WO1991010891A1 - Procede et dispositif pour l'examen sans contact de materiaux d'essai en surface ou en volume - Google Patents

Procede et dispositif pour l'examen sans contact de materiaux d'essai en surface ou en volume Download PDF

Info

Publication number
WO1991010891A1
WO1991010891A1 PCT/CH1991/000004 CH9100004W WO9110891A1 WO 1991010891 A1 WO1991010891 A1 WO 1991010891A1 CH 9100004 W CH9100004 W CH 9100004W WO 9110891 A1 WO9110891 A1 WO 9110891A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
test material
intensity
light source
detected
Prior art date
Application number
PCT/CH1991/000004
Other languages
German (de)
English (en)
Inventor
Wilfried Schoeps
Original Assignee
Optocontrol Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optocontrol Ag filed Critical Optocontrol Ag
Priority to BR919103915A priority Critical patent/BR9103915A/pt
Priority to CA002050316A priority patent/CA2050316A1/fr
Priority to KR1019910701040A priority patent/KR920701784A/ko
Priority to SU915001624A priority patent/RU2058546C1/ru
Publication of WO1991010891A1 publication Critical patent/WO1991010891A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details

Definitions

  • the present invention relates to a method and a device for contactless testing of various test items.
  • These can be the surfaces of test goods or their spatial interior.
  • the supposedly smooth or regularly structured surfaces are checked for irregularities, or a translucent, supposedly uniformly or regularly structured layer of a material is checked for irregularities.
  • irregularities can occur, for example, as a result of inclusions.
  • web materials that run in the manufacturing process or in a treatment process for example a film or textile fabric web, and which run through have a surface that is supposed to remain calm
  • the degree of smoothness can be determined or any irregularities in smoothness can be determined.
  • Such tests are necessary as part of various treatment processes such as lamination or vapor deposition.
  • Another disadvantage of the previously known systems is that the entire scanned information is in serial form.
  • the measuring device therefore eats line by line and interrelates the determined data in a series.
  • This series of measurement data must then be assigned to the individual measurement points by means of a transformation, which requires a very wide range of evaluation devices and also usually places high demands on the evaluation software.
  • the lack of redundancy of the systems is also disadvantageous. Failure of a single important part, such as the laser, leads to failure of the entire system.
  • the object of the present invention is therefore to create a method and a device which overcomes the disadvantages mentioned and in particular also allows the testing of complicatedly shaped materials, the testing device being adaptable to the requirements of the test material in a predeterminable manner , or can be automatically adjusted in the process flow.
  • This object is achieved by a method according to the preamble and the characterizing features of patent claim 1, and by a device for carrying out the method with the features of patent claim 3.
  • the method according to the invention and the devices for its practice enable simultaneous contactless testing of a surface or an inner boundary surface of a material to be tested by means of incident light which is reflected on the surface or on an inner boundary surface and is subsequently detected. But also a spatial layer or a spatial portion of a material ', or its internal structure can be checked by the incident light is scattered and it is detected thereafter.
  • Figure 1 shows the principle of operation of the method for testing a surface and the internal structure of a test material
  • Figures 2-5 show four basic variants of the method
  • FIG. 6 shows the functional principle of the method for testing a test material with an irregular material thickness
  • FIG. 7 shows a diagram of a first exemplary possibility of a device for controlling the light intensity of a light source section
  • Figure. 8 shows a schematic of a second exemplary possibility of a device for controlling the light intensity of a light source section
  • FIG. 9 shows a diagram of a first exemplary possibility of a device for determining the light intensity in the light receiver
  • Figure 10 shows a schematic of a second example of a device for determining the light intensity at the light receiver.
  • FIG. 1 shows the basic functional principle of the method according to the invention for testing a surface and / or the internal structure of a test material using one schematically shown device for its exercise ge shows.
  • the test material 1 consists of a material which is, for example, a web material whose surface is to be tested, or it can be a transparent or translucent material in which the inner structure is also to be tested in addition to the surface.
  • the test material moves from right to left according to the arrow drawn in with a uniform movement. According to the invention, it is now illuminated by light from a directed, linear light source 2, as indicated by the corresponding arrows.
  • the light striking the test material 1 in the form of a light bar 3 is reflected to a part on the test material 1, which depends on the material and in particular its surface quality.
  • the reflected part of the light is again detected on a line-shaped, optoelectronic transducer arrangement 4 as a light bar.
  • the non-reflected part of the light penetrates the test material 1, is scattered thereon and emerges from the test material 1 on the other, here lower side. Further reflection is possible at the lower interface of the test material 1.
  • the emerging light is finally detected by a further line-shaped, optoelectronic transducer arrangement 5.
  • the intensities of the detected light are measured in the individual points of the linear optoelectronic transducer arrangements 4, 5.
  • these converter arrangements 4, 5 must have the highest possible optical resolution. For this reason, they are made up of a number of individual optical elements 6, which are designed in such a way that together they form a linear field of view.
  • the light source 2 is also constructed from such individual optical elements 7, which can then be controlled separately with respect to the intensity of the light emitted by them. Due to the separate, individual control of the light intensity of each light point and the separate, individual determination of the detected intensity at each measurement point, a specific light intensity can be selected practically for each measurement point or the values to be detected can be specified as parameters.
  • location-dependent intensity values corresponding to the movement of the movement of the test material 1 can then be specified empirically or mathematically for each point, which then serve as measurement parameters.
  • Means can also be provided by means of which an empirically or mathematically defined, location-dependent course of the intensity of the light to be detected can be predetermined for each point of the light bar when the test material is passed over. The values can be fed back and compared. A movement inspection of the surface running through can be carried out by identifying a specific intensity course.
  • FIGS. 2 to 5 show four different variants of how the method according to the invention can be used.
  • FIG. 2 shows the most simple variant, in which the light source 2 is an opaque material 1 illuminates. Part of the incident light is reflected on its surface, the rest is absorbed in the material. The reflected portion is from the detector 4, the optoelectronic. Transducer arrangement, detected.
  • This arrangement can be used, for example, to check the surface of film material, the film material running in the form of a web under the light bar 3.
  • the arrangement is also suitable for checking the surface of solid surfaces such as body parts, metal fittings or similar materials with light-reflecting surfaces. Widths up to 10 meters can be checked using in-line inspection.
  • the error resolution is, for example, approximately 10 ⁇ m for holes, so-called “pin holes”, in thinly rolled surface layers.
  • a resolution of about 50 ⁇ m is achieved.
  • coating defects, foreign particles (dust), scratches, pressure marks, depressions and holes in particular can be detected. Changes in density, color, surface roughness and surface quality can also be detected.
  • the test method according to the invention allows high test speeds of up to 17 m / s belt speed.
  • FIG. 3 shows a variant in which the test material 1 is transparent or translucent, ie diffusely translucent. Part of the light emitted by the light source 2 and incident on the test material 1 is reflected, the other part penetrates the test material 1 except for absorption losses and after it emerges from the test material 1 is reflected on a mirror 8, from which it again penetrates the test material 1.
  • the two light beam bands are finally detected with the optoelectronic transducer arrangement 4.
  • This arrangement allows the surface and at the same time the structure of the translucent material to be checked.
  • inclusions (bubbles) and their size can be determined, for example, or the regularity of cross-linking 1 s, the tensile force connections in the interior of polymers, can be checked. Variations in color and transmission can also be determined.
  • Figure 4 shows an arrangement for the inspection of surfaces. Part of the light is reflected on the surface, while the part of the light penetrating the test material 1 is reflected on the opposite surface 9 or at the interface formed by it, and is detected after the test material 1 has penetrated again. The part that is not reflected at the interface is collected by an absorber 10, for example black velvet.
  • FIG. 5 shows an arrangement as it is used to test the boundary layer 13 between two adjacent materials 11, 12, for example a laminate.
  • the light penetrates the first, here upper material 11 and is largely reflected at the interface 13 with the second, here lower material 12.
  • the reflected light penetrates again the first material 11 and is detected after it emerges.
  • the light not reflected at the interface 13 penetrates the second material 12 and light emerging from its surface 14 is collected by an absorber 10. Increased transmitted light can indicate laminate defects.
  • FIG. 6 shows the functional principle of the method for testing a test material 1 with an irregular material thickness.
  • a light band is generated on the test material 1, which has an intensity profile I which corresponds to the profile of the Light attenuation in the test material 1 see above. corresponds to the fact that this is compensated.
  • An optoelectronic transducer arrangement 6 and an optical element 7 each form a so-called measuring channel.
  • FIG. 7 shows a diagram of a first exemplary possibility of a device for location-dependent and program-controlled control of the light intensity of a light source section.
  • the linear light source as a whole here consists of a large number of discrete light sources, all of which here each have a light-emitting diode (LED ) 15 or a laser. Each individual light source of this type forms a light section, which can be individually controlled in its intensity.
  • the control takes place via a control channel (control bus) 16 connecting all the individual light sources.
  • the circuit shown thus shows the circuit of an individual light source.
  • the circuit is supplied with power (power PWR) via line 17.
  • control signals are processed in a logic circuit LOGIC 18 and output to the AC driver 20 via the digital-to-analog converter (DAC) 19. This then feeds the light emitting diode (LED) or a laser.
  • DAC digital-to-analog converter
  • a back light receiver 21 is coupled back to the AC driver 20. This backlight receiver measures the light intensity generated on the test material so that a check is possible whether it actually corresponds to the desired value.
  • a feedback loop is formed by the feedback, so that the light intensity can always be regulated to a predeterminable value.
  • FIG. 8 shows an alternative circuit to that of FIG. 7.
  • an incandescent lamp 22 is used as the light source.
  • the logic circuit LOGIC 18 and the digital-to-analog converter (digital-to-analog converter DAC) 19 feed the incandescent lamp 22 here via a direct current driver (DC driver). 23.
  • An additional AC driver 24 processes the signals from LOGIC 18 and digital-to-analog converter (DAC) 19 as well as from a backlight receiver 21 and then feeds a chopper (Shutter) 25.
  • a high frequency is generated by means of the chopper in order to generate a light which can be distinguished from the frequencies of the ambient light and can therefore be measured independently of the ambient light.
  • the light frequency generated in this way serves as a carrier frequency for the measurement. It must of course be so high that the scanning or resolution is sufficient for the moving test material. With the circuit described it is possible to regulate the light intensity of the light emitted by the incandescent lamp sufficiently quickly and precisely.
  • FIG. 9 shows a circuit for processing the current values emitted by the light receiver as a light intensity value by means of adjustable measuring amplifiers.
  • the location-dependent course of the intensity of the detected light of each individual optical element of the optoelectronic transducer arrangement can thus be amplified to a programmable setpoint. With this circuit, the light hits a photo receiver
  • Photo receiver 26 the electrical signal of which is amplified by a measuring amplifier (variable amplifier) 27.
  • the amplifier 27 is controlled by a logic circuit (LOGIC) 28 and a digital-to-analog converter (digital-to-analog converter DAC) 29.
  • the logic circuit (LOGIC) 28 is supplied with power via the line 30 and controlled by a line 31, which by a common control channel
  • FIG. 10 shows an alternative circuit.
  • the photo receiver (photoreceiver) 33 is preceded by a chopper (shutter) 34, which via the logic circuit (LOGIC) 28, the digital-to-analog converter (digital-to-analog converter DAC) 29 and an AC / DC driver (AC / DC Driver) 35 is controlled.
  • the chopper enables a selective adjustment to a specific transmitter frequency.
  • the measured intensity ' with the help of this chopper be reduced arbitrarily.
  • a number of photodiodes, incandescent lamps, gas discharge tubes or lamps can serve as linear light sources on devices according to the invention.
  • Semiconductor diodes can also be used.
  • the optoelectronic transducer arrangements can consist of photodiodes, phototransistors or photomultipliers.
  • Means for moving the light source and the optoelectronic transducer arrangement relative to the test material and for detecting the location coordinate of these movements as parameters for the light source and the optoelectronic transducer arrangement are only required if the test object is stationary. These means can be, for example, linear units or any mechanical drive means from the prior art. In many cases, the test arrangement is stationary and the test material is moved under the light bar generated.
  • the temperature can also be a process parameter that is used as a control parameter (reference variable).
  • a control parameter reference variable
  • red glowing metal can be cited which is used for a measurement. influences, or the temperature of a test specimen must be compensated due to the material expansion.
  • infrared pyroelectric sensors are suitable as optoelectronic elements.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Dans le procédé selon l'invention de l'examen sans contact des surfaces ou des structures internes de divers matériaux d'essai, ledit matériau d'essai (1) est irradié puis traversé par un faisceau lumineux (3). La lumière du faisceau lumineux (3) réfléchie, dispersée ou transmise est détectée et comparée à des valeurs prédéterminées. Le dispositif pour la mise en oeuvre de ce procédé présente une source lumineuse linéaire (2) pour la production d'un faisceau lumineux continu (3), et au moins un dispositif convertisseur linéaire opto-électronique (4, 6) pour la détection de la lumière réfléchie, dispersée ou transmise.
PCT/CH1991/000004 1990-01-06 1991-01-07 Procede et dispositif pour l'examen sans contact de materiaux d'essai en surface ou en volume WO1991010891A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR919103915A BR9103915A (pt) 1990-01-06 1991-01-07 Processo e dispositivo para teste sem contacto de materiais de teste planos e tridimensionais
CA002050316A CA2050316A1 (fr) 1990-01-06 1991-01-07 Procede et appareillage d'essai areal et spatial d'eprouvettes
KR1019910701040A KR920701784A (ko) 1990-01-06 1991-01-07 평면.입체 시험물의 무접촉시험을 위한 방법 및 장치
SU915001624A RU2058546C1 (ru) 1990-01-06 1991-01-07 Способ бесконтактного контроля поверхности или внутренней структуры материалов и устройство для его осуществления

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH31/90-7 1990-01-06
CH31/90A CH681112A5 (fr) 1990-01-06 1990-01-06

Publications (1)

Publication Number Publication Date
WO1991010891A1 true WO1991010891A1 (fr) 1991-07-25

Family

ID=4177789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1991/000004 WO1991010891A1 (fr) 1990-01-06 1991-01-07 Procede et dispositif pour l'examen sans contact de materiaux d'essai en surface ou en volume

Country Status (9)

Country Link
EP (1) EP0462240A1 (fr)
JP (1) JPH04506411A (fr)
KR (1) KR920701784A (fr)
AU (1) AU6911891A (fr)
BR (1) BR9103915A (fr)
CA (1) CA2050316A1 (fr)
CH (1) CH681112A5 (fr)
RU (1) RU2058546C1 (fr)
WO (1) WO1991010891A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993013407A1 (fr) * 1991-12-20 1993-07-08 Siegfried Peyer Ag Detection de fibres etrangeres dans des fils
WO1998003854A1 (fr) * 1996-07-23 1998-01-29 'mte' Messgeräte, Entwicklungs- Und Vertriebsgesellschaft Mbh Systeme de mesure pour detecter des caracteristiques de surface
DE19801140A1 (de) * 1998-01-14 1999-07-15 Voith Sulzer Papiertech Patent Vorrichtung zum direkten oder indirekten Auftrag eines flüssigen bis pastösen Auftragsmediums auf eine laufende Materialbahn sowie Betriebsverfahren für eine solche Vorrichtung
WO2000030997A1 (fr) * 1998-11-24 2000-06-02 Nippon Electric Glass Co., Ltd. Article ceramique
US6100537A (en) * 1997-07-22 2000-08-08 "MTE" Messgerate, Entwicklungs- und Vertriebsgesellschaft mbH Measuring system for recognition of surface features
FR2817964A1 (fr) * 2000-12-11 2002-06-14 Usinor Dispositif d'inspection automatique de surface d'une bande en defilement
DE102013221334A1 (de) * 2013-10-21 2015-04-23 Volkswagen Aktiengesellschaft Verfahren und Messvorrichtung zum Bewerten von Strukturunterschieden einer reflektierenden Oberfläche

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039335A (ja) * 1998-11-24 2007-02-15 Nippon Electric Glass Co Ltd セラミックス物品の製造方法
EP1498723A1 (fr) * 2003-07-17 2005-01-19 Hauni Maschinbau AG Méthode pour reconnaítre des corps étrangers dans une ligne continue de produits et appareil pour la mise en oevre de ce méthode
JP4698140B2 (ja) * 2003-11-12 2011-06-08 ザ・ボーイング・カンパニー 複合構造内の欠陥を識別するためのシステム
US7640073B2 (en) 2005-04-14 2009-12-29 Jeld-Wen, Inc. Systems and methods of identifying and manipulating objects
RU2540939C2 (ru) * 2013-05-24 2015-02-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирская государственная геодезическая академия" (ФГБОУ ВПО "СГГА") Способ определения координат контрольной точки объекта с применением наземного лазерного сканера
JP6309691B2 (ja) * 2015-03-31 2018-04-11 浜松ホトニクス株式会社 投影表示装置
RU178901U1 (ru) * 2017-10-30 2018-04-23 Олег Александрович Продоус Устройство для бесконтактного измерения шероховатости поверхности

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3019346A (en) * 1960-03-28 1962-01-30 Jones & Laughlin Steel Corp Electronic surface inspection system
US3056032A (en) * 1958-06-30 1962-09-25 Ibm Integrator circuit and print quality inspection system embodying the same
US3693021A (en) * 1970-06-29 1972-09-19 Eastman Kodak Co Web inspection system using interlaced photocells
EP0160781A1 (fr) * 1984-04-12 1985-11-13 International Business Machines Corporation Mesure et détecteur de défauts d'interconnection à circuit imprimé
GB2159271A (en) * 1984-04-27 1985-11-27 Nissan Motor Surface flaw detecting method and apparatus
US4594001A (en) * 1981-07-07 1986-06-10 Robotic Vision Systems, Inc. Detection of three-dimensional information with a projected plane of light

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3056032A (en) * 1958-06-30 1962-09-25 Ibm Integrator circuit and print quality inspection system embodying the same
US3019346A (en) * 1960-03-28 1962-01-30 Jones & Laughlin Steel Corp Electronic surface inspection system
US3693021A (en) * 1970-06-29 1972-09-19 Eastman Kodak Co Web inspection system using interlaced photocells
US4594001A (en) * 1981-07-07 1986-06-10 Robotic Vision Systems, Inc. Detection of three-dimensional information with a projected plane of light
EP0160781A1 (fr) * 1984-04-12 1985-11-13 International Business Machines Corporation Mesure et détecteur de défauts d'interconnection à circuit imprimé
GB2159271A (en) * 1984-04-27 1985-11-27 Nissan Motor Surface flaw detecting method and apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993013407A1 (fr) * 1991-12-20 1993-07-08 Siegfried Peyer Ag Detection de fibres etrangeres dans des fils
WO1998003854A1 (fr) * 1996-07-23 1998-01-29 'mte' Messgeräte, Entwicklungs- Und Vertriebsgesellschaft Mbh Systeme de mesure pour detecter des caracteristiques de surface
US6100537A (en) * 1997-07-22 2000-08-08 "MTE" Messgerate, Entwicklungs- und Vertriebsgesellschaft mbH Measuring system for recognition of surface features
DE19801140A1 (de) * 1998-01-14 1999-07-15 Voith Sulzer Papiertech Patent Vorrichtung zum direkten oder indirekten Auftrag eines flüssigen bis pastösen Auftragsmediums auf eine laufende Materialbahn sowie Betriebsverfahren für eine solche Vorrichtung
US6171642B1 (en) 1998-01-14 2001-01-09 Voith Sulzer Papiertechnik Patent Gmbh Method and apparatus for detecting and correcting an operating parameter during fiber web coating
WO2000030997A1 (fr) * 1998-11-24 2000-06-02 Nippon Electric Glass Co., Ltd. Article ceramique
US6420287B1 (en) 1998-11-24 2002-07-16 Nippon Electric Glass Co., Ltd. Ceramic article
FR2817964A1 (fr) * 2000-12-11 2002-06-14 Usinor Dispositif d'inspection automatique de surface d'une bande en defilement
WO2002048695A1 (fr) * 2000-12-11 2002-06-20 Usinor Dispositif d'inspection automatique de surface d'une bande en defilement
DE102013221334A1 (de) * 2013-10-21 2015-04-23 Volkswagen Aktiengesellschaft Verfahren und Messvorrichtung zum Bewerten von Strukturunterschieden einer reflektierenden Oberfläche

Also Published As

Publication number Publication date
KR920701784A (ko) 1992-08-12
JPH04506411A (ja) 1992-11-05
BR9103915A (pt) 1992-03-03
CH681112A5 (fr) 1993-01-15
CA2050316A1 (fr) 1991-07-07
AU6911891A (en) 1991-08-05
RU2058546C1 (ru) 1996-04-20
EP0462240A1 (fr) 1991-12-27

Similar Documents

Publication Publication Date Title
DE69732295T2 (de) Vorrichtung und verfahren zum feststellen von oberflächenfehlern
EP1121586B1 (fr) Dispositif pour effectuer un controle de corps sans contact
WO1991010891A1 (fr) Procede et dispositif pour l'examen sans contact de materiaux d'essai en surface ou en volume
DE19717488C2 (de) Vorrichtung zur Inspektion der Oberfläche von Objekten
DE19960653B4 (de) Verfahren und Vorrichtung für die Detektion oder Lagebestimmung von Kanten
EP1805481B1 (fr) Systeme et procede pour mesurer un corps et pour en surveiller la surface
DE69627328T2 (de) Verfahren und vorrichtungen zur prüfung von beschichtungen
DE4007401A1 (de) Messvorrichtung
DE3245823A1 (de) Verfahren und vorrichtung zum erfassen des vorhandenseins oder fehlens einer beschichtung auf einem substrat
EP2144052A1 (fr) Procédé et dispositif de détection et de classification de défauts
DE102006051538B4 (de) Verfahren und Vorrichtung zur Bestimmung der Waviness von Glasscheiben
DE102012111898B4 (de) Messen eines Faserwinkels von Verstärkungsfasern in einem Faserverbund oder einer Vorform eines Faserverbunds
DE3020044C2 (fr)
EP2572186A1 (fr) Procédé et dispositif pour caractériser des structures de surface pyramidales sur un substrat
WO2004063664A1 (fr) Procede et dispositif de controle de surface
DE102015105128B4 (de) Verfahren und Vorrichtung zur Messung des Glanzgrads und/oder der Mattheit von Gegenständen
DE60004000T2 (de) Vorrichtung und Verfahren zur Messung des Flächengewichts und der Dicke von Materialien in Filmen, Bändern oder ähnlichem, unter gleichzeitiger Inspektion von deren Oberfläche
DE1938083A1 (de) Verfahren zur automatischen Fehlerueberwachung flaechenfoermiger Gueter und Vorrichtung zur Durchfuehrung des Verfahrens
EP1728046B1 (fr) Procede et dispositif pour la detection optique d'une application de materiau
DE102015225929A1 (de) Verfahren zur Überprüfung eines Trennschrittes bei der Zerteilung eines flachen Werkstückes in Teilstücke
EP1355148B1 (fr) Procédure pour la détection des défectuosités, telles que fêlures ou bords chanfreinés sur la surface de planches de bois
DE102023103520B3 (de) Vorrichtung und Verfahren zur Inspektion eines plattenförmigen oder bahnförmigen Objekts
DE4445720A1 (de) Verfahren und Vorrichtung zur kontinuierlichen Messung der Masse eines bewegten Faserbandes
DE202006019726U1 (de) Vorrichtung zur Analyse und/oder Detektion der Oberfläche des eingangs genannten Werkstückes
EP1281065A1 (fr) Procede et dispositif pour determiner le nombre d'evenements ou la densite de structures regulieres

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR CA CH DE DK ES FI GB HU JP KP KR LK LU MC MG MW NL NO RO SD SE SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BF BJ CF CG CH CM DE DK ES FR GA GB GR IT LU ML MR NL SE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1991900711

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2050316

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 1991900711

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1991900711

Country of ref document: EP