JPS61186826A - Thermal imaging device - Google Patents
Thermal imaging deviceInfo
- Publication number
- JPS61186826A JPS61186826A JP60026944A JP2694485A JPS61186826A JP S61186826 A JPS61186826 A JP S61186826A JP 60026944 A JP60026944 A JP 60026944A JP 2694485 A JP2694485 A JP 2694485A JP S61186826 A JPS61186826 A JP S61186826A
- Authority
- JP
- Japan
- Prior art keywords
- sensor array
- infrared
- infrared sensor
- thermal imaging
- parallel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001931 thermography Methods 0.000 title claims description 12
- 238000009826 distribution Methods 0.000 claims abstract description 7
- 230000003287 optical effect Effects 0.000 claims abstract description 3
- 230000001934 delay Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 2
- 230000003111 delayed effect Effects 0.000 abstract description 4
- 230000005540 biological transmission Effects 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0803—Arrangements for time-dependent attenuation of radiation signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0803—Arrangements for time-dependent attenuation of radiation signals
- G01J5/0804—Shutters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0803—Arrangements for time-dependent attenuation of radiation signals
- G01J5/0805—Means for chopping radiation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/48—Thermography; Techniques using wholly visual means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J2005/0077—Imaging
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Radiation Pyrometers (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は焦電型赤外線センサアレイを用いた熱画像装置
に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a thermal imaging device using a pyroelectric infrared sensor array.
従来の技術
熱画像装置には、赤外線を光量子として検出する量子型
検出器あるいは熱として吸収して素子の温度変化を電気
信号に変換する熱望検出器が用いられる。Conventional thermal imaging devices use quantum detectors that detect infrared rays as photons or aspiration detectors that absorb infrared rays as heat and convert temperature changes of an element into electrical signals.
量子型検出器は高感度で、応答が速く、二次元走査鏡と
組合せて熱画像装置として開発されている。この量子型
検出器は常温では10μm帯の赤外線を検出できず、液
体窒素等で冷却しなければならない。Quantum detectors have high sensitivity and quick response, and have been developed as thermal imaging devices in combination with two-dimensional scanning mirrors. This quantum detector cannot detect infrared rays in the 10 μm band at room temperature and must be cooled with liquid nitrogen or the like.
熱望検出器は、応答が遅いが、常温動作が可能で、比較
的簡単な装置で使用できる。Although the aspiration detector has a slow response, it can operate at room temperature and can be used with relatively simple equipment.
熱望検出器のなかでも、焦電素子は高感度で、高速応答
用にも使用可能である。しかし、焦電素子は温度変化率
に比例した電気信号を出力するので、入射赤外線に変調
をかける必要がある。Among aspiration detectors, pyroelectric devices have high sensitivity and can be used for fast response. However, since the pyroelectric element outputs an electrical signal proportional to the rate of temperature change, it is necessary to modulate the incident infrared rays.
焦電素子を用いた熱画像装置には、焦電型赤外線ビジコ
ンと焦電型固体赤外線センサアレイを用いたものがある
。前者は、電子ビーム走査によって信号読出しを行なう
ため、高電圧装置が必要で、寿命が短かい等の欠点を有
する。一方、後者は一層の小型化・長寿命化・高分解能
を可能とする。Thermal imaging devices using pyroelectric elements include those using a pyroelectric infrared vidicon and a pyroelectric solid-state infrared sensor array. The former method requires a high-voltage device because the signal is read out by electron beam scanning, and has drawbacks such as short life. On the other hand, the latter enables further miniaturization, longer life, and higher resolution.
しかし、素子作製上から微細配列・信号取出し方法等が
困難であり、高密度で100エレメント以上配列された
ものは開発途上である。However, from the viewpoint of device fabrication, fine arrangement, signal extraction methods, etc. are difficult, and devices with a high-density arrangement of 100 or more elements are still under development.
例えば、特開昭59−15379号公報には、焦電QI
Jニアアレイと一次元走査反射鏡との組合せによる熱画
像装置が提案されている。For example, in Japanese Patent Application Laid-Open No. 59-15379, pyroelectric QI
A thermal imaging device using a combination of a J near array and a one-dimensional scanning reflector has been proposed.
発明が解決しようとする問題点
焦電素子は熱望の赤外線検出器なので、量子型検出器は
ど高速応答特性は良くない。実時間の熱画像を実現する
ために、例えば変調周波数をf=焦電型赤外線センサア
レイの各素子群の出力信号は、飽和していないから、各
素子群の出力信号を並直列変換するタイミングのずれに
より、並直列変換された信号は、真の信号値より時間と
ともに次第に大きくなる問題があった。そのために各素
子群全てにサンプルホールドあるいはピークホールド回
路を設けて後、並直列変換することが行なわれたり、多
数の遅延回路が必要であった。したがって上記回路に用
いる回路部品点数は著しく多数に及んだ。Problems to be Solved by the Invention Since a pyroelectric element is an aspirational infrared detector, a quantum detector does not have good high-speed response characteristics. In order to realize a real-time thermal image, for example, the modulation frequency is f = the output signal of each element group of the pyroelectric infrared sensor array is not saturated, so the timing of parallel-serial conversion of the output signal of each element group is determined. Due to this shift, there is a problem in that the parallel-serial converted signal gradually becomes larger than the true signal value over time. For this purpose, sample-hold or peak-hold circuits are provided in each element group, and then parallel-to-serial conversion is performed, or a large number of delay circuits are required. Therefore, the number of circuit components used in the above circuit is extremely large.
問題点を解決するための手段
本発明は上記問題点を解決するため、赤外線センサアレ
イの素子群の各出力信号を一定時間毎遅延させる赤外線
変調器と、上記一定時間毎に対応して各素子群の出力信
号を並直列変換する並直列変換回路とを有するものであ
る。Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides an infrared modulator that delays each output signal of the element group of the infrared sensor array at fixed time intervals, and an infrared modulator that delays each output signal of the element group of the infrared sensor array at fixed time intervals. and a parallel-to-serial conversion circuit for parallel-to-serial conversion of the output signals of the group.
作 用
本発明は、赤外線変調器により、赤外線センサアレイの
各素子群の出力信号を順次遅延させ、その遅延時間に対
応したタイミングで、各素子群の出力信号を並列変換す
るものであるから、被測定物の温度分布に対応した正確
な画像信号の提供を実現できるとともに、回路部品点数
の大幅な削減が可能となる。Function The present invention uses an infrared modulator to sequentially delay the output signals of each element group of an infrared sensor array, and converts the output signals of each element group into parallel at a timing corresponding to the delay time. It is possible to provide accurate image signals corresponding to the temperature distribution of the object to be measured, and it is also possible to significantly reduce the number of circuit components.
実施例
第1図及び第2図は本発明の熱画像装置の一笑例のブロ
ック図である。Embodiment FIGS. 1 and 2 are block diagrams of an example of a thermal imaging apparatus according to the present invention.
所定の周波数:fで被測定物(図示せず)から放射され
る赤外線を断続する赤外線変調器3は、モータ2と透光
部を有する非透過体1より構成される。モータ2により
回転する上記非透過体1で変調された赤外線は、赤外線
光学系5により赤外線センサアレイ4に結像される。上
記赤外線センサアレイ4は、モータ2の回転軸の方向と
直交する方向にライン状に配置されている。つまり、上
記非透過体が図示されている方向に回転するとき、上記
赤外線センサアレイ4の素子群1〜nには素子1,2.
・・・・・・nの順に順次赤外線が照射される。An infrared modulator 3, which intermittents infrared rays emitted from an object to be measured (not shown) at a predetermined frequency f, is composed of a motor 2 and a non-transparent body 1 having a transparent part. The infrared rays modulated by the non-transmissive body 1 rotated by the motor 2 are imaged on the infrared sensor array 4 by the infrared optical system 5. The infrared sensor array 4 is arranged in a line in a direction perpendicular to the direction of the rotation axis of the motor 2. That is, when the non-transmissive body rotates in the illustrated direction, the elements 1, 2, .
...Infrared rays are irradiated sequentially in the order of n.
したがって、各素子群1〜nの出力信号は、第順次遅延
される。Therefore, the output signals of each element group 1 to n are sequentially delayed.
このように、Δtの時間毎遅延された各素子群の出力信
号は、第3図すに示したやはりΔtだけ順次遅延された
コントロール入力信号1,2.・・・・・・nを並直列
変換回路5のコントロール入力に印加することにより、
Δtの遅延時間に対応して並直列変換される。In this way, the output signals of each element group delayed by Δt are the control input signals 1, 2, . . . shown in FIG. 3, which are also sequentially delayed by Δt. By applying n to the control input of the parallel-to-serial conversion circuit 5,
Parallel-to-serial conversion is performed corresponding to a delay time of Δt.
上記のタイミングで並直列変換する並直列変換回路5と
、その出力信号を増幅するアンプ6と、AD変換器7で
信号処理部9は構成されている。The signal processing unit 9 includes a parallel-to-serial conversion circuit 5 that performs parallel-to-serial conversion at the above timing, an amplifier 6 that amplifies its output signal, and an AD converter 7.
10は、AD変換器7でデジタル変換された信号を格納
する画像メモリで、11はメモリ10に格納されたデー
タを画像信号として被測定物の湿度分布を表示する表示
装置である。8はCPUで、前記赤外線変調器3の周期
に同期して、信号処理部9をコントロールする。また、
画像メモIJ 10、表示部11にも指令を出す。10 is an image memory that stores signals digitally converted by the AD converter 7, and 11 is a display device that displays the humidity distribution of the object to be measured using the data stored in the memory 10 as an image signal. A CPU 8 controls the signal processing section 9 in synchronization with the cycle of the infrared modulator 3. Also,
Commands are also issued to the image memo IJ 10 and the display unit 11.
次に、本発明の他の実施例について説明する。Next, other embodiments of the present invention will be described.
第4図a、bは、赤外線変調器と赤外センサアレイの関
係を示す構成図である。FIGS. 4a and 4b are configuration diagrams showing the relationship between the infrared modulator and the infrared sensor array.
複数の透光部11を有する円筒形の非透過体1と、円筒
形の底面の中心軸に相当する位置に回転軸をもつモータ
2とで、赤外線変調器が構成される。赤外線センサアレ
イ4は、回転する非透過体1と連結されていないセンサ
ケース24に封入されており、モータ2の回転軸の方向
と直交する方向にライン状に配置されている。An infrared modulator is constituted by a cylindrical non-transparent body 1 having a plurality of transparent parts 11 and a motor 2 having a rotating shaft at a position corresponding to the central axis of the bottom surface of the cylinder. The infrared sensor array 4 is enclosed in a sensor case 24 that is not connected to the rotating non-transparent body 1, and is arranged in a line in a direction perpendicular to the direction of the rotation axis of the motor 2.
上記の構成により、素子群14の各素子には正確に順次
一定の時間遅れをもって、赤外線が照射される。したが
って、各素子の出力は、一定の遅延時間で正確な信号と
なるばかりでなく、極めて小型な構成が実現できる。With the above configuration, each element of the element group 14 is irradiated with infrared rays accurately and sequentially with a fixed time delay. Therefore, the output of each element not only becomes an accurate signal with a constant delay time, but also an extremely compact configuration can be realized.
発明の効果
以上、木発明は極めて簡単な構成で、赤外線センサアレ
イの素子数が増すとともに増大する回路部品点数を大幅
に減少することをi15]′能とし、被測定物の温度分
布に対応した正確な画像信号の提供を実現するものであ
る。More than the effects of the invention, the invention has an extremely simple structure that can significantly reduce the number of circuit components that increase as the number of elements in an infrared sensor array increases, and can correspond to the temperature distribution of the object to be measured. This realizes the provision of accurate image signals.
第1図は本発明の一実施例における熱画像装置の赤外線
変調器と赤外線センサアレイの関係を示す配置図、第2
図は同実施例のブロック図、第3図a、bは同実施例の
タイミングを表わす信号波形図、第4図a、bは木発明
の他の実施例における赤外線変調器と赤外線センサアレ
イの関係を示す配置図である。
1・・・・・・非透過体、5・・・・・・並直列変換回
路、11・・・・・・透光部、了・・・・・・AD変換
器、3・・・・・・赤外線変調器、9・・・・・−信号
処理部、4・・・・・・赤外線センサアレイ、24・・
・・・・センサケース、14・山・・素子群。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名/−
−−卵を霞)ト
第1図 t−6−タ
第21!1
第3図FIG. 1 is a layout diagram showing the relationship between an infrared modulator and an infrared sensor array of a thermal imaging device according to an embodiment of the present invention, and FIG.
The figure is a block diagram of the same embodiment, Figures 3a and 3b are signal waveform diagrams showing the timing of the same embodiment, and Figures 4a and b are of an infrared modulator and an infrared sensor array in another embodiment of the invention. It is a layout diagram showing the relationship. 1...Non-transparent body, 5...Parallel-serial conversion circuit, 11...Transparent part, End...AD converter, 3... ...Infrared modulator, 9...-signal processing unit, 4...Infrared sensor array, 24...
...Sensor case, 14. Mountain...Element group. Name of agent: Patent attorney Toshio Nakao and 1 other person/-
--Egg wo Kasumi) Fig. 1 t-6-Ta No. 21!1 Fig. 3
Claims (4)
赤外線光学系と、前記焦電型赤外線センサアレイを構成
する各素子群の出力を処理する信号処理部と、前記信号
処理部の出力信号に基づいて被測定物の温度分布を表示
する表示装置とを備え、前記赤外線変調器により前記素
子群の各出力信号を一定時間毎遅延させ、その一定時間
毎に対応したパルスにより、前記素子群の各出力信号を
並直列変換する回路を信号処理部に有することを特徴と
する熱画像装置。(1) A pyroelectric infrared sensor array, an infrared modulator,
an infrared optical system, a signal processing section that processes the output of each element group constituting the pyroelectric infrared sensor array, and a display device that displays the temperature distribution of the measured object based on the output signal of the signal processing section. , and a signal processing unit includes a circuit that delays each output signal of the element group by the infrared modulator at fixed time intervals, and converts each output signal of the element group from parallel to serial using pulses corresponding to the fixed time intervals. A thermal imaging device comprising:
イであって表示装置が一次元の温度分布を表示すること
を特徴とする特許請求の範囲第1項記載の熱画像装置。(2) The thermal imaging device according to claim 1, wherein the pyroelectric infrared sensor array is a linear sensor array, and the display device displays a one-dimensional temperature distribution.
するモータの回転軸の方向と直交する方向にライン状配
列されたことを特徴とする特許請求の範囲第2項記載の
熱画像装置。(3) The thermal imaging device according to claim 2, wherein the pyroelectric infrared sensor array is arranged in a line in a direction perpendicular to the direction of the rotation axis of the motor included in the infrared modulator.
、前記円筒形の底面の中心軸に相当する位置に前記非透
過体と連結した回転軸とを有し、前記円筒形の非透過体
の内部に焦電型赤外線センサアレイが配置されたことを
特徴とする特許請求の範囲第3項記載の熱画像装置。(4) The motor has a cylindrical non-transparent body having a plurality of transparent parts, and a rotating shaft connected to the non-transmissive body at a position corresponding to the central axis of the cylindrical bottom surface, and 4. The thermal imaging device according to claim 3, wherein a pyroelectric infrared sensor array is disposed inside the shaped non-transparent body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60026944A JPS61186826A (en) | 1985-02-14 | 1985-02-14 | Thermal imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60026944A JPS61186826A (en) | 1985-02-14 | 1985-02-14 | Thermal imaging device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61186826A true JPS61186826A (en) | 1986-08-20 |
Family
ID=12207261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60026944A Pending JPS61186826A (en) | 1985-02-14 | 1985-02-14 | Thermal imaging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61186826A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993000576A1 (en) * | 1991-06-24 | 1993-01-07 | Matsushita Electric Industrial Co., Ltd. | Device for sensing thermal image |
EP0612988A2 (en) * | 1993-02-26 | 1994-08-31 | Matsushita Electric Industrial Co., Ltd. | Temperature distribution measuring device and measuring method |
US5365065A (en) * | 1992-10-14 | 1994-11-15 | Power Joan F | Sensitive interferometric parallel thermal-wave imager |
US5528038A (en) * | 1991-05-07 | 1996-06-18 | Matsushita Electric Industrial Co., Ltd. | Temperature distribution measurement apparatus and its application to a human body detecting system |
US5567052A (en) * | 1992-08-03 | 1996-10-22 | Matsushita Electric Industrial Co., Ltd. | Temperature distribution measurement apparatus |
US6758595B2 (en) * | 2000-03-13 | 2004-07-06 | Csem Centre Suisse D' Electronique Et De Microtechnique Sa | Imaging pyrometer |
US7604399B2 (en) * | 2007-05-31 | 2009-10-20 | Siemens Energy, Inc. | Temperature monitor for bus structure flex connector |
US12092518B2 (en) | 2021-04-19 | 2024-09-17 | The Johns Hopkins University | High power laser profiler |
-
1985
- 1985-02-14 JP JP60026944A patent/JPS61186826A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5528038A (en) * | 1991-05-07 | 1996-06-18 | Matsushita Electric Industrial Co., Ltd. | Temperature distribution measurement apparatus and its application to a human body detecting system |
WO1993000576A1 (en) * | 1991-06-24 | 1993-01-07 | Matsushita Electric Industrial Co., Ltd. | Device for sensing thermal image |
US5567052A (en) * | 1992-08-03 | 1996-10-22 | Matsushita Electric Industrial Co., Ltd. | Temperature distribution measurement apparatus |
US5365065A (en) * | 1992-10-14 | 1994-11-15 | Power Joan F | Sensitive interferometric parallel thermal-wave imager |
EP0612988A2 (en) * | 1993-02-26 | 1994-08-31 | Matsushita Electric Industrial Co., Ltd. | Temperature distribution measuring device and measuring method |
EP0612988A3 (en) * | 1993-02-26 | 1995-06-21 | Matsushita Electric Ind Co Ltd | Temperature distribution measuring device and measuring method. |
US5660471A (en) * | 1993-02-26 | 1997-08-26 | Matsushita Electric Industrial Co., Ltd. | Temperature distribution measuring device and measuring method |
US6758595B2 (en) * | 2000-03-13 | 2004-07-06 | Csem Centre Suisse D' Electronique Et De Microtechnique Sa | Imaging pyrometer |
US7604399B2 (en) * | 2007-05-31 | 2009-10-20 | Siemens Energy, Inc. | Temperature monitor for bus structure flex connector |
US12092518B2 (en) | 2021-04-19 | 2024-09-17 | The Johns Hopkins University | High power laser profiler |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Talmi | Applicability of TV-type multichannel detectors to spectroscopy | |
US5168528A (en) | Differential electronic imaging system | |
EP0203530B1 (en) | Optical wavefront sensing system | |
US6268883B1 (en) | High speed infrared imaging system and method | |
JPH022906A (en) | Detector for spectrometer | |
US4286328A (en) | Incoherent optical ambiguity function generator | |
JPS61186826A (en) | Thermal imaging device | |
US4596930A (en) | Arrangement for multispectal imaging of objects, preferably targets | |
EP0474479B1 (en) | An imager | |
US4712888A (en) | Spatial light modulator systems | |
US4810978A (en) | Optical data link | |
US4097749A (en) | Fourier power spectra of optical images using CCD's | |
US4979816A (en) | Range sensing system | |
US4737642A (en) | Arrangement for multispectral imaging of objects, preferably targets | |
Davis et al. | Resolution issues in InSb focal plane array system design | |
JPS61290330A (en) | Pyroelectric type heat image apparatus | |
US3652856A (en) | Apparatus and method for image conversion of infrared radiation | |
JP3216523B2 (en) | Infrared detector | |
JPS61173124A (en) | Pyroelectric type thermal image device | |
US6744940B2 (en) | Sensor for a receiving device for cooperation with an optical fiber | |
JPS6354244B2 (en) | ||
RU2199830C2 (en) | Method and device for converting thermal image into electric signal | |
JPS6040041A (en) | X-ray apparatus | |
JPS5838018A (en) | Time axis converter for electric signal | |
JPS60189724A (en) | Photoscanner |