JPH0841563A - Production of metal-ceramic composite material - Google Patents

Production of metal-ceramic composite material

Info

Publication number
JPH0841563A
JPH0841563A JP17717894A JP17717894A JPH0841563A JP H0841563 A JPH0841563 A JP H0841563A JP 17717894 A JP17717894 A JP 17717894A JP 17717894 A JP17717894 A JP 17717894A JP H0841563 A JPH0841563 A JP H0841563A
Authority
JP
Japan
Prior art keywords
furnace
metal
composite material
magnesium
ceramic composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17717894A
Other languages
Japanese (ja)
Other versions
JP2998828B2 (en
Inventor
Yasuhiro Nakao
靖宏 中尾
Aritoshi Sugano
有利 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16026551&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0841563(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP17717894A priority Critical patent/JP2998828B2/en
Priority to GB9515138A priority patent/GB2294272B/en
Priority to US08/507,727 priority patent/US5786035A/en
Priority to DE19527495A priority patent/DE19527495C2/en
Publication of JPH0841563A publication Critical patent/JPH0841563A/en
Application granted granted Critical
Publication of JP2998828B2 publication Critical patent/JP2998828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To produce a composite material in which metal and ceramic are integrated without executing pressurizing or the like. CONSTITUTION:A pure Al block 7 and a ceramic porous formed body 8 are set in a crucible 3, and a prescribed amt. of Mg9 is set in a crucible 4. Thereafter, the inside of a furnace 1 is substituted by gaseous Ar, and the pressure in the furnace is reduced to 0.5atm to perfectly sublimate the Mg9 while heating the furnace up to >=900 deg.C. The same state is continued, and Mg vapor is uniformly dispersed into the porous formed body 8. Next, gaseous nitrogen is introduced into the furnace 1, is brought into reaction with the same sublimated Mg to form Mg3N2, and this Mg3N2 is brought into contact with Al2O3 formed on the surface of the porous formed body 8 and is reduced to expose Al. Since this Al is extremely active, it is high in wettability with the molten metal of Al (7a), thus, the molten metal Al (7a) of infiltrates into the porous formed body 8 in a short time and the porous formed body 8 sinks into the molten metal of Al (7a).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属とセラミックスとを
一体化した複合材料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a composite material in which metal and ceramics are integrated.

【0002】[0002]

【従来の技術】異種材料を一体化することで、夫々の材
料の長所を備えた複合材料とすることが可能となる。斯
かる複合材料として最近では金属・セラミックス複合材
料が注目されており、この金属・セラミックス複合材料
の製造方法は、母材となる金属のセラミックス(強化
材)に対する濡れ性が悪いため、従来にあっては型内に
強化材をセットした後、溶湯を加圧して強制的に複合化
せしめる加圧鋳造を行っている。
2. Description of the Related Art By integrating dissimilar materials, it is possible to obtain a composite material having the advantages of each material. Recently, a metal / ceramics composite material has been attracting attention as such a composite material, and a method for producing the metal / ceramics composite material has not been conventionally used because the metal as a base material has poor wettability with respect to ceramics (reinforcement material). After setting the reinforcing material in the mold, pressure casting is performed to pressurize the molten metal and forcibly form a composite.

【0003】[0003]

【発明が解決しようとする課題】上述した従来方法にあ
っては、金型や加圧装置が必要となり、全体として大掛
りになる。また加圧を行うことで強化材の体積率(V
f)が変化し、更に大きな寸法の複合材を作製すること
が困難である。
In the above-mentioned conventional method, a mold and a pressurizing device are required, which is a large scale as a whole. In addition, the volume ratio (V
f) changes, and it is difficult to produce a composite material having a larger size.

【0004】[0004]

【課題を解決するための手段】上記課題を解決すべく本
発明は、Al23等の酸化物系セラミックスからなる多
孔質成形体とマグネシウムとを炉内にセットし、この炉
内をAr等の希ガス雰囲気としてマグネシウムを昇華さ
せ、このてマグネシウム蒸気を多孔質成形体内に分散せ
しめ、更に炉内に窒素ガスを導入し、前記昇華したマグ
ネシウムと反応させて窒化マグネシウム(Mg32)を
生成し、この窒化マグネシウムを多孔質成形体表面のA
l23等の酸化物と接触させて還元することで金属原子
を露出せしめ、次いで、この多孔質成形体内に毛細管現
象等によって金属溶湯を浸透させるようにした。
In order to solve the above-mentioned problems, the present invention sets a porous compact made of oxide ceramics such as Al 2 O 3 and magnesium in a furnace, and sets Ar in the furnace. Magnesium is sublimed in a rare gas atmosphere such as, and magnesium vapor is dispersed in the porous compact, and nitrogen gas is further introduced into the furnace to react with the sublimed magnesium and magnesium nitride (Mg 3 N 2 ) To produce A on the surface of the porous molded body.
The metal atom was exposed by bringing it into contact with an oxide such as l 2 O 3 to reduce the metal atom, and then the metal melt was permeated into the porous molded body by a capillary phenomenon or the like.

【0005】ここで、前記マグネシウムの昇華は、希ガ
ス雰囲気下だけでなく減圧下で行うのが好ましく、ま
た、前記マグネシウムの昇華を行う炉内の酸素濃度は1
%以下とするのが好ましい。
Here, the sublimation of magnesium is preferably carried out not only in a rare gas atmosphere but also under reduced pressure, and the oxygen concentration in the furnace for sublimation of magnesium is 1
% Or less is preferable.

【0006】[0006]

【作用】多孔質成形体表面を覆っているAl23等の酸
化被膜にMg32が接触すると、酸化被膜を構成する酸
素がMgと結合し、金属原子が成形体表面表面に露出す
る。このように純金属が露出することで、表面は活性化
し濡れ角が略0°の拡張濡れの状態になり、瞬時に溶湯
が多孔質成形体内に浸透する。
When Mg 3 N 2 comes into contact with the oxide film such as Al 2 O 3 covering the surface of the porous molded body, oxygen constituting the oxide film is bonded to Mg and the metal atom is exposed on the surface of the molded body. To do. By exposing the pure metal in this way, the surface is activated and enters a state of extended wetting with a wetting angle of approximately 0 °, and the molten metal instantly penetrates into the porous molded body.

【0007】[0007]

【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。ここで、図1は本発明方法を工程順に説明し
たものであり、このうち(a)は複合化開始前の炉内の
状態を示す図、(b)はMgを昇華させた炉内の状態を
示す図、(c)はN2ガスを導入した炉内の状態を示す
図、(d)は多孔質成形体が溶湯内に沈んだ状態を示す
図であり、また図2は原子配列を示し、このうち(a)
はMgが昇華した状態のAl粉末粒子の原子配列の模式
図、(b)は昇華したMgとNとが結合した状態を示す
模式図、(c)はMgとOとが結合しAlが露出した状態
を示す模式図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 illustrates the method of the present invention in the order of steps, in which (a) is a diagram showing a state in the furnace before the start of compounding, and (b) is a state in the furnace in which Mg is sublimated. FIG. 2 (c) is a view showing a state in the furnace where N 2 gas is introduced, (d) is a view showing a state where the porous compact is submerged in the molten metal, and FIG. 2 is an atomic arrangement. Shown among these (a)
Is a schematic diagram of the atomic arrangement of Al powder particles in the state where Mg is sublimated, (b) is a schematic diagram showing the state in which sublimated Mg and N are bonded, and (c) is a state in which Mg and O are bonded and Al is exposed. It is a schematic diagram which shows the state which was done.

【0008】図中1は炉であり、この炉1の外側にはヒ
ータ2が配置され、炉1内には黒鉛製坩堝3,4が設け
られ、更に炉1にはガス導入管5及びガス排出管6がバ
ルブ5a,6aを介して接続されている。
In the drawing, reference numeral 1 denotes a furnace, a heater 2 is arranged outside the furnace 1, graphite crucibles 3 and 4 are provided in the furnace 1, and a gas introducing pipe 5 and a gas are further provided in the furnace 1. The discharge pipe 6 is connected via valves 5a and 6a.

【0009】以上の装置を用いて複合材を製造するに
は、先ず図1(a)に示すように坩堝3内に純Alのブ
ロック7及びこの上に多孔質成形体8をセットし、また
坩堝4内に所定量のマグネシウム9をセットする。ここ
で、多孔質成形体8としてはAl23繊維或いはAl23
粒子からなる例えば体積率(Vf)が20%程度のもの
とする。
In order to manufacture a composite material using the above apparatus, first, as shown in FIG. 1 (a), a pure Al block 7 and a porous molded body 8 are set in the crucible 3, and A predetermined amount of magnesium 9 is set in the crucible 4. Here, as the porous molded body 8, Al 2 O 3 fiber or Al 2 O 3 is used.
For example, the volume ratio (Vf) of particles is about 20%.

【0010】而る後、図1(b)に示すように炉1内を
Arガスで置換し、900℃まで昇温し炉内を0.5atm
まで減圧することでマグネシウム9を完全に昇華せしめ
る。この時の原子の状態を図2(a)で示している。
尚、900℃まで昇温することで、純Alのブロック7
は溶湯7aになるが、多孔質成形体8内にはガスが入っ
ているので多孔質成形体8は溶湯7a上に浮いている。
After that, as shown in FIG. 1B, the inside of the furnace 1 was replaced with Ar gas, the temperature was raised to 900 ° C., and the inside of the furnace was 0.5 atm.
Magnesium 9 is completely sublimated by reducing the pressure to. The state of the atoms at this time is shown in FIG.
By raising the temperature to 900 ° C, block 7 of pure Al
Becomes molten metal 7a, but since the porous molded body 8 contains gas, the porous molded body 8 floats on the molten metal 7a.

【0011】この状態を約30秒間継続しマグネシウム
蒸気を多孔質成形体8内に均一に分散せしめ、次いで、
図1(c)に示すように炉1内に窒素ガスを内圧が1at
mになるまで導入し、前記昇華したマグネシウムと反応
させて窒化マグネシウム(Mg32)を生成せしめる。
この時の原子の状態を図2(b)で示している。
This state is continued for about 30 seconds to uniformly disperse the magnesium vapor in the porous compact 8 and then
As shown in FIG. 1 (c), nitrogen gas is introduced into the furnace 1 at an internal pressure of 1 at
It is introduced until it reaches m and reacted with the sublimed magnesium to form magnesium nitride (Mg 3 N 2 ).
The state of the atoms at this time is shown in FIG.

【0012】そして、900℃〜950℃で約10分間
保持することで、生成された窒化マグネシウム(Mg3
2)を多孔質成形体8を構成する繊維或いは粒子表面に
形成されたAl23と接触させて還元することで金属原
子(Al)を露出せしめる。
Then, by holding at 900 ° C. to 950 ° C. for about 10 minutes, the generated magnesium nitride (Mg 3 N
The metal atom (Al) is exposed by bringing 2 ) into contact with the fibers or the particles of Al 2 O 3 formed on the surface of the particles forming the porous molded body 8 to reduce it.

【0013】以下に炉内での反応式を示す。これらの式
のΔG(ギブスの標準生成エネルギー)からも分るよう
に、Mg32の存在下でAl23からO原子が離脱する。 3Mg(gas)+N2=Mg32 ΔG=−202KJ(950℃) 2Mg32+2Al23=2AlN+6MgO+2Al+
2 ΔG=−191KJ(950℃) Mg32+2Al23+3Mg=2AlN+6MgO+2
Al ΔG=−396KJ(950℃)
The reaction formula in the furnace is shown below. As can be seen from ΔG (Gibbs standard energy of formation) in these equations, O atoms are released from Al 2 O 3 in the presence of Mg 3 N 2 . 3Mg (gas) = + N 2 = Mg 3 N 2 ΔG = -202KJ (950 ℃) 2Mg 3 N 2 + 2Al 2 O 3 2AlN + 6MgO + 2Al +
N 2 ΔG = -191KJ (950 ℃ ) Mg 3 N 2 + 2Al 2 O 3 + 3Mg = 2AlN + 6MgO + 2
Al ΔG = -396KJ (950 ° C)

【0014】以上のようにしてAl23からO原子が離
脱し、残ったAlは極めて活性であるので、Al溶湯7a
との濡れ性は濡れ角が略0°の拡張濡れの状態になり、
短時間のうちにAl溶湯7aは多孔質成形体8内に浸透
し、図1(c)に示すように多孔質成形体8はAl溶湯
7a内に沈む。
As described above, the O atom is desorbed from Al 2 O 3 and the remaining Al is extremely active.
The wettability with is in a state of extended wetting with a wetting angle of approximately 0 °,
In a short time, the Al melt 7a penetrates into the porous compact 8 and the porous compact 8 sinks into the Al melt 7a as shown in FIG. 1 (c).

【0015】この後、200℃まで急冷して製品を取り
出したところ、内部まで純Alで満たされた極めて緻密
な金属・セラミックス複合材料が得られた。
Then, when the product was taken out after being rapidly cooled to 200 ° C., an extremely dense metal / ceramic composite material having the interior filled with pure Al was obtained.

【0016】以下の(表1)及び図3は炉内の酸素濃度
と複合率との関係を示すものであり、これら(表1)及
び図3から明らかなように、炉内の酸素濃度はできるだ
け低い方がよい。但し、酸素濃度1%以下であれば複合
率は90%以上となるので、十分な値が得られる。
The following (Table 1) and FIG. 3 show the relationship between the oxygen concentration in the furnace and the composite rate. As is clear from these (Table 1) and FIG. 3, the oxygen concentration in the furnace is The lower the better. However, if the oxygen concentration is 1% or less, the composite rate is 90% or more, so a sufficient value can be obtained.

【0017】[0017]

【表1】 [Table 1]

【0018】また以下の(表2)は純Al中にMg及び他
の元素を添加し、Al合金として利用した場合の複合化
の程度を示したものであり、この(表2)からは、Mg
の多孔質成形体に対する添加量は1〜14wt%が適当で
あり、好ましくは4〜14wt%とし、またCa、Si、或
いはCuでは複合化は生じることがない。
The following (Table 2) shows the degree of compounding when Mg and other elements are added to pure Al and utilized as an Al alloy. From this (Table 2), Mg
1 to 14 wt% is suitable for the porous molded body, and preferably 4 to 14 wt%, and Ca, Si, or Cu does not cause complexation.

【0019】[0019]

【表2】 [Table 2]

【0020】尚、実施例にあっては、溶融前の純Alの
上に多孔質成形体をセットし、自動的に多孔質成形体内
に純Alの溶湯が浸透するようにしたが、別の箇所に於
て純Alの溶湯を調製し、還元によって表面が活性化し
た多孔質成形体に純Alの溶湯を注ぐようにしてもよ
い。
In the embodiment, the porous compact was set on the pure Al before melting, and the molten pure Al was automatically permeated into the porous compact. It is also possible to prepare a molten solution of pure Al at a position and pour the molten solution of pure Al into the porous compact whose surface is activated by reduction.

【0021】[0021]

【発明の効果】以上に説明したように本発明によれば、
窒化マグネシウム(Mg32)を強化材となる酸化物系
セラミックスからなる多孔質成形体表面の酸化物と接触
させ、還元によって酸素を除去しAl等の金属原子を露
出せしめ、極めて活性な状態にしておき、次いで、この
多孔質成形体内に金属溶湯を浸透させるようにしたの
で、金属と酸化物系セラミックスとの濡れ性が向上し、
極めて密着度の高い金属・セラミックス複合材料が得ら
れる。
According to the present invention as described above,
Magnesium nitride (Mg 3 N 2 ) is brought into contact with the oxide on the surface of the porous compact made of oxide-based ceramics as a reinforcing material, oxygen is removed by reduction and metal atoms such as Al are exposed, resulting in an extremely active state. Then, since the molten metal was made to penetrate into this porous molded body, the wettability between the metal and the oxide-based ceramics is improved,
A metal / ceramic composite material with extremely high adhesion can be obtained.

【0022】また、本発明方法によれば、従来のように
溶湯を加圧して強化材中に浸透させる必要がないので、
装置も大掛りにならず、低コストで金属・セラミックス
複合材料を得ることができる。
Further, according to the method of the present invention, it is not necessary to pressurize the molten metal so that it penetrates into the reinforcing material as in the conventional method.
The device does not become large, and the metal / ceramic composite material can be obtained at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は複合化開始前の炉内の状態を示す図、
(b)はMgを昇華させた炉内の状態を示す図、(c)
はN2ガスを導入した炉内の状態を示す図、(d)は多
孔質成形体が溶湯内に沈んだ状態を示す図
FIG. 1 (a) is a diagram showing a state in a furnace before the start of compounding,
(B) is a figure which shows the state in the furnace which sublimated Mg, (c)
Is a diagram showing a state in the furnace where N 2 gas is introduced, and (d) is a diagram showing a state in which the porous compact is submerged in the molten metal.

