JPH03281748A - Manufacture of vtr cylinder material - Google Patents

Manufacture of vtr cylinder material

Info

Publication number
JPH03281748A
JPH03281748A JP8326290A JP8326290A JPH03281748A JP H03281748 A JPH03281748 A JP H03281748A JP 8326290 A JP8326290 A JP 8326290A JP 8326290 A JP8326290 A JP 8326290A JP H03281748 A JPH03281748 A JP H03281748A
Authority
JP
Japan
Prior art keywords
wear resistance
vacuum degassing
cylinder material
degassing treatment
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8326290A
Other languages
Japanese (ja)
Inventor
Yasuhiro Fukuda
福田 康廣
Kazuo Yokoi
横井 和雄
Akio Kikuchi
菊地 昭雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP8326290A priority Critical patent/JPH03281748A/en
Publication of JPH03281748A publication Critical patent/JPH03281748A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a cylinder material having a uniform structure and high wear resistance by subjecting high Si Al-Si series alloy powder with a specified compsn. obtd. by a rapid solidification process to vacuum degassing under specified conditions and thereafter subjecting the powder to hot extruding. CONSTITUTION:Alloy powder contg., by weight, 18 to 23% Si, 0.5 to 6% Cu, 0.5 to 5% Mg and the balance Al and obtd. by a rapid solidification process is housed in a container and is subjected to vacuum degassing treatment at 500 to 540 deg.C for 4 to 48hr. The material after subjected to the above treatment is formed by a hot press and is thereafter subjected to hot extruding at the temp. of the above vacuum degassing treatment or below to obtain a cylinder material. By the above degassing treatment, the average grain size of Si can be regulated intereasedly to 2.5 to 3.5mu suitable for providing the material with excellent wear resistance and a uniform structure. Thus, the cylinder material is formed, its wear resistance can be remarkably be improved, and because its structure is uniform, the degree of its minute deformation in the use in accordance with a head cycle can remarkably be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、組織が均一で高度の耐摩耗性を有するAl−
3i系のVTRシリンダー材を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention provides an Al-
The present invention relates to a method for manufacturing a 3i-based VTR cylinder material.

〔従来の技術〕[Conventional technology]

VTRドラム用のシリンダー材料としては軽量で耐摩耗
性に優れるAl系の合金が有用されているが、現在では
耐摩耗特性の面から溶解鍛造法により得られるAl−3
i系の共晶合金を素材としたものが主流を占めている。
Al-based alloys, which are lightweight and have excellent wear resistance, are useful as cylinder materials for VTR drums, but currently Al-3, which is obtained by melting and forging, is used because of its wear resistance.
The mainstream is made of i-based eutectic alloys.

ところが、前記のAn−3t合金はSi含有量が12w
L%以下であり、充分な耐摩耗性を付与するためには組
成的に5ilJが不足する難点がある。
However, the Si content of the An-3t alloy is 12w.
L% or less, and there is a problem that 5ilJ is insufficient compositionally to provide sufficient wear resistance.

そのうえ、合金&IIRfに不均質な面がある関係で、
切削仕上げの表面粗度にバラツキが生じてテープに1■
傷を与えたり、使用中にシリンダーが微小変形して画像
を乱す等の現象を招く問題点がある。
Moreover, due to the heterogeneity of alloy & IIRf,
There are variations in the surface roughness of the cutting finish and the tape has 1■
There are problems in that the cylinder may be damaged, or the cylinder may be slightly deformed during use, disturbing the image.

[発明が解決しようとする!I!a] Aj!−3i系の合金材質において高度の耐摩耗性を付
与するためにはSi含有量を20w t%程度まで増大
させる必要があるが、この組成は急冷凝固法により形成
することができる。
[Invention tries to solve! I! a] Aj! In order to impart a high degree of wear resistance to a -3i alloy material, it is necessary to increase the Si content to about 20 wt%, but this composition can be formed by a rapid solidification method.

