WO1992000241A1 - Novel synthesis gas production method for producing ammonia - Google Patents

Novel synthesis gas production method for producing ammonia Download PDF

Info

Publication number
WO1992000241A1
WO1992000241A1 PCT/BE1991/000042 BE9100042W WO9200241A1 WO 1992000241 A1 WO1992000241 A1 WO 1992000241A1 BE 9100042 W BE9100042 W BE 9100042W WO 9200241 A1 WO9200241 A1 WO 9200241A1
Authority
WO
WIPO (PCT)
Prior art keywords
reforming
air
primary
reactor
hydrocarbon
Prior art date
Application number
PCT/BE1991/000042
Other languages
French (fr)
Inventor
Jacques Schurmans
Patrick Degand
Original Assignee
Catalysts And Chemicals Europe S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts And Chemicals Europe S.A. filed Critical Catalysts And Chemicals Europe S.A.
Publication of WO1992000241A1 publication Critical patent/WO1992000241A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/025Preparation or purification of gas mixtures for ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/068Ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0816Heating by flames
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0833Heating by indirect heat exchange with hot fluids, other than combustion gases, product gases or non-combustive exothermic reaction product gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0866Methods of heating the process for making hydrogen or synthesis gas by combination of different heating methods
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0883Methods of cooling by indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • C01B2203/143Three or more reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to the use of fluids such as air, oxygen, water vapor or mixtures of these fluids, brought to high temperature, above 850 ° C, and under high pressure, for the production of synthesis gas for the manufacture of ammonia.
  • fluids such as air, oxygen, water vapor or mixtures of these fluids, brought to high temperature, above 850 ° C, and under high pressure, for the production of synthesis gas for the manufacture of ammonia.
  • the desulfurized natural gas is mixed with water vapor 3, which mixture is previously heated by convection in the exchanger by the fumes from the tubular reforming furnace 7; the mixture of natural gas and steam 5 penetrates, after preheating, into the tubes of the furnace 7 where the primary reforming reaction takes place; the gas mixture 8 resulting from the reaction then enters the secondary reforming reactor 1 1; air 10 and optionally steam 9 are also introduced into this reactor; after reaction, the gas mixture 12 is subjected to various cooling, conversion of carbon monoxide and purification treatments. In recent years various improvements have been made to this reforming process so as to reduce energy consumption.
  • FIG. 3 schematically describes this innovation: the mixture 1, composed of natural gas, water vapor and recycled synthesis gas, is preheated to a temperature between 00 and 450 ° C.
  • the gas 5 produced in the primary reforming reactor is then introduced into the secondary reforming reactor 6 at the same time as the combustion air 2 previously heated to a temperature of the order of 600 to 700 ° C; after reaction, the gas produced, at a temperature of the order of 950 ° C., enters the primary reforming reactor where it transfers by indirect time the calories necessary for the reforming reaction; at the outlet of the primary reforming reactor, the gas mixture 8, the temperature of which is of the order of 400 to 50 ° C., once again gives up calories in the exchanger 3 to the gas mixture 1 in order to find itself at a temperature between 250 and 300 ° C.
  • this process has the disadvantage of using quantities of air greater than those required for the manufacture of ammonia, which requires subsequent separation of the excess nitrogen.
  • An additional improvement of this process consists in operating the primary and secondary reforming operations in the same enclosure. 2 ° Autothermal reforming
  • the desulphurized hydrocarbon is, after mixing with steam, introduced into the autothermal catalytic reactor where it undergoes partial combustion in the presence of oxygen-enriched air .
  • the need for oxygen enrichment of the air is due to the fact that the quantity of air which can be introduced into the reactor is limited; indeed the ratio between the quantities of nitrogen and hydrogen of the synthesis gas is of the order of 1 to 3; under these conditions, the oxygen supplied by the air is insufficient to supply, by combustion with natural gas, the total energy necessary for the endothermic reforming reaction and an additional supply of oxygen is therefore necessary.
  • Figure 2 natural gas 1 is desulphurized in section 2 before being mixed with water vapor 3; the natural gas-water vapor mixture.
  • the first type of process is, in general, more economical, and this explains why it is, by far, the most used in the production of ammonia.
  • the method according to the present invention consists in using air, oxygen or water vapor, alone or in mixture, after preheating at very high temperatures, between 800 and 1600 ° C. with as a consequence the following advantages: - lr
  • Example 1 In this example, the conventional assembly consisting of a primary reforming tubular furnace and a secondary reforming reactor is replaced by a single adiabatic reactor in which the required thermal energy is provided by the use, according to inven ⁇ tion, of a mixture of air and steam brought to high temperature; the figure . schematically illustrates this possibility of the invention; in this example the natural gas 1 previously heated in the preheater 2 is introduced into the catalytic reactor 4 with an air-steam mixture 3 preheated to high temperature. The product gas 5 is then cooled and treated before supplying the ammonia synthesis unit.
  • the following table compares the operating conditions and the performances of a conventional primary reforming - secondary reforming assembly (case A) with those obtained by the assembly described in the figure (case B).
  • - Process natural gas flow Nm 3 / h
  • the pressure drop and the catalytic activity of the system can easily be kept constant by the use of more efficient catalysts in the secondary reforming reactor.
  • Example 3 The use of high temperature air according to the invention makes it possible to improve the LCA process described in page 2 and FIG. 3 in an interesting manner; the use of the invention can for example eliminate the need for an excess of air at the inlet of the secondary reforming furnace or (and) make it possible to economically increase the production capacity of the reforming unit .
  • the following comparative table shows how the use of the invention makes it possible to remove the excess air normally required by the LCA process:
  • Example 2 The use, according to the invention, of a mixture of air and oxygen, previously brought to very high temperature, in an autothermal reforming reactor as described on page 2 and in FIG. 2 makes it possible in particular to increase the production capacity of the reactor without increasing the oxygen flow rate, but also reduce the quantities of oxygen necessary for a given production of synthesis gas.
  • the following table compares the operation of an autothermal reactor under 3 types of operational conditions:
  • example C shows that, for example, it is possible to reduce the oxygen flow rate by 20% and natural gas by 3.7% without reducing the production of hydrogen and carbon monoxide, by carrying the temperature of the air-oxygen mixture from 500 to 1050 ° C.
  • Example 1 also shows that the oxygen supply can be completely eliminated by preheating the air-water vapor mixture to 1500 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

A gas reforming method uses air, oxygen or steam, separately or mixed together, heated to a temperature of 800-1600 °C and at an absolute pressure of 10-100 bars, to produce synthesis gas for the manufacture of ammonia.

Description

"Nouveau procédé de production de gaz de synthèse pour la fabrication de l'ammoniac" "New process for the production of synthesis gas for the manufacture of ammonia"
La présente invention est relative à l'utilisation de fluides tels que l'air, l'oxygène, la vapeur d'eau ou des mélanges de ces fluides, portés à haute température, supérieure à 850°C, et sous haute pression, pour la production de gaz de synthèse pour la fabrication de l'ammoniac.The present invention relates to the use of fluids such as air, oxygen, water vapor or mixtures of these fluids, brought to high temperature, above 850 ° C, and under high pressure, for the production of synthesis gas for the manufacture of ammonia.
Actuellement, les deux principaux procédés de fabri¬ cation de gaz de synthèse pour ( la fabrication de l'ammoniac sont les suivants : 1° Reformage à la vapeur d'hydrocarbures Dans le procédé le plus connu, un hydrocarbure, en général du gaz naturel, est, après désulfuration, mélangé à de la vapeur d'eau avec laquelle, dans une première phase, il réagit de façon endothermique dans un four tubulaire de reformage primaire dont les tubes, remplis de catalyseur, sont chauffés extérieurement; dans une deuxième phase, le mélange gazeux sortant du four de refor¬ mage primaire, et essentiellement composé de vapeur d'eau, d'hydro¬ gène, de bioxyde et de monoxyde de carbone, et de méthane, est introduit en tête du réacteur de reformage catalytique secondaire dans lequel il est partiellement brûlé en présence d'air; cette combus- tion fournit l'apport thermique nécessaire à la poursuite de la réaction de reformage qui est hautement endothermique. Eventuellement de la vapeur d'eau est également introduite dans le réacteur de reformage secondaire, la plus grande partie étant cependant introduite dans le four tubulaire de reformage primaire. Le gaz produit dans le réacteur de reformage secondaire contient principalement de la vapeur d'eau, de l'hydrogène, du bioxyde et de l'oxyde de carbone, du méthane, de l'azote et de l'argon. Une série d'opérations ultérieures permettent de transformer et de purifier ce gaz pour obtenir un mélange constitué principalement d'hydrogène et d'azote, directement utilisable pour la synthèse de l'ammoniac. Une représentation simplifiée de ce procédé est donnée dans la figure 1 : le gaz naturel 1 est introduit d'une part dans la section de désulfuration 2 et, comme combustible, dans le four de reformage tubulaire 7. Le gaz naturel désulfuré est mélangé à de la vapeur d'eau 3, lequel mélange est préalablement chauffé par convection dans l'échangeur par les fumées du four de reformage tubulaire 7; le mélange de gaz naturel et de vapeur d'eau 5 pénètre, après préchauffage, dans les tubes du four 7 où s'effectue la réaction de reformage primaire; le mélange gazeux 8 résultant de la réaction pénètre ensuite dans le réacteur de reformage secondaire 1 1; dans ce réacteur sont également introduits de l'air 10 et éventuellement de la vapeur 9; après réaction, le mélange gazeux 12 est soumis à divers traitements de refroidissement, de conversion de l'oxyde de carbone et de purification. Dans les dernières années diverses améliorations ont été apportées à ce procédé de réformage de manière à réduire les consommations d'énergie.Currently, the two main processes for the manufacture of synthesis gas for ( the manufacture of ammonia are as follows: 1 ° Steam reforming of hydrocarbons In the best known process, a hydrocarbon, generally natural gas , is, after desulphurization, mixed with steam with which, in a first phase, it reacts endothermically in a primary reforming tubular furnace whose tubes, filled with catalyst, are heated externally; in a second phase , the gas mixture leaving the primary reforming furnace, and essentially composed of water vapor, hydrogen, carbon dioxide and monoxide, and methane, is introduced at the head of the secondary catalytic reforming reactor in which it is partially burned in the presence of air, this combustion provides the heat input necessary for the continuation of the reforming reaction which is highly endothermic. steam is also introduced into the secondary reforming reactor, the greater part however being introduced into the primary reforming tubular furnace. The gas produced in the secondary reforming reactor contains mainly water vapor, hydrogen, carbon dioxide and oxide, methane, nitrogen and argon. A series of subsequent operations make it possible to transform and purify this gas in order to obtain a mixture consisting mainly of hydrogen and nitrogen, directly usable for the synthesis of ammonia. A simplified representation of this process is given in FIG. 1: natural gas 1 is introduced on the one hand into the desulfurization section 2 and, as fuel, into the tubular reforming furnace 7. The desulfurized natural gas is mixed with water vapor 3, which mixture is previously heated by convection in the exchanger by the fumes from the tubular reforming furnace 7; the mixture of natural gas and steam 5 penetrates, after preheating, into the tubes of the furnace 7 where the primary reforming reaction takes place; the gas mixture 8 resulting from the reaction then enters the secondary reforming reactor 1 1; air 10 and optionally steam 9 are also introduced into this reactor; after reaction, the gas mixture 12 is subjected to various cooling, conversion of carbon monoxide and purification treatments. In recent years various improvements have been made to this reforming process so as to reduce energy consumption.
L'une de ces améliorations consiste par exemple à utiliser la chaleur contenue dans le mélange gazeux sortant à haute température du réacteur de reformage secondaire pour fournir l'apport thermique nécessaire au fonctionnement du four de reformage primaire; la figure 3 décrit schématiquement cette innovation : le mélange 1, composé de gaz naturel, de vapeur d'eau et de gaz de synthèse recyclé est préchauffé à une température comprise entre 00 et 450°C dans l'échangeur 3 avant de pénétrer dans le réacteur de refor¬ mage primaire ; le gaz 5 produit dans le réacteur de reformage primaire est ensuite introduit dans le réacteur de reformage secondaire 6 en même temps que l'air de combustion 2 préalablement chauffé à une température de l'ordre de 600 à 700°C; après réaction le gaz produit, à une température de l'ordre de 950°C, pénètre dans le réac¬ teur de reformage primaire où il transfère par échéance indirect les calories nécessaires à la réaction de reformage; à la sortie du réacteur de reformage primaire, le mélange gazeux 8, dont la tempéra¬ ture est de l'ordre de 400 à 50°C, cède à nouveau des calories dans l'échangeur 3 au mélange gazeux 1 pour se retrouver à une température comprise entre 250 et 300°C. Ce procédé présente cependant l'inconvé- rμent d'utiliser des quantités d'air supérieures à celles requises pour la fabrication de l'ammoniac, ce qui exige une séparation ultérieure de l'azote excédentaire. Une amélioration supplémentaire de ce procédé consiste à opérer les opérations de reformage primaire et secondaire dans la même enceinte. 2° Reformage autothermiqueOne of these improvements consists for example in using the heat contained in the gaseous mixture exiting at high temperature from the secondary reforming reactor to provide the heat input necessary for the operation of the primary reforming furnace; FIG. 3 schematically describes this innovation: the mixture 1, composed of natural gas, water vapor and recycled synthesis gas, is preheated to a temperature between 00 and 450 ° C. in the exchanger 3 before entering the primary reforming reactor; the gas 5 produced in the primary reforming reactor is then introduced into the secondary reforming reactor 6 at the same time as the combustion air 2 previously heated to a temperature of the order of 600 to 700 ° C; after reaction, the gas produced, at a temperature of the order of 950 ° C., enters the primary reforming reactor where it transfers by indirect time the calories necessary for the reforming reaction; at the outlet of the primary reforming reactor, the gas mixture 8, the temperature of which is of the order of 400 to 50 ° C., once again gives up calories in the exchanger 3 to the gas mixture 1 in order to find itself at a temperature between 250 and 300 ° C. However, this process has the disadvantage of using quantities of air greater than those required for the manufacture of ammonia, which requires subsequent separation of the excess nitrogen. An additional improvement of this process consists in operating the primary and secondary reforming operations in the same enclosure. 2 ° Autothermal reforming
Dans ce type de procédé, moins utilisé que le précé¬ dent, l'hydrocarbure désulfuré est, après mélange avec de la vapeur d'eau, introduit dans le réacteur catalytique autothermique où il subit une combustion partielle en présence d'air enrichi en oxygène. La nécessité d'un enrichissement en oxygène de l'air est due au fait que la quantité d'air que l'on peut introduire dans le réacteur est limitée; en effet le rapport entre les quantités d'azote et d'hydrogène du gaz de synthèse est de l'ordre de 1 à 3; dans ces conditions, l'oxy¬ gène apporté par l'air est insuffisant pour fournir, par combustion avec le gaz naturel, l'énergie totale nécessaire à la réaction endother¬ mique de reformage et un appoint supplémentaire d'oxygène est donc nécessaire. Une représentation simplifiée de ce procédé est donnée dans la figure 2 : le gaz naturel 1 est désulfuré dans la section 2 avant d'être mélangé à la vapeur d'eau 3; le mélange gaz naturel- vapeur d'eau . est préchauffé dans l'échangeur 5 et introduit dans le réacteur autothermique 7 où il est en partie brûlé par l'air enrichi 6 préalablement préchauffé dans l'échangeur 9; le gaz 8 provenant de la réaction de reformage est ensuite soumis à divers traitements de refroidissement, de conversion de l'oxyde de carbone et de purification.In this type of process, used less than the previous one, the desulphurized hydrocarbon is, after mixing with steam, introduced into the autothermal catalytic reactor where it undergoes partial combustion in the presence of oxygen-enriched air . The need for oxygen enrichment of the air is due to the fact that the quantity of air which can be introduced into the reactor is limited; indeed the ratio between the quantities of nitrogen and hydrogen of the synthesis gas is of the order of 1 to 3; under these conditions, the oxygen supplied by the air is insufficient to supply, by combustion with natural gas, the total energy necessary for the endothermic reforming reaction and an additional supply of oxygen is therefore necessary. A simplified representation of this process is given in Figure 2: natural gas 1 is desulphurized in section 2 before being mixed with water vapor 3; the natural gas-water vapor mixture. is preheated in the exchanger 5 and introduced into the autothermal reactor 7 where it is partly burned by enriched air 6 previously preheated in the exchanger 9; the gas 8 coming from the reforming reaction is then subjected to various cooling, conversion of carbon monoxide and purification treatments.
Le premier type de procédé est, en général, plus économique, et ceci explique qu'il est, et de loin, le plus utilisé dans la production de l'ammoniac.The first type of process is, in general, more economical, and this explains why it is, by far, the most used in the production of ammonia.
Le procédé selon la présente invention consiste à utiliser de l'air, de l'oxygène ou de la vapeur d'eau, seuls ou en mélange, après préchauffage à de très hautes températures, comprises entre 800 et 1600°C avec comme conséquence les avantages suivants : - lrThe method according to the present invention consists in using air, oxygen or water vapor, alone or in mixture, after preheating at very high temperatures, between 800 and 1600 ° C. with as a consequence the following advantages: - lr
- Simplification et réduction du coût de l'appareillage.- Simplification and reduction of the cost of the apparatus.
- Possibilité d'augmentation de la capacité d'unités de production existantes.- Possibility of increasing the capacity of existing production units.
- Réduction des consommations d'énergie. L'obtention de très hautes températures est rendue aujourd'hui possible par le progrès technologique; par exemple le brevet belge 767786 décrit un procédé permettant d'obtenir sous haute pression des températures de gaz aussi élevées que 1600°C. Ce type de procédé permet l'obtention de hauts rendements thermiques avec un matériel simple et peu coûteux.- Reduction of energy consumption. Obtaining very high temperatures is made possible today by technological progress; for example the Belgian patent 767786 describes a process allowing gas temperatures as high as 1600 ° C. to be obtained under high pressure. This type of process allows high thermal yields to be obtained with simple and inexpensive equipment.
Les possibilités du procédé selon la présente invention sont illustrées par les exemples suivants ;The possibilities of the method according to the present invention are illustrated by the following examples;
Exemple 1 Dans cet exemple, l'ensemble classique constitué d'un four tubulaire de reformage primaire et d'un réacteur de reformage secondaire est remplacé par un seul réacteur adiabatique dans lequel l'énergie thermique requise est apportée par l'utilisation, selon l'inven¬ tion, d'un mélange d'air et de vapeur porté à haute température; la figure . illustre schématiquement cette possibilité de l'invention; dans cet exemple le gaz naturel 1 préalablement chauffé dans le préchauffeur 2 est introduit dans le réacteur catalytique 4 avec un mélange air-vapeur d'eau 3 préchauffé à haute température. Le gaz produit 5 est ensuite refroidi et traité avant d'alimenter l'unité de synthèse d'ammoniac. Le tableau suivant compare les conditions opératoires et les performances d'un ensemble classique reformage primaire - reformage secondaire (cas A) avec ceux obtenus par l'ensemble décrit dans la figure (cas B). - Débit gaz naturel procédé (Nm3/h)Example 1 In this example, the conventional assembly consisting of a primary reforming tubular furnace and a secondary reforming reactor is replaced by a single adiabatic reactor in which the required thermal energy is provided by the use, according to inven¬ tion, of a mixture of air and steam brought to high temperature; the figure . schematically illustrates this possibility of the invention; in this example the natural gas 1 previously heated in the preheater 2 is introduced into the catalytic reactor 4 with an air-steam mixture 3 preheated to high temperature. The product gas 5 is then cooled and treated before supplying the ammonia synthesis unit. The following table compares the operating conditions and the performances of a conventional primary reforming - secondary reforming assembly (case A) with those obtained by the assembly described in the figure (case B). - Process natural gas flow (Nm 3 / h)
- Débit de vapeur d'eau (Nm3/h)- Water vapor flow (Nm 3 / h)
- Rapport molaire V/C
Figure imgf000007_0001
(vapeur d'eau/carbone)
- V / C molar ratio
Figure imgf000007_0001
(water vapor / carbon)
- Température du mélange gaz naturel-vapeur d'eau 510 entrant (°C)- Temperature of the natural gas-water vapor mixture 510 (° C)
- Température du gaz naturel 400 entrant (°C)- Temperature of incoming natural gas 400 (° C)
- Température de l'air entrant 468 (°C)- Incoming air temperature 468 (° C)
- Température du mélange air-vapeur d'eau 1500 entrant (°C)- Temperature of the incoming air-water vapor mixture 1500 (° C)
- Température finale du gaz 982 994 réformé (°C)- Final temperature of the reformed gas 982 994 (° C)
- Pression du gaz réformé (bars absolus)- Reformed gas pressure (absolute bars)
- % molaire Ch dans le gaz produit- molar% Ch in the product gas
- Débit du H_ + CO produit (Nm'/h) H CO- Flow rate of H_ + CO produced (Nm '/ h) H CO
Rapport molaire 2 +
Figure imgf000007_0002
2 + molar ratio
Figure imgf000007_0002
N, dans le gaz produit.N, in the gas produced.
On voit que l'utilisation selon l'invention, de tempé¬ ratures élevées pour le préchauffage de l'air et de la vapeur d'eau permet l'obtention de résultats similaires à ceux d'une installation classique mais entraîne la suppression de l'équipement complexe et coûteux que constitue le four de reformage primaire, alors que le préchauffage à haute température du mélange air-vapeur d'eau peut l'effectuer dans un appareillage peu coûteux et de haut rendement thermique. Exemple 2It can be seen that the use according to the invention of high temperatures for preheating air and water vapor makes it possible to obtain results similar to those of a conventional installation but results in the elimination of the complex equipment and expensive that constitutes the primary reforming furnace, while the preheating at high temperature of the air-water vapor mixture can be carried out in an inexpensive apparatus with high thermal efficiency. Example 2
La capacité de reformage d'une installation classique, fonctionnant au gaz naturel, telle que décrite schématiquement dans la figure 1, peut être augmentée substantiellement par l'ensemble des modifications suivantes : a) Introduction d'un supplément de gaz naturel dans le flux gazeuxThe reforming capacity of a conventional installation, operating on natural gas, as described schematically in FIG. 1, can be substantially increased by all of the following modifications: a) Introduction of additional natural gas into the gas stream
8, entre le four de reformage primaire 7 et le réacteur de refor¬ mage secondaire 11. b) Introduction d'une quantité additionnelle d'air 9 dans le réacteur de reformage secondaire 11 de manière à maintenir un rapport constant H-/N- dans le gaz de synthèse propre à la synthèse de l'ammoniac. c) Apport d'un complément d'énergie nécessaire à la réaction de reformage secondaire par élévation, selon l'invention, de la tempéra¬ ture de l'air 9. Le tableau suivant compare les conditions et perfor- mances d'une installation fonctionnant de manière classique avec celles de la même installation dont les conditions de fonctionnement ont été modifiées selon le procédé faisant l'objet de la présente invention. 8, between the primary reforming furnace 7 and the secondary reforming reactor 11. b) Introduction of an additional quantity of air 9 into the secondary reforming reactor 11 so as to maintain a constant ratio H- / N- in synthesis gas specific to the synthesis of ammonia. c) Providing additional energy necessary for the secondary reforming reaction by raising, according to the invention, the temperature of the air 9. The following table compares the conditions and performance of an installation operating conventionally with those of the same installation, the operating conditions of which have been modified according to the process which is the subject of the present invention.
Figure imgf000009_0001
Dans cet exemple une augmentation de capacité de 20 % de la production d'hydrogène et d'oxyde de carbone est donc obtenue sans aucune utilisation supplémentaire de vapeur et sans modification du four de reformage primaire; les seules modifications apportées sont les suivantes :
Figure imgf000009_0001
In this example an increase in capacity of 20% of the production of hydrogen and carbon monoxide is therefore obtained without any additional use of steam and without modification of the primary reforming furnace; the only changes are:
- Introduction de gaz naturel supplémentaire entre le four de refor¬ mage primaire et le réacteur de reformage secondaire.- Introduction of additional natural gas between the primary reforming furnace and the secondary reforming reactor.
- Augmentation proportionnelle du débit d'air vers le réacteur secondaire. - Augmentation selon l'invention de la température de l'air qui est portée de 468°C à 859°C.- Proportional increase in air flow to the secondary reactor. - Increase according to the invention of the air temperature which is increased from 468 ° C to 859 ° C.
La perte de charge et l'activité cataly tique du système peuvent être aisément maintenus constants par l'utilisation de catalyseurs plus performants dans le réacteur de reformage secon- daire.The pressure drop and the catalytic activity of the system can easily be kept constant by the use of more efficient catalysts in the secondary reforming reactor.
Exemple 3 L'utilisation d'air à haute température selon l'inven¬ tion permet d'améliorer de manière intéressante le procédé LCA décrit dans la page 2 et la figure 3; l'utilisation de l'invention peut par exemple supprimer la nécessité d'un excès d'air à l'entrée du four de reformage secondaire ou (et) permettre d'augmenter économi¬ quement la capacité de production de l'unité de reformage. Le tableau comparatif qui suit montre comment l'utilisation de l'invention permet de supprimer l'excès d'air normalement requis par le procédé LCA : Example 3 The use of high temperature air according to the invention makes it possible to improve the LCA process described in page 2 and FIG. 3 in an interesting manner; the use of the invention can for example eliminate the need for an excess of air at the inlet of the secondary reforming furnace or (and) make it possible to economically increase the production capacity of the reforming unit . The following comparative table shows how the use of the invention makes it possible to remove the excess air normally required by the LCA process:
Figure imgf000011_0001
Figure imgf000011_0001
- Débit H2 + CO dans le .47.800 49.300 gaz produit 9 (Nm3/h)- Flow rate H 2 + CO in the .47.800 49.300 gas produced 9 (Nm 3 / h)
H2 + COH 2 + CO
Rapport molaire 2,57 3,05 10 -Molar ratio 2.57 3.05 10 -
L'examen de ce tableau montre que l'utilisation, selon l'invention, d'une température élevée pour l'air utilisé dans le réacteur de reformage secondaire (1350°C au lieu de 650°C) permet de réduire la quantité d'air nécessaire pour le reformage secondaire de 15 % et d'augmenter la production H_ + CO de 3,3 %; d'autre part, il n'est plus nécessaire d'éliminer ultérieurement une partie de l'azote présent dans le gaz produit puisque le rapportExamination of this table shows that the use, according to the invention, of a high temperature for the air used in the secondary reforming reactor (1350 ° C. instead of 650 ° C.) makes it possible to reduce the amount of air required for secondary reforming by 15% and increasing H_ + CO production by 3.3%; on the other hand, it is no longer necessary to subsequently eliminate part of the nitrogen present in the gas produced since the ratio
H2 + COH 2 + CO
— JΓJ est égal à 3;05 et est donc directement utilisable pour- JΓJ is equal to 3 ; 05 and is therefore directly usable for
N2 la synthèse de l'ammoniac. N 2 the synthesis of ammonia.
Exemple L'utilisation, selon l'invention, d'un mélange d'air et d'oxygène, préalablement porté à très haute température, dans un réacteur de reformage autothermique tel que décrit en page 2 et dans la figure 2 permet notamment d'augmenter la capacité de production du réacteur sans augmenter le débit d'oxygène, mais égale¬ ment de réduire les quantités d'oxygène nécessaires pour une production donnée de gaz de synthèse. A titre exemplatif le tableau qui suit compare le fonctionnement d'un réacteur autothermique dans 3 types de conditions opérationnelles :Example The use, according to the invention, of a mixture of air and oxygen, previously brought to very high temperature, in an autothermal reforming reactor as described on page 2 and in FIG. 2 makes it possible in particular to increase the production capacity of the reactor without increasing the oxygen flow rate, but also reduce the quantities of oxygen necessary for a given production of synthesis gas. By way of example, the following table compares the operation of an autothermal reactor under 3 types of operational conditions:
- Cas classique de base (A)- Basic classical case (A)
- Augmentation de la capacité de production de gaz de synthèse, à débit d'oxygène constant (B)- Increase in the production capacity of synthesis gas, at constant oxygen flow rate (B)
- Maintien de la capacité de production de gaz de synthèse à débit d'oxygène réduit (C) - Maintaining the production capacity of synthesis gas with reduced oxygen flow (C)
- Débit de gaz naturel (Nm3/h)- Natural gas flow (Nm 3 / h)
- Débit de vapeur d'eau (Nm3/h)- Water vapor flow (Nm 3 / h)
- Débit d'air (Nm3/h) - Débit d'oxygène (Nm3/h)- Air flow (Nm 3 / h) - Oxygen flow (Nm 3 / h)
- Température du mélange
Figure imgf000013_0002
gaz naturel-vapeur (°C)
- Mixing temperature
Figure imgf000013_0002
natural gas-vapor (° C)
- Température du mélange 500 1000 1050 air-oxygène (°C) - Pression à la sortie du 30 30 30 réacteur (bars absolus)- Temperature of the mixture 500 1000 1050 air-oxygen (° C) - Pressure at the outlet of the reactor 30 30 30 (absolute bars)
- Température à la sortie 946 968 950 du réacteur (°C)- Temperature at the outlet 946 968 950 of the reactor (° C)
- Teneur en méthane dans le gaz 0,48 0,37 0,47 produit (% molaire sur base sèche)- Methane content in the gas 0.48 0.37 0.47 product (mol% on a dry basis)
- Rapport molaire 3,02 3,02 3,01 du gaz produit
Figure imgf000013_0001
- Molar ratio 3.02 3.02 3.01 of the gas produced
Figure imgf000013_0001
- Production H2 + CO (Nm3/h) 27.500 32.600 27.400 On voit donc que, par exemple, on peut augmenter la production d'un four autothermique de 18,5 % en augmentant la température du mélange air-oxygène de 500 à 1000°C et ceci sans augmenter le débit d'oxygène, et en n'augmentant le débit de gaz naturel que de 15 %. D'autre part l'exemple C montre que, par exemple, on peut réduire le débit d'oxygène de 20 % et le gaz naturel de 3,7 % sans réduire la production d'hydrogène et d'oxyde de carbone, en portant la température du mélange air-oxygène de 500 à 1050°C.- Production H 2 + CO (Nm 3 / h) 27,500 32,600 27,400 We therefore see that, for example, we can increase the production of an autothermal oven by 18.5% by increasing the temperature of the air-oxygen mixture from 500 to 1000 ° C and this without increasing the oxygen flow, and by increasing the flow of natural gas by only 15%. On the other hand, example C shows that, for example, it is possible to reduce the oxygen flow rate by 20% and natural gas by 3.7% without reducing the production of hydrogen and carbon monoxide, by carrying the temperature of the air-oxygen mixture from 500 to 1050 ° C.
L'exemple 1 montre par ailleurs que l'apport d'oxy- gène peut être complètement éliminé par préchauffage du mélange air-vapeur d'eau à 1500°C. Example 1 also shows that the oxygen supply can be completely eliminated by preheating the air-water vapor mixture to 1500 ° C.

Claims

- 12 -REVENDICATIONS - 12 - CLAIMS
1. Procédé de reformage utilisant de l'air ou de l'oxygène ou de la vapeur d'eau, seuls ou en mélange, chauffés à des températures comprises entre 800 et 1600°C sous des pressions comprises entre 10 et 100 bars absolus.1. Reforming process using air or oxygen or water vapor, alone or in mixture, heated to temperatures between 800 and 1600 ° C under pressures between 10 and 100 bar absolute.
2. Procédé selon la revendication 1 dans lequel un mélange de vapeur d'eau et d'air préalablement chauffé à des températures comprises entre 1200 et 1600°C est introduit dans un réacteur adiabatique de reformage catalytique où il réagit avec un hydrocarbure pour former un gaz qui, après des opérations classiques de refroidissement, de conversion d'oxyde de carbone, d'élimination du bioxyde de carbone et de purification, fournira un gaz de synthèse convenant à la fabrication de l'ammoniac.2. The method of claim 1 wherein a mixture of water vapor and air previously heated to temperatures between 1200 and 1600 ° C is introduced into an adiabatic catalytic reforming reactor where it reacts with a hydrocarbon to form a gas which, after conventional operations of cooling, conversion of carbon monoxide, elimination of carbon dioxide and purification, will provide a synthesis gas suitable for the manufacture of ammonia.
3. Procédé selon la revendication 2 dans lequel l'hydrocarbure d'alimentation est du gaz naturel.3. Method according to claim 2 in which the supply hydrocarbon is natural gas.
4. Procédé selon la revendication 1, consistant, pour augmenter la capacité d'une unité existante, à compléter les opérations classiques successives de reformage catalytique primaire tubulaire et de reformage catalytique adiabatique secondaire d'un mélange d'hydrocarbure et de vapeur d'eau par une introduction supplé¬ mentaire d'hydrocarbure, entre le four de reformage primaire et le réacteur de reforming secondaire, simultanément avec une augmen¬ tation de la température de préchauffage de l'air introduit dans le four de reforming secondaire dans une gamme de température comprise entre 850 et 1600°C.4. Method according to claim 1, consisting, in order to increase the capacity of an existing unit, in completing the successive conventional operations of tubular primary catalytic reforming and secondary adiabatic catalytic reforming of a mixture of hydrocarbon and water vapor by an additional introduction of hydrocarbon, between the primary reforming furnace and the secondary reforming reactor, simultaneously with an increase in the preheating temperature of the air introduced into the secondary reforming furnace in a temperature range between 850 and 1600 ° C.
5. Procédé selon les revendications 1 et 4 dans lequel l'introduction supplémentaire d'hydrocarbure est accompagnée d'une introduction supplémentaire de vapeur d'eau en mélange avec l'hydrocarbure. 5. Method according to claims 1 and 4 wherein the additional introduction of hydrocarbon is accompanied by an additional introduction of water vapor mixed with the hydrocarbon.
6. Procédé selon les revendications 1, 4, et 5 dans lequel l'hydrocarbure est du gaz naturel.6. Method according to claims 1, 4, and 5 wherein the hydrocarbon is natural gas.
7. Procédé selon les revendications 1, 4 et 6 dans lequel la quantité de gaz naturel supplémentaire introduite entre le four de reformage primaire et le réacteur de reformage secondaire représente entre 2 et 60 % de la quantité introduite dans les tubes du four de reformage primaire tandis que la température de l'air est à un niveau compris entre 850°C et 1400°C.7. The method of claims 1, 4 and 6 wherein the amount of additional natural gas introduced between the primary reforming furnace and the secondary reforming reactor represents between 2 and 60% of the amount introduced into the tubes of the primary reforming oven while the air temperature is at a level between 850 ° C and 1400 ° C.
8. Procédé selon la revendication 1 consistant, dans les unités de reformage où l'effluent du réacteur de reformage secondaire sert à fournir l'apport thermique nécessaire au fonctionne¬ ment du four de reformage primaire, à porter la température de l'air introduit dans le réacteur de reformage secondaire à un niveau compris entre 800 et 1600°C et de préférence entre 1250 et 1450°C, afin de supprimer l'excès d'air nécessaire à l'équilibre thermique du système de reformage, à obtenir directement le rapport8. The method of claim 1 consisting, in reforming units where the effluent from the secondary reforming reactor is used to provide the heat input necessary for the operation of the primary reforming furnace, to bring the temperature of the air introduced in the secondary reforming reactor at a level between 800 and 1600 ° C and preferably between 1250 and 1450 ° C, in order to remove the excess air necessary for the thermal equilibrium of the reforming system, to obtain directly the report
H- + CO r-j convenant à la synthèse de l'ammoniac et (ou) à augmenterH- + CO r- j suitable for the synthesis of ammonia and / or to increase
N2 la capacité de production du système de reformage. N 2 the production capacity of the reforming system.
9. Procédé selon les revendications 1 et 8 dans lequel les opérations de reformage primaire et secondaire s'effectuent dans un seul appareil.9. The method of claims 1 and 8 wherein the primary and secondary reforming operations are carried out in a single device.
10. Procédé selon les revendications 1 et 8 dans lequel les fours de reformage primaire et secondaire sont réunis dans un seul appareil.10. The method of claims 1 and 8 wherein the primary and secondary reforming furnaces are combined in a single device.
1 1. Procédé selon la revendication 1 consistant à introduire dans un réacteur autothermique de l'air et de l'oxygène préchauffés à une température comprise entre 850 et 1600°C, et, de préférence, entre 900 et 1200°C, de manière à permettre l'augmen- tation de production de l'unité de reformage sans augmentation des besoins en oxygène ou, à capacité de production égale, à réduire les besoins en oxygène. 1 1. The method of claim 1 comprising introducing into an autothermal reactor air and oxygen preheated to a temperature between 850 and 1600 ° C, and preferably between 900 and 1200 ° C, so to allow the production increase of the reforming unit without increasing the oxygen requirements or, for the same production capacity, to reduce the oxygen requirements.
PCT/BE1991/000042 1990-06-26 1991-06-25 Novel synthesis gas production method for producing ammonia WO1992000241A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE9000653A BE1004477A4 (en) 1990-06-26 1990-06-26 New method for producing synthesis gas for the manufacture of ammonia.
BE9000653 1990-06-26

Publications (1)

Publication Number Publication Date
WO1992000241A1 true WO1992000241A1 (en) 1992-01-09

Family

ID=3884848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BE1991/000042 WO1992000241A1 (en) 1990-06-26 1991-06-25 Novel synthesis gas production method for producing ammonia

Country Status (2)

Country Link
BE (1) BE1004477A4 (en)
WO (1) WO1992000241A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998058874A1 (en) * 1997-06-24 1998-12-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for reforming hydrocarbons autothermally
WO2004103894A1 (en) * 2003-04-16 2004-12-02 Energy & Environmental Research Center Foundation, Inc. Process for producing high-pressure hydrogen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3584998A (en) * 1968-07-03 1971-06-15 Du Pont Process for making ammonia
FR2159217A1 (en) * 1971-11-12 1973-06-22 Pullman Inc Reforming hydrocarbon feed - by noncatalytic oxidation followed by catalytic steam reforming
US4479925A (en) * 1982-09-13 1984-10-30 The M. W. Kellogg Company Preparation of ammonia synthesis gas
EP0300151A1 (en) * 1987-06-13 1989-01-25 Uhde GmbH Process for preparing ammoniac from natural gas
EP0324207A2 (en) * 1988-01-14 1989-07-19 Metallgesellschaft Ag Process for producing a gas rich in carbon monoxide by cracking hydrocarbons

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3584998A (en) * 1968-07-03 1971-06-15 Du Pont Process for making ammonia
FR2159217A1 (en) * 1971-11-12 1973-06-22 Pullman Inc Reforming hydrocarbon feed - by noncatalytic oxidation followed by catalytic steam reforming
US4479925A (en) * 1982-09-13 1984-10-30 The M. W. Kellogg Company Preparation of ammonia synthesis gas
EP0300151A1 (en) * 1987-06-13 1989-01-25 Uhde GmbH Process for preparing ammoniac from natural gas
EP0324207A2 (en) * 1988-01-14 1989-07-19 Metallgesellschaft Ag Process for producing a gas rich in carbon monoxide by cracking hydrocarbons

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998058874A1 (en) * 1997-06-24 1998-12-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for reforming hydrocarbons autothermally
WO2004103894A1 (en) * 2003-04-16 2004-12-02 Energy & Environmental Research Center Foundation, Inc. Process for producing high-pressure hydrogen
US7553475B2 (en) 2003-04-16 2009-06-30 Energy & Environmental Research Center Foundation Process for producing high-pressure hydrogen

Also Published As

Publication number Publication date
BE1004477A4 (en) 1992-12-01

Similar Documents

Publication Publication Date Title
RU2478564C2 (en) Method of producing synthesis gas for ammonia synthesis
JP2009519371A (en) Production of hydrocarbons from natural gas
US6159395A (en) Process and plant for reforming hydrocarbonaceous feedstock
RU2495914C2 (en) Apparatus and methods of processing hydrogen and carbon monoxide
RU2560363C2 (en) Hydrocarbon reforming method
US8591769B2 (en) Hydrogen production with reduced carbon dioxide generation and complete capture
WO2010109107A1 (en) Method and equipment for producing hydrogen, using a thermokinetic compressor
JP3638618B2 (en) Production method of high purity hydrogen
CN105820036B (en) Method and system for producing methanol using partial oxidation
JP2008512336A (en) Method for producing hydrogen and / or carbon monoxide
CN103648969B (en) The zero-emission sulfur recovery method of hydrogen is manufactured simultaneously
JP2003525832A (en) Method for producing carbon monoxide by reverse conversion using a catalyst
JPS6324035B2 (en)
CN103687801B (en) The zero-emission sulfur recovery method of hydrogen is prepared simultaneously
JPS62228035A (en) Production of organic compound from hydrocarbon-containing supply raw material
JP3302363B2 (en) Method for producing high-purity carbon monoxide
CN116133982A (en) Low-hydrocarbon fuel
FR2825995A1 (en) An installation for the production of synthesis gas comprises a vapor reforming reactor and a carbon dioxide conversion reactor, each heated by a hot gas current
JPS5938161B2 (en) Method for producing synthesis gas for ammonia production
BE1004477A4 (en) New method for producing synthesis gas for the manufacture of ammonia.
BE1013378A6 (en) Method and device of gas self summary by partial oxidation.
JPS606281B2 (en) Hydrogen production method
FR2823192A1 (en) Partial catalytic oxidation of hydrocarbons for the production of synthesis gas with a low hydrogen / carbon monoxide ratio, by the use of an oxygenated gas and an auxiliary gas
RU2808874C1 (en) Method for producing low-carbon ammonia from natural gas decarbonized ammonia-3000
RU2781405C2 (en) Method for production of methane-hydrogen mixtures or hydrogen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE