造部品を提供するものである。
Means for Solving the Problems The present invention is capable of producing aluminum alloy extruded materials and aluminum alloy powder forgings free from defects such as blisters by performing degassing treatment only by heating in air, which was conventionally considered unreasonable because the powder would oxidize. It provides parts.

すなわち本発明に従うと、Al粉、Al合金粉、および
それらを含む混合粉のいずれかからなる粉体、またはそ
れらの圧縮成形体を空気中加熱により脱ガス処理するこ
とを特徴とする方法が提供される。
That is, according to the present invention, there is provided a method characterized in that a powder made of any of Al powder, Al alloy powder, and a mixed powder containing them, or a compression molded product thereof, is degassed by heating in air. be done.

加熱温度は、200℃以上且つ粉体の融点以下であり、
また、大気中でも実施できるが、除湿乾燥空気中で加熱
処理するのが好ましい。
The heating temperature is 200°C or higher and lower than the melting point of the powder,
Further, although the heat treatment can be carried out in the air, it is preferable to carry out the heat treatment in dehumidified dry air.

発明の作用 以下、本発明に至った検討の過程と本発明の詳細な説明
する。
Effects of the Invention Below, the study process that led to the present invention and the detailed explanation of the present invention will be described.

従来、粉末に吸着したガスの脱ガスは、熱力学的な観点
から、真空度と温度に平衡した平衡ガス圧力を求める方
法から脱ガスプロセスを予測するのが一般的であった(
LEYBDLDHERAEUS GMB)I、Vacu
umDegassing  of  Metal  P
owders、  by  P、Flecher  a
ndR,Ruthardt参照)。
Conventionally, the degassing process of gases adsorbed in powder has been generally predicted from a thermodynamic point of view by determining the equilibrium gas pressure that is balanced with the degree of vacuum and temperature (
LEYBDLDHERAEUS GMB) I, Vacu
umDegassing of Metal P
owders, by P, Flecher a
ndR, Ruthardt).

又、一般には、大気中では酸化が進行するため、大気中
脱ガスは従来検討されたことがなかった。
Furthermore, since oxidation generally progresses in the atmosphere, degassing in the atmosphere has not been considered in the past.

しかしながら、■現実の脱ガスプロセスは、時間の関係
した速度論的な過程であり、■しかも吸着ガスのように
は熱力学的に予測することのできない水分を含んでおり
、■Al粉あるいはAl合金粉の場合には、強固な酸化
皮膜は還元することが困難であり、しかも実際に大気中
加熱を行って形成される酸化皮膜の増加はわずかである
However, ■The actual degassing process is a time-related kinetic process, ■Moreover, it contains moisture, which cannot be predicted thermodynamically like adsorbed gas, and ■Al powder or Al In the case of alloy powder, it is difficult to reduce the strong oxide film, and the increase in the oxide film formed by actually heating in the atmosphere is small.

以上の点から、まず大気中で脱水分(ガス)が可能かど
うかを理論的に推測した。
Based on the above points, we first theoretically estimated whether dehydration (gas) is possible in the atmosphere.

〈熱力学的検討〉 各種粉末温度T (K)において、lppmの水蒸気i
Mになるための平衡分圧(mbr)は概略、で与えられ
、表1に示すごとくなる。
<Thermodynamic study> At various powder temperatures T (K), lppm of water vapor i
The equilibrium partial pressure (mbr) for achieving M is approximately given by, and is as shown in Table 1.

表1 一方、大気中の飽和水蒸気圧は、第1図に示す如くなっ
ており、日本において最も高温多湿である梅雨時を例に
とって考えると、気温30℃で相対湿度100%なら大
気中の飽和水蒸気圧は42mbarということがわかる
。従って、このように湿度の高い場合でも、表1によれ
ば、大気中脱ガス温度が約420℃以上なら、熱力学的
には粉末の水蒸気量は1 ppm以下になる。
Table 1 On the other hand, the saturated water vapor pressure in the atmosphere is as shown in Figure 1. Taking the rainy season, which is the hottest and humid season in Japan, as an example, if the temperature is 30°C and the relative humidity is 100%, the saturated water vapor pressure in the atmosphere is It can be seen that the water vapor pressure is 42 mbar. Therefore, even in the case of such high humidity, according to Table 1, if the atmospheric degassing temperature is about 420° C. or higher, thermodynamically the amount of water vapor in the powder is 1 ppm or less.

さらに春秋の気温25℃で相対湿度50%程度のときに
は、大気中の水蒸気圧はl[3mbarであり、表1に
よれば大気中脱ガス温度が約380℃以上なら、又、冬
期の温度5℃で相対湿度30%なら大気中の水蒸気圧は
約3 mbarであり、表1によれば約320℃以上で
加熱すれば、その温度で粉末の水蒸気量1ρρmと平衡
する水蒸気分圧よりも低くなるため、大気中加熱によっ
て水蒸気量Lppm以下まで脱ガス処理が可能なことが
わかる。
Furthermore, when the temperature in spring and autumn is 25℃ and the relative humidity is about 50%, the water vapor pressure in the atmosphere is 1 [3 mbar. According to Table 1, if the atmospheric degassing temperature is about 380℃ or higher, then the temperature in winter is 5 ℃ and relative humidity of 30%, the water vapor pressure in the atmosphere is about 3 mbar, and according to Table 1, if heated above about 320℃, the water vapor partial pressure will be lower than the water vapor partial pressure that is in equilibrium with the powder's water vapor content of 1ρρm at that temperature. Therefore, it can be seen that degassing treatment is possible to reduce the amount of water vapor to Lppm or less by heating in the atmosphere.

以上のように、熱力学的側面からの大気中脱ガスの可能
性が確認できた。一方、実際にできるかどうか又、でき
るとすれば、どの程度、どれぐらいの時間を必要とする
かは、速度論的検討が必要になるが、ここで問題として
いるのは実際の脱ガス処理であるので、次ぎに定性的な
検討のみを行う。
As described above, the possibility of atmospheric degassing from a thermodynamic perspective was confirmed. On the other hand, kinetic studies are needed to determine whether this can actually be done, and if so, how much time it will take, but the issue here is the actual degassing process. Therefore, only a qualitative study will be performed next.

粉末吸着した水が脱ガスするのは、熱活性化過程にある
反応速度論とみなすことができる。従って、温度が高い
ほど粉末の脱ガスは速く進行し、同じ水蒸気量、例えば
lppmとなるのに短時間となることが予測できる。
The degassing of powder-adsorbed water can be viewed as a reaction kinetics during the thermal activation process. Therefore, it can be predicted that the higher the temperature, the faster the degassing of the powder will proceed, and it will take a shorter time to reach the same amount of water vapor, for example 1 ppm.

又、当然のことながら、同温度ならば、長時間加熱する
ほど粉末の水掬気量は低くなるり、またその温度での粉
末中のある水蒸気量(例えばl ppm)との平衡水蒸
気圧よりも、脱ガスに使用する大気中の水蒸気圧が低け
れば低いほど、速く脱ガスできる。例えば上記の梅雨時
、春秋、冬を比較すれば、同じ温度、例えば450℃で
大気中加熱すれば、冬が最も速く脱ガスでき、次いで春
秋、梅雨時が最も遅い。さらにこのことは、除湿乾燥空
気を使用すれば、より一層脱ガスが容易になることを示
している。
Naturally, at the same temperature, the longer the heating time, the lower the water absorption capacity of the powder, and the lower the equilibrium water vapor pressure with a certain amount of water vapor in the powder (for example, 1 ppm) at that temperature. Also, the lower the water vapor pressure in the atmosphere used for degassing, the faster the gas can be degassed. For example, if we compare the rainy season, spring/autumn, and winter, if we heat in the air at the same temperature, for example, 450°C, degassing is fastest in winter, followed by spring/autumn, and slowest in rainy season. Furthermore, this shows that degassing becomes even easier when dehumidified dry air is used.

上記の速度論的検討と後述の実施例より、健全なAl粉
末押出材を得るには、実際の脱ガス温度が200℃以下
では長時間かけても脱ガスが不十分であることがわかる
From the above kinetic study and the examples described later, it can be seen that in order to obtain a sound Al powder extruded material, degassing is insufficient when the actual degassing temperature is 200° C. or less even if it takes a long time.

又、脱ガス処理自体は、粉末のまま行ってもよいし、粉
末を一旦、成形体にしてから行ってもよい。当然ながら
、後者の場合には、前者にくらべて脱ガス速度は遅くな
り、粉末の場合よりも長時間の加熱が必要となる。また
、粉末の場合、粉末を攪拌すれば脱ガス速度は促進され
る。
Further, the degassing treatment itself may be performed as a powder, or may be performed after the powder is once formed into a compact. Naturally, in the latter case, the degassing rate is slower than in the former case, and a longer heating time is required than in the case of powder. In addition, in the case of powder, stirring the powder will accelerate the degassing rate.

ところで、Al粉の場合、表面の酸化皮膜は緻密である
ため大気中加熱によってもそれほどは成長しないという
アルミニウムの特性も大気中加熱脱ガスに有効に働いて
いる。又、速度論的な意味から高温はど脱ガス速度が速
くなることを述べたが、一方、表面酸化膜構造、すなわ
ち各種アルミニウム酸化物の点からも、高温加熱脱ガス
が有利である。つまり、その後の工程でブリスターの原
因となる結晶水として結合している酸化物(bayer
 iteやbohmite)を安定なαアルミナにする
ためには、高温はど容易になる。
By the way, in the case of Al powder, the oxide film on the surface is dense, so the characteristic of aluminum that it does not grow much even when heated in the air is also effective in degassing by heating in the air. Further, from a kinetic point of view, it has been stated that the degassing rate becomes faster at high temperatures, but on the other hand, high temperature heating degassing is also advantageous from the point of view of the surface oxide film structure, that is, various aluminum oxides. In other words, oxides (Bayer
ite and bohmite) into stable alpha alumina, it is easy to use high temperatures.

以下、本発明を実施例により説明するが、これらの実施
例は本発明の単なる例示であって、本発明の範囲を何隻
制限するものではない。
Hereinafter, the present invention will be explained with reference to Examples, but these Examples are merely illustrative of the present invention and do not limit the scope of the present invention.

実施例 Al−20wt%Si−4wt%Cu−1wt%Mg合
金粉末(−100メツシユ)を3t/cnfでφ155
mm X 1150mmにCIP(冷間静水圧ブス)成
形した成形体を、300℃、400℃、500℃の各温
度の乾燥空気にて時間を変えて脱ガス処理し、それを押
出用ビレットとして用いて押出比lO:1にて押出加工
を行った。
Example Al-20wt%Si-4wt%Cu-1wt%Mg alloy powder (-100 mesh) was φ155 at 3t/cnf.
A CIP (cold isostatic pressure bus) molded body of mm x 1150 mm was degassed with dry air at temperatures of 300°C, 400°C, and 500°C for different times, and used as a billet for extrusion. Extrusion processing was performed at an extrusion ratio of lO:1.

得られた押出材を500℃で加熱した時にブリスターが
発生し始めた時間を求めた。第2図にその結果を示す。
When the obtained extruded material was heated at 500° C., the time at which blisters began to occur was determined. Figure 2 shows the results.

第2図に示すように脱ガス温度が高いほど、また、脱ガ
ス処理が長時間となるほどブリスターの発生開始時間が
遅くなることがわかる。
As shown in FIG. 2, it can be seen that the higher the degassing temperature is, and the longer the degassing treatment is, the later the time at which blisters start forming becomes delayed.

T6処理等の熱処理を行う場合、溶体化温度を500℃
、加熱時間を4時間と仮定するならば、空気中脱ガス条
件としては、500℃なら2時間以上、400℃なら6
時間以上、300℃なら20時間以上の脱ガス加熱によ
ってブリスターの発生が防止できることが確認できた。
When performing heat treatment such as T6 treatment, the solution temperature should be 500℃.
Assuming that the heating time is 4 hours, the degassing conditions in air are 2 hours or more at 500℃, 6 hours at 400℃.
It was confirmed that the generation of blisters could be prevented by degassing heating for 20 hours or more at 300°C.

名工p皇】 上記した如く、本発明はAl、Al合金もしくはそれら
の混合物からなる粉体を空気中で加熱することによって
粉体内の脱ガス、特に脱水蒸気を好適に実施できる方法
を提供するものである。
As described above, the present invention provides a method for suitably degassing, particularly dehydrating, vapor in the powder by heating the powder made of Al, Al alloy, or a mixture thereof in air. It is.

本発明の脱ガス処理は空気雰囲気、好適には除湿乾燥空
気中で行うので、従来の真空中での脱ガス処理等に比べ
て工程数が少なく、設備も簡素であり、高能率で実施す
ることができる。
Since the degassing treatment of the present invention is performed in an air atmosphere, preferably in dehumidified dry air, the number of steps is fewer than in conventional degassing treatment in a vacuum, the equipment is simple, and it can be carried out with high efficiency. be able to.

さらに、得られた脱ガス処理後の粉体は従来技術とはゾ
同等の品質であり、空気中の加熱処理にもかかわらず酸
化被膜の増大もなく、真密度AlもしくはAl合金の製
造に極めて好適である。
Furthermore, the obtained powder after degassing treatment is of the same quality as the conventional technology, and there is no increase in oxide film despite heat treatment in air, making it extremely suitable for producing true density Al or Al alloy. suitable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は温度と大気中の飽和水蒸気圧との関係を示すグ
ラフであり、 第2図は本発明の実施例において脱ガス処理後、押出し
加工して得られたAl合金ビレットの脱ガス処理時間と
500℃加熱後のブリスター発生開始時間との関係を示
すグラフである。 特許出願人  住友電気工業株式会社 代 理 人  弁理士  新居 正彦 第1図 遍 度(°C) 第2WI 説D“ス怨理時間(h「)
FIG. 1 is a graph showing the relationship between temperature and saturated water vapor pressure in the atmosphere, and FIG. 2 is a graph showing the degassing treatment of an Al alloy billet obtained by extrusion processing after degassing treatment in an example of the present invention. It is a graph showing the relationship between time and blister generation start time after heating at 500°C. Patent Applicant Sumitomo Electric Industries Co., Ltd. Representative Patent Attorney Masahiko Arai

Claims (9)

【特許請求の範囲】[Claims] (1)Al粉、Al合金粉、およびそれらを含む混合粉
のいずれかからなる粉体を空気中加熱により脱ガス処理
することを特徴とする方法。
(1) A method characterized by degassing a powder made of any one of Al powder, Al alloy powder, and mixed powder containing them by heating in air.
(2)上記粉体は圧縮成形体であることを特徴とする特
許請求の範囲第1項記載のAl粉およびAl合金粉の脱
ガス処理方法
(2) A method for degassing Al powder and Al alloy powder according to claim 1, wherein the powder is a compression molded body.
(3)上記粉体を200℃以上且つ粉体の融点以下の温
度で空気中加熱することを特徴とする特許請求の範囲第
1項または第2項記載のAl粉およびAl合金粉の脱ガ
ス処理方法
(3) Degassing of Al powder and Al alloy powder according to claim 1 or 2, characterized in that the powder is heated in air at a temperature of 200° C. or higher and lower than the melting point of the powder. Processing method
(4)上記粉体を大気中で加熱することを特徴とする特
許請求の範囲第1項乃至第3項のいずれかに記載のAl
粉およびAl合金粉の脱ガス処理方法
(4) Al according to any one of claims 1 to 3, characterized in that the powder is heated in the atmosphere.
Degassing method for powder and Al alloy powder
(5)上記粉体を除湿乾燥空気中で加熱することを特徴
とする特許請求の範囲第1項乃至第3項のいずれかに記
載のAl粉およびAl合金粉の脱ガス処理方法
(5) A method for degassing Al powder and Al alloy powder according to any one of claims 1 to 3, characterized in that the powder is heated in dehumidified dry air.
(6)Al粉、Al合金粉、およびそれらを含む混合粉
のいずれかからなる粉体の圧縮成形体を空気中加熱して
脱ガス処理し、得られた脱ガス処理後の圧縮成形体を押
出用ビレットや鋳造用プリフォームとして用いることを
特徴とするAlまたはAl合金を製造する方法。
(6) A compression molded body of powder made of either Al powder, Al alloy powder, or a mixed powder containing them is heated in air to degas it, and the resulting compression molded body after degassing treatment is A method for producing Al or an Al alloy, characterized in that it is used as a billet for extrusion or a preform for casting.
(7)上記粉体の圧縮成形体を200℃以上且つ粉体の
融点以下の温度で空気中加熱することを特徴とする特許
請求の範囲第6項記載のAlまたはAl合金を製造する
方法。
(7) A method for producing Al or an Al alloy according to claim 6, characterized in that the compression-molded body of the powder is heated in air at a temperature of 200° C. or higher and lower than the melting point of the powder.
(8)上記粉体の圧縮成形体を大気中で加熱することを
特徴とする特許請求の範囲第6項または7項のいずれか
に記載のAlまたはAl合金を製造する方法。
(8) A method for producing Al or an Al alloy according to claim 6 or 7, characterized in that the compression molded body of the powder is heated in the atmosphere.
(9)上記粉体の圧縮成形体を除湿乾燥空気中で加熱す
ることを特徴とする特許請求の範囲第6項または7項の
いずれかに記載のAlまたはAl合金を製造する方法。
(9) A method for producing Al or an Al alloy according to claim 6 or 7, characterized in that the compression molded body of the powder is heated in dehumidified dry air.
JP60032457A 1985-02-20 1985-02-20 Method for degassing al powder and al alloy powder Pending JPS61194101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60032457A JPS61194101A (en) 1985-02-20 1985-02-20 Method for degassing al powder and al alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60032457A JPS61194101A (en) 1985-02-20 1985-02-20 Method for degassing al powder and al alloy powder

Publications (1)

Publication Number Publication Date
JPS61194101A true JPS61194101A (en) 1986-08-28

Family

ID=12359499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60032457A Pending JPS61194101A (en) 1985-02-20 1985-02-20 Method for degassing al powder and al alloy powder

Country Status (1)

Country Link
JP (1) JPS61194101A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993009899A1 (en) * 1991-11-22 1993-05-27 Sumitomo Electric Industries, Ltd Method for degassing and solidifying aluminum alloy powder
US7625520B2 (en) * 2003-11-18 2009-12-01 Dwa Technologies, Inc. Manufacturing method for high yield rate of metal matrix composite sheet production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993009899A1 (en) * 1991-11-22 1993-05-27 Sumitomo Electric Industries, Ltd Method for degassing and solidifying aluminum alloy powder
US7625520B2 (en) * 2003-11-18 2009-12-01 Dwa Technologies, Inc. Manufacturing method for high yield rate of metal matrix composite sheet production

Similar Documents

Publication Publication Date Title
CN101014534B (en) SiO deposition material, Si powder for SiO raw material, and method for producing SiO
US3872022A (en) Sintering uranium oxide in the reaction products of hydrogen-carbon dioxide mixtures
US4659546A (en) Formation of porous bodies
US4410636A (en) Method of manufacturing a sintered material based on silicon nitride, and material obtained by the method
JP2657838B2 (en) Manufacturing method of silicon nitride products
CA2684315A1 (en) Method of making a solar grade silicon wafer
JP3066850B2 (en) Binderless X-type zeolite molding and method for producing the same
JPS61194101A (en) Method for degassing al powder and al alloy powder
CN102329978A (en) Preparation method of porous material by utilizing non-solid solution alloy corrosive sintering
JPH10508823A (en) Thin integrated iron oxide structures made from steel and methods for manufacturing such structures
JPS60180967A (en) Method of compressing porous ceramic structural member
JPH03275527A (en) Porous silica glass powder
KR900004489B1 (en) Process for producing aluminium nitride powder
JPS606307B2 (en) Method for producing polycrystalline zinc selenide
JPS63121628A (en) Manufacture of aluminum alloy powder
CN109336602A (en) The preparation method of high thermal conductivity graphite film
JPH03213142A (en) Method for purifying particulate material
JP2958569B2 (en) Atmospheric pressure sintered h-BN ceramic sintered body processing method
JPH0841563A (en) Production of metal-ceramic composite material
JPS59162122A (en) Purification of silicon tetrafluoride
JP2003010659A (en) Method for producing alloy for hydrogen-permeable membrane
SU1504001A1 (en) Method of producing ceramic articles
RU2013460C1 (en) Method of preparing of rare-earth metals yttrium and scandium
JP2566434B2 (en) Method for producing surface-treated rapidly solidified aluminum alloy powder
Morimoto et al. Rate of surface hydration on alumina