本発明者らは上記の点に着目して研究を重ねた結果、急
冷凝固法で得られる特定組成のAl−3i系合金粉末を
一定条件下に真空脱ガスしたのち熱間押出加工すると、
Si成分の平均粒径を高度の耐摩耗性と均質組織の形成
に有効な2.5〜3,5μ−の範囲に増大調整化し得る
事実を確認して本発明の開発に至ったものである。
As a result of repeated research focusing on the above points, the present inventors found that when Al-3i alloy powder with a specific composition obtained by rapid solidification is vacuum degassed under certain conditions and then hot extruded,
The present invention was developed after confirming the fact that the average particle size of the Si component can be increased and adjusted to a range of 2.5 to 3.5μ, which is effective for achieving high wear resistance and forming a homogeneous structure. .

したがって、本発明の目的は、急冷凝固法によるAl−
5μ合金粉末を原料として高性能のVTRシリンダー材
を製造するための方法を提供することにある。
Therefore, the object of the present invention is to produce Al-
The object of the present invention is to provide a method for manufacturing a high-performance VTR cylinder material using 5μ alloy powder as a raw material.

C!!題を解決するための手段〕 上記の目的を達成するための本発明によるVTRシリン
ダー材の製造方法は、5i18〜23−1%、Cu 0
.5〜6syt%、M g 0.5〜5wt%を含み残
部がAi!からなる組成の急冷凝固法で得られた合金粉
末を容器詰めし、500〜540℃の温度範囲で4〜4
8時間真空脱ガス処理を施したのち、前記真空脱ガス処
理の温度以下で熱間押出することを構成上の特徴とする
C! ! Means for Solving the Problems] A method for manufacturing a VTR cylinder material according to the present invention to achieve the above object includes a method for producing a VTR cylinder material containing 5i18-23-1%, Cu0
.. 5 to 6 syt%, M g 0.5 to 5 wt%, and the balance is Ai! The alloy powder obtained by the rapid solidification method with a composition of
A structural feature is that after vacuum degassing treatment is performed for 8 hours, hot extrusion is performed at a temperature lower than the temperature of the vacuum degassing treatment.

本発明の原料となるAj!−5μ合金は、鋳塊をアトマ
イズ法により急冷凝固して得られる粉末で、合金成分と
してS i 1B〜23wt%、Cu 0.5〜6wt
%およびMg0.5〜5wt%を含む組成を必須とする
。合金組成をこのように限定するのは、以下の理由によ
るためである。すなわち、Siはi1摩耗性を付与する
だめの成分となるが、この含有量が18−t%未満では
耐摩耗性が不足し、また23wt%を越えると加工性を
悪化させる。CuおよびMgは共存して時効硬化を示す
が、これら成分が共に0゜5wt%を下廻る場合には充
分な効果が発揮されず、他方Cuが6wt%を越えMg
が5wt%を越える場合には効果が飽和する。
Aj! which is the raw material of the present invention! -5μ alloy is a powder obtained by rapidly solidifying an ingot using the atomization method, and the alloy components include Si 1B to 23wt% and Cu 0.5 to 6wt%.
% and Mg0.5 to 5 wt%. The reason why the alloy composition is limited in this manner is as follows. That is, Si is an essential component that imparts i1 wear resistance, but if the content is less than 18-t%, the wear resistance is insufficient, and if it exceeds 23 wt%, the workability is deteriorated. Cu and Mg coexist and exhibit age hardening, but when both of these components are below 0.5 wt%, sufficient effect is not exhibited, whereas when Cu exceeds 6 wt%, Mg
When the amount exceeds 5 wt%, the effect is saturated.

上記の組成を有するAβ〜Si合金粉末は容器詰めした
のち、処理温度500〜540℃5処理時間4〜48時
間の条件により真空脱ガス処理を施す。
After the Aβ-Si alloy powder having the above composition is packed in a container, it is subjected to vacuum degassing treatment at a treatment temperature of 500 to 540° C. and a treatment time of 4 to 48 hours.

この場合、処理の温度が500”Cを下廻りまた時間が
4時間未満であるとSiの粒子径が円滑に増大せず、温
度が540℃を越えると膨れが発生して製品とならなく
なる。48時間を越す長い処理時間ではS】平均粒径が
大きくなり過ぎて組織の不均一を招き、結果的に耐摩耗
性が減退する。また長時間の処理は生産性の面からも妙
味がない。
In this case, if the processing temperature is below 500"C or for less than 4 hours, the Si particle size will not increase smoothly, and if the temperature exceeds 540"C, swelling will occur and the product will not be produced.48 If the treatment time is too long, the average particle size will become too large, resulting in non-uniform structure, resulting in a decrease in wear resistance.In addition, long treatment times are not attractive from the viewpoint of productivity.

真空脱ガス処理されたAl−5μ合金粉末は、ついで常
法に従ってホットプレスで成形したのち熱間押出される
。熱間押出加工の温度は、真空脱ガス処理時に500〜
540℃の範囲内で設定した温度以下にしておこなわれ
る。
The vacuum-degassed Al-5μ alloy powder is then hot-pressed and hot-extruded according to a conventional method. The temperature of hot extrusion processing is 500 to 500℃ during vacuum degassing treatment.
The temperature is set within a range of 540°C or lower.

熱間押出加工された押出棒は、切断、冷間鍛造、旋削仕
上げ等の工程を経てVTRシリンダーに形成される。
The hot-extruded extruded rod is formed into a VTR cylinder through processes such as cutting, cold forging, and lathe finishing.

〔作 用〕[For production]

本発明によれば、急冷凝固法によるAl−3μ合金粉末
を原料とするからSi成分を耐摩耗性を付与するために
有効な18〜23−t%の範囲に容品に調整することが
でき、このSi成分は特定された温度と時間の真空脱ガ
ス処理を施す過程で平均粒径が増大調整され、耐摩耗性
を向上させると共にm織の均質化に寄与する2、5〜3
.5μ−の平均ね径範囲に収めることができる。
According to the present invention, since the Al-3μ alloy powder produced by the rapid solidification method is used as a raw material, the Si content can be conveniently adjusted to a range of 18 to 23-t%, which is effective for imparting wear resistance. The average particle size of this Si component is adjusted to increase during the process of vacuum degassing treatment at a specified temperature and time, which improves wear resistance and contributes to homogenization of the m weave.
.. The average diameter can be kept within the range of 5μ.

このような作用を介して、VTRシリンダー材に要求さ
れる耐摩耗性と合金&[l織の均一化を同時に発現させ
ることが可能となる。
Through such an effect, it is possible to simultaneously achieve the wear resistance required for a VTR cylinder material and the uniformity of the alloy and weave.

〔実施例] 以下、本発明を実施例に基づいて説明する。〔Example] Hereinafter, the present invention will be explained based on examples.

急冷凝固法で得られた5120圓t%、Cu1wt%、
Mgl賀t%、残部がAlからなる組成のAP、−3合
金粉末を分級して297μm以下の粒径部分を採取した
。この粉末を容器詰め(6in 、径ビレット)シ、温
度および時間の異なる各種の条件により真空脱ガス処理
をおこなった。
5120 round t%, Cu1wt% obtained by rapid solidification method,
AP, -3 alloy powder having a composition of t% Mgl and the balance Al was classified to collect a particle size portion of 297 μm or less. This powder was packed in containers (6 inch diameter billets) and subjected to vacuum degassing under various conditions of different temperatures and times.

真空脱ガス処理後の材料を、ホントプレスを用いて温度
450℃2圧力1000tの条件で成形したのち、引続
き温度430℃1押出速度2〜5s/5iin、により
熱間押出加工を施した。
The material after the vacuum degassing treatment was molded using a real press at a temperature of 450°C and a pressure of 1000 tons, and then hot extrusion was performed at a temperature of 430°C and an extrusion speed of 2 to 5 s/5iin.

本発明の処理によるSi平均粒径の増大状況および得ら
れたシリンダー材の耐摩耗性を真空脱ガス処理の条件と
対比させて表1に示した。
Table 1 shows the increase in the average Si particle size due to the treatment of the present invention and the wear resistance of the obtained cylinder material in comparison with the conditions of the vacuum degassing treatment.

なお、第1図はN0.4(表1)の材料を拡大したIJ
I織写真(S[M) 、また第2図はNo、10(表1
)の材料を拡大した組織写真(SEM)である。
In addition, Figure 1 shows an enlarged IJ of N0.4 (Table 1) material.
I-weave photograph (S [M), and Figure 2 is No. 10 (Table 1
) is an enlarged microstructure photograph (SEM) of the material.

表 1 表1の結果から、真空脱ガス処理を温度500〜540
℃、時間4〜48hrの設定条件で実施した例はいずれ
もSi平均粒径が2.5〜3.5μ−の範囲内収まり、
良好な耐摩耗性を示すとともに第1図に代表されるよう
な均一な組織状態を呈している。
Table 1 From the results in Table 1, vacuum degassing treatment was performed at a temperature of 500 to 540.
In all the examples carried out under the setting conditions of ℃ and time of 4 to 48 hours, the average Si particle size fell within the range of 2.5 to 3.5μ.
It exhibits good wear resistance and a uniform structure as typified by FIG.

これに対し、No、1の例では通用温度が不足してSi
平均粒径が大きくならず、またNo、7およびNo、1
0の例では処理時間が極端に長いためにSi平均粒径が
過度に大きくなり、第2図のように組織が不均一となっ
て耐摩耗性を減退させる結果を与える。
On the other hand, in example No. 1, the common temperature is insufficient and the Si
The average particle size does not increase, and No. 7 and No. 1
In the case of 0, the average Si particle size becomes excessively large due to the extremely long processing time, resulting in a non-uniform structure as shown in FIG. 2, resulting in a decrease in wear resistance.

(発明の効果〕 以上のとおり本発明によれば、急冷凝固法により得られ
る特定組成のA1−Si合金粉末を原料とし°ζ−ζ−
性の真空脱ガス処理を施すことにより、Si平均粒径を
材料に優れた耐摩耗性と均一組織を付与するに好適な2
.5〜3.5μ−の範囲に増大調整化することができる
。したがって、VTRシリンダー材とした場合に従来の
溶解鍛造法によるAN−Si合金を用いた材料に比べ耐
摩耗性を2〜3倍向上させることができ、そのうえ組織
が均一であるため使用時の熱サイクルに伴う微小変形の
程度が大幅に減少する。
(Effects of the Invention) As described above, according to the present invention, using A1-Si alloy powder of a specific composition obtained by a rapid solidification method as a raw material, °ζ-ζ-
By subjecting the material to a vacuum degassing treatment, the Si average particle size can be reduced to 2, which is suitable for imparting excellent wear resistance and a uniform structure to the material.
.. It is possible to adjust the increase in the range of 5 to 3.5 μ-. Therefore, when used as a VTR cylinder material, the wear resistance can be improved 2 to 3 times compared to materials using AN-Si alloy made by conventional melting and forging. The degree of microdeformation associated with cycling is significantly reduced.

なお、本発明の合金組成はSi含有量が多いが真空脱ガ
スの条体制御によりSi平均粒径の増大が適度に抑制さ
れるから、切削加工、熱間加工などを悪化させることは
ない。
Although the alloy composition of the present invention has a high Si content, the increase in the average Si grain size is moderately suppressed by controlling the vacuum degassing, so cutting, hot working, etc. are not deteriorated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は真空脱ガス処理条件に違いによる
材料の金属組織を拡大して示したSEM写真である。
FIGS. 1 and 2 are SEM photographs showing enlarged metal structures of materials due to differences in vacuum degassing treatment conditions.

Claims (1)

【特許請求の範囲】[Claims] 1、Si18〜23wt%、Cu0.5〜6wt%、M
g0.5〜5wt%を含み残部がAlからなる組成の急
冷凝固法で得られた合金粉末を容器詰めし、500〜5
40℃の温度範囲で4〜48時間真空脱ガス処理を施し
たのち、前記真空脱ガス処理の温度以下で熱間押出する
ことを特徴とするVTRシリンダー材の製造方法。
1, Si18-23wt%, Cu0.5-6wt%, M
An alloy powder obtained by a rapid solidification method having a composition containing 0.5 to 5 wt% of g and the balance consisting of Al is packed in a container and
A method for producing a VTR cylinder material, which comprises performing vacuum degassing treatment at a temperature range of 40° C. for 4 to 48 hours, and then hot extruding at a temperature below the vacuum degassing treatment temperature.
JP8326290A 1990-03-29 1990-03-29 Manufacture of vtr cylinder material Pending JPH03281748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8326290A JPH03281748A (en) 1990-03-29 1990-03-29 Manufacture of vtr cylinder material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8326290A JPH03281748A (en) 1990-03-29 1990-03-29 Manufacture of vtr cylinder material

Publications (1)

Publication Number Publication Date
JPH03281748A true JPH03281748A (en) 1991-12-12

Family

ID=13797438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8326290A Pending JPH03281748A (en) 1990-03-29 1990-03-29 Manufacture of vtr cylinder material

Country Status (1)

Country Link
JP (1) JPH03281748A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993009899A1 (en) * 1991-11-22 1993-05-27 Sumitomo Electric Industries, Ltd Method for degassing and solidifying aluminum alloy powder
US7177384B2 (en) 1999-09-09 2007-02-13 Mitsubishi Heavy Industries, Ltd. Aluminum composite material, manufacturing method therefor, and basket and cask using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993009899A1 (en) * 1991-11-22 1993-05-27 Sumitomo Electric Industries, Ltd Method for degassing and solidifying aluminum alloy powder
US7177384B2 (en) 1999-09-09 2007-02-13 Mitsubishi Heavy Industries, Ltd. Aluminum composite material, manufacturing method therefor, and basket and cask using the same

Similar Documents

Publication Publication Date Title
US3997369A (en) Production of metallic articles
CN113881877A (en) Aluminum alloy strip and preparation method and application thereof
JPH03281748A (en) Manufacture of vtr cylinder material
US5520754A (en) Spray cast Al-Li alloy composition and method of processing
JP4208156B2 (en) Manufacturing method of high strength aluminum alloy extruded material
JPH02270945A (en) Production of copper alloy for ic lead frame
JPH06234012A (en) Method for extrusion molding from zinc based alloy material
JPH01279725A (en) Aluminum alloy foil excellent in formability and its production
JP2003311373A (en) Method for producing base material for semi-melting formation
JPS62250146A (en) Heat-resisting aluminum powder metallurgical alloy and its production
US3291654A (en) Process for preparing high strength fabricated articles from aluminumbase alloys containing magnesium and copper
JPS6283453A (en) Manufacture of aluminum alloy ingot for extrusion
JP2000303157A (en) Production of high strength aluminum alloy extruded material
JPH0328342A (en) Aluminum alloy having excellent extrudability and cold workability
JPS6158546B2 (en)
CN115433860B (en) High-performance heat-resistant extrusion rare earth aluminum alloy and preparation method thereof
JPS62250145A (en) Heat-resisting aluminum powder metallurgical alloy and its production
JPH04268054A (en) Manufacture of al-mg alloy sheet excellent in strength and orientation property
JPH06322493A (en) Production of high strength aluminum alloy
JP3113893B2 (en) Manufacturing method of plastic working material and manufacturing method of plastic working material
US3484307A (en) Copper base alloy
JPS6223952A (en) Al-fe-ni heat-resisting alloy having high toughness and its production
JPH0748647A (en) High-strength magnesium alloy material and production thereof
JP2752857B2 (en) Manufacturing method of powder alloy billet
JPH01198454A (en) Manufacture of aluminum alloy for wrapping characteristics of high strength and low directional properties