Verfahren und Lagegeber zur Lagebestimmung eines Positionierkörpers relativ zu einem Bezugskörper
Die Erfindung betrifft ein Verfahren zur Lagebestimmung eines Positionierkörpers relativ zu einem Bezugskörper nach dem Oberbegriff des Anspruchs 1.
Ein solches Verfahren dient z.B. dazu, bei der Steuerung von Meß- und Fertigungsmaschinen Wegstrecken zwischen längsverschieblichen Gegenständen, wie Meßköpfen, Greif- oder Montagearmen zu erfassen. Dabei ist die Genauigkeit, mit der diese Wegstrecken ermittelt werden können, von ausschlaggebenden Bedeutung für die Fertigungsgenauigkeit des Automaten.
Aus der DE-OS 39 09 856 ist bereits ein Verfahren
bekannt, das eine hohe Meßgenauigkeit unabhängig von
einer exakten Führung des Abtasters ermöglicht. Dabei werden von einem Abtaster drei Marken eines Maßstabes ausgewertet. Bei zwei Marken wäre dazwischen einem
Abtasterortspunkt und diesen Marken gebildete Projektionswinkel noch davon abhängig, in welchem Abstand sich der Abtasterortspunkt über den Marken befindet und wie weit er seitlich versetzt ist. Bei drei Marken gelingt es, über den weiteren Projektionswinkel zwischen dem Abtasterortspunkt, dieser weiteren Marke und einer der anderen Marken den Abtasterortspunkt exakt zu bestimmen. Für eine Kombination von zwei Kombinationswinkeln existiert nämlich nur ein einziger Ort, auf dem sich der Abtasterortspunkt befinden kann.
Der Erfindung liegt die Aufgabe zugrunde, die Voraussetzung dafür zu schaffen, daß außer Messungen der Position auf einer Maßstabsachse und senkrecht dazu weitere Lageparameter zwischen einem Positionierkörper relativ zu einem Bezugskörper erfaßt werden können.
Diese Aufgabe wird bei dem im Oberbegriff des Anspruchs 1 beschriebenen Verfahren durch die im Kennzeichen angegebenen Merkmale gelöst.
Zu solche Lageparameter zählen eine weitere Koordinaten
richtung und/oder Neigungen oder Neigungswinkeln um eine oder mehrere Koordinatenachsen. Die Erfindung beruht auf der Überlegung, daß es durch Auswertung zweier Projektionswinkel möglich ist den Abstand zwischen einem Abtasterortspunkt und dem Maßstab zu bestimmen. Wird diese Abstandsmessung nun an zwei verschiedenen Orten durchgeführt, so kann unter Berücksichtigung der gegenseitigen Ausrichtung der optischen Achsen eine weitere Koordinatenrichtung ausgewertet werden und unter Berücksichtigung des gegenseitigen Abstandes der Abtasterortspunkte auf die Neigung des Maßstabes zu einer durch die beiden Abtasterortspunkte verlaufenden Geraden geschlossen werden.
Aufgrund dieser Überlegung ist es nun möglich, jeden beliebigen Neigungswinkel um eine Koordinatenachse zu bestimmen. Wenn der Winkel um nur eine Koordinatenachse ausgewertet werden soll, reicht es aus, auf einem senkrecht zu dieser Koordinatenachse angeordneten Maßstab die Abstände zwischen dem Maßstab und zwei Abtasterortspunkten zu bestimmen. Bei Neigungswinkeln in zwei Koordinatenrichtungen werden entsprechend die Abstände zwischen zwei Maßstäben und jeweils zwei Abtasterortspunkten bestimmt. Auch eine Erweiterung der Abstandsmessung in drei Koordinatenrichtungen ist möglich, wodurch dann alle drei Neigungswinkel um die Koordinatenrichtungen erfaßt
werden können.
Eine vereinfachte Ausführung sieht vor, daß die auszuwertenden Marken und Projektionswinkel von Abtastern mit gleich ausgerichteten optischen Achsen bestimmt werden. Dabei können diese Marken und Projektionswinkel von insgesamt zwei Abtastern ausgewertet werden, die beide demselben Maßstab zugeordnet sind.
Hierdurch lassen sich neben den Koordinaten zweier Koordinatenachsen auch der Neigungswinkel um eine dritte Koordinatenachse ermitteln.
Eine andere vereinfachte Ausführung sieht vor, daß die auf einem weiteren, zum ersten Maßstab parallel ausgerichteten Maßstab befindlichen Marken ausgewertet werden. Die Marken und Projektionswinkel können von insgesamt zwei Abtastern ausgewertet werden, von denen jeder einem Maßstab zugeordnet ist.
Diese Ausführung ermöglicht es, sowohl die Koordinaten zweier Koordinatenachsen als auch die Neigungswinkel um eine dieser Koordinatenachsen und eine dritte Koordinatenachse zu bestimmen.
Wird zusätzlich ein weiterer Abtaster verwendet, der einem dieser Maßstäbe zugeordnet wird, so lassen sich neben den Koordinaten zweier Koordinatenachsen die
Neigungswinkel um alle drei Koordinatenachsen bestimmen.
Bei einer weiteren Ausgestaltung mit ebenfalls zwei Maßstäben sind diese unter einem Winkel von vorzugsweise 90 Grad angeordnet. Jedem dieser Maßstäbe kann ein Abtaster zugeordnet werden.
Mit dieser Ausgestaltung gelingt es, lediglich die Koordinaten aller drei Koordinatenachsen zu bestimmen.
Durch Zuordnung eines weiteren Abtasters zu einem der Maßstäbe kann zusätzlich der Neigungswinkel um eine Koordinatenachse bestimmt werden.
Eine Weiterbildung sieht vor, daß jedem Maßstab zwei Abtaster zugeordnet werden.
Dadurch wird die Bestimmbarkeit der Koordinaten aller drei Koordinatenachsen und der Neigungswinkel um zwei Koordinatenachsen erreicht.
Eine weitere Verbesserung der Meßmöglichkeiten ergibt
sich, wenn die auf einem zweiten, zum ersten Maßstab parallel ausgerichteten Maßstab befindlichen Marken und die auf einem dritten, unter einem Winkel von vorzugsweise 90 Grad zum ersten Maßstab ausgerichteten Maßstab befindlichen Marken ausgewertet werden.
So bietet eine Anordnung von insgesamt drei Abtastern, von denen jeder einem Maßstab zugeordnet ist und deren optische Achsen in einer Ebene liegen, die Möglichkeit, die Koordinaten aller Koordinatenrichtungen und den Neigungswinkel um zwei Koordinatenachsen zu bestimmen.
Durch Zuordnung eines vierten Abtasters zu einem der parallelen Maßstäbe können nicht nur die Koordinaten aller drei Koordinatenachsen, sondern auch die Neigungswinkel um alle drei Koordinatenachsen bestimmt werden.
Bei dieser Ausführung können die Lageparameter wie folgt bestimmt werden:
wobei die Indizes 1, 3, 4, 5 für den ersten, dritten, vierten und fünften Abtaster stehen,
sind, α den Projektionswinkel zwischen dem Abtasterortspunkt sowie einer ersten und einer zweiten Marke, ß den
Projektionswinkel zwischen dem Abtasterortspunkt und der ersten oder zweiten sowie einer dritten Marke bezeichnet, Δder Abstand zwischen zwei Marken ist, X
01...5, Y
01 und Z
03...5 die Koordinaten der Abtasterortspunkte der durch die Indizes angegebenen Abtaster relativ zum Maßstab sind, ƒ den Winkel um die Y-Achse, ae den Winkel um die Z-Achse, ω den Winkel um die X-Achse darstellen und δ den Abstand zwischen den Abtasterortspunkten der durch die Indizes angegebenen Abtaster bildet.
Eine bevorzugte Ausgestaltung sieht vor, daß die auszuwertenden Marken und Projektionswinkel von insgesamt fünf Abtastern ausgewertet werden, von denen der erste und zweite, der dritte und vierte sowie der dritte und fünfte mit ihren optischen Achsen gleich und der erste und zweite gegenüber dem dritten, vierten und fünften mit ihren optischen Achsen in einem Winkel von vorzugsweise 90 Grad ausgerichtet sind und von denen die Abtaster, deren optischen Achsen in einem Winkel ausgerichtet sind, jeweils in einer Ebene liegen, und daß ein dritter Maßstab vorgesehen ist, der parallel zum ersten oder zum zweiten Maßstab ausgerichtet ist.
Es wird bei dieser Ausgestaltung eine umfassende Bestimmung der Positionen aller Koordinatenrichtungen und der
Neigungswinkel um alle Koordinatenachsen erzielt. Dadurch gelingt es, die Koordinatenpositionen in Richtung aller Achsen eines Koordinatensystems auch dann exakt zu bestimmen, wenn Längsverschiebungen gleichzeitig von Neigungsbewegungen überlagert sind.
Bei der letzteren Ausgestaltung können die Lageparameter wie folgt bestimmt werden:
wobei die Indizes 1, 2, 3, 4, 5 für den ersten, zweiten, dritten, vierten und fünften Abtaster stehen.
wobei
und
sind, α den Projektionswinkel zwischen dem Abtasterortspunkt sowie einer ersten und einer zweiten Marke, ß den Projektionswinkel zwischen dem Abtasterortspunkt und der ersten oder zweiten sowie einer dritten Marke bezeichnet, Δ der Abstand zwischen zwei Marken ist, X
01, Y
01...3 und Z
03...5 die Koordinaten der Abtasterortspunkte der durch die Indizes angegebenen Abtaster relativ zum Maßstab sind, ƒ den Winkel um die Y-Achse, ae den Winkel um die Z-Achse, ω den Winkel um die X-Achse darstellen und δ den Abstand zwischen den Abtasterortspunkten der durch die Indizes angegebenen Abtaster bildet.
Da in jeder Koordinatenrichtung jeweils zwei Abtasterortspunkte liegen, können über die Tangensfunktion bzw. die Arcustangensfunktion die Differenzen der Abstände vom Maßstab auch die Neigungswinkel um die dazu jeweils senkrecht stehende Koordinatenachse ermittelt werden. Bei
Längsverschiebungen in eine oder mehrere Koordinatenrichtungen sind die von jedem Abtaster für dieselbe Koordinatenrichtung ermittelten Wege gleich, so daß man sich auf die Angaben jeweils eines Abtasters beschränken kann.
Bei einer praktischen Ausführung werden die Projektionswinkel durch optische Abbildung der Marken auf einer Projektionsfläche und Abstandsmessung der Projektionsorte gewonnen. Als Abtasterortspunkt wird das ProjektionsZentrum einer Abbildungsoptik gewählt.
Auf diese Weise läßt sich die erforderliche gewünschte Auflösung des Winkels bei vorgegebener Auflösung der Meßsensoren auf der Projektionsfläche durch geeignete Wahl des Abstandes der Projektionsfläche von der Projektionsoptik sowie dessen Brennweite realisieren.
Die Erfindung betrifft ferner einen Lagegeber nach dem Oberbegriff des Anspruchs 18.
Diesbezüglich liegt ihr die Aufgabe zugrunde, einen Lagegeber zu schaffen, der außer Messungen der Position auf einer Maßstabsachse und senkrecht dazu weitere Lageparameter zwischen einem Positionierkörper relativ zu einem Bezugskörper zu erfassen vermag.
Diese Aufgabe wird bei dem im Oberbegriff des Anspruchs 18 beschriebenen Lagegeber durch die im Kennzeichen angegebenen Merkmale gelöst.
Hinsichtlich der Wirkungsweise und der Vorteile der Ausgestaltungen des Lagegebers gelten die Erläuterungen für das Verfahren entsprechend.
Weiterbildungen und vorteilhafte Ausgestaltungen von Verfahren und Lagegeber ergeben sich aus den Ansprüchen, der weiteren Beschreibung und der Zeichnung anhand der die Erfindung näher beschrieben wird.
In der Zeichnung zeigen:
Fig. 1 eine schematische Seitenansicht eines
Abtasters über einem Maßstab,
Fig. 2 eine geometrische Darstellung der
Projektionswinkel zur Erläuterung der
Berechnungsformein.
Fig. 3 ein Koordinatensystem zur Definition der verwendeten Bezeichnungen und
Parameter,
Fig. 4 eine schematische Seitenansicht
zweier Abtaster über einem Maßstab, Fig. 5 eine perspektivische Ansicht eines
Positionierkörpers mit Maßstäben und Abtastern zur Erfassung aller räumlichen Parameter und
Fig. 6 eine Sonde zur Abtastung von Konturen als Anwendungsbeispiel der Erfindung.
Fig. 1 zeigt einen Abtaster in schematischer Darstellung in Seitenansicht. Dieser umfaßt einen Maßstab 12 mit Marken 14, von denen einzelne Marken hier mit a, b und c bezeichnet sind. Handelt es sich bei dem Maßstab 12 um einen Inkrementalmaßstab, so kann eine grobe Ermittlung der Koordinaten in Längsrichtung des Maßstabes durch Zählen der Marken 14 erfolgen. Bei einer anderen Alternative, bei der ein Absolutmaßstab verwendet wird, beinhalten die Marken durch Kodierung bereits die vollständige grobe Koordinateninformation in Längsrichtung des Maßstabes. Diese Kodierung kann z. B. durch unterschiedliche Strichstärken, gegebenenfalls in Verbindung mit einer binären Darstellungsweise, vorgenommen werden.
Der Abtaster 10 befindet sich oberhalb des Maßstabes 12 und dekodiert die in den Marken 14 verschlüsselten
Längeninformationen. Mit Hilfe einer Winkelmeßvorrichtung
20 können Projektionswinkel, die sich zwischen den Marken 14 und einem Abtasterortspunkt des Abtasters 10 ergeben, ermittelt werden.
Der Abtaster 10 ist als optischer Abtaster ausgebildet und umfaßt eine Abbildungsoptik 22 mit einer Projektionsfläche 24 sowie einer Abstandsmeßeinrichtung 26. Bei diesem Abtaster ist ein Abtasterortspunkt 0 durch das dem Maßstab zugewandte ProjektionsZentrum der Abbildungsoptik 22 gebildet. Die Projektionsfläche 24 ist durch ein
Diodenarray, z. B. in Gestalt einer CCD-Zeile gebildet. Die Anzahl der Pixel ist so gewählt, daß im Falle eines Absolutmaßstabs die Marken 14 in ihrer Breite aufgelöst werden können und mit Hilfe eines Rechners 18 dekodierbar sind.
Im Falle eines Inkrementalmaßstabes dient zur Auswertung der vom Abtaster 10 gelesenen Werte ein Zähler 16 der auch in einem Rechner 18 integriert sein kann, sowie ein weiterer Zähler 28, der ebenfalls in dem Rechner 18 integriert sein kann. Dabei dient der Zähler 16 dazu, die Ereignisse, also die Anzahl der Marken zu zählen, die beim Längsverschieben des Abtasters 10 über den Maßstab 12 passiert werden. Mit Hilfe dieses Zählers 16 und des Rechners 18 ist somit eine grobe Bestimmung der zurückge
legten Wegstrecke möglich, wobei hier die Auflösung bei Anordnung der Marken 14 auf dem Maßstab 12 in einem
Abstand Δvon ca. 1 mm ebenfalls nur in dieser Größenordnung liegt.
Die Interpolation zwischen den Marken 14 wird mittels der Winkelmeßvorrichtung 20 vorgenommen. Wie aus der Zeichnung ersichtlich, werden hier als Beispiel die Marken a, b und c welche zum Abtasterortspunkt 0 die Winkel α bzw. ß einnehmen, unter dem Winkel α' und ß' auf die Punkte a', b' und C der Projektionsfläche 24 abgebildet.
Dort wird mittels der Abstandsmeßeinrichtung 26 jeweils der Projektionswinkel über die Abstandsmessung der Projektionspunkte a', b' und c' auf der Projektionsfläche 24 ermittelt. Besitzt die Abstandsmeßeinrichtung 26 z.B. eine CCD-Zeile, so werden an den Stellen, an denen die Marken auf dieser Zeile abgebildet werden, Ladungsänderungen bewirkt, die nach seriellem Auslesen von dem
Zähler 28 registriert werden und von dem Rechner 18 in entsprechende Winkelwerte α und ß umgerechnet werden können.
Aus den Projektionswinkeln α und ß lassen sich unter Anwendung trigonometrischer Funktionen die Koordinaten
des Abtasterortspunktes 0, der hier mit dem Projektionszentrum in der Abbildungsoptik 22 übereinstimmt, ermitteln. Zur Erläuterung der Rechenschritte wird auf Fig. 2 Bezug genommen, in der aus Fig. 1 nur die Marken a, b, c und der Abtasterortspunkt 0 übernommen sind. In diesem Fall befindet sich aber der Abtasterortspunkt 0 nicht direkt über der Marke b, um hier auch zeichnerisch zu veranschaulichen, daß jede beliebige Position des Abtasterortspunktes 0 bestimmt werden kann.
Zwischen dem Abtasterortspunkt 0 und den Marken a und b ist der Projektionswinkel α und zwischen dem Abtasterortspunkt 0 und den Marken b und c der Projektionswinkel ß eingeschlossen. Die Abstände der Marken a, b und c betragen jeweils <\ Betrachtet man einmal die Winkel α und ß für sich, so gibt es verschiedene Punkte, die den gleichen Projektionswinkel α und ß einnehmen. Diese
Punkte befinden sich auf einer Ortskurve, die für den Winkel α durch einen Kreis K 1 und für den Winkel ß durch einen Kreis K 2 dargestellt sind. Kombiniert man die beiden Winkel α und ß, so gibt es nur einen realen Punkt, bei dem die Bedingung erfüllt ist. Dieser Punkt ist durch die Schnittpunkte der beiden Ortskurven, also der Kreise K 1 und K 2 gegeben.
Die Mittelpunkte M 1 und M 2 der Kreise K 1 und K 2 lassen sich so bestimmen, daß die Mittelsenkrechten zwischen den Marken a und b einerseits und b und c andererseits bestimmt werden und hier die Schnittpunkte mit Linien erhalten werden, welche jeweils unter dem Projektionswinkel, also α oder ß, durch die Marken a und b bzw. b und c laufen.
Für die Abstände der Mittelpunkte M 1 und M 2 von der Maßstabsachse, also die Z-Koordinate der Mittelpunkte M 1 und M 2 ergeben sich:
Durch mathematische Ableitungen ergeben sich füπ
Diese Gleichungen führen also zu einer eindeutigen Lösung und lassen sich mit üblichen Rechnern innerhalb kürzester Zeit bestimmen. Sie gelten für alle Abtaster A 1...A 5. Um nachfolgend einen Bezug zu dem jeweiligen Abtaster herstellen zu können, sind die Größen in den Gleichungen zusätzlich mit Indizes versehen, die der Ordnungszahl der Abtaster entsprechen, bei fünf Abtastern werden also die Indizes 1, 2, 3, 4 und 5 vergeben.
In Fig. 3 ist ein Koordinatensystem zur Definition der verwendeten Bezeichnungen und Parameter dargestellt. Die hier definierten Parameter werden auch in den Figuren 4 und 5 benutzt. Es handelt sich um ein kartesisches Koordinatensystem mit den Koordinatenachsen X, Y und Z. ƒ bezeichnet den Winkel um die Y-Achse, aa den Winkel um die Z-Achse und w den Winkel um die X-Achse
In Fig. 4 ist eine schematische Seitenansicht zweier Abtaster A 3, A 4 über einem Maßstab 32 dargestellt. Die Abtasterortspunkte O3 und O4 haben einen gegenseitigen Abstand δ. Verläuft eine durch die Abtasterortspunkte
führende Gerade parallel zum Maßstab 32, so sind auch die beiden Abstände der Abtasterortspunkte gleich. Bei Abweichungen kann man über die Tangens- oder Arcustangensfunktion in Verbindung mit dem Abstand δ den Winkel berechnen und zwar nach der allgemeinen Formel:
Auch diese Formel läßt sich für alle Abtasterpaare anwenden, die die gleiche Ausrichtung ihrer optischen Achsen besitzen. Um auch hier einen Bezug zu dem jeweiligen Abtaster herstellen zu können, sind die Größen in den Gleichungen zusätzlich mit Indizes versehen, die der Ordnungszahl der Abtaster entsprechen, bei fünf Abtastern A 1...A 5 werden also die Indizes 1, 2, 3, 4 und 5 vergeben. Beim Abstand 6 bezeichnen die Indizes die Abtasterortspunkte der beteiligten Abtaster des Abtasterpaares, auf die sich der Abstand bezieht.
Fig. 5 zeigt einen Positionierkörper 36 mit drei Maßstäben 30, 32, 34 und fünf Abtastern A 1, A 2, A 3, A 4, A 5 auf einem Bezugskörper 38. Ein erster Maßstab 30 befindet sich auf der Schmalseite des Bezugskörpers 38. Ein zwei
ter 32 und dritter Maßstab 34 sind auf der Breitseite des Bezugskörpers 38 angeordnet. Die Schmalseite und die Breitseite des Bezugskörpers 38 sind in einem Winkel von 90 Grad ausgerichtet. Über dem ersten Maßstab 30 sind ein erster A 1 und zweiter Abtaster A 2 angeordnet, die mit ihren optischen Achsen gleich ausgerichtet sind und unterschiedliche Bereiche des ersten Maßstabes 30 abtasten. Über dem zweiten Maßstab 32 befinden sich ein dritter A 3 und vierter Abtaster A 4, die ebenfalls mit ihren optischen Achsen gleich ausgerichtet sind und unterschiedliche Bereiche des zweiten Maßstabes 32 abtasten. Über dem dritten Maßstab 34 befindet sich ein fünfter Abtaster A 5, der mit seiner optischen Achse gleich zum dritten A 3 und vierten Abtaster A 4 ausgerichtet ist. Der erste A 1 und zweite Abtaster A 2 schließen mit dem dritten A 3, vierten A 4 und fünften Abtaster A 5 einen Winkel von 90 Grad ein. Dabei liegen der erste A 1, dritte A 3 und fünfte Abtaster A 5 einerseits und der zweite A 2 und vierte Abtaster A 4 andererseits jeweils in einer Ebene.
Die genaue Lage des Positionierkörpers 36 gegenüber dem Bezugskörper 38 kann nun anhand der von den Abtastern ermittelten Abtastwerte bestimmt werden. Zur Bestimmung der X-Richtung eignen sich im Prinzip die Daten jedes der
fünf Abtaster. Sie stimmen hinsichtlich der X-Richtung überein, so daß das Ergebnis eines beliebigen Abtasters verwendet werden. Hier werden die Abtaster A 1, A 3 und A 5 ausgewertet. Bei den nachfolgend beschriebenen Alternativen werden einmal die Werte aller dieser Abtaster A 1, A 3 und A 5 benötigt und ein andermal nur die Werte des Abtasters A 1. Man erhält die X-Koordinaten dann nach folgender Formel:
Zur Bestimmung der Y-Richtung eignen sich die Daten der Abtaster A 1 und A 2. Sind der Positionierkörper 36 und der Bezugskörper 38 parallel ausgerichtet, so ergeben die Daten der beiden Abtaster A 1 und A 2 den gleichen Wert.
Bei Neigungen um die Z-Achse sind die Werte jedoch verschieden. Man erhält die Y-Koordinaten nach folgender Formel:
Zur Bestimmung der Z-Richtung eignen sich die Daten der Abtaster A 3, A 4 und A 5. Sind der Positionierkörper 36 und der Bezugskörper 38 parallel ausgerichtet und auch nicht um die X-Achse verdreht, so ergeben die Daten der drei Abtaster A 3, A 4 und A 5 den gleichen Wert. Bei Neigungen um die Y-Achse und/oder um die X-Achse sind die Werte jedoch verschieden. Man erhält die Z-Koordinaten nach folgender Formel:
Aus den berechneten Koordinaten können auch die Neigungswinkel berechnet werden. Für die Lage der Winkel gilt die im Zusammenhang mit Fig. 3 vorgenommenen Definitionen. Man erhält dann die Winkel nach folgenden Formeln:
Fig. 6 zeigt schließlich noch ein Anwendungsbeispiel der Erfindung. Es handelt sich um eine Sonde 40 zur Abtastung von Konturen. Die Sonde 40 umfaßt einen Bezugskörper 38, der das Gehäuse der Sonde 40 bildet und optische Abtaster A 1...A 5 trägt. Innerhalb des Bezugskörpers 38 befindet sich ein Positionierkörper 36, der mit Maßstäben 30, 32, 34 versehen ist, an einem Ende schwenk-, verschieb- und drehbeweglich im Bezugskörper 38 eingespannt ist und am anderen Ende eine Tastkugel 42 trägt, die bei Meßvorgängen entlang der Testoberfläche gleitet und dabei entsprechende Auslenkungen und/oder Stauchungen erfährt. Aus diesen Auslenkungen und/oder Stauchungen kann dann unter Anwendung der vorstehenden Formeln eine Reihe von Meßwerten ermittelt werden, die die Wiedergabe der Oberflachenkontur ermöglichen.