WO1993009569A1 - Method for producing opto-electronic components by selective epitaxy in a groove - Google Patents

Method for producing opto-electronic components by selective epitaxy in a groove Download PDF

Info

Publication number
WO1993009569A1
WO1993009569A1 PCT/FR1992/001029 FR9201029W WO9309569A1 WO 1993009569 A1 WO1993009569 A1 WO 1993009569A1 FR 9201029 W FR9201029 W FR 9201029W WO 9309569 A1 WO9309569 A1 WO 9309569A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
zone
width
mask
ribbon
Prior art date
Application number
PCT/FR1992/001029
Other languages
French (fr)
Inventor
Michel Allovon
Benoît Rose
Original Assignee
France Telecom
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom filed Critical France Telecom
Publication of WO1993009569A1 publication Critical patent/WO1993009569A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02461Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/106Comprising an active region having a varying composition or cross-section in a specific direction varying thickness along the optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2272Buried mesa structure ; Striped active layer grown by a mask induced selective growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/3235Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers
    • H01S5/32391Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers based on In(Ga)(As)P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3428Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers layer orientation perpendicular to the substrate

Definitions

  • the present invention relates to a method for producing optoelectronic components. It finds general application in the production of various components such as lasers, light amplifiers, optical guides, optical couplers, light intensity modulators, etc. but it finds particular application in the production of components for two (or more than two) elements, for example a laser and a modulator, these two elements being integrated on the same substrate.
  • the general field of the invention is that of optical telecommunications, in particular that of broadband connections over long distances.
  • a diffraction grating 11 is formed and then deposited, in a
  • REPLACEMENT SHEET first epitaxy step a layer 12 of n type InGaAsP 0.1 ⁇ m thick and a layer 14 of n type InP 0.1 ⁇ m.
  • a mask € ⁇ '02 consists of two strips 21, 22 each having a large and a small widths.
  • the ribbon can comprise a stack of InGaAs wells alternating with barriers of InGaAsP, this stack being surrounded by two confinement layers.
  • a ribbon 24 in the form of a mesa is thus obtained (FIG. 1a).
  • the ribbon 24 is covered with a layer 30 of p-type InP (FIG. 1b) and the assembly by a contact layer 32 of p + type InGaAsP.
  • the contact layer 32 is then partially removed between the two regions to electrically isolate the network region which will constitute a distributed reaction laser (DFB) and the other region which will constitute a modulator.
  • DFB distributed reaction laser
  • Ti / Au electrodes 36 and 38 are then deposited to make an electrical contact respectively on the laser part and on the modulator part.
  • the advantage of this process lies in the second epitaxy, which takes place in masked areas.
  • the difference in width of the masks is sufficient to slightly modify the conditions of the epitaxy, therefore the thickness of the epitaxial layers.
  • This technique is of particular interest when it comes to making a component integrating two devices which must have slightly different optical characteristics, as is the case.
  • This layer must therefore be doped. But then it produces a
  • This technique can give satisfactory performances for a direct modulation laser, but leads to a much too high capacity for
  • the object of the present invention is precisely to remedy this drawback. To this end, it proposes a process which makes it possible to obtain, simultaneously, a planar structure with a very low capacity, while allowing contact to be made.
  • the active ribbon of the component is buried in a layer of semi-insulating material, for example in InP and, for this, a groove is first engraved in a layer of this material using a mask, then a selective epitaxy of the ribbon is carried out in this groove and through this mask. It is then possible to deposit a layer of contact on the assembly.
  • a layer of semi-insulating material for example in InP and, for this, a groove is first engraved in a layer of this material using a mask, then a selective epitaxy of the ribbon is carried out in this groove and through this mask. It is then possible to deposit a layer of contact on the assembly.
  • the method of the invention can be applied to the production of a single optoelectronic component (laser, amplifier, guide, coupler, modulator, etc.)
  • the invention finds above all an advantage in the production of structures with two components, for example a laser and a modulator.
  • the method of the invention makes it possible, thanks to the epitaxy taking place both in a lll and through a mask, to locally modify the parameters of the ribbon on a part of it, by playing on the lateral dimensions of the mask. It is thus possible, in a single epitaxy step, to obtain the two desired components (Laser and modulator).
  • the invention applies to the production of a laser component and modulator with a " highly coupled super network " , a component which has been the subject of French patent application EN 91 11046 of September 6, 1991.
  • the invention for the production of a component with integrated laser and modulator.
  • a method according to the invention comprises the following operations. Under a substrate 100 (conductive or semi-insulating) for example in InP type n if it is a conductive substrate, a metal 102 is formed and, on this substrate 100, a buffer layer 104 is optionally deposited. in InP type n CFig. 2a).
  • a confinement layer 106 is then deposited in a n type GaInAsP quaternary, which is also optional, but which can advantageously serve as a stop layer in the selective chemical attack operation which will follow.
  • a confinement layer 108 is then deposited in semi-insulating InP and then a layer 110 in n-doped GaInAsP layer serving as diffusion barrier for the acceptors between the confinement layer 108 and the future type p confinement layer (layer 120 on Figure 2e).
  • This layer 110 can also serve as a selective attack mask for the future etching of the groove.
  • FIG. 2a This gives a stack shown in section in Figure 2a.
  • the width L1 will be 8 u and the width L2 of 4 ym.
  • These two bands are separated by a narrow interval, for example of 2 ⁇ m.
  • the total length of the mask can be of the order of 1 mm.
  • the bands of the mask are preferably a L i - g Amsterdams in a direction c ri st a l log raph i that of the substrate, for example the direction ⁇ 110>.
  • a lll 111 which stops exactly at the interface between the layers 106 and 108.
  • the profi l of this lll is very reproducible because it is limited by crystal stop graphs for the chemical solution used (eg HCl) not only at the bottom of the wall but also on the sides.
  • the masks of the chemical etching are preferably kept (but one could modify them or use others) to make a second, selective epita ⁇ xy, and form a ribbon in the etched si llon.
  • This tape comprises at least one active layer corresponding to the desired optoelectronic component.
  • This active layer can be a layer where the stimulated emission takes place if the component is a laser, or a layer where the absorption of light takes place if the component is a modulator, etc.
  • This ribbon can include, for example, ( Figure 2d) a protective layer 112 (optional) in InP, an active layer 114, either in quaternary, or consisting of a stack of quantum wells and barriers of appropriate thickness and composition at the target wavelength C wells in GalnAs ternary and barriers in GaInAsP quater ⁇ for example) and comprising a quaternary waveguide of constant or gradual composition; a protective layer 116 made of InP is optionally deposited followed by one or more layers 118 intended to be etched in a refraction network. These layers are made of GalnAsP / InP.
  • the ribbon formed in the said zone L will correspond to a wavelength slightly larger than that of the zone M.
  • the first zone L of the the ribbon will therefore constitute the component's laser and the second, M, the modulator.
  • the layer 112 can be used to selectively remove the layers deposited during the selective epitaxy step in the large openings located between the different patterns used.
  • the layer 118 etched in a diffraction grating several solutions are possible.
  • the nitride masks can be left during the manufacture of the. network C by holography followed by a chemical attack). In this case, the network will be present only above the active layer. Otherwise, it will project laterally above the layer 110.
  • a layer 120 (Fig. 2e) is deposited, for example a p-type InP then a contact layer 122 for example made of p + doped GalnAs and finally a metal bonding 124 above active tape.
  • the bands B1 and B2 have, over most of their length, either the width L1 or the width L2, the transition zone marked T in FIG. 2b being of very reduced length.
  • the transition zone T would occupy a larger part of the bands.
  • Such a transition leads to a ribbon having gradual properties between the properties in a first zone and the properties in a second zone.
  • Such a transition zone can be used to improve the optical coupling between the two elements of the component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Lasers (AREA)

Abstract

A method wherein the active strip (112, 114, 116, 118) of a component is produced by selective epitaxy in a groove which has been etched in a semi-insulating material by means of a mask consisting of two strips (B1, B2). The method may be used to produce integrated laser and modulator components.

Description

PROCEDE DE REALISATION DE COMPOSANTS OPTOELECTRONIQUES PAR EPITAXIE SELECTIVE DANS UN SILLON PROCESS FOR PRODUCING OPTOELECTRONIC COMPONENTS BY SELECTIVE EPITAXY IN A FILL
Domaine techniqueTechnical area
La présente invention a pour objet un procédé de réalisation de composants optoélectroniques. Elle trouve une application générale dans la réalisation de divers composants tels que lasers, ampli icateurs de lumière, guides optiques, coupleurs optiques, modu- lateurs d' intensité lumineuse, etc.. ais elle trouve une application privi légiée dans la réalisation de composants à deux (ou plus de deux) éléments, par exemple un laser et un modulateur, ces deux éléments étant intégrés sur un même substrat. Le domaine général de l' invention est celui des télécommunications optiques, notamment celui des liaisons à haut débit sur de longues distances.The present invention relates to a method for producing optoelectronic components. It finds general application in the production of various components such as lasers, light amplifiers, optical guides, optical couplers, light intensity modulators, etc. but it finds particular application in the production of components for two (or more than two) elements, for example a laser and a modulator, these two elements being integrated on the same substrate. The general field of the invention is that of optical telecommunications, in particular that of broadband connections over long distances.
Etat de La technique antérieureState of the art
Bien que la présente invention ne se limite nullement à la réalisation d'un composant à laser et à modulateur intégrés, c'est dans ce cas que l'état de la technique va être rappelé et les caractéristiques de l' invention exposées.Although the present invention is in no way limited to the production of a component with integrated laser and modulator, it is in this case that the state of the art will be recalled and the characteristics of the invention explained.
L'article intitulé "Novel MQW DFB Laser Di ode/Modu lator Integrated Light Source Using Bandgap Energy Control Epitaxial Growth Technique" par T. KATO et al publié dans les Comptes-Rendus de la Conférence I00C qui s'est tenue à Paris en septembre 91, décrit un procédé de réalisation d'un composant laser-modulateur intégrés, qui est i llustré sur les figures annexées 1a et 1b.The article entitled "Novel MQW DFB Laser Di ode / Modu lator Integrated Light Source Using Bandgap Energy Control Epitaxial Growth Technique" by T. KATO et al published in the Proceedings of the I00C Conference held in Paris in September 91, describes a method for producing an integrated laser-modulator component, which is illustrated in the appended figures 1a and 1b.
Sur un substrat 10 en InP de type n on forme un réseau de diffraction 11 puis on dépose, dans uneOn a n-type InP substrate 10, a diffraction grating 11 is formed and then deposited, in a
FEUILLE DE REMPLACEMENT première étape d'épitaxie, une couche 12 en InGaAsP de type n de 0,1 μm d'épaisseur et une couche 14 en InP de type n de 0,1 um. Sur L'ensemble ainsi obtenu on dépose un masque en €ι'02 constitué par deux bandes 21, 22 présentant chacune une grande et une faible Largeurs.REPLACEMENT SHEET first epitaxy step, a layer 12 of n type InGaAsP 0.1 μm thick and a layer 14 of n type InP 0.1 μm. On the resulting assembly is deposited a mask € ι '02 consists of two strips 21, 22 each having a large and a small widths.
A travers ce masque on effectue une deuxième épitaxie, sélective celle-là, pour former un ruban à multi-puits quantiques. Une épitaxie sélective requiert des conditions de croissance particulières de telle sorte qu'aucun dépôt ne s'effectue sur les masques en silice. Le ruban peut comprendre un empile¬ ment de puits en InGaAs alternant avec des barrières en InGaAsP, cet empilement étant encadré par deux couches de confinement. On obtient ainsi un ruban 24 en forme de mésa (figure 1a).Through this mask, a second, selective epitaxy is carried out, to form a quantum multi-well ribbon. Selective epitaxy requires special growth conditions so that no deposition takes place on the silica masks. The ribbon can comprise a stack of InGaAs wells alternating with barriers of InGaAsP, this stack being surrounded by two confinement layers. A ribbon 24 in the form of a mesa is thus obtained (FIG. 1a).
Après avo r retiré les masques 21 et 22, on recouvre le ruban 24 par une couche 30 en InP de type p (figure 1b) et l'ensemble par une couche de contact 32 en InGaAsP de type p+. La couche de contact 32 est ensuite partiellement enlevée entre les deux ré¬ gions pour isoler électriquement la région à réseau qui va constituer un laser à réaction distribuée (DFB) et l'autre région qui va constituer un modulateur. Des électrodes 36 et 38 en Ti/Au sont ensuite déposées pour prendre un contact électrique respectivement sur la partie laser et sur la partie modulateur.After having removed the masks 21 and 22, the ribbon 24 is covered with a layer 30 of p-type InP (FIG. 1b) and the assembly by a contact layer 32 of p + type InGaAsP. The contact layer 32 is then partially removed between the two regions to electrically isolate the network region which will constitute a distributed reaction laser (DFB) and the other region which will constitute a modulator. Ti / Au electrodes 36 and 38 are then deposited to make an electrical contact respectively on the laser part and on the modulator part.
L'intérêt de ce procédé réside dans la deuxième épitaxie, qui s'effectue dans des zones masquées. La différence de largeur des masques suffit à modifier légèrement les conditions de l'épitaxie, donc l'épais¬ seur des couches épitaxiées. En étudiant le spectre d*électroluminescence des couches épitaxiées ainsi obtenues, les auteurs ont trouvé que, dans la région à masques Larges, la longueur d'onde maximum était de 1,54 μm alors que dans la région à masques étroits cette longueur d'onde tomba t à 1,48 um. Ainsi, une différence de 33 meV dans les énergies peut être pro¬ duite dans les deux parties du ruban, uniquement par 5 modification de la largeur des masques uti lisés.The advantage of this process lies in the second epitaxy, which takes place in masked areas. The difference in width of the masks is sufficient to slightly modify the conditions of the epitaxy, therefore the thickness of the epitaxial layers. By studying the electroluminescence spectrum of the epitaxial layers thus obtained, the authors found that, in the region with wide masks, the maximum wavelength was of 1.54 μm whereas in the region with narrow masks this wavelength fell to 1.48 μm. Thus, a difference of 33 meV in the energies can be produced in the two parts of the ribbon, only by modifying the width of the masks used.
Cette technique revêt un intérêt certain lors¬ qu'i l s'agit de réaliser un composant intégrant deux dispositifs devant présenter des caractér stiques optiques légèrement différentes, comme c'est le casThis technique is of particular interest when it comes to making a component integrating two devices which must have slightly different optical characteristics, as is the case.
10 avec un laser et un modulateur. Mais elle souffre de deux inconvénients. D'abord, elle conduit à une structure qui n'est pas planaire en raison de la forma¬ tion d'un ruban en forme de mésa (cf. Fig. 1a) . Ensu ¬ te, et corrélativement, elle nécessite que soit enterré10 with a laser and a modulator. But it suffers from two drawbacks. First, it leads to a structure which is not planar due to the formation of a mesa-shaped ribbon (cf. Fig. 1a). Then, and correspondingly, it needs to be buried
15 ce mésa dans une couche qui doit assurer en même temps la prise de contact électrique (couche 30 sur la figure 1b) et Le confinement optique au-dessus du ruban ainsi que le confinement optique latéral. Cette couche doit donc être dopée. Mais elle produit alors une15 this mesa in a layer which must simultaneously ensure the making of electrical contact (layer 30 in FIG. 1b) and the optical confinement above the ribbon as well as the lateral optical confinement. This layer must therefore be doped. But then it produces a
20 capacité latérale qui perturbe le fonctionnement du laser et surtout celui du modulateur.20 lateral capacity which disturbs the operation of the laser and especially that of the modulator.
Cette technique peut donner des performances satisfaisantes pour un laser à modulation directe, mais conduit à une capacité beaucoup trop élevée pourThis technique can give satisfactory performances for a direct modulation laser, but leads to a much too high capacity for
25 un modulateur rapide. En effet, ce qui limite la bande passante d'un laser est le produit RSC où Rs est la résistance série de la diode qui vaut typiquement 3 à 5 Ohms, alors que, pour un modulateur, c'est plutôt le produit de la capacité par une résistance externe25 a fast modulator. Indeed, what limits the bandwidth of a laser is the product R S C where R s is the series resistance of the diode which is typically 3 to 5 Ohms, whereas, for a modulator, it is rather the product capacity by external resistance
30 normalisée de 50 Ohms (ReC) qui limite la bande passante, bien que la résistance série du modulateur joue également un rôle. Par contre, une gravure des parties latérales jusqu'au substrat suivie d'un30 normalized 50 Ohms (R e C) which limits the bandwidth, although the series resistance of the modulator also plays a role. On the other hand, an engraving of the lateral parts up to the substrate followed by a
%' remplissage avec du polyimide, qui marcherait bien% ' filling with polyimide, which would work well
35 dans le cas des modulateurs, donnerait des résultats catastrophiques pour Le confinement latéral d'un ruban laser, à cause des recomb na sons électroniques très fortes qui auraient lieu aux interfaces couche act e/poLyimide et qui dégraderaient Le gain du Laser. IL faut donc, soit envisager des procédés différents pour Les deux parties du monolithe, ce qui complique beaucoup La technologie, soit utiliser de L'InP semi-isolant qui peut servir pour confiner aussi bien Le Laser que Le modulateur. Mais on ne peut pas se contenter d'enterrer les rubans par de l'InP semi-isolant, car on perd le contact électrique avec la partie supérieure du ruban.35 in the case of modulators, would give results catastrophic for the lateral confinement of a laser ribbon, because of the very strong electronic recomb n sounds which would take place at the act e / poLyimide layer interfaces and which would degrade the gain of the laser. It is therefore necessary either to consider different processes for the two parts of the monolith, which greatly complicate the technology, or to use semi-insulating InP which can be used to confine both the laser and the modulator. But we cannot be satisfied with burying the tapes with semi-insulating InP, because we lose the electrical contact with the upper part of the tape.
Exposé de L'inventionPresentation of the invention
La présente invention a justement pour but de remédier à cet inconvénient. A cette fin, elle propose un procédé qui permet d'obtenir, simultanément, une structure planaire avec une très faible capacité, tout en autorisant La prise de contact.The object of the present invention is precisely to remedy this drawback. To this end, it proposes a process which makes it possible to obtain, simultaneously, a planar structure with a very low capacity, while allowing contact to be made.
Selon L'invention, on enterre le ruban actif du composant dans une couche de matériau semi-isoLant, par exemple en InP et, pour cela, on grave d'abord un sillon dans une couche de ce matériau à L'aide d'un masque, puis on effectue une épitaxie sélective du ruban dans ce sillon et à travers ce masque. On peut ensuite déposer sur L'ensemble une couche de prise de contact.According to the invention, the active ribbon of the component is buried in a layer of semi-insulating material, for example in InP and, for this, a groove is first engraved in a layer of this material using a mask, then a selective epitaxy of the ribbon is carried out in this groove and through this mask. It is then possible to deposit a layer of contact on the assembly.
On observera que, selon L'invention, deux techniques d'épitaxie sont combinées, à savoir L'épita- xie dans un silLon gravé et l'épitaxie sur un substrat masqué. Ces deux techniques permettent de jouer sur la vitesse de croissance des couches épitaxiées. La seconde a été décrite plus haut en liaison avec Les figures 1a et 1b. Pour ce qui est de La première, on rappelle que la vitesse de croissance dans des sillons gravés dans un substrat plan est plus grande que sur le substrat. Cet effet a été uti lisé pour intégrer des lasers (épitaxiés sur une zone du substrat préalablement gravée) avec des guides (épitaxiés simul¬ tanément sur une zone plane adjacente) dans des sys¬ tèmes GaAs/GaAIAs (voir l'article de C.J. CHANG-HASNAIN, E. KAPON, J.P. HARBISON et L.T. FLOREZ, publié dans Appl. Phys. Lett., vol. 56, pp. 429-431, 1990). Des effets analogues sur la vitesse de croissance ont été démontrés pour d'autres systèmes de matériaux, en particulier à grande longueur d'onde (voir l'article de F. S. TURCO, M.C. TAMARGO, D.M. HWANG, R.E. NAHORY, J. WERNER, K. KASH et E. KAPON, publié dans Appl. Phys. Lett., vol. 56, pp. 72-74, 1990 et l'article de P. DEMEESTER, L. BUYDENS et P. VAN DAELE, publié dans Appl. Phys. Lett., vol. 57, pp. 168-170, 1990).It will be observed that, according to the invention, two epitaxy techniques are combined, namely epitaxy in an engraved silon and epitaxy on a masked substrate. These two techniques allow to play on the growth speed of the epitaxial layers. The second has been described above in connection with Figures 1a and 1b. As for The first, it is recalled that the growth rate in grooves etched in a planar substrate is greater than on the substrate. This effect has been used to integrate lasers (epitaxially grown on an area of the substrate previously etched) with guides (simultaneously epitaxially grown on an adjacent flat area) in GaAs / GaAIAs systems (see article by CJ CHANG -HASNAIN, E. KAPON, JP HARBISON and LT FLOREZ, published in Appl. Phys. Lett., Vol. 56, pp. 429-431, 1990 ) . Similar effects on the growth rate have been demonstrated for other material systems, in particular at long wavelength ( see the article by FS TURCO, MC TAMARGO, DM HWANG, RE NAHORY, J. WERNER, K KASH and E. KAPON, published in Appl. Phys. Lett., Vol. 56, pp. 72-74, 1990 and the article by P. DEMEESTER, L. BUYDENS and P. VAN DAELE, published in Appl. Phys Lett., Vol. 57, pp. 168-170, 1990).
Bien que le procédé de l'invention puisse s'appliquer à La réalisation d'un composant optoélec¬ tronique unique (laser, amplificateur, guide, coupleur, modulateur, etc.) L'invention trouve surtout un intérêt dans la réalisation de structures à deux composants, par exemple un laser et un modulateur. En effet, le procédé de l'invention permet, grâce à l'épitaxie s'effectuant à la fois dans un si llon et à travers un masque, de modifier localement les paramètres du ruban sur une partie de celui-ci, en jouant sur les dimensions latérales du masque. On peut ainsi, en une seule étape d'épitaxie, obtenir les deux composants souhaités (Laser et modulateur) .Although the method of the invention can be applied to the production of a single optoelectronic component (laser, amplifier, guide, coupler, modulator, etc.) The invention finds above all an advantage in the production of structures with two components, for example a laser and a modulator. In fact, the method of the invention makes it possible, thanks to the epitaxy taking place both in a lll and through a mask, to locally modify the parameters of the ribbon on a part of it, by playing on the lateral dimensions of the mask. It is thus possible, in a single epitaxy step, to obtain the two desired components (Laser and modulator).
En particulier, l'invention s'applique à La réalisation d'un composant à laser et à modulateur à "super réseau très couplé, composant ayant fait l'ob- jet de la demande de brevet français EN 91 11046 du 6 septembre 1991.In particular, the invention applies to the production of a laser component and modulator with a " highly coupled super network " , a component which has been the subject of French patent application EN 91 11046 of September 6, 1991.
Brève description des dessinsBrief description of the drawings
- Les figures 1a et 1b illustrent un procédé de l'art antérieur,- Figures 1a and 1b illustrate a method of the prior art,
- les figures 2a, 2b, 2c, 2d et 2e montrent différentes étapes d'un procédé selon- Figures 2a, 2b, 2c, 2d and 2e show different stages of a process according to
L'invention pour La réalisation d'un composant à laser et à modulateur intégrés.The invention for the production of a component with integrated laser and modulator.
Exposé détaillé d'un mode de réalisationDetailed description of an embodiment
Un procédé conforme à l'invention comprend Les opérations suivantes. Sous un substrat 100 (conducteur ou semi-isolant) par exemple en InP de type n s'il s'agit d'un substrat conducteur, on forme une métalL sation 102 et, sur ce substrat 100, on dépose éventuellement une couche tampon 104 en InP de type n CFig. 2a).A method according to the invention comprises the following operations. Under a substrate 100 (conductive or semi-insulating) for example in InP type n if it is a conductive substrate, a metal 102 is formed and, on this substrate 100, a buffer layer 104 is optionally deposited. in InP type n CFig. 2a).
On dépose ensuite une couche de confinement 106 en quaternaire GaInAsP de type n, qui est, elle aussi, facultative, mais qui peut servir avantageu¬ sement de couche d'arrêt dans L'opération d'attaque chimique sélective qui va suivre.A confinement layer 106 is then deposited in a n type GaInAsP quaternary, which is also optional, but which can advantageously serve as a stop layer in the selective chemical attack operation which will follow.
On dépose ensuite une couche de confinement 108 en InP semi-isolant puis une couche 110 en quatei— naire GaInAsP dopé n servant de barrière de diffusion pour les accepteurs entre la couche de confinement 108 et la future couche confinement de type p (couche 120 sur la figure 2e). Cette couche 110 peut servir également de masque d'attaque sélective pour la future gravure du sillon.A confinement layer 108 is then deposited in semi-insulating InP and then a layer 110 in n-doped GaInAsP layer serving as diffusion barrier for the acceptors between the confinement layer 108 and the future type p confinement layer (layer 120 on Figure 2e). This layer 110 can also serve as a selective attack mask for the future etching of the groove.
On obtient ainsi un empilement représenté en coupe sur la figure 2a. On définit ensuite, par photo l i t hog raph i e, sur la couche supérieure 110 de l'empi lement un ou des motifs de masquage en nitrure ou en si lice. Pour un procédé de réalisation collective, on disposera plusieurs de ces motifs largement espacés, par exemple d'envi ron 400 yim. Chaque motif à l'allure représentée sur la figure 2b avec deux bandes B1, B2, dont la largeur L1 est plus grande dans une zone L que la largeur L2 dans une zone M. Par exemple, la largeur L1 sera de 8 u et la largeur L2 de 4 y m . Ces deux bandes sont séparées par un intervalle étroit, par exemple de 2 um. La longueur totale du masque peut être de l'ordre de 1 mm.This gives a stack shown in section in Figure 2a. One then defines, by photo bed hog raph ie, on the upper layer 110 of the stack one or more masking patterns of nitride or silica. For a collective production process, several of these widely spaced patterns will be available, for example around 400 μm. Each pattern in the shape shown in FIG. 2b with two bands B1, B2, the width L1 of which is greater in an area L than the width L2 in an area M. For example, the width L1 will be 8 u and the width L2 of 4 ym. These two bands are separated by a narrow interval, for example of 2 μm. The total length of the mask can be of the order of 1 mm.
Les bandes du masque sont de préférence a L i — gnées suivant une direction c ri st a l log raph i que du substrat, par exemple la direction <110>.The bands of the mask are preferably a L i - gnées in a direction c ri st a l log raph i that of the substrate, for example the direction <110>.
On grave ensuite les couches 110 et 108 à travers un tel masque, par exemple par attaque chimi¬ que sélective. On obtient ainsi (Fig. 2c) un si llon 111 qui s'arrête exactement à l'interface entre les couches 106 et 108. Le profi l de ce si llon est très reproductible car limité par des plans cristalLographi- ques d'arrêt pour la solution chimique uti lisée (par exemple HCl) non seulement au fond du si llon mais aussi sur les flancs.The layers 110 and 108 are then etched through such a mask, for example by selective chemical attack. We thus obtain (Fig. 2c) a lll 111 which stops exactly at the interface between the layers 106 and 108. The profi l of this lll is very reproducible because it is limited by crystal stop graphs for the chemical solution used (eg HCl) not only at the bottom of the wall but also on the sides.
On conserve de préférence les masques de la gravure chimique (mais on pourrait les modifier ou en uti liser d'autres) pour réaliser une seconde épita¬ xie, sélective celle-là, et former un ruban dans le si llon gravé. Ce ruban comprend au moins une couche active correspondant au composant optoélectronique désiré. Cette couche active peut être une couche où a lieu l'émission stimulée si le composant est un Laser, ou une couche où a lieu l'absorption de lumière i le composant est un modulateur, etc. Ce ruban peut comprendre, par exemple, (figure 2d) une couche de protection 112 (facultative) en InP, une couche active 114, soit en quaternaire, soit constituée d'un empi¬ lement de puits quantiques et de barrières d'épaisseur et de composition appropriées à La longueur d'onde visée Cpuits en ternaire GalnAs et barrières en quater¬ naire GaInAsP par exemple) et comprenant un guide d'onde en quaternaire de composition constante ou graduelle ; une couche de protection 116 en InP est éventuellement déposée suivie d'une ou de plusieurs couches 118 destinées à être gravées en réseau de d ffraction. Ces couches sont en GalnAsP/InP.The masks of the chemical etching are preferably kept (but one could modify them or use others) to make a second, selective epita¬ xy, and form a ribbon in the etched si llon. This tape comprises at least one active layer corresponding to the desired optoelectronic component. This active layer can be a layer where the stimulated emission takes place if the component is a laser, or a layer where the absorption of light takes place if the component is a modulator, etc. This ribbon can include, for example, (Figure 2d) a protective layer 112 (optional) in InP, an active layer 114, either in quaternary, or consisting of a stack of quantum wells and barriers of appropriate thickness and composition at the target wavelength C wells in GalnAs ternary and barriers in GaInAsP quater¬ for example) and comprising a quaternary waveguide of constant or gradual composition; a protective layer 116 made of InP is optionally deposited followed by one or more layers 118 intended to be etched in a refraction network. These layers are made of GalnAsP / InP.
Du fait de La plus grande largeur L1 du masque dans la zone L que dans la zone M, Le ruban formé dans Ladite zone L va correspondre à une Longueur d'onde légèrement plus grande que celle de la zone M. La première zone L du ruban constituera donc Le Laser du composant et la seconde, M, le modulateur.Due to the greater width L1 of the mask in the zone L than in the zone M, the ribbon formed in the said zone L will correspond to a wavelength slightly larger than that of the zone M. The first zone L of the the ribbon will therefore constitute the component's laser and the second, M, the modulator.
La couche 112 peut servir à éliminer sélecti- vement les couches déposées lors de L'étape d'épitaxie sélective dans les larges ouvertures situées entre les différents motifs utilisés.The layer 112 can be used to selectively remove the layers deposited during the selective epitaxy step in the large openings located between the different patterns used.
Pour ce qui est de la couche 118 gravée en réseau de diffraction, plusieurs solutions sont pos- siblés. La plus simple, parce qu'elle n'ajoute pas d'étape d'épitaxie, consiste à épitaxier sélectivement cette couche au-dessus de la couche active 114, de façon à ce qu'eLle se termine sensiblement à la même hauteur que la couche 110, pour avoir la surface La plus plane possible pour la fabrication du réseau (une dén vellation de 100 à 200 nm est cependant ac¬ ceptable). Les masques de nitrure peuvent être Laissés pendant la fabrication du. réseau Cpar holographie suivie d'une attaque chimique). Dans ce cas, le réseau sera présent seulement au-dessus de la couche active. Dans le cas contraire, i l débordera latéralement au-dessus de la couche 110. En revanche, i l faudra impérati ement protéger, pendant cette étape, la zone M du futur modulateur (par exemple par un dépôt de nitrure), pour limiter la formation du réseau à la zone laser .With regard to the layer 118 etched in a diffraction grating, several solutions are possible. The simplest, because it does not add an epitaxy step, consists in selectively epitaxing this layer above the active layer 114, so that it ends at substantially the same height as the layer 110, in order to have the flattest surface possible for manufacturing the network (a denomination of 100 to 200 nm is however acceptable). The nitride masks can be left during the manufacture of the. network C by holography followed by a chemical attack). In this case, the network will be present only above the active layer. Otherwise, it will project laterally above the layer 110. On the other hand, it will be imperative to protect, during this step, the zone M of the future modulator (for example by a nitride deposit), to limit the formation of the network to the laser area.
Après avoi r retiré les masques B1, B2, on dépose une couche 120 (Fig. 2e), par exemple un InP de type p puis une couche de contact 122 par exemple en GalnAs dopée p+ et enfin une métal lisation 124 au-dessus du ruban actif.After having removed the masks B1, B2, a layer 120 (Fig. 2e) is deposited, for example a p-type InP then a contact layer 122 for example made of p + doped GalnAs and finally a metal bonding 124 above active tape.
Dans la description qui précède, les bandes B1 et B2 présentent, sur L'essentiel de leur longueur, soit la largeur L1, soit la largeur L2, la zone de transition marquée T sur La figure 2b étant de Longueur très réduite. Mais on ne sortirait pas du cadre de l'invention en uti lisant des masques où cette zone de transition T occuperait une part plus importante des bandes. Une telle transition conduit à un ruban présentant des propriétés graduelles entre les pro¬ priétés dans une première zone et Les propriétés dans une seconde zone. On peut même ut liser une transition qui s'étend jusqu'à L'une des extrémités des bandes, où même une transition qui s'étend d'une extrémité à l'autre, la première zone et la seconde zone étant, dans ce cas particulier extrême, réduites aux bords des bandes.In the foregoing description, the bands B1 and B2 have, over most of their length, either the width L1 or the width L2, the transition zone marked T in FIG. 2b being of very reduced length. However, it would not go beyond the scope of the invention to use masks where this transition zone T would occupy a larger part of the bands. Such a transition leads to a ribbon having gradual properties between the properties in a first zone and the properties in a second zone. We can even use a transition which extends to one of the ends of the bands, or even a transition which extends from one end to the other, the first zone and the second zone being, in this extreme case, reduced to the edges of the bands.
Une telle zone de transition peut être uti le pour améliorer le couplage optique entre les deux éléments du composant. Such a transition zone can be used to improve the optical coupling between the two elements of the component.

Claims

REVENDICATIONS
1. Procédé de réalisation d'un composant optoélectronique dans Lequel on dépose sur un substrat (100), par une première épitaxie, une couche de confinement (108) en matériau semi- so Lant, caractérisé par le fait qu'il comprend ensuite les opérations suivantes :1. A method of producing an optoelectronic component in which is deposited on a substrate (100), by a first epitaxy, a confinement layer (108) of semi-so Lant material, characterized in that it then comprises the following operations:
- on dépose sur l'ensemble un masque constitué par deux bandes parallèles (B1, B2) séparées par un intervalle, ces deux bandes (B1, B2) ayant une première largeur (L1) dans une première zone CL) et une seconde largeur (L2) dans une seconde zone (M), la première largeur CL1) étant supérieure à la seconde- a mask is deposited on the assembly consisting of two parallel bands (B1, B2) separated by an interval, these two bands (B1, B2) having a first width (L1) in a first zone CL) and a second width ( L2) in a second zone (M), the first width CL1) being greater than the second
CL2),CL2),
- on grave la couche de confinement (108) en matériau semi-isolant a travers ce masque (B1, B2) pour constituer un sillon (111) sous l'intervalle séparant les deux bandes,- the confinement layer (108) of semi-insulating material is etched through this mask (B1, B2) to form a groove (111) under the interval separating the two strips,
- on forme, par une seconde épitaxie, sélective celle-là, dans ce sillon (111) et à travers le masque (B1, B2), un ruban formé d'au moins une couche active (114) correspondant au composant optoélectronique désiré, cette seconde épitaxie conduisant à un ruban ayant des premières propriétés dans la première zone (L) correspondant à la première largeur (L1) et des secondes propriétés dans la seconde zone (M) correspondant à la seconde largeur (L2),- a second selective epitaxy is formed, in this groove (111) and through the mask (B1, B2), a ribbon formed of at least one active layer (114) corresponding to the desired optoelectronic component, this second epitaxy leading to a ribbon having first properties in the first zone (L) corresponding to the first width (L1) and second properties in the second zone (M) corresponding to the second width (L2),
- on retire le masque (B1, B2), et- the mask (B1, B2) is removed, and
- on établit un contact électrique (120, 122, 124) avec le ruban. - an electrical contact (120, 122, 124) is established with the ribbon.
2. Procédé selon La revendication 1, caracté¬ risé par le fait que les deux bandes (B1, B2) du masque ont Leurs bords parallèles à un plan c ri st a l log raph i que du substrat (100) .2. Method according to claim 1, caracté¬ ized in that the two bands (B1, B2) of the mask have their edges parallel to a plane c ri st a l log raph i that of the substrate (100).
3. Procédé selon la revendication 1, carac¬ térisé par le fait que, sur le substrat (100) et sous la couche de confinement (108), on dépose une couche (106) jouant le rôle de couche d'arrêt dans l'opération de gravure du si llon (111), ce si llon étant limité, en profondeur, par cette couche d'arrêt (106) .3. Method according to claim 1, charac¬ terized in that, on the substrate (100) and under the confinement layer (108), a layer (106 ) is deposited playing the role of barrier layer in the si llon etching operation (111), this if llon being limited in depth by this stop layer (106).
4. Procédé selon la revendication 1, caracté¬ risé par le fait qu'on dépose en outre une couche supplémentaire (110) sur la couche de confinement en matériau semi-isolant (108), cette couche supplémen¬ taire (110) servant de barrière de diffusion pour les accepteurs entre la couche de confinement (108) et une future couche de confinement dopée (120) et éventuellement de masque d'attaque sélective pour La gravure du si llon (111) dans la couche de confine¬ ment (108) .4. Method according to claim 1, characterized by the fact that an additional layer (110) is also deposited on the confinement layer of semi-insulating material (108), this additional layer (110) serving as diffusion barrier for the acceptors between the confinement layer (108) and a future doped confinement layer (120) and possibly a selective attack mask for Etching the si llon (111) in the confinement layer (108 ).
5. Procédé selon la revendication 1, caracté- ri se par le fait que chaque bande présente une zone de transition (T) entre la première zone (L) de premiè¬ re Largeur (L1) et La seconde zone (M) de seconde Largeur (L2), Le ruban obtenu après La seconde épita¬ xie présentant des propriétés passant graduellement desdites premières propriétés auxdites secondes propri étés .5. Method according to claim 1, characterized in that each strip has a transition zone (T) between the first zone (L) of first width (L1) and The second zone (M) of second Width (L2), The ribbon obtained after The second epita¬ xy having properties gradually passing from said first properties to said second properties.
6. Procédé selon la revendication 1, caractérisé par le fait que l'on forme dans la première zone (L) un laser et dans la seconde zone (M) un modulateur.6. Method according to claim 1, characterized in that a laser is formed in the first zone (L) and in the second zone (M) a modulator.
7. Procédé selon La revendication 1, carac¬ térisé par le fait que le matériau semi-isolant consti¬ tuant la couche de confinement (108) dans lequel est gravé le sillon (111) est de l'InP semi-isolant.7. Method according to claim 1, charac¬ terized in that the semi-insulating material constituting the confinement layer (108) in which the groove is engraved (111) is semi-insulating InP.
8. Procédé selon La revendication 1, carac¬ térisé par Le fait que, dans La seconde épitaxie sélec- tive, on forme un empilement comprenant une couche active (114) qui est à multipuits quantiques. 8. Method according to claim 1, charac¬ terized by the fact that, in the second selective epitaxy, a stack is formed comprising an active layer (114) which is quantum multi-well.
PCT/FR1992/001029 1991-11-06 1992-11-05 Method for producing opto-electronic components by selective epitaxy in a groove WO1993009569A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR91/13688 1991-11-06
FR9113688A FR2683392A1 (en) 1991-11-06 1991-11-06 PROCESS FOR PRODUCING OPTOELECTRONIC COMPONENTS BY SELECTIVE EPITAXY IN A SILLON.

Publications (1)

Publication Number Publication Date
WO1993009569A1 true WO1993009569A1 (en) 1993-05-13

Family

ID=9418671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1992/001029 WO1993009569A1 (en) 1991-11-06 1992-11-05 Method for producing opto-electronic components by selective epitaxy in a groove

Country Status (2)

Country Link
FR (1) FR2683392A1 (en)
WO (1) WO1993009569A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6224667B1 (en) * 1993-12-28 2001-05-01 Nec Corporation Method for fabricating semiconductor light integrated circuit
US6876006B1 (en) 1999-04-27 2005-04-05 Schlumberger Technology Corporation Radiation source
WO2019122210A1 (en) * 2017-12-21 2019-06-27 Thales Optoelectronic device with improved embedded semiconductor waveguide and associated method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0260475A2 (en) * 1986-09-18 1988-03-23 EASTMAN KODAK COMPANY (a New Jersey corporation) A process for forming a positive index waveguide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5944887A (en) * 1982-09-07 1984-03-13 Fujitsu Ltd Semiconductor light emitting device
JPH0338081A (en) * 1989-07-04 1991-02-19 Mitsubishi Electric Corp Manufacture of semiconductor laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0260475A2 (en) * 1986-09-18 1988-03-23 EASTMAN KODAK COMPANY (a New Jersey corporation) A process for forming a positive index waveguide

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
APPLIED PHYSICS LETTERS. vol. 59, no. 16, 14 Octobre 1991, NEW YORK US pages 2019 - 2021 E. COLAS ET AL. 'In situ definition of semiconductor structures by selective area growth and etching' *
Comptes-rendus de la conférence IOOC, Paris, Septembre 1991, pages 429-432; T.Kato et al.: Novel MQW DFB laser diode/ modulator integrated light source using bandgap energy control epitaxial growth technique. cité dans la demande *
PATENT ABSTRACTS OF JAPAN vol. 15, no. 170 (E-1062)30 Avril 1991 *
PATENT ABSTRACTS OF JAPAN vol. 8, no. 135 (E-252)22 Juin 1984 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6224667B1 (en) * 1993-12-28 2001-05-01 Nec Corporation Method for fabricating semiconductor light integrated circuit
US6876006B1 (en) 1999-04-27 2005-04-05 Schlumberger Technology Corporation Radiation source
WO2019122210A1 (en) * 2017-12-21 2019-06-27 Thales Optoelectronic device with improved embedded semiconductor waveguide and associated method
FR3075989A1 (en) * 2017-12-21 2019-06-28 Thales OPTOELECTRONIC BONE-GUIDED SEMICONDUCTOR BURNER DEVICE AND METHOD THEREFOR

Also Published As

Publication number Publication date
FR2683392A1 (en) 1993-05-07

Similar Documents

Publication Publication Date Title
EP0627798B1 (en) Monolithically integrated laser-modulator with multiquantum well structure
EP0829934B1 (en) Method of fabricating an optoelectrical semiconductor device and a device or matrix of devices fabricated using said method
EP2092618B1 (en) Laser device with coupled laser source and waveguide
EP0449719A1 (en) Three-dimensional integrated guiding structure and method of manufacturing the same
FR3043852A1 (en) LASER DEVICE AND METHOD FOR MANUFACTURING SUCH A LASER DEVICE
US6577660B1 (en) Distributed feedback type semiconductor laser device having gradually-changed coupling coefficient
JP3418553B2 (en) Semiconductor Bragg reflector and method of manufacturing the reflector
EP0661783B1 (en) Method for fabricating semiconductor light integrated circuit
EP2811593B1 (en) Tunable laser emitting device
FR2596529A1 (en) OPTICAL WAVEGUIDE IN SEMICONDUCTOR MATERIAL, LASER APPLYING THIS WAVEGUIDE AND METHOD OF MAKING SAME
EP0752743B1 (en) Laser device with buried structure for integrated photonic circuit and method of fabrication
FR2525033A1 (en) SEMICONDUCTOR LASER HAVING SEVERAL INDEPENDENT WAVE LENGTHS AND METHOD OF MAKING SAME
FR2715770A1 (en) Method for producing an electro-optical and / or photonic component.
FR2625036A1 (en) METHOD FOR MAKING A DIFFRACTION NETWORK ON A SEMICONDUCTOR MATERIAL, AND OPTOELECTRONIC DEVICE COMPRISING A DIFFRACTION NETWORK CARRIED OUT ACCORDING TO SAID METHOD
WO1993009569A1 (en) Method for producing opto-electronic components by selective epitaxy in a groove
WO1985004529A1 (en) Process for making a semiconductor laser mirror by ionic machining
EP1159776B1 (en) Optoelectronic system comprising several evanescent field coupled sections with respective functions and method for making same
WO2021004930A1 (en) Assembly of an active semiconductor component and of a passive silicon-based optical component
FR2910643A1 (en) OPTOELECTRONIC COMPONENT HAVING A TRANSFORMED STRUCTURE DIFFRACTION NETWORK
FR2749447A1 (en) SEMICONDUCTOR LIGHT-GUIDING LIGHT-EMITTING OPTICAL DEVICE WITH LOW DIVERGENCE, APPLICATION TO FABRIS-PEROT LASERS AND DISTRIBUTED COUNTER-REACTION
FR2581801A1 (en) METHOD FOR PRODUCING BLOCKING-JUNCTION SEMICONDUCTOR LASERS PROVIDING ELECTRICAL CONFINEMENT
JP2842387B2 (en) Manufacturing method of semiconductor optical integrated device
FR2656432A1 (en) METHOD FOR PRODUCING AN OPTOELECTRONIC AMPLIFIER DEVICE, DEVICE OBTAINED BY THIS METHOD AND APPLICATIONS TO VARIOUS OPTOELECTRONIC DEVICES
JPH09214059A (en) Semiconductor optical device making use of quantium wire, and light source device, optical communication method, and optical communication system using it
FR2737354A1 (en) MQW distributed feedback laser for optical communications - has modulators coupled to optical amplifier and built on same indium phosphide substrate with number of epitaxial semiconductor layers and metal electrodes deposited on structure surface

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase