JPH04372828A - Thermal-image detecting apparatus - Google Patents

Thermal-image detecting apparatus

Info

Publication number
JPH04372828A
JPH04372828A JP3151415A JP15141591A JPH04372828A JP H04372828 A JPH04372828 A JP H04372828A JP 3151415 A JP3151415 A JP 3151415A JP 15141591 A JP15141591 A JP 15141591A JP H04372828 A JPH04372828 A JP H04372828A
Authority
JP
Japan
Prior art keywords
chopper
element group
pyroelectric
lens
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3151415A
Other languages
Japanese (ja)
Inventor
Tatsuo Nakayama
達雄 中山
Takashi Deguchi
隆 出口
Ryoichi Takayama
良一 高山
Yoshihiro Tomita
佳宏 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3151415A priority Critical patent/JPH04372828A/en
Priority to CA002090115A priority patent/CA2090115C/en
Priority to DE4292011T priority patent/DE4292011T1/de
Priority to DE4292011A priority patent/DE4292011C2/en
Priority to PCT/JP1992/000549 priority patent/WO1993000576A1/en
Publication of JPH04372828A publication Critical patent/JPH04372828A/en
Priority to KR93700477A priority patent/KR970003680B1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • G01J5/0805Means for chopping radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/02Scanning details of television systems; Combination thereof with generation of supply voltages by optical-mechanical means only
    • H04N3/08Scanning details of television systems; Combination thereof with generation of supply voltages by optical-mechanical means only having a moving reflector
    • H04N3/09Scanning details of television systems; Combination thereof with generation of supply voltages by optical-mechanical means only having a moving reflector for electromagnetic radiation in the invisible region, e.g. infrared

Abstract

PURPOSE:To make an optical system compact and to obtain a two-dimensional thermal-image detecting system having the compact, simple constitution by turning the group of pyroelectric heat detecting elements arranged on a straight line in one dimension and the optical system as a unitary body. CONSTITUTION:A group 5 of a plurality of pyroelectric heat detecting elements arranged on a straight line, a lens 6 and a structure 7 for forming the unitary body of the detecting element group 5 and the lens 6 are provided. A detecting apparatus is formed of these parts and a rotary shaft 8 for turning these parts. The position relationship between the lens 6 and the detecting element group 5 is not changed during the scanning by forming the unitary body of the detecting element group 5 and the lens 6. Therefore, the optical axis is not deviated, and the entire field of view can be detected at the uniform sensitivity. The lens 6 can be made compact by forming the unitary body. The two-dimensional thermal-image detecting system, which is turned with the rotary skit 8 as the center and can obtain the two-dimensional thermal image, can be made compact.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は家庭内の居室の温度分布
及び人体の挙動検出など熱画像による輻射温度検出およ
び人体挙動検出に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to radiant temperature detection and human body behavior detection using thermal images, such as temperature distribution in a room in a home and human body behavior detection.

【0002】0002

【従来の技術】従来、非接触で温度を測定する方式とし
ては量子型赤外線センサによるものと熱型赤外線センサ
があった。量子型赤外線センサは感度が高く、応答速度
は速いが、冷却が必要であり(−200℃程度)、民生
用には不向きである。一方、熱型赤外線センサは比較的
感度は低く、応答速度は遅いが冷却が不要なため民生市
場では実用化されている。
2. Description of the Related Art Conventionally, methods for measuring temperature without contact include methods using quantum infrared sensors and thermal infrared sensors. Quantum infrared sensors have high sensitivity and fast response speed, but require cooling (about -200° C.), making them unsuitable for consumer use. On the other hand, thermal infrared sensors have relatively low sensitivity and slow response speed, but because they do not require cooling, they have been put into practical use in the consumer market.

【0003】熱型赤外線センサの中では焦電効果を利用
した焦電型赤外線センサがよく使われている。焦電型赤
外線センサは微分変化出力特性を持っており、入射温度
が変化したときのみ出力を発生する。この焦電型赤外線
センサの前を人体が横切ったとき、焦電型赤外線センサ
には人体の放射温度が出現,消滅,出現,消滅,…とい
う時間変化入力として入力される。したがって焦電型赤
外線センサの出力はこの時間変化に同期して出力される
Among thermal infrared sensors, pyroelectric infrared sensors that utilize the pyroelectric effect are often used. Pyroelectric infrared sensors have differential output characteristics and generate output only when the incident temperature changes. When a human body crosses in front of this pyroelectric infrared sensor, the radiant temperature of the human body is input to the pyroelectric infrared sensor as a time-varying input of appearance, disappearance, appearance, disappearance, and so on. Therefore, the output of the pyroelectric infrared sensor is output in synchronization with this time change.

【0004】また2次元熱画像を得るための手段として
は焦電型赤外線センサを2次元に配置する方式も考えら
れていた。
[0004] Furthermore, as a means for obtaining a two-dimensional thermal image, a method in which pyroelectric infrared sensors are arranged two-dimensionally has also been considered.

【0005】[0005]

【発明が解決しようとする課題】焦電型赤外線センサを
2次元に配置するとシステムは複雑なものとなってしま
う。
Problem to be Solved by the Invention If the pyroelectric infrared sensors are arranged two-dimensionally, the system becomes complicated.

【0006】また、直線上に1次元に配置された焦電型
熱検出素子群を走査する方式によるシステムを構成する
場合、光学系が焦電型熱検出素子群の外部にあると、光
学系は走査範囲全域をカバーしなければならないため、
大きなものにならざるを得ないし、たとえ走査範囲全域
をカバーしても光学軸がずれることにより視野全体の感
度が一様にならない等の問題がある。
Furthermore, when configuring a system that scans a group of pyroelectric heat detecting elements arranged one-dimensionally on a straight line, if the optical system is located outside the group of pyroelectric heat detecting elements, the optical system must cover the entire scanning range, so
It has to be large, and even if the entire scanning range is covered, there are problems such as the sensitivity of the entire field of view is not uniform due to deviation of the optical axis.

【0007】本発明は、焦電型赤外線センサを用いた小
型で比較的簡単な構成の2次元熱画像を検出するシステ
ムを提供するものである。
The present invention provides a system for detecting two-dimensional thermal images using a pyroelectric infrared sensor, which is small and has a relatively simple configuration.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に本発明は、直線軸上に1次元に配置された複数の焦電
型熱検出素子群と、前記焦電型熱検出素子群と一体とな
った光学系と、前記直線軸に平行または一定の角度だけ
傾斜した回転軸を持ち、一体となった前記焦電型熱検出
素子群および前記光学系を前記回転軸を中心として回転
させて2次元熱画像を得るものである。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a plurality of pyroelectric heat detection element groups arranged one-dimensionally on a linear axis, and a plurality of pyroelectric heat detection element groups arranged one-dimensionally on a linear axis. It has an integrated optical system and a rotation axis parallel to the linear axis or inclined at a certain angle, and the integrated pyroelectric heat detection element group and the optical system are rotated about the rotation axis. It is used to obtain two-dimensional thermal images.

【0009】また本発明は、前記光学系として非円形レ
ンズを用いたものである。また本発明は、前記焦電型熱
検出素子群と前記光学系の間を密閉した構造としたもの
である。
Further, in the present invention, a non-circular lens is used as the optical system. Further, the present invention provides a structure in which a space between the pyroelectric heat detection element group and the optical system is sealed.

【0010】また本発明は、前記焦電型熱検出素子群と
前記光学系の外部に固定したチョッパーを用いたもので
ある。
The present invention also uses a chopper fixed outside the pyroelectric heat detection element group and the optical system.

【0011】また本発明は、前記焦電型熱検出素子群と
前記光学系の外部に可動式のチョッパーを用いたもので
ある。
Further, the present invention uses a movable chopper outside the pyroelectric heat detection element group and the optical system.

【0012】また本発明は、前記焦電型熱検出素子群と
前記光学系の間にチョッパーを配置したものである。
Further, in the present invention, a chopper is disposed between the pyroelectric heat detection element group and the optical system.

【0013】また本発明は、前記可動式チョッパーを前
記回転軸に固定し前記焦電型熱検出素子群と前記光学系
とともに回転させるものである。
Further, in the present invention, the movable chopper is fixed to the rotating shaft and rotated together with the pyroelectric heat detection element group and the optical system.

【0014】また本発明は、可動式チョッパーの可動範
囲を前記焦電型熱検出素子群に割り当てられた視野内に
限定したものである。
Further, in the present invention, the movable range of the movable chopper is limited to the field of view assigned to the group of pyroelectric heat detection elements.

【0015】[0015]

【作用】本発明は、直線上に1次元に配置された焦電型
熱検出素子群と光学系を一体として回転させることによ
り、光学系を小型化し、小型かつ簡単な構成の2次元熱
画像検出システムを提供するものである。
[Operation] The present invention reduces the size of the optical system by rotating the optical system and a group of pyroelectric thermal detection elements arranged one-dimensionally on a straight line, and provides a two-dimensional thermal image with a small and simple configuration. A detection system is provided.

【0016】[0016]

【実施例】以下実施例における2次元熱画像検出装置に
ついて図1〜6を用いて説明する。
[Embodiment] A two-dimensional thermal image detection apparatus in an embodiment will be described below with reference to FIGS. 1 to 6.

【0017】図1において、5は焦電型熱検出素子群で
あり、5a〜5eは焦電型熱検出素子である。7は焦電
型熱検出素子群5とレンズ6を一体とするための構造で
焦電型熱検出素子群5はレンズ6の光軸20上に配置さ
れている。
In FIG. 1, 5 is a group of pyroelectric heat detection elements, and 5a to 5e are pyroelectric heat detection elements. Reference numeral 7 denotes a structure for integrating the pyroelectric heat detection element group 5 and the lens 6, and the pyroelectric heat detection element group 5 is arranged on the optical axis 20 of the lens 6.

【0018】図2は非円形レンズの一例で、円形レンズ
を一部切りとった形のレンズを用いた場合の光軸方向正
面からみたレンズと焦電型熱検出素子群の位置関係を示
したものである。5は焦電型熱検出素子群であり、焦電
型熱検出素子群5の視野をカバーするのに必要な大きさ
を持つ非円形レンズ6aが手前に配置され、図示されて
いない焦電型熱検出素子群5とレンズ6を一体とする構
造に固定されて図1と同様のシステムを構成している。 破線は円形レンズを用いた場合のレンズの大きさを示し
ている。
FIG. 2 is an example of a non-circular lens, and shows the positional relationship between the lens and the pyroelectric heat detection element group when viewed from the front in the optical axis direction when a partially cut-off circular lens is used. It is. Reference numeral 5 denotes a pyroelectric heat detection element group, in which a noncircular lens 6a having a size necessary to cover the field of view of the pyroelectric heat detection element group 5 is arranged in front, and a pyroelectric type The thermal detection element group 5 and the lens 6 are fixed in an integrated structure to constitute a system similar to that shown in FIG. The broken line indicates the size of the lens when a circular lens is used.

【0019】図3において、10aは焦電型熱検出素子
群5およびレンズ6の外側に固定したチョッパーであり
、その形状は格子になっている。20はレンズの光軸で
ある。
In FIG. 3, 10a is a chopper fixed to the outside of the pyroelectric heat detection element group 5 and the lens 6, and its shape is a lattice. 20 is the optical axis of the lens.

【0020】図4において10bは、焦電型熱検出素子
群5およびレンズ6の外側に設置した回転式のチョッパ
ーであり、チョッパーの回転軸21は焦電型熱検出素子
群5およびレンズ6の外部に固定されている。
In FIG. 4, reference numeral 10b is a rotary chopper installed outside the pyroelectric heat detection element group 5 and lens 6. Fixed externally.

【0021】図5において10aは焦電型熱検出素子群
5及びレンズ6の間に設置した固定式のチョッパーであ
る。
In FIG. 5, 10a is a fixed chopper installed between the pyroelectric heat detection element group 5 and the lens 6.

【0022】図6において、回転式チョッパー10bの
回転軸21は焦電型熱検出素子群5およびレンズ6の回
転軸8に固定されている。
In FIG. 6, a rotating shaft 21 of a rotary chopper 10b is fixed to a rotating shaft 8 of a pyroelectric heat detection element group 5 and a lens 6. As shown in FIG.

【0023】図7において25は焦電型熱検出素子群5
の視野を与える窓、10dは窓25を開閉する可動型チ
ョッパーであり、ともに図に記載されていない焦電型熱
検出素子群5およびレンズ6を一体とする構造に固定さ
れている。
In FIG. 7, reference numeral 25 denotes a pyroelectric heat detection element group 5.
A window 10d that provides a field of view is a movable chopper that opens and closes the window 25, and is fixed to a structure that integrates a pyroelectric heat detection element group 5 and a lens 6 (not shown in the figure).

【0024】図1、図2に示した構成全体は、回転軸8
を中心にして回転することによって2次元熱画像を得る
ものである。
The entire configuration shown in FIGS. 1 and 2 has a rotating shaft 8
A two-dimensional thermal image is obtained by rotating around the center.

【0025】図3においては焦電型熱検出素子群5およ
びレンズ6を一体とする構造7を回転軸8を中心に回転
させることにより、その視野が固定式のチョッパー10
aを走査し、微分出力信号を得る。
In FIG. 3, by rotating a structure 7 that integrates a pyroelectric heat detection element group 5 and a lens 6 about a rotation axis 8, the field of view is changed to a fixed type chopper 10.
a and obtain a differential output signal.

【0026】また、図4においてチョッパー10bは回
転軸8を中心とする回転速度とは独立の十分な回転速度
で回転している。
Further, in FIG. 4, the chopper 10b is rotating at a sufficient rotational speed independent of the rotational speed about the rotating shaft 8.

【0027】図5においては焦電型熱検出素子群5とレ
ンズ6の間に固定式チョッパー10aをはさみながら回
転軸8を中心に焦電型熱検出素子群5およびレンズ6が
一体となって回転する。
In FIG. 5, the pyroelectric heat detecting element group 5 and lens 6 are integrated around the rotating shaft 8 with a fixed chopper 10a sandwiched between the pyroelectric heat detecting element group 5 and lens 6. Rotate.

【0028】図6において回転型チョッパー10bは焦
電型熱検出素子群5およびレンズ6とともに回転軸8を
中心に回転しながら、チョッピンクを行なう。
In FIG. 6, the rotary chopper 10b performs chopping while rotating around the rotation axis 8 together with the pyroelectric heat detection element group 5 and the lens 6.

【0029】図7においてチョッパー10dは往復運動
をして窓25を開閉する。図1のように焦電型熱検出素
子群とレンズを一体とすることによりレンズと焦電型熱
検出素子群の位置関係は走査中変わらず、従って光学軸
のずれがなく、視野全体を一様の感度で検出できる。ま
た、一体としないシステムよりもレンズを小さなものに
でき、システム全体も小型化できる。
In FIG. 7, the chopper 10d moves back and forth to open and close the window 25. By integrating the pyroelectric heat detection element group and the lens as shown in Figure 1, the positional relationship between the lens and the pyroelectric heat detection element group does not change during scanning, so there is no deviation of the optical axis and the entire field of view is uniform. can be detected with different sensitivities. Additionally, the lens can be made smaller than in a system that is not integrated, and the overall system can be made smaller.

【0030】さらに図2のようにレンズを非円形にする
ことにより、レンズを小さく、したがってシステムを小
型化することができる。
Furthermore, by making the lens non-circular as shown in FIG. 2, the lens and therefore the system can be made smaller.

【0031】さらに、図1において焦電型熱検出素子群
とレンズの間を密閉することにより、空気中のほこりや
煙などによる汚れを低減でき、その結果長期間安定して
熱画像を得ることができるようになる。
Furthermore, by sealing the space between the pyroelectric heat detection element group and the lens in FIG. 1, contamination caused by dust and smoke in the air can be reduced, and as a result, thermal images can be obtained stably for a long period of time. You will be able to do this.

【0032】また、図3のように、チョッパーとして焦
電型熱検出素子群およびレンズの外側に固定したものを
用いることにより、回転軸8を中心とする回転機構のみ
の簡単なシステムで2次元熱画像を得ることができる。
Furthermore, as shown in FIG. 3, by using a group of pyroelectric heat detection elements and something fixed outside the lens as a chopper, two-dimensional detection can be achieved with a simple system consisting only of a rotation mechanism centered on the rotation axis 8. A thermal image can be obtained.

【0033】また、図4のように焦電型熱検出素子群お
よびレンズの外側に回転型チョッパーを配置し、このチ
ョッパーを十分な速度で回転することにより、死角のな
い2次元熱画像を得ることができる。
Furthermore, as shown in FIG. 4, a rotary chopper is placed outside the pyroelectric heat detection element group and the lens, and by rotating this chopper at a sufficient speed, a two-dimensional thermal image without blind spots can be obtained. be able to.

【0034】また図5のような構成にすれば、チョッパ
ーの位置では焦電型熱検出素子群の視野は小さく絞られ
ているため、チョッパーを小型化できる。
Furthermore, with the configuration shown in FIG. 5, the field of view of the pyroelectric heat detection element group is narrowed down at the chopper position, so the chopper can be made smaller.

【0035】さらに、図6のように可動式チョッパーを
焦電型熱検出素子群および光学系とともに回転させる方
式を取ることによりチョッパーを小型化でき、システム
全体も小型化できる。
Furthermore, by adopting a system in which the movable chopper is rotated together with the pyroelectric heat detection element group and the optical system as shown in FIG. 6, the chopper can be made smaller, and the entire system can also be made smaller.

【0036】また、図7のように可動式チョッパーの可
動範囲を焦電型熱検出素子群に割り当てられた視野内に
限定することにより、可動式チョッパーを小型化できる
Furthermore, by limiting the movable range of the movable chopper to the field of view assigned to the pyroelectric heat detection element group as shown in FIG. 7, the movable chopper can be made smaller.

【0037】なお、図4において可動式チョッパーとし
て回転式チョッパーを用いたが、図3の10aのような
格子形状を有する可動式チョッパー、または図7の10
dのような開閉式チョッパーを用いても同様の効果が得
られる。
Although a rotary chopper is used as the movable chopper in FIG. 4, a movable chopper having a lattice shape such as 10a in FIG. 3 or 10 in FIG.
A similar effect can be obtained by using an open/close type chopper such as d.

【0038】また図5において、固定式チョッパーの代
わりに可動式チョッパーを用いても同様の効果が得られ
る。
Further, in FIG. 5, the same effect can be obtained by using a movable chopper instead of the fixed chopper.

【0039】また図6において回転式チョッパーの代わ
りに格子状チョッパーを並進運動させる方式のチョッパ
ーや、図7のような開閉式のチョッパーを焦電型熱検出
素子群および光学系の回転軸に固定した場合も同様の効
果が得られる。
In addition, in FIG. 6, instead of the rotary chopper, there is a type of chopper in which a lattice chopper is moved in translation, or an open/close type chopper as shown in FIG. 7 is fixed to the rotation axis of the pyroelectric heat detection element group and the optical system. A similar effect can be obtained if

【0040】[0040]

【発明の効果】本発明によれば、1次元に配置された焦
電型熱検出素子群と光学系を一体として回転させる方式
を用いることにより、焦電型熱検出素子群と光学系の位
置関係が走査中常に変わらないため、光学軸のずれがな
く、視野全体を一様の感度で検出できる。また光学系を
小型化でき、システム全体も小型化することができる。
According to the present invention, the positions of the pyroelectric heat detection element group and the optical system can be adjusted by using a method of rotating the pyroelectric heat detection element group and the optical system arranged in one dimension as one unit. Since the relationship does not change during scanning, there is no deviation of the optical axis, and the entire field of view can be detected with uniform sensitivity. Furthermore, the optical system can be downsized, and the entire system can also be downsized.

【0041】さらに光学系として非円形のレンズを用い
ることにより、システムをいっそう小型化できる。
Furthermore, by using a non-circular lens as the optical system, the system can be further miniaturized.

【0042】さらに焦電型熱検出素子群とレンズの間を
密閉した構造にすることにより、空気中のほこりや煙等
の汚れによる検出感度の低下を低減でき、システムを長
期間安定して使用することができる。
Furthermore, by creating a sealed structure between the pyroelectric heat detection element group and the lens, it is possible to reduce the decrease in detection sensitivity due to dirt such as dust and smoke in the air, and the system can be used stably for a long period of time. can do.

【0043】また固定式のチョッパーを用いることによ
り、チョッパー部分の構成を簡単にすることができる。
Furthermore, by using a fixed chopper, the configuration of the chopper portion can be simplified.

【0044】また可動式のチョッパーを用いることによ
り、得られる2次元熱画像の死角をなくすことができる
Furthermore, by using a movable chopper, blind spots in the obtained two-dimensional thermal image can be eliminated.

【0045】また焦電型熱検出素子群と光学系の間にチ
ョッパーを配置することにより、チョッパーはレンズで
絞られた視野をカバーすればよくなり、チョッパーを小
型化することができる。
Furthermore, by arranging the chopper between the pyroelectric heat detection element group and the optical system, the chopper only needs to cover the field of view narrowed down by the lens, and the chopper can be made smaller.

【0046】さらに焦電型熱検出素子群および光学系と
ともに可動式チョッパーを回転させることにより、チョ
ッパーを小型化でき、システムも小型化できる。
Furthermore, by rotating the movable chopper together with the pyroelectric heat detection element group and the optical system, the chopper and the system can be made smaller.

【0047】さらに可動式チョッパーの可動範囲を焦電
型熱検出素子群に割り当てられた視野内に限定すること
によりチョッパーを小型化でき、システム全体も小型化
できる。
Furthermore, by limiting the movable range of the movable chopper to the field of view assigned to the pyroelectric heat detection element group, the chopper can be made smaller, and the entire system can also be made smaller.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】焦電型熱検出素子群とレンズを一体とする構造
の概略構成図
[Figure 1] Schematic configuration diagram of a structure that integrates a pyroelectric heat detection element group and a lens

【図2】非円形レンズと焦電型熱検出素子群の位置関係
を示す光軸方向正面図
[Figure 2] Front view in the optical axis direction showing the positional relationship between the non-circular lens and the pyroelectric heat detection element group

【図3】格子状固定式チョッパーを用いた2次元熱画像
装置の概略構成図
[Figure 3] Schematic diagram of a two-dimensional thermal imaging device using a grid-shaped fixed chopper

【図4】回転式チョッパーを用いた2次元熱画像装置の
概略構成図
[Figure 4] Schematic diagram of a two-dimensional thermal imaging device using a rotary chopper

【図5】焦電型熱検出素子群とレンズの間に固定式チョ
ッパーを配置した2次元熱画像装置の概略構成図
[Figure 5] Schematic configuration diagram of a two-dimensional thermal imaging device in which a fixed chopper is placed between the pyroelectric thermal detection element group and the lens.

【図6
】可動式チョッパーを焦電型熱検出素子群および光学系
の回転軸に固定した2次元熱画像装置の概略構成図
[Figure 6
] Schematic configuration diagram of a two-dimensional thermal imager in which a movable chopper is fixed to a group of pyroelectric heat detection elements and a rotation axis of an optical system.

【図7】チョッパーの可動範囲を限定したシステムの焦
電型熱検出素子群の視野とチョッパー可動範囲の関係を
示す概略構成図
[Figure 7] A schematic configuration diagram showing the relationship between the field of view of the pyroelectric heat detection element group and the chopper movable range in a system with a limited movable range of the chopper.

【符号の説明】[Explanation of symbols]

5  焦電型熱検出素子群 5a〜e  焦電型熱検出素子 6  レンズ 6a  非円形レンズ 7  焦電型熱検出素子群とレンズを一体とする構造8
  焦電型熱検出素子群とレンズを一体として回転させ
る回転軸 10a  格子上固定式チョッパー 10b  回転式チョッパー 10d  開閉式チョッパー 20  レンズの光軸 21  回転式チョッパーの回転軸
5 Pyroelectric heat detection element group 5a to e Pyroelectric heat detection element 6 Lens 6a Non-circular lens 7 Structure 8 that integrates the pyroelectric heat detection element group and lens
Rotation axis 10a that rotates the pyroelectric heat detection element group and the lens as one unit Chopper fixed on the grid 10b Rotary chopper 10d Opening/closing chopper 20 Optical axis of lens 21 Rotation axis of the rotary chopper

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】直線軸上に1次元に配置された複数の焦電
型熱検出素子群と、前記焦電型熱検出素子群と一体とな
った光学系と、前記直線軸に平行または一定の角度だけ
傾斜した回転軸を中心として前記焦電型熱検出素子群と
前記光学系を回転させて2次元画像を得る熱画像検出装
置。
1. A plurality of pyroelectric heat detection element groups arranged one-dimensionally on a linear axis; an optical system integrated with the pyroelectric heat detection element group; A thermal image detection device that obtains a two-dimensional image by rotating the pyroelectric thermal detection element group and the optical system about a rotation axis tilted by an angle of .
【請求項2】光学系として非円形のレンズを用いた請求
項1記載の熱画像検出装置。
2. The thermal image detection device according to claim 1, wherein a non-circular lens is used as the optical system.
【請求項3】焦電型熱検出素子群と前記光学系の間を密
閉した構造とした請求項1記載の熱画像検出装置。
3. The thermal image detecting device according to claim 1, wherein the structure is such that a space between the pyroelectric heat detecting element group and the optical system is sealed.
【請求項4】焦電型熱検出素子群と前記光学系の外部に
固定したチョッパーを持つ請求項1記載の熱画像検出装
置。
4. The thermal image detection device according to claim 1, further comprising a group of pyroelectric thermal detection elements and a chopper fixed outside the optical system.
【請求項5】焦電型熱検出素子群と前記光学系の外部に
可動式のチョッパーを持つ請求項1記載の熱画像検出装
置。
5. The thermal image detection apparatus according to claim 1, further comprising a movable chopper outside the pyroelectric heat detection element group and the optical system.
【請求項6】焦電型熱検出素子群と前記光学系との間に
チョッパーを持つ請求項1記載の熱画像検出装置。
6. The thermal image detection apparatus according to claim 1, further comprising a chopper between the pyroelectric heat detection element group and the optical system.
【請求項7】可動式チョッパーを前記回転軸に固定した
請求項5記載の熱画像検出装置。
7. The thermal image detection device according to claim 5, wherein a movable chopper is fixed to the rotating shaft.
【請求項8】可動式チョッパーの可動範囲を前記焦電型
熱検出素子群に割り当てられた視野内に限定した請求項
7記載の熱画像検出装置。
8. The thermal image detection apparatus according to claim 7, wherein the movable range of the movable chopper is limited to a field of view assigned to the group of pyroelectric thermal detection elements.
JP3151415A 1991-06-24 1991-06-24 Thermal-image detecting apparatus Pending JPH04372828A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3151415A JPH04372828A (en) 1991-06-24 1991-06-24 Thermal-image detecting apparatus
CA002090115A CA2090115C (en) 1991-06-24 1992-04-27 Thermal image detection apparatus
DE4292011T DE4292011T1 (en) 1991-06-24 1992-04-27
DE4292011A DE4292011C2 (en) 1991-06-24 1992-04-27 Thermal image sensor on rotary shaft
PCT/JP1992/000549 WO1993000576A1 (en) 1991-06-24 1992-04-27 Device for sensing thermal image
KR93700477A KR970003680B1 (en) 1991-06-24 1993-02-19 Thermal image detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3151415A JPH04372828A (en) 1991-06-24 1991-06-24 Thermal-image detecting apparatus

Publications (1)

Publication Number Publication Date
JPH04372828A true JPH04372828A (en) 1992-12-25

Family

ID=15518117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3151415A Pending JPH04372828A (en) 1991-06-24 1991-06-24 Thermal-image detecting apparatus

Country Status (5)

Country Link
JP (1) JPH04372828A (en)
KR (1) KR970003680B1 (en)
CA (1) CA2090115C (en)
DE (2) DE4292011C2 (en)
WO (1) WO1993000576A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015015718A1 (en) * 2013-07-31 2015-02-05 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Sensor assembly

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858531A (en) * 1996-10-24 1999-01-12 Bio Syntech Method for preparation of polymer microparticles free of organic solvent traces
KR20200061370A (en) 2017-09-27 2020-06-02 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Personal protective equipment management system using optical patterns for equipment and safety monitoring

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124981A (en) * 1981-01-27 1982-08-04 Mitsubishi Electric Corp Monitor for infrared ray
JPS6321831B2 (en) * 1981-04-08 1988-05-09 Toyota Jidosha Kk
JPS6350025B2 (en) * 1979-07-30 1988-10-06 Sophia Co Ltd

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4121454A (en) * 1976-12-03 1978-10-24 Monitek, Inc. Clamp on electromagnetic flow transducer
JPS55158524A (en) * 1979-05-28 1980-12-10 Kureha Chem Ind Co Ltd Pyroelectric image sensor
JPH073362B2 (en) * 1984-06-14 1995-01-18 株式会社村田製作所 One-dimensional pyroelectric sensor array
JPS61173124A (en) * 1985-01-28 1986-08-04 Matsushita Electric Ind Co Ltd Pyroelectric type thermal image device
JPS61186826A (en) * 1985-02-14 1986-08-20 Matsushita Electric Ind Co Ltd Thermal imaging device
JPS61290330A (en) * 1985-06-18 1986-12-20 Matsushita Electric Ind Co Ltd Pyroelectric type heat image apparatus
DE3616374A1 (en) * 1986-05-15 1987-11-19 Siemens Ag PYRODETECTOR, SUITABLY SUITABLE FOR DETECTING MOTION AND DIRECTIONAL
DE3750278D1 (en) * 1986-06-20 1994-09-01 Lehmann Martin Method for the contactless measurement of a temperature of a body and arrangement therefor.
GB8913450D0 (en) * 1989-06-12 1989-08-02 Philips Electronic Associated Electrical device manufacture,particularly infrared detector arrays
JP2523948B2 (en) * 1990-06-11 1996-08-14 松下電器産業株式会社 Pyroelectric infrared detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350025B2 (en) * 1979-07-30 1988-10-06 Sophia Co Ltd
JPS57124981A (en) * 1981-01-27 1982-08-04 Mitsubishi Electric Corp Monitor for infrared ray
JPS6321831B2 (en) * 1981-04-08 1988-05-09 Toyota Jidosha Kk

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015015718A1 (en) * 2013-07-31 2015-02-05 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Sensor assembly
CN104662397A (en) * 2013-07-31 2015-05-27 松下电器(美国)知识产权公司 Sensor assembly
US9448118B2 (en) 2013-07-31 2016-09-20 Panasonic Intellectual Property Corporation Of America Sensor assembly
JPWO2015015718A1 (en) * 2013-07-31 2017-03-02 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Sensor assembly

Also Published As

Publication number Publication date
CA2090115A1 (en) 1992-12-25
CA2090115C (en) 1999-06-22
KR970003680B1 (en) 1997-03-21
WO1993000576A1 (en) 1993-01-07
DE4292011T1 (en) 1993-07-15
DE4292011C2 (en) 1997-09-04

Similar Documents

Publication Publication Date Title
JP3010459B2 (en) Temperature distribution measuring device and human body detection system
JPH04372828A (en) Thermal-image detecting apparatus
JP2760146B2 (en) Thermal image detector
EP0461837B1 (en) Pyro-electric type infrared detector
JP2970249B2 (en) Thermal image detector
JP2006177848A (en) Temperature distribution detection device
JP3207583B2 (en) Temperature distribution measurement device
KR960015008B1 (en) Prevention apparatus of disasters having fire detection means
JPH08327317A (en) Heat source detector
JPH0875545A (en) Pyroelectric infrared detector
JPH0694539A (en) Thermal image detector
JPH07203283A (en) Detector for thermal/visual picture
JPH0694532A (en) Thermal image detector and field of view outer shell member therefor
JPH0862049A (en) Thermal image detector
JPH0694534A (en) Thermal image detector
JPS63261187A (en) Scanning sensor for human body
JPH04373371A (en) Video camera system with thermal picture detecting means
JPH0744658B2 (en) Infrared camera filter switching mechanism
JPH0694536A (en) Thermal image detector
JPH07287072A (en) Heat-source detection apparatus
JPH06258137A (en) Pyroelectric infrared ray sensor
JPH0772015A (en) Infrared sensor
JPH06101380A (en) Heat image sensing device
JPS63298127A (en) Image sensing camera using thermal infrared rays
JPH0599750A (en) Radiation thermometer