【図2】(a)はMgが昇華した状態のAl粉末粒子の原
子配列の模式図、(b)は昇華したMgとNとが結合し
た状態を示す模式図、(c)はMgとOとが結合しAlが
露出した状態を示す模式図
FIG. 2 (a) is a schematic diagram of an atomic arrangement of Al powder particles in a state where Mg is sublimated, (b) is a schematic diagram showing a state in which sublimated Mg and N are bonded, and (c) is Mg and O. Schematic diagram showing a state in which and are combined and Al is exposed

【図3】酸素濃度と複合率との関係を示すグラフFIG. 3 is a graph showing the relationship between oxygen concentration and composite rate.

【符号の説明】[Explanation of symbols]

1…炉、3,4…坩堝、7…純Al、7a…純Alの溶
湯、8…多孔質成形体、9…マグネシウム。
1 ... Furnace, 3, 4 ... Crucible, 7 ... Pure Al, 7a ... Melt of pure Al, 8 ... Porous compact, 9 ... Magnesium.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年8月4日[Submission date] August 4, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】以下に焼結炉内での反応式を示す。 3Mg(gas)+N2=Mg32 2Mg32+2Al23=2AlN+6MgO+2Al+
2 Mg32+2Al23+3Mg=2AlN+6MgO+2
Al これらの式のΔG(ギブスの標準生成エネルギー)は負
であり、反応は右に進むため、Mg32の存在下でAl2
3からO原子が離脱する。
The reaction formula in the sintering furnace is shown below. 3Mg (gas) + N 2 = Mg 3 N 2 2Mg 3 N 2 + 2Al 2 O 3 = 2AlN + 6Mg O + 2Al +
N 2 Mg 3 N 2 + 2Al 2 O 3 + 3Mg = 2AlN + 6MgO + 2
Al these formulas .DELTA.G (standard formation Gibbs energy) is negative, since the reaction proceeds to the right, Al 2 in the presence of Mg 3 N 2
O atom is released from O 3 .

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図2[Name of item to be corrected] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】 [Fig. 2]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酸化物系セラミックスからなる多孔質成
形体とマグネシウムとを炉内にセットし、この炉内を希
ガス雰囲気としてマグネシウムを昇華させ、このマグネ
シウム蒸気を多孔質成形体内に分散せしめ、更に炉内に
窒素ガスを導入し、前記昇華したマグネシウムと反応さ
せて窒化マグネシウム(Mg32)を生成し、この窒化
マグネシウムを多孔質成形体表面の酸化物と接触させて
還元することで金属原子を露出せしめ、次いで、この多
孔質成形体内に金属溶湯を浸透させるようにしたことを
特徴とする金属・セラミックス複合材料の製造方法。
1. A porous compact made of oxide-based ceramics and magnesium are set in a furnace, magnesium is sublimated in the furnace in a rare gas atmosphere, and the magnesium vapor is dispersed in the porous compact. Further, by introducing nitrogen gas into the furnace and reacting it with the sublimed magnesium to generate magnesium nitride (Mg 3 N 2 ), the magnesium nitride is brought into contact with the oxide on the surface of the porous compact to reduce it. A method for producing a metal / ceramic composite material, which comprises exposing metal atoms and then infiltrating a molten metal into the porous molded body.
【請求項2】 請求項1に記載の金属・セラミックス複
合材料の製造方法において、前記マグネシウムの昇華
は、希ガス雰囲気下且つ減圧下で行うことを特徴とする
金属・セラミックス複合材料の製造方法。
2. The method for producing a metal / ceramic composite material according to claim 1, wherein the sublimation of magnesium is performed in a rare gas atmosphere and under reduced pressure.
【請求項3】 請求項1または請求項2に記載の金属・
セラミックス複合材料の製造方法において、前記多孔質
成形体内に毛細管現象によって金属溶湯を浸透させるよ
うにしたことを特徴とする金属・セラミックス複合材料
の製造方法。
3. The metal according to claim 1 or 2.
In the method for producing a ceramic composite material, a method for producing a metal-ceramic composite material, characterized in that a molten metal is permeated into the porous molded body by a capillary phenomenon.
【請求項4】 請求項1乃至請求項3に記載の金属・セ
ラミックス複合材料の製造方法において、前記マグネシ
ウムの昇華を行う炉内の酸素濃度は1%以下としたこと
を特徴とする金属・セラミックス複合材料の製造方法。
4. The method of manufacturing a metal / ceramic composite material according to claim 1, wherein the oxygen concentration in the furnace for sublimating magnesium is 1% or less. Composite material manufacturing method.
JP17717894A 1994-07-28 1994-07-28 Manufacturing method of metal / ceramic composite material Expired - Fee Related JP2998828B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP17717894A JP2998828B2 (en) 1994-07-28 1994-07-28 Manufacturing method of metal / ceramic composite material
GB9515138A GB2294272B (en) 1994-07-28 1995-07-24 Method for producing metal-ceramic composite materials.
US08/507,727 US5786035A (en) 1994-07-28 1995-07-26 Method for producing metal-ceramic composite materials
DE19527495A DE19527495C2 (en) 1994-07-28 1995-07-27 Method and device for producing a metal-ceramic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17717894A JP2998828B2 (en) 1994-07-28 1994-07-28 Manufacturing method of metal / ceramic composite material

Publications (2)

Publication Number Publication Date
JPH0841563A true JPH0841563A (en) 1996-02-13
JP2998828B2 JP2998828B2 (en) 2000-01-17

Family

ID=16026551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17717894A Expired - Fee Related JP2998828B2 (en) 1994-07-28 1994-07-28 Manufacturing method of metal / ceramic composite material

Country Status (1)

Country Link
JP (1) JP2998828B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107065A (en) * 2005-10-14 2007-04-26 Honda Motor Co Ltd Method for producing aluminum matrix composite
JP2007297689A (en) * 2006-05-02 2007-11-15 Keiji Yamabe Method for producing metal-ceramic composite material for casting
DE112005003373B4 (en) * 2005-01-14 2011-05-12 Honda Motor Co., Ltd. Aluminum-based composite material and process for its production
CN113857464A (en) * 2021-09-27 2021-12-31 上海交通大学 Preparation method of fiber reinforced aluminum matrix composite

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112005003373B4 (en) * 2005-01-14 2011-05-12 Honda Motor Co., Ltd. Aluminum-based composite material and process for its production
JP2007107065A (en) * 2005-10-14 2007-04-26 Honda Motor Co Ltd Method for producing aluminum matrix composite
JP4482511B2 (en) * 2005-10-14 2010-06-16 本田技研工業株式会社 Method for producing aluminum matrix composite
JP2007297689A (en) * 2006-05-02 2007-11-15 Keiji Yamabe Method for producing metal-ceramic composite material for casting
CN113857464A (en) * 2021-09-27 2021-12-31 上海交通大学 Preparation method of fiber reinforced aluminum matrix composite

Also Published As

Publication number Publication date
JP2998828B2 (en) 2000-01-17

Similar Documents

Publication Publication Date Title
US5509555A (en) Method for producing an article by pressureless reactive infiltration
Rao et al. Pressureless infiltration of Al–Mg based alloys into Al2O3 preforms: mechanisms and phenomenology
JP3847331B2 (en) Aluminum nitride, aluminum nitride-containing solid solution and aluminum nitride composite prepared by combustion synthesis
US5934355A (en) Method of manufacturing metal ceramic composite material
JPH02236244A (en) Forming method for metallic matrix complex by spontaneous infiltration process and product produced thereby
JPH02243730A (en) Forming method for metallic matrix complex
US5786035A (en) Method for producing metal-ceramic composite materials
JPH0841563A (en) Production of metal-ceramic composite material
EP0261055B1 (en) Production of ceramic and ceramic-metal composite articles incorporating filler materials
US4943320A (en) Vapor phase redistribution in multi-component systems
US4981632A (en) Production of ceramic and ceramic-metal composite articles incorporating filler materials
JP2595534B2 (en) Method for producing Ti-A alloy castings
JP2809331B2 (en) Metal / ceramic composite material manufacturing equipment
JPH02228470A (en) Sputtering target
JP2620294B2 (en) Silicon carbide-graphite composite material and method for producing the same
JPS59162199A (en) Crystal growth using silicon nitride and manufacture of parts therefor
JPH08151268A (en) Production of silicon carbide sintered compact
CN1052700A (en) The preparation method of metal-base composites
JP3839514B2 (en) Silicon nitride sintered body and method for producing the same
JP4183361B2 (en) Method for producing metal-ceramic composite material
JPH0570238A (en) Production of silicon nitride sintered body
JP2885393B2 (en) Manufacturing method of aluminum sintered body
JPH0570239A (en) Production of silicon nitride sintered body
JPS62158103A (en) Manufacture of high purity one component silicon nitride
JPH06144930A (en) Ceramic composite sintered compact and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees