WO1991014133A1 - Procede et systeme de broyage et de sechage pour un combustible solide - Google Patents

Procede et systeme de broyage et de sechage pour un combustible solide Download PDF

Info

Publication number
WO1991014133A1
WO1991014133A1 PCT/FR1991/000180 FR9100180W WO9114133A1 WO 1991014133 A1 WO1991014133 A1 WO 1991014133A1 FR 9100180 W FR9100180 W FR 9100180W WO 9114133 A1 WO9114133 A1 WO 9114133A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
temperature
drying
fraction
flow rate
Prior art date
Application number
PCT/FR1991/000180
Other languages
English (en)
Inventor
Daniel Fontanille
Original Assignee
Stein Industrie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stein Industrie filed Critical Stein Industrie
Priority to DE9191905840T priority Critical patent/DE69100107T2/de
Priority to AT91905840T priority patent/ATE90440T1/de
Publication of WO1991014133A1 publication Critical patent/WO1991014133A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K1/00Preparation of lump or pulverulent fuel in readiness for delivery to combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/08Preheating the air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/04Measuring pressure
    • F23N2225/06Measuring pressure for determining flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/20Controlling one or more bypass conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2239/00Fuels
    • F23N2239/02Solid fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel

Definitions

  • the present invention relates to a ⁇ adjustment process operation of a crushing apparatus of a solid combustible material of variable moisture content and drying said material, said apparatus being fed with material via pre-drying means, in which there is a gas supply whose temperature can be adjusted over a range, the gas
  • the pre-drying means being combined with the fraction of gas leaving the apparatus with the ground material and all of the gas with the ground material being sent into the transport pipes, the temperature T of the gas and the ground material is measured in said transport pipes, the temperature of the gas is adjusted
  • the flow rate of the gas fraction Q ? supplying the pre-drying means being adjusted so that the total gas flow rate Q. in the transport pipes is between a minimum flow rate ⁇ Q. and a maximum flow rate Q. chorus.
  • the adjustment is provided for a combustible material having the highest degree of humidity which can normally be used in the boiler considered.
  • the flow in the outlet pipes must be at least equal to a minimum flow because below the crushed material is no longer transported correctly. On the other hand, this flow cannot exceed a
  • the inventor has found that it is advantageous, when the quantity of ground material is increased to the maximum possible of 10, to regulate the flow rate of the fraction of pre-drying gas Q as low as possible. that the total gas flow Q. within
  • ⁇ transport piping is equal to or very little higher than minimum flow rate Q. as long as possible and then deviates from it if necessary by the smallest possible quantity. • J5 The yield obtained is also increased and moreover combustion takes place with a reduced formation of nitrogen oxides.
  • the method according to the invention is characterized in that a temperature of the mixture of gas and ground material T is set below T. and which can depend on the moisture content of the material and in that
  • the invention also relates to a system for grinding a solid combustible material of variable moisture content and for drying this material, comprising a grinding and drying apparatus, means for feeding material, pre-drying means arranged at following supply and supply means
  • 35 means for adjusting the gas temperature of the supply means in a given range, transport pipes supplied with the mixture of gas from the pre-drying means and gas with the ground material from the device, means for adjusting the first injection means for adjusting the flow rate Q- of the fraction of gas passing through the apparatus in proportion to the quantity of material to be ground, means for measuring the temperature T of the gas mixture of ground material in the transport pipes, means for adjusting the temperature of the gas of the means d supply as a function of the difference between a fixed temperature T- and the temperature T measured so that T approaches T, means for adjusting the second injection means so that the total gas flow Q. in the transport piping is between a minimum flow rate Q. and a
  • Am maximum flow rate Q. was controlled on the one hand by a signal dependent on Q. so that the total gas flow rate Q. is equal to Q. when the gas outlet temperature T is greater than the temperature T réelleless than T., T trash being able to be chosen as a function of the humidity of the material and on the other hand, by a signal depending on the difference between the temperature T measured and the temperature TRON, when T is less than T., so as to increase the flow rate of the gas fraction Q ? sent to the means for pre-drying the quantity necessary for the outlet temperature to reach T ? without, however, the total flow Q. exceeding the maximum flow Q AM "
  • FIG. 2 represents the regulation of the air flow as a function of the coal flow according to the known method and devices.
  • FIG. 3 represents the regulation of the air flow as a function of the coal flow according to the method of the invention.
  • the rotary ball mill 1 rotates in pins 1A, 1B, at the same time ensuring the supply of coal and drying air.
  • Total air flow supply is measured by the flow meter 2.
  • the temperature T of the air charged with powdered carbon is measured at the outlet of the mill in the transport pipes 10 and 11 by the sensor 3.
  • the air flow Q- introduced in the mill by its pins through the conduits 38A, 38B is regulated by valves 4A-4B with regulators 37 'with proportional-integral control.
  • regulators 37 ′ are controlled by the member 37 for displaying the load request of the boiler supplied with ground coal.
  • a microprocessor 35 controlled by the indications of the sensor 3 through the minimum temperature 32 (proportional-integral control) and maximum 33 and minimum 34 air flow setpoints, regulated by the valves 30 and 31 arranged on conduits 39, 40 the flow rate of the air fraction (bypass air) Q_ sent directly to the separators 8,9 through the mixing boxes 16-17.
  • the flow air fraction Q p ensures in these boxes 16, 17 preheating and pre-drying of the material.
  • the supply air used for drying and transport is discharged by the fan 20.
  • a portion is heated in a heat exchanger 21 which at the same time ensures the heating of a fraction of secondary air discharged by the fan 20A and sent directly to the burners of the boiler hearth.
  • Another part is not heated and bypasses this exchanger by the conduit 23.
  • the respective flow rates of hot air and cold air are regulated by the valves 24 and 25, controlled by the microprocessor 36 with proportional-integral control with reference 36A temperature, controlled by the sensor 3 of the temperature of the air charged with powdered coal at the outlet of the mill.
  • the cold air and hot air flows are mixed in the pipe 26 provided with a closing valve 27.
  • the pipe 26 is separated into two pipes 28, 29, the pipe 28 separating into two pipes 38A and 39 and the conduit 29 separating into two conduits 38B and 40.
  • the coal to be ground, poured into the hoppers 12 and 13, is sent by the feeders 14 and 15 into the mixing boxes 16 and 17, where it is added with the fraction of air not introduced into the grinder arriving via the conduits 28 , 29. It flows towards the crusher through the pipes 18 and 19, then enters them through the pins 1A and 1B coaxially with the fraction of air introduced into it by the valves 4A, 4B controlled by regulators 37 'with proportional-integral action receiving an order from the display organ 37
  • the fraction of air charged with pulverized coal is evacuated from the crusher through the pins 1A and 1B, then after addition of the fraction of bypass air from the mixing boxes 16 and 17, - by the conduits 6 and 7 to the separators 8 and 9.
  • the 0 particles of coal are divided there into coarse particles, which are recycled towards the conduits 18, 19 supplying the mill, and into fine particles, which go to the burners of the boiler hearth.
  • the temperature of this outlet air is measured by the sensor 3 and transmitted to the microprocessor 36 for fixing the temperature setpoint and controlling the respective flow rates of the hot air and cold air fractions. by valves 24 and 25.
  • This temperature is also transmitted to the computer 32 to develop a control signal which is a function of the difference between the Q measured temperature and the setpoint displayed at 32A.
  • FIG. 2 represents the regulation of the air flow rate Q., in the transport pipes 10.11 depending on the flow rate of coal Q. vs
  • the air flow Q- (line segment 0E, E being the abscissa point 100) passing through the mill is proportional to the coal flow.
  • the flow Q. must be equal to or greater than a minimum flow Q. and not exceed a maximum flow Q.. Total flow Q. Am Am A
  • the air flow Q (PN) passing through the mill is determined by the chain 37, 37 ′ as a function of Q.
  • the chain 32, 33, 34 does not exist.
  • the ⁇ calculator 35 controls the valves 31, 30 so that the bypass quantity of air Q_ is equal to PR so that it always follows the broken line BCD.
  • This line was chosen so that the temperature of the outlet air is equal to T- for the wettest coal which it is conceivable to grind for the associated boiler, by sending the warmest supply air possible, that is to say with the valve 25 closed.
  • the outlet temperature T will increase the computer 36 on which the temperature T will be displayed at 36A. It will deliver a signal to open the cold air valve 24 and close the hot air valve 25 in order to '' lower the temperature of the supply air so that the outlet air has a measured temperature which is equal to T ..
  • FIG. 3 represents the method according to the invention.
  • the broken line BCD which corresponds to the coal of maximum treatable humidity for the boiler considered.
  • CD ' has a slightly steeper slope than the segment BC, but for the quantity Q corresponding to the maximum of treatable carbon, a point D' is located below D and above E.
  • the air flow through the mill as a function of Q is always represented by the line segment OE.
  • the air flow Q- passing through the mill is PN 0 but only a quantity of pre-drying air Q_ equal to PR 'which is less than PR must be added to it.
  • the quantity Q_ is zero.
  • a temperature T_ is lower than T- which is applied to the input 32A of the computer 32, the latter lets the minimum signal pass. So if T is less than 1 it is the signal corresponding to T which will pass, the instructions 33 and 34 ensure that the command sent to the computer 35 would not result in a flow Q lower than the minimum flow Q or greater than the maximum flow. M »Flow rate Q. will increase until temperature T is reached ? which corresponds to the B'C branch.
  • the CD segment is replaced by a broken line CCD '.
  • the invention relates firstly to the adjustment of the operation of a grinding apparatus for fossil fuels, such as coal, but it also applies to the grinding of non-combustible materials, such as minerals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Solid Materials (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Processing Of Solid Wastes (AREA)
  • Disintegrating Or Milling (AREA)
  • Adjustment And Processing Of Grains (AREA)

Abstract

On dispose d'une alimentation en gaz de température réglable qui alimente d'une part, le broyeur (1) et d'autre part des moyens de préséchage (16, 17). A la sortie du broyeur, le gaz ayant traversé le broyeur est réuni avec le gaz ayant traversé les moyens de préséchage pour transporter le matériau broyé. Le débit total QA de gaz à la sortie est compris entre un débit minimal et un débit maximal, et le débit de gaz Q1 traversant le broyeur est proportionnel à la quantité de matériau Qc amenée au broyeur. On fixe une température à atteindre T pour la température de sortie du gaz pouvant dépendre de l'humidité du matériau et on règle l'alimentation du gaz de façon que le gaz d'alimentation soit le plus chaud possible avec la quantité de gaz traversant les moyens de préséchage limitée au maximum.

Description

Procédé et système de broyage et de séchage pour un combustible solide
La présente invention concerne un procédé de réglage du ζ fonctionnement d'un appareil de broyage d'un matériau combustible solide de teneur en humidité variable et de séchage de ce matériau, ledit appareil étant alimenté en matériau par l'intermédiaire de moyens de préséchage, dans lequel on dispose d'une alimentation en gaz dont la température peut être réglée sur une plage, le gaz
10 d'alimentation étant séparé en deux fractions, une fraction du gaz passant à travers l'appareil de broyage et l'autre fraction du gaz étant envoyée aux moyens de préséchage, on règle le débit Q de la fraction de gaz passant à travers l'appareil proportionnellement au débit Q du matériau à broyer, la fraction de gaz traversant les
15 moyens de préséchage étant réunie à la fraction de gaz sortant de l'appareil avec le matériau broyé et l'ensemble du gaz avec le matériau broyé étant envoyé dans les tuyauteries de transport, on mesure la température T du gaz et du matériau broyé dans lesdites tuyauteries de transport, on règle la température du gaz
20 d'alimentation en fonction de l'écart entre une température fixée T- et la température T mesurée de façon que la température mesurée T se rapproche de T , le débit de la fraction de gaz Q? alimentant les moyens de préséchage étant réglé de façon que le débit total de gaz Q. dans les tuyauteries de transport soit compris entre un débit minimal ς Q. et un débit maximal Q.„.
ΔD Am AM
Un tel procédé est décrit dans l'article de VERGNIOL "Un broyeur unique par chaudière en chauffe directe" paru dans la revue française "Revue Alsthom" n°l, 1985 pages 31 à 40.
Dans le procédé connu, le réglage est prévu pour un matériau 30 combustible ayant le degré d'humidité le plus élevé qui puisse normalement être utilisé dans la chaudière considérée.
Le débit dans les tuyauteries de sortie doit être au moins égal à un débit minimal car en-dessous le matériau broyé n'est plus transporté correctement. D'autre part, ce débit ne peut dépasser un
35 débit maximal car en-dessus les canalisations sont endommagées par erosion.
Il s'ensuit que pour toute une gamme de matériau combustible d'humidité inférieure au matériau pour lequel la chaudière est réglée on sera conduit pour obtenir la température de sortie voulue à ajouter c beaucoup trop de gaz dans les moyens de préséchage et à abaisser la température du gaz d'alimentation ce qui conduit à un mauvais rendement.
D'autre part, l'inventeur a constaté qu'il y avait intérêt, lorsqu'on augmente la quantité de matériau broyé jusqu'au maximum 10 possible à régler le débit de la fraction de gaz de préséchage Q le plus bas possible de façon à ce que le débit total de gaz Q. dans les
Ά tuyauteries de transport soit égal ou très peu supérieur au débit minimal Q. le plus longtemps possible et puis s'en écarte ensuite si Am nécessaire de la quantité la plus faible possible. •J5 Le rendement obtenu est aussi augmenté et de plus la combustion a lieu avec une formation réduite d'oxydes d'azote.
Le procédé selon l'invention est caractérisé en ce qu'on se fixe une température du mélange de gaz et de matériau broyé T inférieure à T. et pouvant dépendre de la teneur en humidité du matériau et en ce
20 que lorsque le débit minimal de gaz ne suffit pas pour atteindre la température fixée Tp, avec la température du gaz d'alimentation portée au maximum de la plage, on augmente le débit de la fraction de gaz Q-
2 envoyée aux moyens de préséchage de la quantité nécessaire pour atteindre la température T?. 5 L'invention concerne également un système de broyage d'un matériau combustible solide de teneur en humidité variable et de séchage de ce matériau comportant un appareil de broyage et de séchage, des moyens d'alimentation en matériau, des moyens de préséchage disposés à la suite des moyens d'alimentation et alimentant
30 l'appareil en matériau des premiers moyens d'injection de gaz dans l'appareil des seconds moyens d'injection de gaz dans les moyens de préséchage, des moyens d'alimentation en gaz, ledit gaz étant séparé en une première fraction alimentant les premiers moyens d'injection et une seconde fraction alimentant les seconds moyens d'injection, des
35 moyens de réglage de la température du gaz des moyens d'alimentation dans une plage donnée, des tuyauteries de transport alimentées par le mélange du gaz issu des moyens de préséchage et du gaz avec le matériau broyé issu de l'appareil, des moyens de réglage des premiers moyens d'injection pour régler le débit Q- de la fraction de gaz passant à travers l'appareil proportionnellement à la quantité de matériau à broyer, des moyens de mesure de la température T du mélange gaz matériau broyé dans les tuyauteries de transport, des moyens de réglage de la température du gaz des moyens d'alimentation en fonction de l'écart entre une température fixée T- et la température T mesurée de façon que T se rapproche de T , des moyens de réglage des seconds moyens d'injection de façon que le débit total de gaz Q. dans les tuyauteries de transport soit compris entre un débit minimal Q. et un
Am débit maximal Q.„ caractérisé en ce que les moyens de réglage des seconds moyens d'injection sont commandés d'une part, par un signal dépendant de Q. de façon que le débit total de gaz Q. soit égal à Q. lorsque la température de sortie du gaz T est supérieure à la température T„ inférieure à T., T„ pouvant être choisie en fonction de l'humidité du matériau et d'autre part, par un signal dépendant de l'écart entre la température T mesurée et la température T„, lorsque T est inférieure à T., de façon à augmenter le débit de la fraction de gaz Q? envoyée aux moyens de préséchage de la quantité nécessaire pour que la température de sortie atteigne T? sans toutefois que le débit total Q. dépasse le débit maximal QAM«
Il est décrit ci-après, à titre d'exemple et en référence aux figures du dessin annexé, un procédé de réglage du fonctionnement d'un broyeur à charbon de teneur en humidité variable, d'axe horizontal ainsi qu'un système pour la mise en oeuvre du procédé.
La figure 1 représente schématiquement l'ensemble du système. La figure 2 représente la régulation du débit d'air en fonction du débit de charbon selon le procédé et les dispositifs connus.
La figure 3 représente la régulation du débit d'air en fonction du débit de charbon selon le procédé de l'invention.
Dans la figure 1, le broyeur rotatif à boulets 1, d'axe horizontal, tourne dans des tourillons 1A, 1B, assurant en même temps l'alimentation en charbon et en air de séchage. Le débit total d'air d'alimentation est mesuré par le débit mètre 2. La température T de l'air chargé de charbon pulvérulent est mesurée à la sortie du broyeur dans les tuyauteries de transport 10 et 11 par le capteur 3. Le débit d'air Q- introduit dans le broyeur par ses tourillons à travers les conduits 38A, 38B est réglé par des vannes 4A-4B avec régulateurs 37' à commande proportionnelle-intégrale.
Ces régulateurs 37' sont commandés par l'organe 37 d'affichage de la demande de charge de la chaudière alimentée par le charbon broyé. D'autre part un microprocesseur 35, commandé par les indications du capteur 3 à travers les consignes de température minimale 32 (à commande proportionnelle-intégrale) et de débits d'air maximal 33 et minimal 34, règle grâce aux vannes 30 et 31 disposés sur des conduits 39, 40 le débit de la fraction d'air (air de contournement) Q_ envoyée directement aux séparateurs 8,9 à travers les boîtes de mélange 16-17. La fraction d'air de débit Qp assure dans ces boîtes 16, 17 un préchauffage et un préséchage du matériau.
L'air d'alimentation servant au séchage et au transport est refoulé par le ventilateur 20. Une partie se réchauffe dans un échangeur de chaleur 21 qui assure en même temps le réchauffage d'une fraction d'air secondaire refoulée par le ventilateur 20A et envoyée directement aux brûleurs du foyer de la chaudière. Une autre part n'est pas réchauffée et contourne cet échangeur par le conduit 23. Les débits respectifs d'air chaud et d'air froid sont réglés par les vannes 24 et 25, commandées par le microprocesseur 36 à commande proportionnelle-intégrale à consigne de température 36A, contrôlé par le capteur 3 de la température de l'air chargé de charbon pulvérulent à la sortie du broyeur. Les débits d'air froid et d'air chaud sont mélangés dans la canalisation 26 munie d'une vanne de fermeture 27. La canalisation 26 se sépare en deux conduits 28, 29, le conduit 28 se séparant en deux conduits 38A et 39 et le conduit 29 se séparant en deux conduits 38B et 40.
Le charbon à broyer, versé dans les trémies 12 et 13, est envoyé par les alimentateurs 14 et 15 dans les boîtes de mélange 16 et 17, où il est additionné de la fraction d'air non introduite dans le broyeur arrivant par les conduits 28, 29. Il s'écoule vers le broyeur par les tuyauteries 18 et 19, puis y pénètre à travers les tourillons 1A et 1B coaxialement à la fraction d'air introduit dans celui-ci par les vannes 4A, 4B commandées par des régulateurs 37' à action proportionnelle-intégrale recevant un ordre de l'organe 37 d'affichage
-. de la demande de charge de la chaudière, comme indiqué ci-dessus.
La fraction d'air chargé de charbon pulvérisé est évacué du broyeur à travers les tourillons 1A et 1B, puis après adjonction de la fraction d'air de contournement provenant des boîtes de mélange 16 et 17,- par les conduits 6 et 7 vers les séparateurs 8 et 9. Les 0 particules de charbon s'y divisent en particules grossières, qui sont recyclées vers les conduits 18, 19 d'alimentation du broyeur, et en particules fines, qui vont vers les brûleurs du foyer de la chaudière. La température de cet air de sortie, comme indiqué ci-dessus, est mesurée par le capteur 3 et transmise au microprocesseur 36 pour la fixation de la consigne de température et la commande des débits respectifs des fractions d'air chaud et d'air froid par les vannes 24 et 25.
Cette température est également transmise au calculateur 32 pour élaborer un signal de commande fonction de la différence entre la Q température mesurée et la consigne affichée en 32A.
La figure 2 représente la régulation du débit d'air Q., dans les canalisations de transport 10,11 eh fonction du débit de charbon Q . c
Le débit d'air Q- (segment de droite 0E, E étant le point d'abscisse 100) passant à travers le broyeur est proportionnel au 5 débit de charbon. Le débit Q. doit être égal ou supérieur à un débit minimal Q. et ne pas dépasser un débit maximal Q. . Le débit total Q. Am Am A
(égal à -+ Q„) en fonction de Q est un segment horizontal BC d'ordonnée Q. puis un segment incliné CD, avec le point D d'ordonnée
Q.-- et d'abscisse 100 (correspondant au débit maximal de charbon
AM 0 broyé).
Pour un débit Q de charbon broyé représenté par ON sur l'axe 0Q , on aura donc un débit d'air traversant le broyeur Q_. égal à PN (P étant le point de la droite 0E d'ordonnée ON) et un débit d'air Qp traversant les moyens de préséchage 16 et 17 (ou air de
35 contournement) égal à PR (R étant le point du segment CD d'ordonnée ON) .
Le débit d'air Q (PN) traversant le broyeur est déterminé par la chaîne 37, 37' en fonction de Q .
Dans le système connu, la chaîne 32, 33, 34 n'existe pas. Le ς calculateur 35 commande les vannes 31, 30 de façon que la quantité d'air de contournement Q_ soit égale à PR afin que l'on suive toujours la ligne brisée BCD.
Cette ligne a été choisie pour que la température de l'air de sortie soit égale à T- pour le charbon le plus humide qu'il soit 0 envisageable de broyer pour la chaudière associée, en envoyant l'air d'alimentation le plus chaud possible c'est-à-dire avec la vanne 25 fermée.
Si un charbon est moins humide, la température de sortie T va augmenter le calculateur 36 sur lequel on affiche en 36A la température T va déliver un signal pour ouvrir la vanne d'air froid 24 et fermer la vanne d'air chaud 25 afin d'abaisser la température de l'air d'alimentation de façon que l'air de sortie ait une température mesurée qui soit égale à T..
La figure 3 représente le procédé selon l'invention. Dans le Q diagramme Q , Q. on a représenté la ligne brisée BCD qui correspond au charbon d'humidité maximale traitable pour la chaudière considérée.
Si le charbon a une humidité inférieure, on décide de suiver la ligne brisée BCD'. Le segment BC est plus long que BC et le segment
CD' a une pente légèrement plus forte que le segment BC, mais pour la 5 quantité Q correspondant au maximum de charbon traitable on atteint un point D' situé en-dessous de D et au-dessus de E.
Le débit d'air traversant le broyeur en fonction de Q est toujours représenté par le segment de droite OE. Ainsi pour une quantité ON de charbon le débit d'air Q- traversant le broyeur est PN 0 mais on ne doit y ajouter qu'une quantité d'air Q_ de préséchage égale à PR' qui est inférieure à PR. Lorsqu'on se trouve sur le segment OE (supérieur à Q. ) la quantité Q_ est nulle.
Pour arriver à suivre la ligne BCD', on fixe une température T_ inférieure à T- qu'on applique sur l'entrée 32A du calculateur 32, celui-ci laisse passer le signal minimal. Ainsi si T est inférieur à 1 c'est le signal correspond à T qui passera, les consignes 33 et 34 assurent que la commande envoyée sur le calculateur 35 n'entraînerait pas un débit Q inférieur au débit minimal Q ou supérieur au débit maximal .M» Le débit Q. va augmenter jusqu'à ce qu'on atteigne la température T? qui correspond à la branche B'C.
Etant donné que est supérieure à T le calculateur 36 va ouvrir au maximum la vanne d'air chaud 24 et fermer la vanne d'air froid 25. On obtient ainsi un air d'alimentation ayant la température la plus élevée de la plage de réglage et grâce au calculateur 35 on envoie une quantité minimale Q (PR') de cet air chaud à travers les moyens de préchauffage.
Grâce au procédé selon l'invention on remplace le segment CD par une ligne brisée CCD'.
On peut ainsi utiliser l'air d'alimentation le plus chaud possible pour obtenir une température d'air de sortie T et limiter au maximum l'air de contournement. Dans le procédé connu au lieu de limiter le débit d'air de contournement Q? lorsque le charbon est moins humide on envoie la même quantité d'air de contournement en abaissant la température, ce qui d'une part est mauvais pour le rendement et d'autre part augmente le débit d'air total Q. entraînant ainsi une combustion avec production d'oxydes d'azote.
Plus le charbon est sec, plus le palier BC sera long et plus le point D' sera bas en gardant la même température de consigne T„.
L'invention concerne en premier lieu le réglage du fonctionnement d'appareil de broyage de combustibles fossiles, tels que le charbon, mais elle s'applique aussi au broyage de matériaux non combustibles, tels que des minéraux.

Claims

REVENDICATIONS
1) Procédé de réglage du fonctionnement d'un appareil (1) de broyage d'un matériau combustible solide de teneur en humidité variable et de séchage de ce matériau, ledit appareil (1) étant alimenté en matériau c par l'intermédiaire de moyens de préséchage (16, 17), dans lequel on dispose d'une alimentation en gaz (20, 24, 25) dont la température peut être réglée sur une plage, le gaz étant séparé en deux fractions, une fraction du gaz passant à travers l'appareil de broyage (1) et l'autre fraction du gaz étant envoyée aux moyens de préséchage (16,
10 17) , on règle le débit de la fraction de gaz Q- passant à travers l'appareil (1) proportionnellement à la quantité de matériau à broyer Q , la fraction de gaz Q_ traversant les moyens de préséchage (16, 17) étant réunie à la fraction de gaz Q- sortant de l'appareil (1) avec le matériau broyé et l'ensemble du gaz avec le matériau broyé étant
15 envoyé dans des tuyauteries de transport (10,11), on mesure la température T du gaz et du matériau broyé dans lesdites tuyauteries de transport (10, 11), on règle la température du gaz d'alimentation en fonction de l'écart entre une température fixée T. et la température T mesurée de façon que la température mesurée T se rapproche de T. , le
20 débit de la fraction de gaz alimentant les moyens de préséchage (16,
17) étant réglé de façon que le débit total de gaz Q. dans les canalisations de transport (10,11) sont compris entre un débit minimal
Q. et un débit maximal Q.„ caractérisé en ce qu'on se fixe une Am AM température du mélange de gaz et de matériau broyé T_ inférieure à 25 T. , T_ pouvant dépendre de la teneur en humidité du matériau, et en ce que lorsque le débit minimal de gaz Q. ne suffit pas pour atteindre la température fixée T^, avec la température du gaz d'alimentation portée au maximum de la plage, on augmente le débit de la fraction de gaz Q„ envoyée aux moyens de préséchage (16, 17) de la 30 quantité nécessaire pour atteindre la température T„.
2) Système de broyage d'un matériau combustible solide de teneur en humidité variable et de séchage de ce matériau comportant un appareil (1) de broyage et de séchage des moyens d'alimentation (12, 13) en matériau, des moyens de preséchage (16, 17) disposés à la suite des
35 moyens d'alimentation (12, 13) et alimentant l'appareil (1) en matériau, des premiers moyens d'injection. (38A, 38B) de gaz dans l'appareil (1), des seconds moyens d'injection (39, 40) de gaz dans les moyens de préséchage (16, 17), des moyens d'alimentation en gaz (20, 24, 25, 26), ledit gaz étant séparé en une première fraction
- alimentant les premiers moyens d'injection (38A, 38B) et une seconde fraction alimentant les seconds moyens d'injection (39, 40), des moyens de réglage (36) de la température du gaz d'alimentation (20, 24, 25, 26) dans une plage donnée, des tuyauteries de transport (10,11) alimentées par le mélange du gaz issu des moyens de préséchage Q (16, 17) et du gaz avec le matériau broyé issu de l'appareil (1), des moyens de réglage (4A, 4B) des premiers moyens d'injection (38A, 38B) pour régler le débit de la fraction de gaz Q- passant à travers l'appareil (1) proportionnellement à la quantité de matériau à broyer Q_, des moyens de mesure (3) de la température T du mélange gaz matériau broyé dans les canalisations de transport (10, 11), des moyens de réglage (24, 25, 36) de la température du gaz des moyens d'alimentation (20,21) en fonction de l'écart entre une température fixée T et la température T mesurée de façon que T se rapproche de T- , des moyens de réglage (30, 31, 35) des seconds moyens d'injection (39, Q 40) de façon que le débit total de gaz Q dans les canalisations de transport (10, 11) soit compris entre un débit minimal 0. et un débit
Am maximal QAJ- caractérisé en ce que les moyens de réglage (30, 31, 35) des seconds moyens d'injection (39, 40) sont commandés d'une part par un signal dépendant de Q de façon que le débit total de gaz Q. 5 soit égal à Q. lorsque la température de sortie du gaz T est supérieure à une température T„ inférieure à T- , T_ pouvant être choisie en fonction de l'humidité du matériau et d'autre part par un signal dépendant de 1'écart entre la température T mesurée et la température Tp, lorsque T est inférieure à T?, de façon à augmenter 0 le débit de la fraction de gaz G_ envoyée aux moyens de préséchage
(16, 17) de la quantité nécessaire pour que la température de sortie atteigne T_ sans toutefois que le débit total Q. dépasse le débit maximal QA.M„.
5
PCT/FR1991/000180 1990-03-06 1991-03-06 Procede et systeme de broyage et de sechage pour un combustible solide WO1991014133A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE9191905840T DE69100107T2 (de) 1990-03-06 1991-03-06 Verfahren und anlage zur zerkleinerung und zur trocknung von festbrennstoff.
AT91905840T ATE90440T1 (de) 1990-03-06 1991-03-06 Verfahren und anlage zur zerkleinerung und zur trocknung von festbrennstoff.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9002804 1990-03-06
FR90/02804 1990-03-06

Publications (1)

Publication Number Publication Date
WO1991014133A1 true WO1991014133A1 (fr) 1991-09-19

Family

ID=9394417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1991/000180 WO1991014133A1 (fr) 1990-03-06 1991-03-06 Procede et systeme de broyage et de sechage pour un combustible solide

Country Status (8)

Country Link
US (1) US5191724A (fr)
EP (1) EP0471060B1 (fr)
JP (1) JP3003872B2 (fr)
AT (1) ATE90440T1 (fr)
DE (1) DE69100107T2 (fr)
DK (1) DK0471060T3 (fr)
ES (1) ES2041558T3 (fr)
WO (1) WO1991014133A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6226891B1 (en) * 1999-12-06 2001-05-08 Daniel R. Chapman Method and apparatus for drying iron ore pellets
JP7325948B2 (ja) * 2018-11-21 2023-08-15 三菱重工業株式会社 微粉炭機の微粉炭乾燥システム及びその微粉炭乾燥方法並びに微粉炭乾燥プログラム、微粉炭機、ガス化複合発電設備

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1118768A (fr) * 1953-12-01 1956-06-11 Combustion Eng Perfectionnements apportés aux dispositifs de contrôle et de réglage de l'alimentation des foyers de chaudières en charbon pulvérisé et en air comburant
DE1138994B (de) * 1958-08-22 1962-10-31 Hazemag Hartzerkleinerung Mahlanlage
FR1377669A (fr) * 1962-12-18 1964-11-06 Riley Stoker Corp Broyeur à boulets
GB1124327A (en) * 1964-12-29 1968-08-21 Combustion Eng Method of operating a pulverized fuel firing system associated with a vapour generator therefor
DE3441475A1 (de) * 1983-11-14 1985-05-30 Hitachi, Ltd., Tokio/Tokyo Verfahren zur steuerung eines heisslufterzeugers fuer einen kessel mit kohlefeuerung
EP0234017A1 (fr) * 1985-12-11 1987-09-02 STEIN INDUSTRIE Société Anonyme dite: Broyeur cylindrique rotatif pour la préparation d'un matériau pulvérulent en deux qualités différentes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894344A (en) * 1974-01-22 1975-07-15 Dravo Corp Method and apparatus for drying materials in fixed beds
AT374491B (de) * 1982-01-20 1984-04-25 Voest Alpine Ag Verfahren zur kontinuierlichen trocknung und veredelung von organischen feststoffen wie z.b. braunkohlen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1118768A (fr) * 1953-12-01 1956-06-11 Combustion Eng Perfectionnements apportés aux dispositifs de contrôle et de réglage de l'alimentation des foyers de chaudières en charbon pulvérisé et en air comburant
DE1138994B (de) * 1958-08-22 1962-10-31 Hazemag Hartzerkleinerung Mahlanlage
FR1377669A (fr) * 1962-12-18 1964-11-06 Riley Stoker Corp Broyeur à boulets
GB1124327A (en) * 1964-12-29 1968-08-21 Combustion Eng Method of operating a pulverized fuel firing system associated with a vapour generator therefor
DE3441475A1 (de) * 1983-11-14 1985-05-30 Hitachi, Ltd., Tokio/Tokyo Verfahren zur steuerung eines heisslufterzeugers fuer einen kessel mit kohlefeuerung
EP0234017A1 (fr) * 1985-12-11 1987-09-02 STEIN INDUSTRIE Société Anonyme dite: Broyeur cylindrique rotatif pour la préparation d'un matériau pulvérulent en deux qualités différentes

Also Published As

Publication number Publication date
JPH04505652A (ja) 1992-10-01
DE69100107D1 (de) 1993-07-15
US5191724A (en) 1993-03-09
JP3003872B2 (ja) 2000-01-31
EP0471060B1 (fr) 1993-06-09
ATE90440T1 (de) 1993-06-15
DK0471060T3 (da) 1993-10-18
ES2041558T3 (es) 1993-11-16
DE69100107T2 (de) 1993-09-16
EP0471060A1 (fr) 1992-02-19

Similar Documents

Publication Publication Date Title
US4177951A (en) Pulverizer air flow and temperature control
FR2509702A1 (fr) Procede pour la regulation de courants d'ecoulement de produits pulverulents ou a granulation fine
US4936870A (en) Process for determination and control of fuel mass flow in partial oxidation and gasification of a fine-grained to powdery fuel
LU92916B1 (en) Grinding and drying plant
CN111886207B (zh) 用于预热玻璃熔融炉批料的系统
CN1055127C (zh) 输送微粒固体的方法和装置
CA1166085A (fr) Methode pour ameliorer la reponse a la demande des chaudieres au charbon
FR2462658A1 (fr) Procede et appareil pour le sechage et le broyage fin du charbon, pour l'alimentation d'un foyer a poussier de charbon
EP0471060B1 (fr) Procede et systeme de broyage et de sechage pour un combustible solide
FR2549580A1 (fr) Procede et dispositif pour l'injection de charbon pulverise dans un four industriel
US2439721A (en) Control system for feeding fuel to furnaces
FR2531724A1 (fr) Dispositif de broyage, de sechage et de transport d'un combustible broye destine a un haut fourneau
FR2500124A1 (fr) Procede de preparation d'un combustible pulverise, destine a une veilleuse et preleve dans un courant de combustible principal existant, a l'aide d'un dispositif de triage ou d'un broyeur d'addition
US4489664A (en) Closed loop fuel feed system for multiple direct fired burners
CA2534862C (fr) Procede et dispositif de dosage gravimetrique en continu de matieres fluides pour installations de chauffage
USRE20156E (en) Control system
US5277134A (en) Coal mill control process
US1814560A (en) Fuel preparing and handling system
BE1003542A4 (fr) Procede de cuisson de clinker et installation a four a charbon.
JP3616110B2 (ja) ペースト状燃料製造方法および装置
KR830000233B1 (ko) 분쇄기의 공기 유량 및 온도 제어 방법
US2780186A (en) Feeding pulverized fuel for combustion
JPS60207823A (ja) 微粉炭製造装置の微粉炭・空気比調節装置
JPH01217119A (ja) 微粉炭の供給方法
JPH0698316B2 (ja) 粉砕装置用空気制御方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE DE DK ES FR GB IT NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991905840

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991905840

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991905840

Country of ref document: EP