WO1993000576A1 - Device for sensing thermal image - Google Patents

Device for sensing thermal image Download PDF

Info

Publication number
WO1993000576A1
WO1993000576A1 PCT/JP1992/000549 JP9200549W WO9300576A1 WO 1993000576 A1 WO1993000576 A1 WO 1993000576A1 JP 9200549 W JP9200549 W JP 9200549W WO 9300576 A1 WO9300576 A1 WO 9300576A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal image
element group
pyroelectric
optical system
chopper
Prior art date
Application number
PCT/JP1992/000549
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Deguchi
Tatsuo Nakayama
Toshiaki Yagi
Ryoichi Takayama
Yoshihiro Tomita
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CA002090115A priority Critical patent/CA2090115C/en
Priority to DE4292011A priority patent/DE4292011C2/en
Publication of WO1993000576A1 publication Critical patent/WO1993000576A1/en
Priority to KR93700477A priority patent/KR970003680B1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • G01J5/0805Means for chopping radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/02Scanning details of television systems; Combination thereof with generation of supply voltages by optical-mechanical means only
    • H04N3/08Scanning details of television systems; Combination thereof with generation of supply voltages by optical-mechanical means only having a moving reflector
    • H04N3/09Scanning details of television systems; Combination thereof with generation of supply voltages by optical-mechanical means only having a moving reflector for electromagnetic radiation in the invisible region, e.g. infrared

Definitions

  • the present invention relates to radiation temperature detection and human body behavior detection based on thermal images, such as temperature distribution in living rooms in a home and human body behavior detection.
  • Quantum infrared sensors have high sensitivity and a high response speed. About 0 0), not suitable for consumer use.
  • Thermal infrared sensors have relatively low sensitivity and low response speed, but do not require cooling, so they have been put to practical use in the consumer market.
  • Fig. 1 shows the embodiment.
  • Fig. 1 (a) is a structural diagram of a pyroelectric infrared sensor unit used for human body detection.
  • 1 is a pyroelectric infrared sensor
  • 2 is a Fresnel lens using polyethylene resin.
  • the Fresnel lens 2 has a light distribution characteristic for the viewing angle.
  • the pyroelectric infrared sensor 1 has a differential change output characteristic, and outputs only when the incident temperature changes.
  • the radiation temperature of the human body appears in the pyroelectric infrared sensor 1 as a time change input that appears, disappears, appears, and disappears. Entered. Therefore, the output of the pyroelectric infrared sensor Is output in synchronization with.
  • the optical system when configuring a system that runs a group of pyroelectric heat detecting elements arranged linearly in one dimension, if the optical system is outside the group of pyroelectric heat detecting elements, the optical system will have a scanning range. There is a problem that the whole area must be focused on & it must be large, and even if it covers the entire scanning range, the optical axis shifts and the sensitivity of the entire visual field is not uniform. .
  • the present invention provides a system for detecting a thermal image with a relatively simple system configuration.
  • the present invention has a plurality of pyroelectric heat detecting element groups one-dimensionally arranged on a linear axis and a rotation axis parallel or inclined at a fixed angle to the linear axis.
  • a two-dimensional image is obtained by rotating the group of heat detection elements.
  • the present invention detects a thermal image with a relatively simple configuration by rotating a group of one-dimensionally arranged pyroelectric heat detection elements, and detects a temperature distribution in a detection area, a haze motion of a human body, and the like. .
  • the present invention also provides a plurality of pyroelectric heat detection element groups arranged one-dimensionally on a linear axis, and an optical element integrated with the pyroelectric heat detection element group.
  • a two-dimensional thermal image is obtained by rotating the pyroelectric heat detecting element group and the optical system, which are integrated with a system and a rotation axis parallel or inclined at a fixed angle to the linear axis, about the rotation axis. That is,
  • the present invention provides a two-dimensional thermal image detection system having a compact and simple configuration by miniaturizing an optical system by integrally rotating a pyroelectric heat detecting element group and an optical system which are linearly arranged one-dimensionally. Things.
  • FIGS. 1 (a) and 1 (b) show the configuration of a conventional pyroelectric infrared unit for detecting a human body.
  • FIGS. 2 (a) and 2 (b) show the configuration of one embodiment of the present invention.
  • (A) and (b) are explanations of the mechanism for obtaining a thermal image.
  • FIG. 4 is a configuration using a transmission type lens.
  • FIG. 5 is a configuration using a reflection type lens.
  • ⁇ FIG. 6 is another embodiment of the present invention.
  • the schematic structure of the structure integrating the pyroelectric heat detection element group and the lens in the example 3 ⁇ 4 Fig. 7 is a front view in the optical axis direction showing the positional relationship between the non-circular lens and the pyroelectric heat detection element group.
  • FIG. 9 shows a schematic configuration of a two-dimensional thermal imaging device using a grid-type fixed chopper 3 ⁇ 4
  • Fig. 9 shows a schematic configuration of a two-dimensional thermal imaging device using a rotating chopper 3 ⁇ 4
  • Fig. 10 shows a pyroelectric heat detection element group
  • Fig. 11 shows a movable chopper connected to the pyroelectric heat detection element group and the optical system.
  • Schematic configuration of the two-dimensional thermal imaging device fixed to the axis of rotation 3 ⁇ 4 Fig. 12 schematically shows the relationship between the visual field of the group of pyroelectric heat detection elements and the movable range of the chopper in a system in which the movable range of the chopper is limited.
  • FIG. 2 is a configuration diagram of an embodiment of the present invention.
  • reference numerals 3a to 3e denote pyroelectric heat detection elements (hereinafter, referred to as elements), 4 denotes a pyroelectric heat detection element, and 5 denotes a rotation axis.
  • Fig. 2 (a) shows that the rotating shaft 5 is parallel to the pyroelectric heat detecting element group 4, and Fig. 2 (b) shows that the rotating shaft 5 and the pyroelectric detecting element group 4 are at a fixed angle '0' only. This shows the case where the vehicle is inclined. Angle 0 is selected depending on the internal structure of the device to be installed and the setting of the detection viewing angle.
  • FIG. Fig. 3 (a) shows the stereoscopic viewing angle of the detected thermal image
  • Fig. 3 (b) shows the detected thermal image.
  • the pyroelectric heat detection element group 4 has five elements, and is responsible for dividing the viewing angle into five in the vertical direction.
  • the pyroelectric-type mature detection element group 4 has a narrow viewing angle in the horizontal direction, and sequentially shifts the viewing angle in the ice flat direction with the rotation of the rotating shaft 5.
  • the pyroelectric type detection element group 4 measures the temperature each time it is sequentially moved, so that a two-dimensional thermal image shown in FIG. 3 (b) is obtained.
  • the motion of the human body is usually said to be l to 2 Hz. Is valid.
  • the commonly used pyroelectric infrared sensor is a so-called bulk type using a pyroelectric thick film sintered body.
  • the problem is that the response cannot keep up because the constant cannot be reduced. Therefore, by using a pyroelectric heat detecting element using a pyroelectric thin film of PbTiOS, etc., the response time can be reduced to about 1Z10 of the bulk type.
  • the pyroelectric heat detecting element using the pyroelectric thin film can shorten the response time, the behavior of the human body can be detected with high accuracy.
  • the use of a pyroelectric thin film can further reduce the size of the element.
  • the detection space when detecting temperature distribution and human body behavior in a living space, etc., the detection space generally has a wider viewing angle in the horizontal direction than in the vertical direction.
  • the responsible viewing angle of the detection element group 4 can be reduced, and this can contribute to reducing the number of elements or improving accuracy.
  • FIG. 4 An embodiment of a thermal image detecting apparatus using an optical system will be described with reference to FIGS. 4 and 5.
  • Fig. 4 shows the case where a transmission lens is used
  • Fig. 5 shows the case where a reflection lens is used.
  • the pyroelectric heat detection element group 4 is a single optical system, and the divided viewing angles are assigned to the elements 3a to 3e. By using one optical system, the system can be downsized and the accuracy of the viewing angle of each element can be easily obtained.
  • the optical system can be designed to be small. Furthermore, if a pyroelectric thin film is used for the element as described above, a very small system can be realized.
  • the transmission type lens 6 the material that transmits infrared light is very limited, whereas the reflection type lens 7 shown in Fig. 5 is used. Then, the infrared light reflecting material can be easily obtained by aluminum coating or the like, so that the optical system can be easily and inexpensively constructed.
  • FIG. 6 a two-dimensional thermal image detection apparatus in which the optical system is integrated with a pyroelectric detection element group will be described with reference to FIGS. 6 to 11.
  • FIG. 6 a two-dimensional thermal image detection apparatus in which the optical system is integrated with a pyroelectric detection element group
  • reference numeral 15 denotes a pyroelectric heat detecting element group
  • 15a to 15e denote pyroelectric heat detecting elements
  • Reference numeral 17 denotes a structure for integrating the pyroelectric heat detecting element group 15 with the lens 16, and the pyroelectric heat detecting element group 15 is arranged on the optical axis 30 of the lens 16.
  • FIG. 7 shows the positional relationship between the lens and the pyroelectric heat detection element group as viewed from the front in the optical axis direction when a circular lens is used as an example of a non-circular lens.
  • Reference numeral 15 denotes a group of pyrothermal type heat detecting elements, and a non-circular lens 16a having a size necessary to cover the field of view of the group of pyroelectric type thermal detecting elements 15 is arranged in front and illustrated.
  • the pyroelectric heat detection element group 15 and the lens 16 that are not fixed are fixed to a structure that integrates the pyroelectric heat detection element group 15 and the lens 16 to form a system similar to that shown in FIG.
  • the broken line shows the size of the lens when a circular lens is used.
  • reference numeral 20a denotes a chopper fixed outside the pyroelectric heat detection element group 15 and the lens 16 and has a lattice shape.
  • 30 is the optical axis of the lens.
  • 20 b is a rotary chopper installed outside the pyroelectric heat detecting element group 15 and the lens 16, and the rotating shaft 31 of the chopper is a pyroelectric heat detecting element group. It is fixed to the outside of 15 and lens 16.
  • reference numeral 20a denotes a pyroelectric heat detection element group 15 and This is a fixed chopper installed between hands 16.
  • the rotation axis 31 of the rotary chopper 20 b is fixed to the rotation axis 18 of the pyroelectric heat detection element group 15 and the lens 16.
  • reference numeral 25 denotes a movable chopper for opening and closing the window 25
  • reference numeral 25 denotes a movable chopper that opens and closes the window 25.
  • the heat detection element group 15 and the lens 16 are fixed to a structure in which they are integrated.
  • the structure 17 in which the pyroelectric heat detection element group 15 and the lens 16 are integrated is rotated about the rotation axis 18 so that the field of view of the chopper 20 a is fixed. Is scanned to obtain the differential output signal.
  • the chopper 20b rotates at a sufficient rotation speed independent of the rotation speed around the rotation shaft 18.
  • the fixed-type chopper 20a is sandwiched between the pyroelectric heat-detecting element group 15 and the lens 16, and the pyroelectric heat-detecting element group 15 and the lens around the rotation axis 18 are sandwiched. 1 6 rotates together 3 ⁇ 4o
  • the rotary chopper 20b rotates around the rotation axis 18 together with the pyroelectric heat detection element group 15 and the lens 16 to perform ⁇ chic pinking.
  • the chopper 20 d reciprocates to open and close the window 25.
  • the positional relationship between the lens 16 and the pyroelectric heat detecting element group 15 does not change during scanning. There is no shift and the entire field of view can be detected with uniform sensitivity.
  • the lens 16 can be made smaller than a non-integrated system, and the entire system can be downsized.
  • the lens 16a can be made small, and thus the system can be downsized.
  • the chopper 20a is fixed to the outside of the pyroelectric heat detection element group 15 and the lens 16 so that only the rotation mechanism around the rotation axis 18 is used.
  • a two-dimensional thermal image can be obtained with a simple system.
  • a rotary chopper 20b is placed outside the pyroelectric heat detecting element group 15 and the lens 16 and this chopper-20b is rotated at a sufficient speed.
  • a two-dimensional thermal image without blind spots can be obtained.
  • the field of view of the pyroelectric heat detection element group 15 is narrowed down at the position of the chopper 20a, so that the chopper 20a can be downsized.
  • the movable chopper 20 b is The chopper 20b can be reduced in size by employing a method of rotating together with the heat detection element group and the optical system, and the entire system can also be reduced in size.
  • the movable chopper 20d By limiting the movable range of the movable chopper 20d to the field of view assigned to the pyroelectric heat detection element group 15 as shown in Fig. 12, the movable chopper 20d can be downsized. it can.
  • a force using a rotary chopper 2 Ob as a movable chopper is a movable chopper 20a having a lattice shape shown in FIG. 8, or an openable chopper shown in FIG. The same effect can be obtained even with 10 d.
  • FIG. 10 a similar effect can be obtained by using a movable chopper instead of the fixed chopper 20a.
  • a chopper that translates a grid-shaped chopper in place of the rotary chopper 20b in Fig. 11 or an openable chopper as shown in Fig. 11 is used as a pyroelectric heat detecting element. The same effect can be obtained when fixed to the rotation axis of the group and the optical system.
  • a thermal image can be detected with a relatively simple system configuration by rotating a group of pyroelectric heat detection elements arranged one-dimensionally.
  • the position S behavior of the human body can be accurately detected by setting the thermal image detection time due to rotation to within approximately 1 second 1.
  • the response speed of a thermal image can be improved, and the system can be downsized.
  • the rotation direction to the horizontal direction, it is possible to contribute to miniaturization of the system or improvement of the accuracy in a normal case.
  • the size of the system can be reduced.
  • the accuracy of the viewing angle of each element can be improved.
  • the size of the optical system can be further reduced.
  • an optical system can be easily and inexpensively constituted by a reflection type lens.
  • the positional relationship between the pyroelectric heat detection element group and the optical system is scanned. There is no change in the optical axis, and the entire field of view can be detected with uniform sensitivity.
  • the optical system can be downsized, and the entire system can be downsized.
  • the system can be reduced in size at any time.
  • the configuration of the chopper can be simplified by using a fixed chopper.
  • the use of a movable chopper can eliminate blind spots in the obtained two-dimensional thermal image.
  • a chopper is placed between the pyroelectric heat detection element group and the optical system.
  • the chopper only needs to cover the field of view narrowed by the lens, and the chopper can be downsized.
  • the chopper can be downsized and the system can be downsized.
  • the chopper can be downsized, and the entire system can be downsized.

Abstract

A device for sensing a thermal image which has a group of plural pyroelectric type heat sensing elements (5) arranged on a line, an optical system (6), a structure (7) for making the pyroelectric type heat sensing element group (5) and the optical system (6) in one body, and a rotary shaft (8) for rotating the structure (7). By this configuration, the system for obtaining a two-dimensional thermal image by using the pyroelectric type heat sensing element group arranged on the line in one-dimensional way can be realized with a simple configuration of a small size.

Description

明 細 書  Specification
発明の名称 Title of invention
熱画像検出装置  Thermal image detector
技術分野 Technical field
本発明は家庭内の居室の温度分布及び人体の挙動検出など熱 画像による輻射温度検出および人体挙動検出に関する。  The present invention relates to radiation temperature detection and human body behavior detection based on thermal images, such as temperature distribution in living rooms in a home and human body behavior detection.
背景技術 Background art
従 ¾ 非接触で温度を測定する方式としては量子型赤外線セ ンサによるものと熱型赤外線センサがあつナ 量子型赤外線セ ンサは感度が高く、 応答速度は速い^ 冷却が必要であり (一 2 0 0 程度)、 民生用には不向きである。 一 熱型赤外線 センサは比較的感度は低く、 応答速度は遅いが冷却が不要なた め民生市場では実用化されている。  Therefore, non-contact methods for measuring temperature are based on a quantum infrared sensor and a thermal infrared sensor. Quantum infrared sensors have high sensitivity and a high response speed. About 0 0), not suitable for consumer use. (1) Thermal infrared sensors have relatively low sensitivity and low response speed, but do not require cooling, so they have been put to practical use in the consumer market.
熱型赤外線センサの中では焦電効果を利用した焦電型赤外線 センサがよく使われている。 第 1図にその実施例を示す。 第 1 図 ( a ) は人体検知に使われる焦電型赤外線センサュニッ トの 構造図であ ¾o 図において 1 は焦雩型赤外線センサであり、 2 はポリエチレン榭脂を使用したフ レネルレンズであ ¾o このフ レネルレンズ 2 は視野角に配光特性を持たせている。  Of the thermal infrared sensors, pyroelectric infrared sensors utilizing the pyroelectric effect are often used. Fig. 1 shows the embodiment. Fig. 1 (a) is a structural diagram of a pyroelectric infrared sensor unit used for human body detection. In the figure, 1 is a pyroelectric infrared sensor, and 2 is a Fresnel lens using polyethylene resin. The Fresnel lens 2 has a light distribution characteristic for the viewing angle.
焦電型赤外線センサ 1 は微分変化出力特性を持っており、 入 射温度が変化したときのみ出力を癸生する。 この焦電型赤外線 センサュニッ トの前を人体が横切ったとき、 フレネルレンズ 2 の配光特性により、 焦電型赤外線センサ 1 には人体の放射温度 が出現 消滅 出現 消滅 …という時間変化入力と して入力 される。 したがって焦電型赤外線センサの出力はこの時間変化 に同期して出力される。 The pyroelectric infrared sensor 1 has a differential change output characteristic, and outputs only when the incident temperature changes. When the human body crosses in front of the pyroelectric infrared sensor unit, due to the light distribution characteristics of the Fresnel lens 2, the radiation temperature of the human body appears in the pyroelectric infrared sensor 1 as a time change input that appears, disappears, appears, and disappears. Entered. Therefore, the output of the pyroelectric infrared sensor Is output in synchronization with.
また 2次元熱画像を得るための手段と しては焦電型赤外線セ ンサを 2次元に配置する方式も考えられていた。  As a means for obtaining a two-dimensional thermal image, a method of arranging a pyroelectric infrared sensor in two dimensions was also considered.
しかしながら 第 1図に示す従来例では人体の存在検出はで きる力 位置および温度分布の測定は不可能であり、 焦電型赤 外線センサを 2次元に配置する方式ではシステム構成が複雑に なるという問題があつ  However, in the conventional example shown in Fig. 1, it is impossible to measure the force position and temperature distribution that can detect the presence of the human body, and the system configuration becomes complicated when the pyroelectric infrared sensor is arranged two-dimensionally. I have a problem
ま 直線上に 1次元に配置された焦電型熱検出素子群を走 查する方式によるシステムを構成する場合、 光学系が焦電型熱 検出素子群の外部にあると、 光学系は走査範囲全域を力パーし なければならないた& 大きなものにならざるを得ないし た とえ走査範囲全域をカバーしても光学軸がずれることにより視 野全体の感度が一様にならない等の問題がある。  Also, when configuring a system that runs a group of pyroelectric heat detecting elements arranged linearly in one dimension, if the optical system is outside the group of pyroelectric heat detecting elements, the optical system will have a scanning range. There is a problem that the whole area must be focused on & it must be large, and even if it covers the entire scanning range, the optical axis shifts and the sensitivity of the entire visual field is not uniform. .
本発明は比較的簡単なシステム構成で熱画像を検出するシス テムを提供するものであ ¾o  The present invention provides a system for detecting a thermal image with a relatively simple system configuration.
発明の開示 Disclosure of the invention
そこで本発明 直線軸上に一次元に配置された複数の焦電 型熱検出素子群と前記直線軸に平行あるいは一定の角度だけ傾 斜させた回転軸を持 前記回転軸を中心として前記焦電型熱 検出素子群を回転させて 2次元画像を得るものである。  Therefore, the present invention has a plurality of pyroelectric heat detecting element groups one-dimensionally arranged on a linear axis and a rotation axis parallel or inclined at a fixed angle to the linear axis. A two-dimensional image is obtained by rotating the group of heat detection elements.
本発明 一次元に配置した焦電型熱検出素子群を回転させ ることにより比较的単純な構成で熱画像を検出し 検出エリア 内の温度分布および人体の位霞 動作等を検出するものである。 また本発明 直線軸上に 1次元に配置された複数の焦電型 熱検出素子群と、 前記焦電型熱検出素子群と一体となった光学 系と、 前記直線軸に平行または一定の角度だけ傾斜した回転軸 を持^ 一体となった前記焦電型熱検出素子群および前記光学 系を前記回転軸を中心として回転させて 2次元熱画像を得るも のである。 The present invention detects a thermal image with a relatively simple configuration by rotating a group of one-dimensionally arranged pyroelectric heat detection elements, and detects a temperature distribution in a detection area, a haze motion of a human body, and the like. . The present invention also provides a plurality of pyroelectric heat detection element groups arranged one-dimensionally on a linear axis, and an optical element integrated with the pyroelectric heat detection element group. A two-dimensional thermal image is obtained by rotating the pyroelectric heat detecting element group and the optical system, which are integrated with a system and a rotation axis parallel or inclined at a fixed angle to the linear axis, about the rotation axis. That is,
本発明 直線上に 1次元に配置された焦電型熱検出素子群 と光学系を一体として回転させることにより、 光学系を小型化 し 小型かつ簡単な構成の 2次元熱画像検出システムを提供す るものである。  The present invention provides a two-dimensional thermal image detection system having a compact and simple configuration by miniaturizing an optical system by integrally rotating a pyroelectric heat detecting element group and an optical system which are linearly arranged one-dimensionally. Things.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図 ( a )、 ( b ) は従来の人体検出用焦電型赤外線ュニ ッ トの構成 第 2図 ( a )、 ( b ) は本発明の一実施例の構 成 ¾ 第 3図 ( a )、 ( b ) は熱画像を得る仕組みの説明 第 4図は透過型'レンズを用いた構成^ 第 5図は反射型レンズ を用いた構成 ¾ 第 6図は本発明の他の実施例における焦電型 熱検出素子群とレンズを一体とする構造の概略構成 ¾ 第 7図 は非円形レンズと焦電型熱検出素子群の位置関係を示す光軸方 向正面 ¾ 第 8図は格子状固定式チョ ッパーを用いた 2次元熱 画像装置の概略構成 ¾ 第 9図は回転式チョ ッパーを用いた 2 次元熱画像装置の概略構成 ¾ 第 1 0図は焦電型熱検出素子群 とレンズの間に固定式チョ ッパーを配置した 2次元熱画像装置 の概略構成 第 1 1図は可動式チョ ッパーを焦電型熱検出素 子群および光学系の回転軸に固定した 2次元熱画像装置の概略 構成 ¾ 第 1 2図はチヨ ッパーの可動範囲を限定したシステム の焦電型熱検出素子群の視野とチョ ッパー可動範囲の関係を示 す概略構成図である。 癸明を実施するための最良の形態 FIGS. 1 (a) and 1 (b) show the configuration of a conventional pyroelectric infrared unit for detecting a human body. FIGS. 2 (a) and 2 (b) show the configuration of one embodiment of the present invention. (A) and (b) are explanations of the mechanism for obtaining a thermal image. FIG. 4 is a configuration using a transmission type lens. FIG. 5 is a configuration using a reflection type lens. 図 FIG. 6 is another embodiment of the present invention. The schematic structure of the structure integrating the pyroelectric heat detection element group and the lens in the example ¾ Fig. 7 is a front view in the optical axis direction showing the positional relationship between the non-circular lens and the pyroelectric heat detection element group. Schematic configuration of a two-dimensional thermal imaging device using a grid-type fixed chopper ¾ Fig. 9 shows a schematic configuration of a two-dimensional thermal imaging device using a rotating chopper ¾ Fig. 10 shows a pyroelectric heat detection element group Schematic configuration of a two-dimensional thermal imager with a fixed chopper arranged between the lens and the lens Fig. 11 shows a movable chopper connected to the pyroelectric heat detection element group and the optical system. Schematic configuration of the two-dimensional thermal imaging device fixed to the axis of rotation ¾ Fig. 12 schematically shows the relationship between the visual field of the group of pyroelectric heat detection elements and the movable range of the chopper in a system in which the movable range of the chopper is limited. FIG. The best form for carrying out KIKI
本発明の実施例について第 2図〜第 5図までを用いて説明す 。  An embodiment of the present invention will be described with reference to FIGS.
第 2図は本癸明の実施例の構成図である。  FIG. 2 is a configuration diagram of an embodiment of the present invention.
第 2図において 3 a〜 3 eは焦電型熱検出素子 (以下、 素子 と呼ぶ)、 4は焦電型熱検出素子^ 5 は回転軸である。 第 2 図 ( a ) は回転軸 5が焦電型熱検出素子群 4に平行の場合、 第 2図 (b ) は回転軸 5が焦電型検出素子群 4 と一定の角度' 0だ け傾斜している場合を示す。 角度 0は組み込まれる機器の内部 構造と検出視^角の設定により選択する。  In FIG. 2, reference numerals 3a to 3e denote pyroelectric heat detection elements (hereinafter, referred to as elements), 4 denotes a pyroelectric heat detection element, and 5 denotes a rotation axis. Fig. 2 (a) shows that the rotating shaft 5 is parallel to the pyroelectric heat detecting element group 4, and Fig. 2 (b) shows that the rotating shaft 5 and the pyroelectric detecting element group 4 are at a fixed angle '0' only. This shows the case where the vehicle is inclined. Angle 0 is selected depending on the internal structure of the device to be installed and the setting of the detection viewing angle.
つぎに第 3図により焦電型熱検出素子群 4を用いて熱画像を 得る仕組みを説明する。 第 3図 ( a ) は検出する熱画像の立体 視野角を表し 第 3図 ( b ) は検出熱画像を示す。  Next, a mechanism for obtaining a thermal image using the pyroelectric heat detection element group 4 will be described with reference to FIG. Fig. 3 (a) shows the stereoscopic viewing angle of the detected thermal image, and Fig. 3 (b) shows the detected thermal image.
焦電型熱検出素子群 4 は 5個の素子を持っており、 垂直方向 に視野角を 5分割し受け持つている。  The pyroelectric heat detection element group 4 has five elements, and is responsible for dividing the viewing angle into five in the vertical direction.
焦電型熟検出素子群 4 は水平方向には視野角を狭く設定して おり、 回転軸 5の回転と共に氷平方向の視野角を順次移動させ る。 順次移動させる毎に焦電型热検出素子群 4が温度を計測す ることにより、 第 3図 ( b ) に示す 2次元の熱画像が得られる。  The pyroelectric-type mature detection element group 4 has a narrow viewing angle in the horizontal direction, and sequentially shifts the viewing angle in the ice flat direction with the rotation of the rotating shaft 5. The pyroelectric type detection element group 4 measures the temperature each time it is sequentially moved, so that a two-dimensional thermal image shown in FIG. 3 (b) is obtained.
ここで検出する立体視野角内の人体の位置および挙動を検出 するために 通常人体の動きが l 〜 2 H z と言われているの で回転による熱画像検出時間を概ね 1秒以内とするのが有効で ある。  In order to detect the position and behavior of the human body within the three-dimensional viewing angle detected here, the motion of the human body is usually said to be l to 2 Hz. Is valid.
ま 通常使われている焦電型赤外線センサは焦電厚膜の焼 結体を用いたいわゆるバルク型である力 このパルク型は熱時 定数を小さ くできず応答が追いつかないという問題点を持って いる。 そこで P b T i O s などによる焦電薄膜を用いた焦電型 熱検出素子を用いることにより応答時間をバルク型の 1 Z 1 0 程度にすることが可能となる。 この焦電薄膜を用いた焦電型熱 検出素子を使用し 応答時間を短縮を図るこ とによち精度よく 人体の挙動を検出することができる。 さらに焦電薄膜を使用す れぱ素子をさらに小型化することが可能である。 The commonly used pyroelectric infrared sensor is a so-called bulk type using a pyroelectric thick film sintered body. The problem is that the response cannot keep up because the constant cannot be reduced. Therefore, by using a pyroelectric heat detecting element using a pyroelectric thin film of PbTiOS, etc., the response time can be reduced to about 1Z10 of the bulk type. By using the pyroelectric heat detecting element using the pyroelectric thin film to shorten the response time, the behavior of the human body can be detected with high accuracy. Furthermore, the use of a pyroelectric thin film can further reduce the size of the element.
また居住空間などの温度分布および人体挙動を検出する場合 一般に検出空間は垂直方向より も水平方向の方が視野角が広い 場合が多 この場合、 回転方向を水平方向に取ることにより 焦電型熱検出素子群 4の受持ち視野角を小さ くすることができ、 素子数の消戴 あるいは精度向上に寄与することができる。  In addition, when detecting temperature distribution and human body behavior in a living space, etc., the detection space generally has a wider viewing angle in the horizontal direction than in the vertical direction. The responsible viewing angle of the detection element group 4 can be reduced, and this can contribute to reducing the number of elements or improving accuracy.
つぎに第 4図および第 5図により光学系を用いた熱画像検出 装置の実施例について説明する。  Next, an embodiment of a thermal image detecting apparatus using an optical system will be described with reference to FIGS. 4 and 5. FIG.
第 4図は透過型のレンズを用いた場合、 第 5図は反射型レン ズを用いた場合を示す。 いずれの場合も焦電型熱検出素子群 4 に対して 1系統の光学系とし 素子 3 a〜 3 eにそれぞれ分割 された視野角が割り当てられている。 光学系を 1系統とするこ とによりシステムが小型化され 各素子の受持ち視野角の精度 が簡単に得られる。  Fig. 4 shows the case where a transmission lens is used, and Fig. 5 shows the case where a reflection lens is used. In any case, the pyroelectric heat detection element group 4 is a single optical system, and the divided viewing angles are assigned to the elements 3a to 3e. By using one optical system, the system can be downsized and the accuracy of the viewing angle of each element can be easily obtained.
第 4図の透過型レンズ 6を使用すれば光学系が小型に設計す ることができる。 さらに素子に前述したように焦電薄膜を使用 すれば超小型のシステムが可能となる。  If the transmission lens 6 shown in FIG. 4 is used, the optical system can be designed to be small. Furthermore, if a pyroelectric thin film is used for the element as described above, a very small system can be realized.
また透過型のレンズ 6の場合赤外線光を透過する材料がきわ めて限定されるのに対し 第 5図に示す反射型レンズ 7を使用 すれば赤外光反射材料はアルミ コ一ティ ングなどで簡単に得ら れるにで容易に しかも安価に光学系が構成できる。 In the case of the transmission type lens 6, the material that transmits infrared light is very limited, whereas the reflection type lens 7 shown in Fig. 5 is used. Then, the infrared light reflecting material can be easily obtained by aluminum coating or the like, so that the optical system can be easily and inexpensively constructed.
つぎに光学系を焦電型検出素子群一体とした 2次元熱画像検 出装置について第 6図〜第 1 1図を用いて説明する。  Next, a two-dimensional thermal image detection apparatus in which the optical system is integrated with a pyroelectric detection element group will be described with reference to FIGS. 6 to 11. FIG.
第 6図において、 1 5 は焦電型熱検出素子群であり、 1 5 a 〜 1 5 eは焦電型熱検出素子である。 1 7は焦電型熱検出素子 群 1 5 とレンズ 1 6を一体とするための構造で焦電型熱検出素 子群 1 5 はレンズ 1 6の光軸 3 0上に配置されている。  In FIG. 6, reference numeral 15 denotes a pyroelectric heat detecting element group, and 15a to 15e denote pyroelectric heat detecting elements. Reference numeral 17 denotes a structure for integrating the pyroelectric heat detecting element group 15 with the lens 16, and the pyroelectric heat detecting element group 15 is arranged on the optical axis 30 of the lens 16.
'第 7図は非円形レンズの一例で 円形レンズを一部切りとつ た形のレンズを用いた場合の光軸方向正面からみたレンズと焦 電型熱検出素子群の位置関係を示したものである。 1 5は焦 ¾ 型熱検出素子群であり、 焦電型熱検出素子群 1 5 の視野をカバ 一するのに必要な大きさを持つ非円形レンズ 1 6 aが手前に配 置され 図示されていない焦電型熱検出素子群 1 5 とレンズ 1 6を一体とする構造に固定されて図 6 と同様のシステムを構成 している。 破線は円形レンズを用いた場合のレンズの大きさを 示している。  'Fig. 7 shows the positional relationship between the lens and the pyroelectric heat detection element group as viewed from the front in the optical axis direction when a circular lens is used as an example of a non-circular lens. It is. Reference numeral 15 denotes a group of pyrothermal type heat detecting elements, and a non-circular lens 16a having a size necessary to cover the field of view of the group of pyroelectric type thermal detecting elements 15 is arranged in front and illustrated. The pyroelectric heat detection element group 15 and the lens 16 that are not fixed are fixed to a structure that integrates the pyroelectric heat detection element group 15 and the lens 16 to form a system similar to that shown in FIG. The broken line shows the size of the lens when a circular lens is used.
第 8図において、 2 0 aは焦電型熱検出素子群 1 5およびレ ンズ 1 6の外側に固定したチョ ッパーであり、 その形状は格子 になっている。 3 0 はレンズの光軸である。  In FIG. 8, reference numeral 20a denotes a chopper fixed outside the pyroelectric heat detection element group 15 and the lens 16 and has a lattice shape. 30 is the optical axis of the lens.
第 9図において 2 0 b 焦電型熱検出素子群 1 5およびレ ンズ 1 6の外側に設置した回転式のチョ ッパーであり、 チヨ ッ パーの回転軸 3 1 は焦電型熱検出素子群 1 5およびレンズ 1 6 の外部に固定されている。  In FIG. 9, 20 b is a rotary chopper installed outside the pyroelectric heat detecting element group 15 and the lens 16, and the rotating shaft 31 of the chopper is a pyroelectric heat detecting element group. It is fixed to the outside of 15 and lens 16.
第 1 0図において 2 0 aは焦電型熱検出素子群 1 5およびレ ンズ 1 6の間に設置した固定式のチョ ッパーである。 In FIG. 10, reference numeral 20a denotes a pyroelectric heat detection element group 15 and This is a fixed chopper installed between hands 16.
第 1 1 図において、 回転式チョ ッパー 2 0 bの回転軸 3 1 は 焦電型熱検出素子群 1 5およびレンズ 1 6の回転軸 1 8 に固定 されている。  In FIG. 11, the rotation axis 31 of the rotary chopper 20 b is fixed to the rotation axis 18 of the pyroelectric heat detection element group 15 and the lens 16.
第 1 2図において 2 5 は焦電型熱検出素子群 1 5の視野を与 える^ 2 0 dは窓 2 5を開閉する可動型チョ ッパーであり、 ともに図に記載されていない焦電型熱検出素子群 1 5およびレ ンズ 1 6を一体とする構造に固定されている。  In FIG. 12, reference numeral 25 denotes a movable chopper for opening and closing the window 25, and reference numeral 25 denotes a movable chopper that opens and closes the window 25. The heat detection element group 15 and the lens 16 are fixed to a structure in which they are integrated.
第 6 ^1 第 7図に示した構成全体 回転軸 1 8を中心にし て回転することによつて 2次元熱画像を得るものである。  6 ^ 1 Overall configuration shown in FIG. 7 A two-dimensional thermal image is obtained by rotating around the rotation axis 18.
第 8図においては焦電型熱検出素子群 1 5およびレンズ 1 6 を一体とする構造 1 7を回転軸 1 8を中心に回転させることに より、 その視野が固定式のチョ ッパー 2 0 aを走査し 微分出 力信号を得る。  In FIG. 8, the structure 17 in which the pyroelectric heat detection element group 15 and the lens 16 are integrated is rotated about the rotation axis 18 so that the field of view of the chopper 20 a is fixed. Is scanned to obtain the differential output signal.
ま 第 9図においてチョ ッパー 2 0 bは回転軸 1 8を中心 とする回転速度とは独立の十分な回転速度で回転している。 第 1 0図においては焦電型熱検出素子群 1 5 とレンズ 1 6 の 間に固定式チョ ッパー 2 0 aをはさみながら回転軸 1 8を中心 に焦電型熱検出素子群 1 5およびレンズ 1 6が一体となって回 転す ¾o  In FIG. 9, the chopper 20b rotates at a sufficient rotation speed independent of the rotation speed around the rotation shaft 18. In Fig. 10, the fixed-type chopper 20a is sandwiched between the pyroelectric heat-detecting element group 15 and the lens 16, and the pyroelectric heat-detecting element group 15 and the lens around the rotation axis 18 are sandwiched. 1 6 rotates together ¾o
第 1 1 図において回転型チョ ッパー 2 0 bは焦電型熱検出素 子群 1 5およびレンズ 1 6 とともに回転軸 1 8を中心に回転し なが ^ チヨ ッ ピンクを行なう。  In FIG. 11, the rotary chopper 20b rotates around the rotation axis 18 together with the pyroelectric heat detection element group 15 and the lens 16 to perform ^ chic pinking.
第 1 2図においてチョ ッパー 2 0 dは往復運動をして窓 2 5 を開閉する。 第 6図のように焦電型熱検出素子群 1 5 とレンズ 1 6を一体 とすることにより レンズ 1 6 と焦電型熱検出素子群 1 5の位置 関係は走査中変わらず 従って光学軸のずれがなく、 視野全体 を一様の感度で検出できる。 ま 一体としないシステムより も レンズ 1 6を小さなものにでき、 システム全体も小型化でき る。 In FIG. 12, the chopper 20 d reciprocates to open and close the window 25. By integrating the pyroelectric heat detecting element group 15 and the lens 16 as shown in FIG. 6, the positional relationship between the lens 16 and the pyroelectric heat detecting element group 15 does not change during scanning. There is no shift and the entire field of view can be detected with uniform sensitivity. Also, the lens 16 can be made smaller than a non-integrated system, and the entire system can be downsized.
さらに第 7図のようにレンズ 1 6 aを非円形にすることによ り、 レンズ 1 6 aを小さく、 したがってシステムを小型化する ことができる。  Further, by making the lens 16a non-circular as shown in FIG. 7, the lens 16a can be made small, and thus the system can be downsized.
さらに 第 6図において焦電型熱検出素子群 1 5 とレンズ 1 6の間を密閉することにより、 空気中のほこりや煙などによる 汚れを低減でき、 その結果長期間安定して熱画像を得ることが できるようになる。  Further, by sealing the space between the pyroelectric heat detection element group 15 and the lens 16 in Fig. 6, it is possible to reduce contamination due to dust and smoke in the air, and as a result, a stable long-term thermal image can be obtained. Will be able to do things.
ま 第 8図のように チョ ッパー 2 0 aとして焦電型熱検 出素子群 1 5およびレンズ 1 6の外側に固定したものを用いる ことにより、 回転軸 1 8を中心とする回転機構のみの簡単なシ ステムで 2次元熱画像を得ることができる。  As shown in Fig. 8, the chopper 20a is fixed to the outside of the pyroelectric heat detection element group 15 and the lens 16 so that only the rotation mechanism around the rotation axis 18 is used. A two-dimensional thermal image can be obtained with a simple system.
まナ 第 9図のように焦電型熱検出素子群 1 5およびレンズ 1 6の外側に回転型チョ ッパー 2 0 bを配置し このチヨ ッパ - 2 0 bを十分な速度で回転することにより、 死角のない 2次 元熱画像を得ることができる。  As shown in Fig. 9, a rotary chopper 20b is placed outside the pyroelectric heat detecting element group 15 and the lens 16 and this chopper-20b is rotated at a sufficient speed. Thus, a two-dimensional thermal image without blind spots can be obtained.
また第 1 0図のような構成にすれ チョ ッパー 2 0 aの位 置では焦電型熱検出素子群 1 5の視野は小さく絞られているた ^ チョ ッパー 2 0 aを小型化できる。  Further, in the configuration as shown in FIG. 10, the field of view of the pyroelectric heat detection element group 15 is narrowed down at the position of the chopper 20a, so that the chopper 20a can be downsized.
さらに 第 1 1図のように可動式チョ ッパー 2 0 bを焦電型 熱検出素子群および光学系とともに回転させる方式を取ること によりチョ ッパー 2 0 bを小型化でき、 システム全体も小型化 できる。 Furthermore, as shown in Fig. 11, the movable chopper 20 b is The chopper 20b can be reduced in size by employing a method of rotating together with the heat detection element group and the optical system, and the entire system can also be reduced in size.
ま 第 1 2図のように可動式チョ ッパー 2 0 dの可動範囲 を焦電型熱検出素子群 1 5 に割り当てられた視野内に限定する ことにより、 可動式チョ ッパー 2 0 dを小型化できる。  By limiting the movable range of the movable chopper 20d to the field of view assigned to the pyroelectric heat detection element group 15 as shown in Fig. 12, the movable chopper 20d can be downsized. it can.
なお 第 9図において可動式チョ ッパーと して回転式チヨ ッ パー 2 O bを用いた力 第 8図の格子形状を有する可動式チヨ ッパー 2 0 a、 または第 1 2図の開閉式チョ ッパー 1 0 dを いても同様の効果が得られる。  In FIG. 9, a force using a rotary chopper 2 Ob as a movable chopper is a movable chopper 20a having a lattice shape shown in FIG. 8, or an openable chopper shown in FIG. The same effect can be obtained even with 10 d.
また第 1 0図において、 固定式チョ ッパー 2 0 aの代わりに 可動式チョ ッパーを用いても同様の ¾果が得られる。  Also, in FIG. 10, a similar effect can be obtained by using a movable chopper instead of the fixed chopper 20a.
また第 1 1図において回転式チョ ッパー 2 0 bの代わりに格 子状チョ ッパーを並進運動させる方式のチョ ッパーや、 第 1 1 図のような開閉式のチヨ ッパーを焦電型熱検出素子群および光 学系の回転軸に固定した場合も同様の效果が得られる。  In addition, a chopper that translates a grid-shaped chopper in place of the rotary chopper 20b in Fig. 11 or an openable chopper as shown in Fig. 11 is used as a pyroelectric heat detecting element. The same effect can be obtained when fixed to the rotation axis of the group and the optical system.
産業上の利用分翳 Industrial use shadow
本発明によれば 1次元に配置された焦電型熱検出素子群を回 転させることにより、 比較的簡単なシステム構成で熱画像が検 出でき ¾o  According to the present invention, a thermal image can be detected with a relatively simple system configuration by rotating a group of pyroelectric heat detection elements arranged one-dimensionally.
また回転による熱画像検出時間を略 1秒 1内とすることによ り人体の位 S 挙動を精度よく検出できる。  In addition, the position S behavior of the human body can be accurately detected by setting the thermal image detection time due to rotation to within approximately 1 second 1.
さらに焦電薄膜の焦電型熱検出素子群を使用することにより 熱画像の応答速度を向上することができ、 さ らにシステムの小 型化が図れる。 また回転方向を水平方向とすることにより通常の場合システ ムの小型化あるいは精度向上に寄与することができる。 Furthermore, by using a pyroelectric thin-film pyroelectric heat detection element group, the response speed of a thermal image can be improved, and the system can be downsized. In addition, by setting the rotation direction to the horizontal direction, it is possible to contribute to miniaturization of the system or improvement of the accuracy in a normal case.
また光学系を 1系統にすることにより、 システムの小型化 各素子の受持ち視野角の精度向上が図れる。  In addition, by using one optical system, the size of the system can be reduced. The accuracy of the viewing angle of each element can be improved.
また透過型のレンズを使用することにより、 さらに光学系の 小型化が図れる。  Further, by using a transmission lens, the size of the optical system can be further reduced.
また反射型のレンズにより、 容易にしかも安価に光学系が構 成できる。  In addition, an optical system can be easily and inexpensively constituted by a reflection type lens.
ま 本発明によれば 1次元に配置された焦電型熱検出素 子群と光学系を一体として回転させる方式を用いることにより、 焦電型熱検出素子群と光学系の位置関係が走査中常に変わらな いた^ 光学軸のずれがなく、 視野全体を一様の感度で検出で きる。 また光学系を小型化でき、 システム全体も小型化するこ とができ δο  Further, according to the present invention, by using a method in which the pyroelectric heat detection element group and the optical system arranged one-dimensionally and the optical system are integrally rotated, the positional relationship between the pyroelectric heat detection element group and the optical system is scanned. There is no change in the optical axis, and the entire field of view can be detected with uniform sensitivity. In addition, the optical system can be downsized, and the entire system can be downsized.
さらに光学系として非円形のレンズを用いることにより、 シ ステムをいつそう小型化できる。  Furthermore, by using a non-circular lens as the optical system, the system can be reduced in size at any time.
さらに焦電型熱検出素子群とレンズの間を密閉した構造にす ることにより、 空気中のほこりや煙等の汚れによる検出感度の 低下を低減でき、 システムを長期間安定して使用することがで きる。  Furthermore, by using a closed structure between the pyroelectric heat detection element group and the lens, it is possible to reduce the reduction in detection sensitivity due to dirt and dust in the air, and to use the system stably for a long period of time. I can do it.
また固定式のチョ ッパーを用いることにより、 チヨ ッパー部 分の構成を簡単にすることができる。  In addition, the configuration of the chopper can be simplified by using a fixed chopper.
また可動式のチヨ ッパーを用いることにより、 得られる 2次 元熱画像の死角をなくすことができる。  The use of a movable chopper can eliminate blind spots in the obtained two-dimensional thermal image.
また焦電型熱検出素子群と光学系の間にチョ ッパーを配置す ることにより、 チョ ッパーはレンズで絞られた視野をカバーす ればよく なり、 チヨ ッパーを小型化することができる。 In addition, a chopper is placed between the pyroelectric heat detection element group and the optical system. As a result, the chopper only needs to cover the field of view narrowed by the lens, and the chopper can be downsized.
さ らに焦電型熱検出素子群および光学系とともに可動式チヨ ッパーを回転させることにより、 チヨ ッパーを小型化でき、 シ ステムも小型化でき る。  Further, by rotating the movable chopper together with the pyroelectric heat detection element group and the optical system, the chopper can be downsized and the system can be downsized.
さ らに可動式チョ ッパーの可動範囲を焦電型熱検出素子群に 割り当てられた視野内に限定することによりチョ ッパーを小型 化でき、 システム全体も小型化できる。  Furthermore, by limiting the movable range of the movable chopper within the field of view assigned to the pyroelectric heat detection element group, the chopper can be downsized, and the entire system can be downsized.

Claims

言奢 求 の 範 囲 Scope of request
1. 直線軸上に一次元に配置された複数の焦電型熱検出素子群 と、 前記直線軸に平行あるいは一定の角度だけ傾斜させ た回転軸とを持^ 前記回転軸を中心として前記焦電型熱 検出素子群を回転させて二次元画像を得る熱画像検出装 ¾> 1. A plurality of pyroelectric heat detection elements arranged one-dimensionally on a linear axis, and a rotation axis parallel to or inclined at a certain angle to the linear axis. Thermal image detection device that obtains a two-dimensional image by rotating an electric heat detection element group ¾>
2. 回転による熱画像検出時間を概ね 1秒以内とした請求項 1 記載の熱画像検出装 ¾ 2. The thermal image detection device according to claim 1, wherein the thermal image detection time due to rotation is approximately within 1 second.
3. 焦電型熱検出素子群には焦電薄膜を用いた請求項 1記載の 熱画像検出装氍  3. The thermal image detection device according to claim 1, wherein a pyroelectric thin film is used for the pyroelectric heat detection element group.
4. 回転方向を略水平方向とした請求項 1記載の熱画像検出装
Figure imgf000014_0001
4. The thermal image detection device according to claim 1, wherein the rotation direction is substantially horizontal.
Figure imgf000014_0001
5. 焦電型熱検出素子群の各素子にそれぞれ独立した視野角を 割り当てた 1系統の光学系を有する請 項 1記載の熱画像 検出装 ¾  5. The thermal image detection device according to claim 1, wherein the thermal image detection device has one optical system in which the viewing angle is assigned to each element of the pyroelectric heat detection element group.
6. 透過型の光学系を用いた請求項 5記載の熱画像検出装 So6. The thermal image detection device So according to claim 5, wherein a transmission type optical system is used.
7. 反射型の光学系を用いた請求項 5記載の熱画像検出装 7. The thermal image detection device according to claim 5, wherein a reflection type optical system is used.
8. 直線軸上に 1次元に配置された複数の焦電型熱検出素子群 と、 前記焦電型熱検出素子群と一体となった光学系と、 前 記直線軸に平行または一定の角度だけ傾斜した回転軸を中 心として前記焦電型熱検出素子群と前記光学系を回転させ て 2次元画像を得る熱画像検出装 ¾  8. A plurality of pyroelectric heat detection element groups arranged one-dimensionally on a linear axis, an optical system integrated with the pyroelectric heat detection element group, and a parallel or fixed angle to the linear axis A thermal image detection device that obtains a two-dimensional image by rotating the pyroelectric heat detection element group and the optical system around a rotation axis that is only inclined at the center.
9. 光学系として非円形のレンズを用いた請求項 8記載の熱画 像検出装 ^  9. The thermal image detecting device according to claim 8, wherein a non-circular lens is used as the optical system.
10. 焦電型熱検出素子群と前記光学菜の間を密閉した構造とし た誇求項 8.記載の熱画像検出装 S 10. The thermal image detecting device S according to claim 8, wherein the pyroelectric heat detecting element group and the optical dish are sealed.
1 1. 焦電型熟検出素子群と前記光学系の外部に固定したチョ ッ パーを持つ請求項 8記載の熱画像検出装鳳 11. The thermal image detecting device according to claim 8, further comprising a pyroelectric type detection element group and a chopper fixed outside the optical system.
12. 焦電型熱検出素子群と前記光学系の外部に可動式のチヨ ッ パーを持つ請求項 8記載の熱画像検出装 S>  12. The thermal image detection device S> according to claim 8, further comprising a pyroelectric heat detection element group and a movable chopper outside the optical system.
i a 焦電型熱検出素子群と前記光学系との間にチョ ッパーを持 つ請求項 8記載の熱画像検出装 9. The thermal image detection device according to claim 8, further comprising a chopper between the pyroelectric heat detection element group and the optical system.
1 可動式チョ ッパ ーを前記回転軸に固定した請求項 1 2記載 の熱画像検出装 & 3.The thermal image detecting device according to claim 1, wherein a movable chopper is fixed to said rotating shaft.
15. 可動式チョ ッパーの可動範囲を前記焦電型熱検出素子群に 割り当てられた視野内に限定した請求項 1 4記載の熱画像 検出装 a 15. The thermal image detection device a according to claim 14, wherein the movable range of the movable chopper is limited within a field of view assigned to the pyroelectric heat detection element group.
PCT/JP1992/000549 1991-06-24 1992-04-27 Device for sensing thermal image WO1993000576A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002090115A CA2090115C (en) 1991-06-24 1992-04-27 Thermal image detection apparatus
DE4292011A DE4292011C2 (en) 1991-06-24 1992-04-27 Thermal image sensor on rotary shaft
KR93700477A KR970003680B1 (en) 1991-06-24 1993-02-19 Thermal image detection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3151415A JPH04372828A (en) 1991-06-24 1991-06-24 Thermal-image detecting apparatus
JP3/151415 1991-06-24

Publications (1)

Publication Number Publication Date
WO1993000576A1 true WO1993000576A1 (en) 1993-01-07

Family

ID=15518117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000549 WO1993000576A1 (en) 1991-06-24 1992-04-27 Device for sensing thermal image

Country Status (5)

Country Link
JP (1) JPH04372828A (en)
KR (1) KR970003680B1 (en)
CA (1) CA2090115C (en)
DE (2) DE4292011T1 (en)
WO (1) WO1993000576A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858531A (en) * 1996-10-24 1999-01-12 Bio Syntech Method for preparation of polymer microparticles free of organic solvent traces
US11314971B2 (en) 2017-09-27 2022-04-26 3M Innovative Properties Company Personal protective equipment management system using optical patterns for equipment and safety monitoring

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9448118B2 (en) 2013-07-31 2016-09-20 Panasonic Intellectual Property Corporation Of America Sensor assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158524A (en) * 1979-05-28 1980-12-10 Kureha Chem Ind Co Ltd Pyroelectric image sensor
JPS61173124A (en) * 1985-01-28 1986-08-04 Matsushita Electric Ind Co Ltd Pyroelectric type thermal image device
JPS61186826A (en) * 1985-02-14 1986-08-20 Matsushita Electric Ind Co Ltd Thermal imaging device
JPS61290330A (en) * 1985-06-18 1986-12-20 Matsushita Electric Ind Co Ltd Pyroelectric type heat image apparatus
JPS6216074B2 (en) * 1981-01-27 1987-04-10 Mitsubishi Electric Corp
JPH0443925A (en) * 1990-06-11 1992-02-13 Matsushita Electric Ind Co Ltd Pyroelectric infrared rays detector

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4121454A (en) * 1976-12-03 1978-10-24 Monitek, Inc. Clamp on electromagnetic flow transducer
JPS5620479A (en) * 1979-07-30 1981-02-26 Sofuia Kk Pinball machine
JPS57168045A (en) * 1981-04-08 1982-10-16 Toyota Motor Corp Air-fuel-ratio control device for internal combustion engine
JPH073362B2 (en) * 1984-06-14 1995-01-18 株式会社村田製作所 One-dimensional pyroelectric sensor array
DE3616374A1 (en) * 1986-05-15 1987-11-19 Siemens Ag PYRODETECTOR, SUITABLY SUITABLE FOR DETECTING MOTION AND DIRECTIONAL
DE3750278D1 (en) * 1986-06-20 1994-09-01 Lehmann Martin Method for the contactless measurement of a temperature of a body and arrangement therefor.
GB8913450D0 (en) * 1989-06-12 1989-08-02 Philips Electronic Associated Electrical device manufacture,particularly infrared detector arrays

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158524A (en) * 1979-05-28 1980-12-10 Kureha Chem Ind Co Ltd Pyroelectric image sensor
JPS6216074B2 (en) * 1981-01-27 1987-04-10 Mitsubishi Electric Corp
JPS61173124A (en) * 1985-01-28 1986-08-04 Matsushita Electric Ind Co Ltd Pyroelectric type thermal image device
JPS61186826A (en) * 1985-02-14 1986-08-20 Matsushita Electric Ind Co Ltd Thermal imaging device
JPS61290330A (en) * 1985-06-18 1986-12-20 Matsushita Electric Ind Co Ltd Pyroelectric type heat image apparatus
JPH0443925A (en) * 1990-06-11 1992-02-13 Matsushita Electric Ind Co Ltd Pyroelectric infrared rays detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858531A (en) * 1996-10-24 1999-01-12 Bio Syntech Method for preparation of polymer microparticles free of organic solvent traces
US11314971B2 (en) 2017-09-27 2022-04-26 3M Innovative Properties Company Personal protective equipment management system using optical patterns for equipment and safety monitoring
US11682185B2 (en) 2017-09-27 2023-06-20 3M Innovative Properties Company Personal protective equipment management system using optical patterns for equipment and safety monitoring

Also Published As

Publication number Publication date
DE4292011T1 (en) 1993-07-15
JPH04372828A (en) 1992-12-25
DE4292011C2 (en) 1997-09-04
CA2090115A1 (en) 1992-12-25
KR970003680B1 (en) 1997-03-21
CA2090115C (en) 1999-06-22

Similar Documents

Publication Publication Date Title
EP0582941B1 (en) A temperature distribution measurement apparatus
JP2677128B2 (en) Thermal image detector
JP2760146B2 (en) Thermal image detector
EP1045233A2 (en) Thermal functional device capable of high-speed response and a method of driving the device
WO1993000576A1 (en) Device for sensing thermal image
JP2970249B2 (en) Thermal image detector
JPH09304188A (en) Infrared detector
JPH06147999A (en) Instrument and method for measuring temperatuee distribution
JPH0510825A (en) Disaster detecting device with thermal image detecting means
JPH07203283A (en) Detector for thermal/visual picture
JPH0694539A (en) Thermal image detector
JPH0862049A (en) Thermal image detector
JPH08327317A (en) Heat source detector
JPH0886884A (en) Heat-radiating body detector
JP2644822B2 (en) Infrared detector
JPH0875545A (en) Pyroelectric infrared detector
JPH0694534A (en) Thermal image detector
US3348058A (en) Radiation detection system having wide field of view
Mader et al. Pyroelectric infrared sensor arrays based on the polymer PVDF
JPH06194136A (en) Thermal image detecting device
JPH0694532A (en) Thermal image detector and field of view outer shell member therefor
JP3422619B2 (en) Pyroelectric infrared sensor and device
JPH09159531A (en) Temperature detecting device
JPH06101380A (en) Heat image sensing device
JPS63298127A (en) Image sensing camera using thermal infrared rays

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA DE KR US

WWE Wipo information: entry into national phase

Ref document number: 2090115

Country of ref document: CA

RET De translation (de og part 6b)

Ref document number: 4292011

Country of ref document: DE

Date of ref document: 19930715

WWE Wipo information: entry into national phase

Ref document number: 4292011

Country of ref document: DE