WO1991004350A1 - Stainless steel material for use in clean system - Google Patents

Stainless steel material for use in clean system Download PDF

Info

Publication number
WO1991004350A1
WO1991004350A1 PCT/JP1989/000957 JP8900957W WO9104350A1 WO 1991004350 A1 WO1991004350 A1 WO 1991004350A1 JP 8900957 W JP8900957 W JP 8900957W WO 9104350 A1 WO9104350 A1 WO 9104350A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide film
stainless steel
water
steel material
oxygen atoms
Prior art date
Application number
PCT/JP1989/000957
Other languages
French (fr)
Japanese (ja)
Inventor
Tadahiro Ohmi
Yoshiyuki Nakahara
Haruo Tomari
Hiroshi Satoh
Makoto Terada
Hirohumi Hamada
Kazuhide Takaishi
Original Assignee
Osaka Sanso Kogyo Ltd.
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Sanso Kogyo Ltd., Kabushiki Kaisha Kobe Seiko Sho filed Critical Osaka Sanso Kogyo Ltd.
Priority to PCT/JP1989/000957 priority Critical patent/WO1991004350A1/en
Priority to DE19893991748 priority patent/DE3991748T1/de
Priority to DE19893991748 priority patent/DE3991748C2/de
Publication of WO1991004350A1 publication Critical patent/WO1991004350A1/en
Priority to SE9101526A priority patent/SE9101526L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • C23C8/18Oxidising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • C23C8/14Oxidising of ferrous surfaces

Definitions

  • the present invention relates to a stainless steel material for a clean system which is useful as a component member of a semiconductor manufacturing apparatus ⁇ a component member of a high vacuum apparatus, and more particularly, to manufacturing a high quality and high performance semiconductor product. It is used as a component of the supply system, exhaust system, reaction vessel, etc. of the high-purity process gas or ultrapure water necessary for the operation, and also as a component of the ultra-vacuum equipment. It relates to a stainless steel pan with low water release.
  • the development of semiconductor utilization technology has been remarkable in recent years, and accordingly, the quality and performance required of semiconductor products have been remarkably advanced.
  • the wiring spacing of semiconductor storage elements is required to be a few micron or submicron accurate, so even if very fine particles or bacteria adhere to the SB line, a circuit can be formed.
  • the surface of these components be smooth so that the contact surface with pure water or the like becomes as small as possible. If there is a possibility that the altered layer may remain when the material is further processed, the gas or the like may be adsorbed by the altered layer and the cleanliness may be impaired.
  • the ability to form a layer is also an important requirement, and there is a great deal of expectation for electrolytically polished stainless steel rods that can meet these requirements.
  • the present inventors have proposed the use of electrolytic polishing as a means for improving the above-mentioned problems remaining in the electropolished stainless steel material.
  • a technology was developed to prevent the elution of metal ions and the like by oxidizing the surface and forming a passivation film (JP-A-63-169391, JP-A-63-16991). No. 3-1956, No. 64-87760, Tokuheikai 1-19898463).
  • the release of gas from the inside of the component is also suppressed by the oxide film, so that the gas cleaning effect is also good.
  • the degree of cleanliness required for clean system systems such as semiconductor manufacturing equipment is becoming more and more advanced, and recently, it is not limited to the above-mentioned metal compound contamination due to elution of metal ions and gas contamination due to released gas.
  • even contamination of adsorbed molecules, such as moisture adsorption on the surface of wafers, etc. is becoming a problem.
  • 0.1 HID level ultra-fine ⁇ In ultra-high-integration high-speed devices, the amount of water release required for stainless steel used for fluid E pipes and chambers in clean systems is It is desired to reduce the number from less than a few ppm to less than a few ppb, and furthermore, there is a need for a material having characteristics that make it harder for foreign matter to adhere. That is, even if the surface-oxidized stainless steel material has sufficient cleanliness and excellent low-moisture release property at the time of manufacture, moisture, gas, or foreign matter may be generated during the processing or handling process or during use. If they are absorbed, they will not be suitable as clean system components.
  • the present invention has been made in view of such circumstances, and for the purpose thereof, has good surface smoothness and cleanliness, does not cause elution of metal ions and the like, and has good gas release resistance.
  • the surface has good stain resistance and adheres to moisture and impurities.
  • the aim is to provide stainless steel materials for clean systems that are less likely to be contaminated by water.
  • the stainless steel pan material for the clean system of the present invention is made by oxidizing a stainless steel material with a surface roughness of Rmax: 1 ⁇ or less by electrolytic polishing in a high-temperature oxidizing gas atmosphere to obtain a film thickness: 7
  • An amorphous oxide film of 5 mm or more is formed, and the gist is that the ratio of 0-H bonded oxygen atoms to all oxygen atoms in the oxide film is reduced to 30% or less by atomic ratio. It has.
  • the contact angle with the water droplet measured within 30 seconds after dropping a water droplet with a diameter of 1 mm on the surface of a circle having a radius of curvature of 2 mm or more is 38 degrees or more.
  • a stainless steel material having a surface roughness of R max: l / z B or less by electrolytic polishing is used as a constituent material. If the surface roughness exceeds Raax: 1 ⁇ m, the oxide film to be formed lacks dense S, and even if a thick antiglare film is formed, the elution of the constituent elements is increased. And the effect of suppressing outgassing becomes insufficient.
  • the oxide film must be amorphous and have a thickness of 75 A or more. Although the theoretical basis for these requirements has not been clarified, as shown in Japanese Patent Application Laid-Open No. 64-87760, the outgassing resistance of a crystalline oxide film is not improved, and If the thickness of the amorphous oxide film is less than 75 A, it is too thin and has sufficient gas resistance. Release property cannot be obtained.
  • a stainless steel material having an amorphous oxide film with a surface roughness of less than Umax: 1 m and a film thickness of 75 A or more has a smaller metal ion elution amount than conventional materials. Outgassing is also good.
  • the inventors of the present application have further studied that even though such an amorphous oxide film is formed, the impurity gas fi in the clean system is reduced to several p pb levels. It has become clear that attempting to do so will cause considerable variability in water release.
  • M-0 type oxides (M: Fe, Cr, Ni, etc.) are formed on the surface, but in practice, Depending on the oxygen concentration, temperature, time, etc. of the steel, or the surface properties of the steel to be treated, a considerable amount of M-0H-type hydroxide is also generated and is considered to be mixed in the oxide film. And this M- OH type hydroxide, then to release H 2 0 and Ho decomposition by condition for ⁇ used as a constituent member for a clean system, which deteriorates the water content release and considered available.
  • M-0 type oxides M: Fe, Cr, Ni, etc.
  • the moisture release resistance of the oxide film has a close relationship with the surface wettability represented by the contact angle ( ⁇ ) with a water droplet described later.
  • surface wettability represented by the contact angle ( ⁇ ) with a water droplet described later.
  • FIG. Changed around 38 degrees, and it was clarified that by setting the contact angle (0) to 38 degrees or more, the water release of shochu could be significantly increased. .
  • the reasons for these remarkable trends are considered as follows.
  • a small contact angle (e) on the oxide film surface indicates that the surface has high wettability, and such an oxide film surface has moisture, foreign matter, and gas in the air or in a clean system. Etc. are easily adsorbed, and those that have been adsorbed once are difficult to separate.
  • the surface properties of these oxide films are extremely important for purifying the clean system.
  • the wettability of the oxide film is high, no matter how low the water release of the steel material and the oxide film is, the subsequent handling such as transportation, storage or construction
  • a great deal of effort is required to remove moisture and foreign matter adhering in a difficult process, and it is not always possible to completely remove such moisture and foreign matter.
  • the initial adhesion of water, etc . Even if the amount of S is very small, the amount of adhesion or adsorption of water, etc., gradually increases as the operation time becomes longer, which has a serious effect. .
  • the oxide film has a low roughness and therefore has a small adsorption energy. Based on the data shown in FIG. 2, the contact angle (0)> 38 degrees j is obtained.
  • the ratio of 0-H bonded oxygen atoms to the total oxygen atoms in the oxide film is 30% or less in terms of atomic number, and the contact angle (0) with water droplets is 38 degrees or more.
  • an oxide film satisfying such conditions can be obtained, for example, by the following method.
  • oxidation is performed in a high-temperature oxidizing gas atmosphere.
  • the stainless steel material be sufficiently dried to completely remove the adhering moisture, and that the atmosphere gas be dried to + minutes to reduce the moisture S as much as possible.
  • Performing vacuum heating after electropolishing is one of the preferable methods for reducing the amount of 0-H bonded oxygen: S in the oxide film. That is, when this method is carried out, the bound water and hydroxide taken into the surface of the stainless steel material in the electropolishing step are removed, so that the 0-H bound oxygen in the oxide film formed thereafter is removed. This is because the mixing amount is reduced, and the moisture release resistance of the oxide film can be further improved.
  • the heating temperature during oxide film formation is preferably in the range of 220 to 580. If the temperature is less than 220 t, the oxide film formation rate is slow, and the thickness of the amorphous oxide film is 75 A or more. On the other hand, the productivity is poor because it takes a long time to perform the treatment. On the other hand, if it exceeds 580 X :, the oxide film becomes crystalline and the water release resistance intended by the present invention cannot be obtained.
  • FIG. 1 is a graph showing the relationship between the ratio of the number of 0-H bonded oxygen atoms to the total number of oxygen atoms in the oxide film and the released water i.
  • FIG. 2 is a graph showing the relationship between the contact angle of water droplets on the oxide film surface and the amount of released water.
  • Fig. 3 is a graph showing the relationship between the analysis result of the oxide film of 0 by X-ray optical spectroscopy (XPS) and the sputtering time * in comparison with the material of the embodiment of the invention and the comparative material.
  • XPS X-ray optical spectroscopy
  • FIG. 4 is an explanatory diagram showing a method of measuring the contact angle (0) of a water droplet on the oxide film surface.
  • H 2 S0 4 as the electrolytic polishing solution (30-fold fi%) - H 3 P0 ⁇ ( using 55-fold amount aqueous, outer diameter 9.53 mm, wall thickness 1.0 mm, length 4,000 mm AISI 316L stainless ⁇ ).
  • the inner surface of the tube was electropolished, and after the electropolishing, the inner surface was washed with warm pure water before air drying, and then dried while blowing high-purity N 2 gas. Then, the inside surface was oxidized under the conditions shown in Table 1 below, and the following tests were performed on each of the obtained sample tubes.
  • the stainless steel material of the present invention exhibits excellent moisture release resistance, whereas the 0-H bond oxygen atom ratio is 3%.
  • Water release of the comparative material (No. 12 to 15) having a surface oxide film exceeding 0%: S is very large, indicating that the material has poor water release resistance.
  • those having a 0-H-bonded oxygen atom ratio of more than 30% those with a contact angle with water droplets of more than 38%, even those with 30% or less, have better moisture resistance.
  • the electropolishing treatment performed as a pretreatment for the surface treatment is a means that can relatively easily achieve a surface roughness of Rmax: 1 #m or less. ⁇ ⁇ or less is necessary to reduce the true surface area in contact with the process foam, etc. and to completely remove the work-modifying layer, but the comparative material No. 10 is electrolytically polished. Insufficient treatment resulted in a surface roughness exceeding Rmax: 1 ⁇ m.Comparative material No. l5 was not subjected to electropolishing but was subjected to mechanical polishing instead of processing. In addition, the comparative material No. l7 has a rough surface roughness of R max: 3.6 ⁇ due to normal bright annealing and therefore has a large value of 0-H bond oxygen atom ratio and a small contact angle (0). Therefore, satisfactory water extraction resistance has not been obtained.
  • Comparative material No. l6 was not oxidized even though it had an extremely smooth surface roughness of Rmax: 0.2 ⁇ by electrolytic polishing. Generated It has only a 40 A oxide film, and has a large amount of released water due to a large number of 0-H-bonded oxygen atoms and a small contact angle (0) of water droplets. Also, the comparative material No. l3, which has been subjected to oxidation treatment after electrolytic polishing, has a thin film thickness of 70 A, so that the moisture release resistance is still insufficient. On the other hand, the water release of Invention Material No. 9, in which an oxide film of 80 A or more was formed, was significantly less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A stainless steel material useful as a constituent member of semiconductor fabrication apparatuses or high vacuum apparatuses is disclosed. This material has good surface smoothness and cleanliness, does not cause leaching of metal ions, possesses excellent gas release resistance and surface stain resistance, and is scarcely stained due to the deposition of moisture or impurities. This material is prepared from a stainless steel material, having a surface roughness (Rmax) decreased below 1 νm by electrolytic polishing by oxidizing it in a high-temperature oxidative gas atmosphere to thereby form an amorphous oxide film of 75 Å or more in thickness while regulating the ratio of the number of the O-H bond oxygen atoms to that of the total oxygen atoms in said oxide film below 30 %.

Description

明 細 書  Specification
発明の名称 Title of invention
ク リーンシステム用ステン レス鋼材  Stainless steel for clean systems
技術分野 Technical field
本発明は、 半導体製造装置の構成部材ゃ高真空装置の構成 部材等と して有用なク リーンシステム用ステンレス鋼材に関 し、 詳細には、 高品質 ♦ 高性能の半導体製品等を製造するた めに必要な高清浄度のプロセスガスや超純水の供給系、 排気 系あるいは反応容器等の構成部材、 更には超真空装置の構成 部材等と して利用される、 耐汚染性に優れた水分放出 の少 ないステン レス鍋材に関するものである,  The present invention relates to a stainless steel material for a clean system which is useful as a component member of a semiconductor manufacturing apparatus ゃ a component member of a high vacuum apparatus, and more particularly, to manufacturing a high quality and high performance semiconductor product. It is used as a component of the supply system, exhaust system, reaction vessel, etc. of the high-purity process gas or ultrapure water necessary for the operation, and also as a component of the ultra-vacuum equipment. It relates to a stainless steel pan with low water release.
背景技術 Background art
半導体利用技術の発展は近年めざましいものがあり、 それ に伴なつて半導体製品に求められる品質および性能は著しく 高度化してきている。 たとえば半導体記愫素子の配線間隔は 数ミ クロン、 も しく はサブミク ロンの精度まで要求される様 になっており、 このため SB線上に極く微細な粒子や細菌等が 付着しただけでも回路がショートする恐れがある。 それ故、 半導体の製造工程で使用される棼囲気ガスや純水等 (以下、 単にガス等という こ とがある) も趄高純度であるこ とが必耍 となる。  The development of semiconductor utilization technology has been remarkable in recent years, and accordingly, the quality and performance required of semiconductor products have been remarkably advanced. For example, the wiring spacing of semiconductor storage elements is required to be a few micron or submicron accurate, so even if very fine particles or bacteria adhere to the SB line, a circuit can be formed. There is a risk of short circuit. Therefore, ambient gas, pure water, and the like (hereinafter, sometimes simply referred to as gas, etc.) used in the semiconductor manufacturing process must also have high purity.
そのため従来は、 導入されるガス等を高純度化するこ と に 努力が払われてきたが、 それだけでほ '不十分であり、 半導体 製造装置などのク リーンシステムにおけるガス等の供給茶、 排出茶、 あるいは反応室等の処理.乃至製造系統に用いられる 構成部材の表面に吸着している不純ガス等の ¾を極力少なく すると共に、 前記構成郞材自体からの不純ガス等の放出をで きる限り抑制するこ とが重要であると考えられる様になって きた。 For this reason, efforts have been made in the past to purify introduced gases and the like with high purity, but this alone was insufficient, and the supply and discharge of gases and the like in clean systems such as semiconductor manufacturing equipment. Processing of tea or reaction chamber, etc. or used in manufacturing systems It is considered important to minimize the amount of impurity gas and the like adsorbed on the surface of the component members and to suppress the release of impurity gas and the like from the component material itself as much as possible. I have been.
またそれらの構成部材は、 不純成分の溶出抑制という観点 から、 純水等との接触面稂がなるベく小さく なる様に表面を 平滑にするこ とが望まれており、 もしこれらの部材表面を更 に加工処理するこ とがあったときに変鬣層が残存する様なこ とがあると、 ガス等が変質層に吸着されて清浄度を損う恐れ があるところから、 この様な変質層が形成ざれないという こ とも重要な要求性能となっており、 これらを满足するこ との できるものと して、 電解研磨処理ステンレス鏑材に期待が集 まっている。  In addition, from the viewpoint of suppressing the elution of impurity components, it is desired that the surface of these components be smooth so that the contact surface with pure water or the like becomes as small as possible. If there is a possibility that the altered layer may remain when the material is further processed, the gas or the like may be adsorbed by the altered layer and the cleanliness may be impaired. The ability to form a layer is also an important requirement, and there is a great deal of expectation for electrolytically polished stainless steel rods that can meet these requirements.
と こ ろが電解研磨されたものであっても、 そのままではス テン レス鋼材の構成元素である F e , C r , N i等の金属ィ オンが純水に溶出するこ とを完全に防止できる訳でほないか ら、 半導体製造装置用部材と しての前記耍求特性を十分に満 たしているとは言えない。 しかも罨解研磨したものでは、 電 解液に含まれる P 0 4 , S 0 4 , N 0: 等が不純陰ィオンと して部材表面に付着した り 、 保管中に N a ^ , g 2 + , C a 2 +等と反応して表面に塩粒子が付着し清浄度を下げると いう問題も指摘されていた。 Even if this is electropolished, metal ions such as Fe, Cr, and Ni, which are the constituent elements of stainless steel, are completely prevented from eluting into pure water. Since it is not possible, it cannot be said that the above-mentioned required characteristics as a member for a semiconductor manufacturing apparatus are sufficiently satisfied. Moreover than those罨解polished, P 0 4 contained in the electrolytic solution, S 0 4, N 0: like Ri is attached to the surface of the member as a impure negative Ion, N a ^ during storage, g 2 + It has been pointed out that salt particles adhere to the surface by reacting with Ca 2+ , C a 2 + and the like, thereby lowering the cleanliness.
そこで本発明者らは、 電解研磨ステンレス鋼材に残されて いる上記の様な問題を改善する為の手段と して、 電解研磨し た後さらにその表面を酸化処理し、 不働態皮膜を形成するこ と によって、 金属イオン等の溶出を阻止する技術を開発した (特開昭 6 3 - 1 6 9 3 9 1 号, 同 6 4 - 3 1 9 5 6 号, 同 6 4 - 87 7 6 0号, 特 開平 1 - 1 9 84 6 3 ) 。 これらの先願発明によれば、 構成部材内部 からのガスの放出も酸化皮膜によって抑制されるので、 ガス 清浄化効果も良好なものとなる。 Accordingly, the present inventors have proposed the use of electrolytic polishing as a means for improving the above-mentioned problems remaining in the electropolished stainless steel material. After that, a technology was developed to prevent the elution of metal ions and the like by oxidizing the surface and forming a passivation film (JP-A-63-169391, JP-A-63-16991). No. 3-1956, No. 64-87760, Tokuheikai 1-19898463). According to these prior inventions, the release of gas from the inside of the component is also suppressed by the oxide film, so that the gas cleaning effect is also good.
他方、 半導体製造設備等のク リーンシステム系統に求めら れる清浄度は更に高度化してきており、 最近でほ前述の様な 金属イオンの溶出による金属化合物汚染や放出ガスによるガ ス汚染に止まらず、 ウェハー等の表面への水分吸着といった 吸着分子汚染までも問題視される様になってきている。 たと えば 0 . 1 H ID レベルの超撖細 ♦ 超高集積の高速デバイスなど では、 ク リーンシステム内の流体 E管やチヤ ンバ一等に用い られるステン レス鋼材に要求される水分放出量は従来の数 p pm 以下という レベルから数 p p b 以下という レベルにまで少 なくするこ とが望まれ、 しかも異物についても一層付着しに く い特性をもっ た郎材が求められている。 即ち表面酸化処理 の施されたステンレス鋼材が、 製造時にたとえ十分に清浄で 且つすぐれた低水分故出性を有していたと しても、 加工乃至 取扱い工程もしく は使用時に水分やガスあるいは異物等が吸 着したのでは、 ク リーンシステム用部材と しての適正を欠く ものとなる。 本発明はこの様な事情に着目してなされたもの であって、 その目的ほ、 表面の平滑性および清浄度が良好で 金属イオン等の溶出も起こ らず、 しかも耐ガス放出性が良好 であるほか、 表面の耐汚染性が良好で水分や不純成分の付着 による汚染も起こ り難いク リーンシステム用ステンレス鋼材 を提供しよう とするものである。 On the other hand, the degree of cleanliness required for clean system systems such as semiconductor manufacturing equipment is becoming more and more advanced, and recently, it is not limited to the above-mentioned metal compound contamination due to elution of metal ions and gas contamination due to released gas. However, even contamination of adsorbed molecules, such as moisture adsorption on the surface of wafers, etc., is becoming a problem. For example, 0.1 HID level ultra-fine ♦ In ultra-high-integration high-speed devices, the amount of water release required for stainless steel used for fluid E pipes and chambers in clean systems is It is desired to reduce the number from less than a few ppm to less than a few ppb, and furthermore, there is a need for a material having characteristics that make it harder for foreign matter to adhere. That is, even if the surface-oxidized stainless steel material has sufficient cleanliness and excellent low-moisture release property at the time of manufacture, moisture, gas, or foreign matter may be generated during the processing or handling process or during use. If they are absorbed, they will not be suitable as clean system components. The present invention has been made in view of such circumstances, and for the purpose thereof, has good surface smoothness and cleanliness, does not cause elution of metal ions and the like, and has good gas release resistance. In addition, the surface has good stain resistance and adheres to moisture and impurities. The aim is to provide stainless steel materials for clean systems that are less likely to be contaminated by water.
発明の開示 Disclosure of the invention
本発萌のク リーンシステム用ステンレス鍋材は、 電解研磨 によって表面粗度を R max : 1 μ Ε 以下としたステンレス鋼 材を、 高温の酸化性ガス雰囲気中で酸化処理して膜厚 : 7 5 Α以上の非晶質酸化皮膜を形成したものであり、 該酸化皮膜 中の全酸素原子に対する 0 - H結合酸素原子の比率を、 原子 数比で 3 0 %以下にしてなるところに要旨を有するものであ る。 またこ う した要件に加えて、 曲率半径 2 mm以上の円搆表 面に直径 1 Π ΒΙの水滴を落した後 3 0秒以内に測定される該水 滴との接触角が 3 8度以上、 という要件を潢たすものは、 ク リーンシステム用ステンレス鋼材と して一眉優れたものとな る。  The stainless steel pan material for the clean system of the present invention is made by oxidizing a stainless steel material with a surface roughness of Rmax: 1 μΕ or less by electrolytic polishing in a high-temperature oxidizing gas atmosphere to obtain a film thickness: 7 An amorphous oxide film of 5 mm or more is formed, and the gist is that the ratio of 0-H bonded oxygen atoms to all oxygen atoms in the oxide film is reduced to 30% or less by atomic ratio. It has. In addition to these requirements, the contact angle with the water droplet measured within 30 seconds after dropping a water droplet with a diameter of 1 mm on the surface of a circle having a radius of curvature of 2 mm or more is 38 degrees or more. Those satisfying the requirements of (1) and (2) are excellent as stainless steel materials for clean systems.
本発明では、 構成素材と して電解研磨によ り表面粗度を R m ax : l /z B 以下としたステンレス鋼材が使用される。 表面 粗度が R a ax : 1 μ m を超える場合は、 形成される酸化皮膜 が弒密 Sに欠けるものと なリ、 厚めの眩化反膜を形成した場 合でも構成元素の溶出を+分に阻止するこ とができず、 また ガス放出抑制効果も不十分になる。 またこの酸化皮膜は非晶 質のものであって且つ膜厚が 7 5 A以上のものでなければな らない。 これらの要件についてほ理論的根挞が明確にされた 訳ではないが、 特開昭 64-87 760号にも示した様に、 結晶質の 酸化皮膜では耐ガス放出性が改善されず、 また非晶質酸化皮 膜であっても膜厚が 7 5 A未満の場合ほ薄すぎて十分な耐ガ ス放出性が得られない。 In the present invention, a stainless steel material having a surface roughness of R max: l / z B or less by electrolytic polishing is used as a constituent material. If the surface roughness exceeds Raax: 1 μm, the oxide film to be formed lacks dense S, and even if a thick antiglare film is formed, the elution of the constituent elements is increased. And the effect of suppressing outgassing becomes insufficient. The oxide film must be amorphous and have a thickness of 75 A or more. Although the theoretical basis for these requirements has not been clarified, as shown in Japanese Patent Application Laid-Open No. 64-87760, the outgassing resistance of a crystalline oxide film is not improved, and If the thickness of the amorphous oxide film is less than 75 A, it is too thin and has sufficient gas resistance. Release property cannot be obtained.
この様に表面粗度が U max : 1 m 以下で且つ膜厚 : 7 5 A以上の非晶質酸化皮膜の形成されたステン レス鋼材ほ、 従 来材に比べると金属イオン溶出量が少なく耐ガス放出性も良 好である。 と ころが本願発明者ら.がその後更に検討したとこ ろでは、 こ の様な非晶質酸化皮膜を形成したものであって も、 ク リーンシステムにおける不純ガス fiを数 p pb レベルま で下げよう とすると水分放出性にかなりのパラツキを生じる こ とが明らかになつてきた。 そこで水分放出性には酸化皮膜 の膜厚や結晶性以外の他の影響因子が存在するのではないか と考えて研究を進めた結果、 酸化皮膜中の全酸素原子に対す る 0 - H結合酸素原子の比率が耐水分放出性と密接な関係を 有しているという事実を見出した。 この理由は次の様に考え られる。  As described above, a stainless steel material having an amorphous oxide film with a surface roughness of less than Umax: 1 m and a film thickness of 75 A or more has a smaller metal ion elution amount than conventional materials. Outgassing is also good. Now, the inventors of the present application have further studied that even though such an amorphous oxide film is formed, the impurity gas fi in the clean system is reduced to several p pb levels. It has become clear that attempting to do so will cause considerable variability in water release. Therefore, we conducted research on the assumption that there may be other influential factors other than the oxide film thickness and crystallinity in the water release property, and as a result, we found that the 0-H bond to all oxygen atoms in the oxide film was We have found the fact that the ratio of oxygen atoms is closely related to the resistance to moisture release. The reason is considered as follows.
即ちステン レス鋼を酸化性ガス雰囲気中で酸化処理する と、 表面には M— 0型酸化物 ( M : F e , C r , N i 等) が 形成されるが、 実際には処理棼囲気の酸素濃度や温度、 時間 等、 あるいは被処理鋼材の表面性状等により M— 0 H型の水 酸化物も相当量生成し、 酸化皮膜中に混入しているものと思 われる。 そしてこの M— O H型水酸化物は、 その後ク リーン システム用構成部材と して使甩するときの条件によってほ分 解して H 2 0を放出し、 耐水分放出性を劣化させるものと考 えられる。 In other words, when stainless steel is oxidized in an oxidizing gas atmosphere, M-0 type oxides (M: Fe, Cr, Ni, etc.) are formed on the surface, but in practice, Depending on the oxygen concentration, temperature, time, etc. of the steel, or the surface properties of the steel to be treated, a considerable amount of M-0H-type hydroxide is also generated and is considered to be mixed in the oxide film. And this M- OH type hydroxide, then to release H 2 0 and Ho decomposition by condition for甩used as a constituent member for a clean system, which deteriorates the water content release and considered available.
そして該 M - 0 H型水酸化物の!:、 即ち酸化皮膜中の全酸 素原子に対する 0— H結合酸素原子の割合と耐水分放出性の 間にほ後記第 1 図に示す関係が認められた β 即ち上記割合が 3 0 %付近を境に してこの値を超えると水分放出量が急増 し、 3 0 %未満に抑えるこ と によって水分放出量を 1 0 ppb 以下の極低レベルに抑制し得るこ とが確認された。 And of the M-0H type hydroxide! :, That is, the ratio of 0-H bonded oxygen atoms to the total oxygen atoms in the oxide film When β that is, the percentage relationship was found as shown in Figure 1 below Ho during exceeds this value in the boundary vicinity of 3 0% rapidly increased water release amount, water by the this suppressed to less than 3 0% It was confirmed that the release amount could be suppressed to an extremely low level of 10 ppb or less.
また該酸化皮膜の耐水分放出性は、 後述する水滴との接触 角 ( Θ ) で表わされる表面の濡れ性とも密接な関係を有して おり、 たとえば後記第 2図に示す如く接触角 ( 0 ) が 3 8度 付近を境にして水分放出量は 変し、 該接触角 ( 0 ) を 3 8 度以上にするこ と によつて酎水分放出性を著しく高め得るこ とが明らかとなった。 こう した顕著な傾向が得られた理由は 次の様に考えられる。 即ち酸化皮膜表面の接触角 ( e ) が小 さいという こ とは表面の濡れ性が高いこ とを表わしており、 この様な酸化皮膜表面には大気あるいはク リーンシステム内 で水分、 異物、 ガス等が吸着し易く、 しかも一旦吸着したも のは離脱しにく い。 これに対し接触角 ( Θ ) の大きい酸化皮 膜表面には水分や異物等が吸着し難く、 また一旦吸着された と しても簡单に離脱し、 表面が清浄に保たれ易く なるためで あると思われる。 いずれにしても、 第 2図の結果からも明ら かである様に接触角 ( 0 ) を 3 8度以上とするこ とにより、 水分放出量を 1 O ppb 以下の低レベルに抑えるこ とができ る。  Further, the moisture release resistance of the oxide film has a close relationship with the surface wettability represented by the contact angle (Θ) with a water droplet described later. For example, as shown in FIG. ) Changed around 38 degrees, and it was clarified that by setting the contact angle (0) to 38 degrees or more, the water release of shochu could be significantly increased. . The reasons for these remarkable trends are considered as follows. In other words, a small contact angle (e) on the oxide film surface indicates that the surface has high wettability, and such an oxide film surface has moisture, foreign matter, and gas in the air or in a clean system. Etc. are easily adsorbed, and those that have been adsorbed once are difficult to separate. On the other hand, moisture and foreign substances are unlikely to be adsorbed on the surface of the oxide film having a large contact angle (Θ), and once adsorbed, they are easily released and the surface is easily kept clean. It appears to be. In any case, as is evident from the results in Fig. 2, by setting the contact angle (0) to 38 degrees or more, the amount of water release can be suppressed to a low level of 1 O ppb or less. Can be done.
こ う した酸化皮膜の表面特性は、 ク リーンシステム内を清 浄化するうえで極めて重要である。 即ち酸化皮膜の濡れ性が 高い場合は、 たとえ当該鋼材および酸化皮膜の水分放出量が 如何に低く とも、 その後の運搬や保管あるいは施工等の取扱 い工程で付着する水分や異物の除去に多大な労力を耍し、 ま たそれらの水分や異物等が完全に除去できるとも限らない。 更にはク リーンシステム稼動時において、 当初の水分等の付 着: Sが微量であつても運転時間が長く なるにつれて水分等の 付着乃至吸着量が徐々 に増大し、 重大な影響を及ぼしてく る。 The surface properties of these oxide films are extremely important for purifying the clean system. In other words, when the wettability of the oxide film is high, no matter how low the water release of the steel material and the oxide film is, the subsequent handling such as transportation, storage or construction A great deal of effort is required to remove moisture and foreign matter adhering in a difficult process, and it is not always possible to completely remove such moisture and foreign matter. Furthermore, during the operation of the clean system, the initial adhesion of water, etc .: Even if the amount of S is very small, the amount of adhesion or adsorption of water, etc., gradually increases as the operation time becomes longer, which has a serious effect. .
この様に酸化皮膜の孺れ性ほ低く、 従って吸着エネルギー の小さいものの方が好ましく、 その基準ほ第 2図のデータよ り Γ接触角 ( 0 ) > 3 8度 j という こ と になる。 As described above, it is preferable that the oxide film has a low roughness and therefore has a small adsorption energy. Based on the data shown in FIG. 2, the contact angle (0)> 38 degrees j is obtained.
この様なと ころから本発明では酸化皮膜中の全酸素原子' 対する 0 - H結合酸素原子の比率を原子数比で 3 0 %以下、 水滴との接触角 ( 0 ) を 3 8度以上と定めたが、 この様な耍 件を満たす酸化皮膜は、 たとえば次の様な方法によって得る こ とができる。  Thus, in the present invention, the ratio of 0-H bonded oxygen atoms to the total oxygen atoms in the oxide film is 30% or less in terms of atomic number, and the contact angle (0) with water droplets is 38 degrees or more. As described above, an oxide film satisfying such conditions can be obtained, for example, by the following method.
即ちステン レス鋼材を電解研磨するこ と によって R max : That is, Rmax:
1 以下の表面粗度と した後、 髙温の酸化性ガス雰囲気中 で酸化処理する方法である。 このときステンレス鋼材は十分 に乾燥して付着水分を完全に除去しておく と共に、 雰囲気ガ スも+分に乾燥して水分 Sを極力少なく しておく こ とが望ま れる。 After the surface roughness is set to 1 or less, oxidation is performed in a high-temperature oxidizing gas atmosphere. At this time, it is desirable that the stainless steel material be sufficiently dried to completely remove the adhering moisture, and that the atmosphere gas be dried to + minutes to reduce the moisture S as much as possible.
尚電解研磨後に真空加熱を行なう こ と は、 酸化皮膜中の 0一 H結合酸素: Sを少なくするうえで好ましい方法の 1 つで ある。 即ちこの方法を実施すると、 電解研磨工程でステンレ ス鋼材の表面に取り込まれた結合水や水酸化物が除去される ため、 その後に形成される酸化皮膜中への 0— H結合酸素の 混入量が少なく なり、 酸化皮膜の耐水分放出性を一層改善し 得るからである。 Performing vacuum heating after electropolishing is one of the preferable methods for reducing the amount of 0-H bonded oxygen: S in the oxide film. That is, when this method is carried out, the bound water and hydroxide taken into the surface of the stainless steel material in the electropolishing step are removed, so that the 0-H bound oxygen in the oxide film formed thereafter is removed. This is because the mixing amount is reduced, and the moisture release resistance of the oxide film can be further improved.
酸化皮膜形成時の加熱温度は 2 2 0〜 5 8 0での範囲が好 ましく、 2 2 0 t未満では酸化皮膜形成速度が遅く、 非晶質 酸化皮膜の膜厚を 7 5 A以上とするのに長時間を要するため 生産性が悪く、 一方 5 8 0 X:を超えると酸化皮膜が結晶質と なつて本発明の意図する様な耐水分放出性を得るこ とができ ない。  The heating temperature during oxide film formation is preferably in the range of 220 to 580.If the temperature is less than 220 t, the oxide film formation rate is slow, and the thickness of the amorphous oxide film is 75 A or more. On the other hand, the productivity is poor because it takes a long time to perform the treatment. On the other hand, if it exceeds 580 X :, the oxide film becomes crystalline and the water release resistance intended by the present invention cannot be obtained.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1 図ほ、 酸化皮膜中の全酸素原子数に対する 0 - H結 合酸素原子数の比率と放出水分 iの関係を示すグラフであ る。  FIG. 1 is a graph showing the relationship between the ratio of the number of 0-H bonded oxygen atoms to the total number of oxygen atoms in the oxide film and the released water i.
第 2図ほ、 酸化皮膜表面における水滴の接触角と放出水分 量の関係を示すグラフである。  FIG. 2 is a graph showing the relationship between the contact angle of water droplets on the oxide film surface and the amount of released water.
第 3図ほ X線光学分光分析 (XPS)による酸化皮膜の 0 の 分析結果とスパッ タ リ ング時間の関係について、 *発明の実 施例材と比較材を対比して示すグラフである。  Fig. 3 is a graph showing the relationship between the analysis result of the oxide film of 0 by X-ray optical spectroscopy (XPS) and the sputtering time * in comparison with the material of the embodiment of the invention and the comparative material.
第 4図は、 酸化皮膜表面における水滴の接触角 ( 0 ) の測 定法を示す説明図である。  FIG. 4 is an explanatory diagram showing a method of measuring the contact angle (0) of a water droplet on the oxide film surface.
実施例  Example
以下、 ク リーンシステム用ステンレス鍋部材と して汎用さ れている AISI 316L ステンレス鑲管に本発明を適用した場合 を例にとって、 本発哽の構成および作用効果を具体的に説明 するが、 本発明はもとより下記実施例によって制約を受ける ものでほない。 実施例 Hereinafter, the configuration and operation and effect of the present invention will be specifically described, taking an example in which the present invention is applied to an AISI 316L stainless steel pipe generally used as a stainless steel pan member for a clean system. The invention is not limited to the following embodiments. Example
電解研磨液と して H2S04 ( 30重 fi % ) — H 3P0< ( 55重 量 水溶液を使用 し、 外径 9.53mm、 肉厚 1.0mm 、 長さ 4,000mm の AISI 316L ステン レス錮管の内面に電解研磨を施 した。 電解研磨後、 内面が自然乾燥しないうちに温純水で洗 浄し、 その後高純度 N2ガスを吹込みつつ乾燥した。 この洗浄 と乾燥は、 塵埃等の付着を防止するためク リーンブース内で 実施した。 次いで下記第 1 表に示す条件で内面の酸化処理 を行ない、 得られた各試料管について下記の試験を行なつ た。 H 2 S0 4 as the electrolytic polishing solution (30-fold fi%) - H 3 P0 < ( using 55-fold amount aqueous, outer diameter 9.53 mm, wall thickness 1.0 mm, length 4,000 mm AISI 316L stainless錮The inner surface of the tube was electropolished, and after the electropolishing, the inner surface was washed with warm pure water before air drying, and then dried while blowing high-purity N 2 gas. Then, the inside surface was oxidized under the conditions shown in Table 1 below, and the following tests were performed on each of the obtained sample tubes.
(a) 各試験管材について X線光電子分光分析 (XPS)による管 内表面皮膜の 0 スペク トルを分析し、 0 — M ( M : 金 属元素) 結合酵素と 0 - H結合酸素に波形分離して、 溁 さ方向の褸度分布を求めた。 一例を第 3図に示す。 これ らの結果より酸化皮膜中の酸素原子数に対する 0 - H結 合酸素原子数の比率 (以下、 0 - H結合酸素原子比と記 す) を求めた。  (a) For each test tube material, X-ray photoelectron spectroscopy (XPS) was used to analyze 0 spectra of the inner surface film of the tube, and the waveform was separated into 0-M (M: metal element) -linked enzyme and 0-H-linked oxygen. Then, the distribution of ragness in the height direction was obtained. An example is shown in FIG. From these results, the ratio of the number of 0-H bonded oxygen atoms to the number of oxygen atoms in the oxide film (hereinafter referred to as the 0-H bonded oxygen atom ratio) was determined.
(b) 各試料管材 (内径 7.53mm) の内面に直径 1 nmの水滴を落 し第 2図 ( 1 は半割り した試料管材、 2は水滴を示す) に示すよう に管材 1 の内表面と水滴 2 との接触角 ( ø ) を測定した。 水滴 1 を落してから、 角度を測定するまで (計器で読み取るまで) の時間は 3 0秒以内と した。 尚、 本試験に用いた水は、 1 Χ 1 0 5 Ω— cm以上の比抵 抗を有するィォン交換水を用いた。 (b) Drop a 1-nm-diameter water drop on the inner surface of each sample tube (7.53 mm ID), and as shown in Fig. 2 (1 indicates a sample tube that is divided in half, 2 indicates a water droplet) and the inner surface of tube 1 The contact angle with water droplet 2 (ø) was measured. The time between dropping the water drop 1 and measuring the angle (reading with an instrument) was within 30 seconds. The water used in this test was ion-exchanged water having a specific resistance of 1Χ10 5 Ω-cm or more.
(c) 予め水分量を O.Uppb 以下に調整した超高純度 N 2 ガス を試料管内へ約 0.5 /minで導入し、 反対側から出てき た N 2 ガス中の水分量を測定するこ とにより、 管内面か らの放出水分量 (ガス導入開始から 1時間後の測定値) を求めた。 (c) Ultra-high-purity N 2 gas whose water content has been adjusted to O.Uppb or less in advance Is introduced into the sample tube at approximately 0.5 / min, and the amount of water released from the other side is measured by measuring the amount of water in the N 2 gas coming out from the opposite side (measurement one hour after the start of gas introduction) Value).
結果を第 1 表に一括して示す。 Table 1 summarizes the results.
( 以 下 余 白 ) (The following margin)
表(1) table 1)
表 面 処 理 条 件 表 面 酸 化  Surface treatment conditions Surface oxidation
区 r+r na Ward r + r na
•^ Λπ 酸化処 理 条件 粗 S 反 膜 0-H 稻" 8" 按 Bfi角 B. 出 分 No. 前 S理  • ^ Λπ Oxidation treatment conditions Crude S film 0-H rice "8" proportional Bfi angle B. Discharge No.
雰囲気ガス 処 An理 TBI温度 Pt^  Atmosphere gas treatment Anri TBI temperature Pt ^
処理時間 Rmax 厚 み 酸素原子比 水分量 Processing time Rmax Thickness Oxygen atomic ratio Water content
D.P. ) ) (h ) ( π») (A) (atmic%) (度) (ppb) D.P.))) (h) (π ») (A) (atmic%) (degree) (ppb)
f» J  f »J
1 電解 0 0.3 I/O ι4 ND rft*研t磨と 大気 42 4  1 Electrolysis 0 0.3 I / O ι4 ND rft *
真空力 B熱 2  Vacuum force B heat 2
z 電 if^解 rfw*研磨と 450 2 0.8 z Electric if ^ solution rfw * polishing and 450 2 0.8
«M 190 8 42 ND 真空加熱 « M 190 8 42 ND vacuum heating
3 電解研磨 大気 , 400 3 0.5 130 19 46 2 のみ 0  3 Electropolishing Atmosphere, 400 3 0.5 130 19 46 2 only 0
wood
4 電解研磨 10¾02/Ar 380 8 0.2 150 28 53 4 のみ ≤- 100 4 Electropolishing 10¾0 2 / Ar 380 8 0.2 150 28 53 4 only ≤- 100
Departure
電解研磨と 100%02 470 1 U - D n Electropolishing and 100% 0 2 470 1 U-D n
0 00 Ό  0 00 Ό
-76  -76
Light
D 電解研磨と 大気 500 0.2 n 0 D Electropolishing and air 500 0.2 n 0
^fi K¾ -76 ^ fi K¾ -76
7 電解研磨 5%02/Ar 430 3 nリ《 2ム 1 RO 9 t*R ? のみ ≤-100 7 Electropolishing 5% 0 2 / Ar 430 3 n << 2 m 1 RO 9 t * R? Only ≤-100
8 電解研磨 大気 400 1 0.1 130 27 64 4 のみ -2  8 Electropolishing Atmosphere 400 1 0.1 130 27 64 4 only -2
9 電解研磨と 大気 350 4 0.4 8 -J 25 48 6 真空加熱 - 1 9 Electropolishing and air 350 4 0.4 8 -J 25 48 6 Vacuum heating-1
第 1 表 (2) Table 1 (2)
表 面 処 理 条 件 表 面 酸 化  Surface treatment conditions Surface oxidation
Ward
酸 化 理条件 粗 度 皮 膜 0-H 結合 接触角 放 出 分 No. 前処理  Oxidation conditions Roughness Skin membrane 0-H bond Contact angle Emissions No. Pretreatment
雰囲気ガス 処理温度 処理時間 Rinax 厚 み 酸素原子比 水分量 Atmosphere gas Treatment temperature Treatment time Rinax Thickness Oxygen atomic ratio Moisture
D.P. ( J ) ) ( ) ( m) (A) (atinic%) (度) (ppb)D.P. (J)) () (m) (A) (atinic%) (degree) (ppb)
10 電解研磨と 20%02/Ar 400 4 1.2 150 26 30 26 真空加熱 ≤-100 10 Electropolishing and 20% O 2 / Ar 400 4 1.2 150 26 30 26 Vacuum heating ≤-100
11 電解研磨と 10%02/Ar 600 4 0.5 280 12 16 38 真空加熱 ≤ - 100 11 Electropolishing and 10% O 2 / Ar 600 4 0.5 280 12 16 38 Vacuum heating ≤-100
Ratio
12 霄解研磨 大気 360 1 0.3 100 32 38 20 のみ 1  12 Xiaoming polishing Atmosphere 360 1 0.3 100 32 38 20 only 1
13 電解研磨 大気 350 2 0.2 70 38 44 32 のみ 2  13 Electropolishing Atmosphere 350 2 0.2 70 38 44 32 only 2
An example
14 電解研磨 大気 420 0.2 o.a 110 43 25 54 のみ 4  14 Electropolishing Atmosphere 420 0.2 o.a 110 43 25 54 only 4
15 機械研磨と 大気 450 5 0.9 250 42 32 41 真空加熱 2  15 Mechanical polishing and air 450 5 0.9 250 42 32 41 Vacuum heating 2
16 機械研磨 0.2 40 58 28 85 のみ  16 Mechanical polishing 0.2 40 58 28 85 only
17 両方とも 3.6 25 29 8 144 なし 17 Both 3.6 25 29 8 144 None
第 1表からも明らかである様に、 本発明のステンレス鋼郎 材 ( No. l 〜 9 ) は優れた耐水分放出性を示しているのに対 し、 0 - H結合酸素原子比が 3 0 %を超える表面酸化皮膜を 有する比較材(No. 1 2〜 1 5 ) の水分放出: Sほ非常に多く、 耐水分放出性に欠けるものであるこ とが分かる。 また 0 — H 結合酸素原子比が 3 0 %を超えるものはもちろんであるが、 3 0 %以下のものでも、 水滴との接触角が 3 8 · 以上のもの ほ、 より優れた耐水分放出性を有しており、 逆に 3 8 β 未満 を示す表面酸化皮膜を有するステンレス鋼部材の耐水分放出 性は相対的に悪いこ とが分かる。 As is clear from Table 1, the stainless steel material of the present invention (Nos. 1 to 9) exhibits excellent moisture release resistance, whereas the 0-H bond oxygen atom ratio is 3%. Water release of the comparative material (No. 12 to 15) having a surface oxide film exceeding 0%: S is very large, indicating that the material has poor water release resistance. In addition to those having a 0-H-bonded oxygen atom ratio of more than 30%, those with a contact angle with water droplets of more than 38%, even those with 30% or less, have better moisture resistance. the has, water content release stainless steel member having a surface oxide film showing less than 3 8 beta conversely seen a relatively bad this is.
と こ ろで、 表面処理の前処理と して行なわれる電解研磨処 理は、 Rmax : 1 # m 以下の表面粗度を比較的容易に達成す るこ とのできる手段であり、 R max を Ι μ π 以下とするこ と は、 プロセス泡体等に接触する真の表面積を小さく すると共 に、 加工変 Κ層を完全除去するために必須であるが、 比較材 No. 1 0 は電解研磨処理が不充分で表面粗度が R max: 1 μ m を超えており、 また比較材 No. l 5 は電解研磨処理ではなく 機械研磨処理を行なったもので加工変質層が残留しており、 更に比較材 No. l 7 は通常の光輝焼鈍上りのため表面粗度が R max:3.6 μ と粗いため、 いずれも 0 — H結合酸素原子比 の値が大きかつたり接触角 ( 0 ) が小さく なり、 満足な耐水 分 出性が得られていない。  The electropolishing treatment performed as a pretreatment for the surface treatment is a means that can relatively easily achieve a surface roughness of Rmax: 1 #m or less.以下 μπ or less is necessary to reduce the true surface area in contact with the process foam, etc. and to completely remove the work-modifying layer, but the comparative material No. 10 is electrolytically polished. Insufficient treatment resulted in a surface roughness exceeding Rmax: 1 μm.Comparative material No. l5 was not subjected to electropolishing but was subjected to mechanical polishing instead of processing. In addition, the comparative material No. l7 has a rough surface roughness of R max: 3.6 μ due to normal bright annealing and therefore has a large value of 0-H bond oxygen atom ratio and a small contact angle (0). Therefore, satisfactory water extraction resistance has not been obtained.
ま た比較材 No. l 6 は、 電解研磨処理によ り表面粗度が R max :0.2 μ と極めて平滑に仕上げられているにもかかわ らず、 酸化処理を施していないため、 電解研磨時に生成した 4 0 Aの酸化皮膜を有するだけであり、 しかも 0— H結合酸 素原子が多く且つ水滴の接触角 ( 0 ) が小さいため、 放出水 分量が多い。 また比较材 No. l 3 は電解研磨後酸化処理を施 しているものの膜厚が 7 0 Aと薄いため、 やはり耐水分放出 性が不充分である。 これらに対し、 8 0 A以上の酸化皮膜が 形成された発明材 No.9の放出水分ほ著しく少ない。 これら
Figure imgf000016_0001
-少 -έ: ¾ "5 ·Α以土 である こ と が分かる。 しかしながら比較材 Νθ. ί 1 及び No.1 5 ほそれぞれ 2 3 0 及び 2 5 0 Aの酸化皮膜厚さを 有しているにもかかわらず、 水滴の接触角が著しく小さいか あるいほ o - H結合酸素 aが多いため、 放出水分: Bが多い。 比較例 1 1 は表面の酸化皮膜が結晶性である比較例であ り 、 表面がミ ク σ的に荒れてく る め表面狭が増大して永分 吸着サイ 卜が増加している。 そのため処理後の放出水分 fiほ ある租度戾好であるが、 大気にき らレ きの水分やガス、 異物の吸着が著しい。
Comparative material No. l6 was not oxidized even though it had an extremely smooth surface roughness of Rmax: 0.2 μ by electrolytic polishing. Generated It has only a 40 A oxide film, and has a large amount of released water due to a large number of 0-H-bonded oxygen atoms and a small contact angle (0) of water droplets. Also, the comparative material No. l3, which has been subjected to oxidation treatment after electrolytic polishing, has a thin film thickness of 70 A, so that the moisture release resistance is still insufficient. On the other hand, the water release of Invention Material No. 9, in which an oxide film of 80 A or more was formed, was significantly less. these
Figure imgf000016_0001
-Small -έ: ¾ "It is found that the soil is less than 5 · Α. However, the comparative materials Νθ. Ί1 and No.15 have oxide film thicknesses of 230 and 250 A, respectively. Despite the fact that the contact angle of the water droplet is extremely small or more o-H-bonded oxygen a, so the amount of released water: B. Comparative Example 11 Comparative Example 1 where the oxide film on the surface is crystalline However, since the surface is roughened in a microscopic manner, the surface narrowing is increased and the adsorption site is increased for a long time. Adsorption of moisture, gas and foreign matter is remarkable.
発明の効果  The invention's effect
本発哽は以上の様-に構^ Γされ お-り^ "" 解研磨によ り表面 粗度を Riaax: 1 μ Λ 以下と し、 且つ酸化処理によつて形成さ れる酸化皮膜を 7 5 Αと定めた上で、 酸化皮膜中の 0— H結 合酸素の原子数比率を 3 0 %以下とし、 或は更に水との接触 角 ( 0 ) を 4 0度以上とすることにより、 水分放出量の少な ぃク リーン システム用ステン レス網材を提供し得るこ と に なっ た。 しかもこの酸化皮膜ほ潘れ性が小さく吸着工ネル ギ一が低いので水分やガス、 異物の吸着も起こ り にく く、 ま た一旦吸着した異物の離脱も容易であるので、 清浄度は非常 に高いものとなる。 This Hatsu哽the above manner - are configured ^ gamma your - Ri ^ "" The I Ri surface roughness on the solutions polishing Riaax: 1 μ Λ follows and, and the oxide film which is by connexion formed oxidation treatment 7 5 5, the atomic ratio of 0-H bonded oxygen in the oxide film should be 30% or less, or the contact angle (0) with water should be 40 ° or more. It has become possible to provide a stainless steel mesh material for a clean system that emits a small amount of water. In addition, since the oxide film has a low level of adhesion and a low adsorption energy, it does not easily absorb moisture, gas, or foreign matter. In addition, since the once-absorbed foreign matter can be easily separated, the cleanliness is extremely high.

Claims

請求範囲 Claims
1 . 電解研磨によって表面粗度を R m ax : 1 μ m 以下とした ステンレス鋼材を、 高温酸化性ガス雰囲気中で酸化処理して 膜厚 : 7 5 A以上の非晶質酸化皮膜を形成してなるク リーン システム用ステンレス鋼材において、 酸化皮膜中の全酸素原 子に対する 0 - H結合酸素原子の比率が、 原子数比で 3 0 % 以下であるこ とを特徴とするク リーンシステム用ステンレス 鋼材。  1. Oxidizing stainless steel with surface roughness R max: 1 μm or less by electrolytic polishing in a high-temperature oxidizing gas atmosphere to form an amorphous oxide film with a film thickness of 75 A or more. The ratio of 0-H bonded oxygen atoms to the total oxygen atoms in the oxide film is 30% or less by atomic number in the stainless steel material for a clean system comprising: .
2 . 曲率半径 2 Π ΙΒ以上の円溝表面に直径 1 mmの水滴を落し た後 3 0秒.以内に測定される該水.滴との接触角が 3 8度以上 である請求項(1) に記載のク リーンシステム用ステンレス鋼 材。  2. A contact angle with a water droplet having a radius of curvature of at least 38 degrees measured within 30 seconds after a water droplet having a diameter of 1 mm is dropped on a groove surface having a radius of curvature of 2 mm or more. The stainless steel material for a clean system according to (1).
PCT/JP1989/000957 1989-09-21 1989-09-21 Stainless steel material for use in clean system WO1991004350A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP1989/000957 WO1991004350A1 (en) 1989-09-21 1989-09-21 Stainless steel material for use in clean system
DE19893991748 DE3991748T1 (en) 1989-09-21 1989-09-21
DE19893991748 DE3991748C2 (en) 1989-09-21 1989-09-21
SE9101526A SE9101526L (en) 1989-09-21 1991-05-21 STAINLESS STEEL MATERIAL FOR RENA SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1989/000957 WO1991004350A1 (en) 1989-09-21 1989-09-21 Stainless steel material for use in clean system

Publications (1)

Publication Number Publication Date
WO1991004350A1 true WO1991004350A1 (en) 1991-04-04

Family

ID=13958847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1989/000957 WO1991004350A1 (en) 1989-09-21 1989-09-21 Stainless steel material for use in clean system

Country Status (3)

Country Link
DE (2) DE3991748C2 (en)
SE (1) SE9101526L (en)
WO (1) WO1991004350A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068712A (en) * 1998-01-08 2000-05-30 Kawasaki Steel Corporation Steel products having superior weathering, method of producing the steel products, and method of forming weathering protective rust on steel product surfaces
DE102007010538A1 (en) * 2007-03-05 2008-09-11 Poligrat Gmbh Process for the thermochemical passivation of stainless steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021370A (en) * 1983-07-14 1985-02-02 Hisashi Yokoo Manufacture of color stainless material
JPS6213563A (en) * 1985-07-11 1987-01-22 Shinko Fuaudoraa Kk Method for coloring stainless steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021370A (en) * 1983-07-14 1985-02-02 Hisashi Yokoo Manufacture of color stainless material
JPS6213563A (en) * 1985-07-11 1987-01-22 Shinko Fuaudoraa Kk Method for coloring stainless steel

Also Published As

Publication number Publication date
DE3991748T1 (en) 1991-10-10
SE9101526D0 (en) 1991-05-21
DE3991748C2 (en) 1993-02-04
SE9101526L (en) 1991-05-21

Similar Documents

Publication Publication Date Title
JP6974721B2 (en) Dry etching method and semiconductor device manufacturing method
WO1990012418A1 (en) Device for forming tungsten film
JP2517727B2 (en) Method for manufacturing stainless steel member for semiconductor manufacturing equipment
JP4104026B2 (en) Method for forming oxidation passivated film, fluid contact parts and fluid supply / exhaust system
US20080107580A1 (en) Removal Of Metal Contaminants From Ultra-High Purity Gases
TW201938848A (en) Stainless steel member and production method thereof
US5795494A (en) Semiconductor substrate cleaning method and semiconductor device fabrication method
WO1991004350A1 (en) Stainless steel material for use in clean system
US5456768A (en) Surface treatment of stainless steel component for semiconductor manufacturing apparatus
JPH04183846A (en) Stainless steel material for high purity gas and its production
JPH05287496A (en) Surface treatment of stainless steel member
JPS63169391A (en) Metal member for semiconductor producing device
JP2001250807A (en) Etchant, etching method, and semiconductor silicon wafer
JPH0465144B2 (en)
Das et al. Oscillatory behavior of the agglomeration rate in island copper films
JP2002118088A (en) Method of chemically treating semiconductor wafer
CN116918041A (en) Method for cleaning silicon wafer, method for manufacturing silicon wafer, and silicon wafer
JP2783128B2 (en) Stainless steel member for clean room and method of manufacturing the same
CN115697614A (en) Atomic diffusion bonding method and bonded structure
JP2600476B2 (en) Pure water production apparatus and semiconductor substrate pure water treatment method
JPH11257593A (en) High pressure vessel and surface treatment method for aluminium and surface treatment device
JP3020873B2 (en) Materials for equipment using organic amine-based drugs
JPH04259221A (en) Washing solution
EP4307347A1 (en) Method for cleaning silicon wafer, method for producing silicon wafer, and silicon wafer
JP3908291B2 (en) Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP SE US

WWE Wipo information: entry into national phase

Ref document number: 91015263

Country of ref document: SE

WWP Wipo information: published in national office

Ref document number: 91015263

Country of ref document: SE

CFP Corrected version of a pamphlet front page

Free format text: UNDER INID NUMBER (71)(72) "APPLICANT AND INVENTOR",THE ADDRESS IN THE JAPANESE LANGUAGE HAS BEEN CORRECTED

RET De translation (de og part 6b)

Ref document number: 3991748

Country of ref document: DE

Date of ref document: 19911010

WWE Wipo information: entry into national phase

Ref document number: 3991748

Country of ref document: DE