WO1991004014A1 - Procede de transport de compositions a travers la barriere hemato-encephalique - Google Patents
Procede de transport de compositions a travers la barriere hemato-encephalique Download PDFInfo
- Publication number
- WO1991004014A1 WO1991004014A1 PCT/US1990/005349 US9005349W WO9104014A1 WO 1991004014 A1 WO1991004014 A1 WO 1991004014A1 US 9005349 W US9005349 W US 9005349W WO 9104014 A1 WO9104014 A1 WO 9104014A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- brain
- transferrin
- liposomes
- insulin
- blood
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Liposomes
- A61K9/1271—Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F3/00—Board games; Raffle games
- A63F3/06—Lottos or bingo games; Systems, apparatus or devices for checking such games
- A63F3/065—Tickets or accessories for use therewith
- A63F3/0685—Tickets or accessories for use therewith having a message becoming legible after a chemical reaction or physical action has taken place, e.g. applying pressure, heat treatment, spraying with a substance, breaking microcapsules
Definitions
- This barrier consists of uniform, tight junctions between adjacent endothelial cells lining brain capillaries. These junctions prevent the penetration into the brain of many water-soluble molecules. In addition, there is a relative absence of the intracellular bulk transport vesicles that shuttle molecules across endothelial cells in other organs. These barriers prevent the entry into the brain of a wide variety of potentially therapeutic compounds administered to the systemic circulation.
- the blood-brain barrier prevents certain nerotransmitters, such as dopamine, and most macromolecules, such as nerve growth factors, from entering the brain from the circulation.
- nerotransmitters such as dopamine
- macromolecules such as nerve growth factors
- One method proposed for delivering non-penetrating drugs to the brain is to chemically link the drug to a carrier compound that is capable of penetrating the blood-brain barrier.
- the penetrating compounds that have been proposed for use as carriers include small, lipid soluble molecules, such as modified dihydropyridines (Bodor, 1987, Ann. N.Y. Acad. Sci. 507: 289-306), or compounds that enter the brain through a specific transport system in brain endothelial cells, such as the transport systems for transferrin, insulin, and insulin ⁇ like growth factors I and II (Pardridge, 1988, Ann. N.Y. Acad. Sci. 529: 50-60).
- This proposed method is subject to two serious drawbacks the may prevent delivery to the brain of a wide range of therapeutic agents.
- the drug must retain its activity when chemically coupled to the carrier or there must be an endogenous and accessible brain enzyme able to uncouple the drug and carrier once they are inside the brain.
- large drugs for example macromolecules such as nerve growth factors, are very likely to dominate the chemical properties of the drug-carrier combination and prevent penetration of the combination into the brain.
- liposomes targeted to endogenous brain transport systems that will be used to encapsulate and deliver normally non-penetrating therapeutic agents to the brain. Since the therapeutic agents will be encapsulated in liposomes, they will be protected from enzymatic inactivation in the blood. Moreover, there will be no need to chemically couple these therapeutic agents to the carrier and chemically uncouple them in the brain. In addition, liposomes are capable of delivering large macromolecules, such as nerve growth factors, that would be unlikely to penetrate the brain when chemically coupled to a carrier molecule.
- the liposomes of the invention are targeted by the addition to the outside layer of the liposome of one or more molecules that are normally transported across the blood- brain barrier.
- transported molecules include, but are not limited to, transferrin, insulin, and insulin-like growth factors I and II as described by Fishman et al., 1987, J. Neurosci. Res. 18:299-304; and Frank et al., 1986, Diabetes 35:654-661, each of which is specifically incorporated herein by reference.
- Each endogenous transport system consists of specific membrane receptors on the endothelial cell surface to which the transported molecule binds, followed by mechanisms for internationalization of the molecule into an intracellular vesicle, and expulsion of the contents of the vesicle into the brain as described by Deutry-Varsat et al., 1987, J. Neurosci. Res. 18:299-304; Klausner et al., 1983, J. Biol. Chem. 258: 4715-4724; and Duffy et al., 1987, each of which is specifically incorporated by reference herein.
- the liposomes are attached to the transport systems by coupling to their external surface either one of the transported molecules mentioned above (transferrin, insulin, or insulin ⁇ like growth factors) or antibodies directed to the specific brain endothelial cell receptors for these transported molecules.
- Such coupling methods are described, for example, by Schneider et al., 1984, Nature 311: 675-678 specifically incorporated herein by reference.
- the invention consists of methods for delivering therapeutic and diagnostic agents to the brain across the blood brain barrier.
- agents are delivered to the brain by encapsulating them in liposomes targeted to any of a number of endogenous brain transport systems that transport specific ligands across the blood brain barrier.
- the liposomes are targeted to such endogenous transport systems by coupling to their outer surface either the specifically- transported ligand or antibodies to the brain endothelial cell receptor for the ligand.
- Examples of such liposome- targeting molecules are the speci.fically-transported proteins transferrin, insulin, or insulin-like growth factors I and II and antibodies to the receptors for transferrin, insulin, or embodiments of this invention and, together with the descrip serves to explain the principles of the invention.
- Figure 1 illustrates the results of a competition bindi experiment described in Example 1.
- the present invention relates to t of targeted liposomes to deliver therapeutic and/or diagnost agents across the blood-brain barrier.
- the liposomes may be prepared by any of a wide variety of standard methods for producing stable, unilamellar liposomes of uniform internal diameter.
- liposomes are composed saturated phospholipids and cholesterol in relative proporti suitable to produce stable liposomes.
- the liposomes also co a modified lipid that is capable of covalently linking a var of targeting molecules to the external liposome surface.
- the covalent-linker lipid is MPB-PE.
- the liposomes are composed of distearo phosphatidylcholine, cholesterol, and MPB-PE (N-[4-(p aleimidophenyl) butryl] phosphatidylethanolamine) in the ra molar of 1:1:0.068, assuming the final composition reflects initial reaction mixture.
- liposomes are generated by passage either through a micropore membrane or through a microfluidizer generate unilamellar liposomes of uniform diameter. Examples of these methods may be found in Klimchak and Lank, 1988 Biopharmaceutics FEB:18-21: and Olsen et al., 1979, Bioche . Biophvs. Acts 557:9-23. each of which is specifically incorporated herein by reference.
- the liposomes are targeted for passage through the blood-brain barrier by the coupling, to the outside of the liposome, of molecules which are actively transported across the blood-brain barrier. These transported molecules are added to the outside of intact liposomes and become covalently linked under appropriate reaction conditions to a suitably modified lipid incorporated into the liposome.
- suitable transport substances include, but are not limited to, transferrin, insulin, insulin-like growth factor 1 (IGF-I), insulin-like growth factor II (IGF-II), and antibodies against specific brain endothelial cell receptors for transferrin, insulin, IGF-I, and IGF-II.
- liposomes are covalently coupled through the modified lipid N-[4-p-maleimidophenyl) butyrl] phosphatidylethanolamine (MPB-PE) to iron-saturated transferrin on the surface.
- MPB-PE modified lipid N-[4-p-maleimidophenyl) butyrl] phosphatidylethanolamine
- transferrin-coated liposomes competed effectively with free transferrin for the transferrin receptors on human cells (Example 1, Figure 1).
- transferrin-coated liposomes were also able to increase the penetration into the brain of a radiolabeled tracer (Example 2, Table 1) .
- a wide variety of therapeutic agents are envisioned for encapsulation within the liposomes of this invention. These include: protein neurotrophic factors (for example, nerve growth factor) to treat brain injury and neurodegenerative diseases; enzymes to replace enzymatic activities lost through genetic defects where the loss causes severe metabolic storage diseases such as Tay-Sachs disease;
- SUBSTIT neurotransmitters and neuromodulators such as dopamine and jg-endorphin, that would be useful for treating Parkinson's disease and intractable pain, respectively, or conditions including disorders of movement, cognition, and behavior.
- antibiotics for treating infectious diseases such as neurosyphilis or AIDS, where Penetration into the brain of systemically administered antibiotics is presently a block to treatment; chemotherapeutic agents for treating brain tumors with agents that do not reach the tumor in sufficient amounts when tolerable doses are administered systemically; and diagnostic agents. such as specific contrast media for brain imaging, that are currently not used because of poor penetration into the brain upon systemic administration.
- Example 1 Method for Producing Liposomes
- the following lipids are dissolved in 25ml chloroform and evaporated to dryness as a thin film in the bottom of a round-bottomed flask: 300mmol disearoyl phosphatidylcholine, 300mmol cholesterol, and 20.4 mmol N-[4-(p-maleimidophenyl) butyrl] phosphatidylethanolamine (MPB-PE).
- MPB-PE contains a reactive group capable of coupling to a wide variety of proteins. (Martin and Papahadjopoulos, 1982, J. Biol. Chem. 257:286-288).
- the material to be encapsulated is dissolved in Buffer I consisting of 108mM NaCl, 35mM Na 2 HP0 4 , 20mM citric acid, ImM EDTA, pH 4.5.
- Buffer I consisting of 108mM NaCl, 35mM Na 2 HP0 4 , 20mM citric acid, ImM EDTA, pH 4.5.
- the low pH prevents premature hydrolysis of the covalent linking group on MPB-PE.
- Lipids are swollen in this solution for 3 hours, then the solution is passed seven times through a microfluidizer MHO as described by Teagarden et al. in Pharmaceutical Res. 5.: 482-487 (1988) at a final nitrogen pressure of 10,000 psi to create unilamellar liposomes in a narrow size range with an average diameter of approximately lOOnm.
- the unilamellar nature of the liposomes was confirmed by X-ray diffraction and the size distribution determined by light scattering.
- the mixture is passed over a Sephadex G150 column equilibrated with buffer I.
- the liposomes emerge from the column in the void volume.
- the liposomes are deaerated under argon for 2 hours.
- Ten mg of iron-saturated transferrin is added dissolved in Ringer's salt solution.
- the pH is raised to 7.0 at which pH the coupling group on MPB-PE is activated, and the reaction allowed to stand under argon overnight at 4°C.
- Reactive groups on MPB-PE that do not couple to transferrin during this step including those molecules of MPB-PE whose reactive groups face the interior of the liposome, are hydrolyzed and inactivated when oxygen is reintroduced during subsequent processing.
- Transferrin- coupled liposomes are separated from free, unreacted transferrin by a second passage of the reaction mixture through a G-150 column equilibrated with Ringer's salt solution. The amount of transferrin is measured in each fraction emerging from the column by standard protein assay in order to calculate the amount of unincorporated transferrin and the number of coupled transferrin molecules per liposome.
- an aliquot of each liposome preparation can be stored at 4°C for various lengths of time, then passed over a G-150 sizing column to determine what proportion of the transferrin and encapsulated drug emerge in the liposome vs. the non-liposome fractions.
- a competition assay can be run comparing the ability of transferrin-coupled liposomes to .compete with free transferrin for the transferrin receptor.
- Figure 1 illustrates the results of one such competition assay. The experiment consists of introducing a fixed amount (InM) of
- Test wells also contain increasing concentrations of one of the following: free unlabeled transferrin, transferrin-coupled liposomes, or liposomes without transferrin coupled to their outer surface.
- the reduction in the amount of 125I-labeled transferrin bound was measured in triplicate tubes.
- Figure 1 plots the 125I-labeled transferrin bound in each tube (average +. standard deviation) vs. the log of the final molar concentration of either liposomes or unlabeled transferrin. The results indicate that transferrin-coupled liposomes can bind well to the transferrin receptor.
- Sprague-Dawley rate are anaestetized with Nembutal and cleared of blood by perfusion through an aortic cannula with
- Buffer II consisting of Ringer's salt solution containing
- bovine serum albumin 0.2% bovine serum albumin.
- the subclavian arteries are tied off and the perfusion continued to the remainder of the upper half of the body.
- the perfusate is circulated at 6-8ml/min.
- the p0 2 is maintained at 210 ⁇ 20 and 165 ⁇ 2mm Hg in the infusate and exfusate, respectively.
- the pC0 2 typically ranges from approximately 12 +.12 in the infusate to 22 +.4mm
- Transferrin-coupled liposomes are prepared with either a radiolabeled tracer, such as an 125I-labeled peptide, or a histochemical tracer, such as a biotinylated peptide, encapsulated inside them.
- a radiolabeled tracer such as an 125I-labeled peptide
- a histochemical tracer such as a biotinylated peptide
- Buffer II After the blood is cleared from an animal, typically lOmin after perfusion has begun, the liposomes are added and perfusion continued for various times up to 60min.
- the brain microvasculature is isolated by the method of Brandel
- brains are removed and homogenized.
- the homogenate is passed through nylon meshes of decreasing pore diameter.
- the material captured on the final nylon filter consists solely of thin brain vascular elements, devoid of smooth muscle cells (Fishman et al., 1987, J.
- the amount of liposome encapsulated radiolabeled tracer that appears in this vascular fraction is multiplied by a predetermined correction factor in order to calculate the total amount of encapsulated radiolabeled tracer in the brain vasculature.
- the correction factor corresponds to the percentage of the total brain vasculature typically recovered in the final fraction retained on nylon mesh and is determined as described in Fishman et al., 1987
- the fraction of the brain homogenate that is not retained on the final passage through nylon mesh is the brain parenchymal fraction.
- the total amount of liposome- encapsulated radiolabeled tracer in this fraction measures the amount delivered to the brain.
- the transport of liposome-encapsulated material into the brain is also demonstrated by direct localization of transported material in brain sections using histochemistry.
- transferrin-coupled liposomes containing a biotinylated peptide La Rochelle and Froehner, 1986, J. Biol. Chem. 261:5270-5274
- the brain is fixed by continued perfusion with 4% paraformaldehyde for light microscopy or 4% paraformaldehyde and 0.25% glutaraldehyde for electron microscopy.
- Various brain regions are dissected, embedded in Epon-Araldite and sectioned on an ultramicrotome for electron microscopy.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Multimedia (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
Abstract
Procédés d'acheminement d'agents thérapeutiques et diagnostiques au cerveau à travers la barrière hémato-encéphalique. Lesdits agents sont acheminés au cerveau par encapsulage dans des liposomes ciblés sur des systèmes de transport endogène du cerveau, lesquels transportent des ligands spécifiques à travers la barrière hémato-encéphalique. On peut citer à titre d'exemples de ladite molécule ciblant les liposomes, les protéines spécifiquement transportées telles que la transferrine, l'insuline, ou les facteurs I et II de croissance analogues à l'insuline, ainsi que des anticorps contre les récepteurs pour la transferrine, l'insuline, ou les facteurs I et II de croissance analogues à l'insuline.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US41031989A | 1989-09-21 | 1989-09-21 | |
US410,319 | 1989-09-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1991004014A1 true WO1991004014A1 (fr) | 1991-04-04 |
Family
ID=23624209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1990/005349 WO1991004014A1 (fr) | 1989-09-21 | 1990-09-21 | Procede de transport de compositions a travers la barriere hemato-encephalique |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU6501390A (fr) |
CA (1) | CA2025907A1 (fr) |
WO (1) | WO1991004014A1 (fr) |
Cited By (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994002178A1 (fr) * | 1992-07-27 | 1994-02-03 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Ciblage de liposomes sur la barriere hemato-encephalique |
WO1994017821A1 (fr) * | 1993-02-09 | 1994-08-18 | Basf Aktiengesellschaft | Utilisation d'inhibiteurs de la thrombine pour lutter contre des maladies neurodegeneratives |
WO1995007092A1 (fr) * | 1993-09-10 | 1995-03-16 | The University Of Medicine And Dentistry Of New Jersey | Vecteurs de transport d'agents neurologiques traversant la barriere hemato-encephalique |
US5827819A (en) * | 1990-11-01 | 1998-10-27 | Oregon Health Sciences University | Covalent polar lipid conjugates with neurologically active compounds for targeting |
US5948384A (en) * | 1990-09-14 | 1999-09-07 | Syngenix Limited | Particulate agents |
US6117454A (en) * | 1994-02-28 | 2000-09-12 | Medinova Medical Consulting Gmbh | Drug targeting to the nervous system by nanoparticles |
US6207153B1 (en) | 1996-05-22 | 2001-03-27 | Viventia Biotech, Inc. | Antigen binding fragments that specifically detect cancer cells, nucleotides encoding the fragments, and use thereof for the prophylaxis and detection of cancers |
US6339060B1 (en) | 1990-11-01 | 2002-01-15 | Oregon Health & Science University | Conjugate of biologically active compound and polar lipid conjugated to a microparticle for biological targeting |
US6562318B1 (en) | 1990-09-14 | 2003-05-13 | Syngenix Limited | Particular agents |
US6569664B1 (en) | 1996-11-06 | 2003-05-27 | The Regents Of The University Of California | Native TNF receptor releasing enzyme |
EP1446007A1 (fr) * | 2001-10-16 | 2004-08-18 | Symbiontics, Inc. | Techniques et compositions permettant le ciblage de proteines sous-glycosylees a travers la barriere hemato-encephalique |
US6919067B2 (en) | 1991-09-13 | 2005-07-19 | Syngenix Limited | Compositions comprising a tissue glue and therapeutic agents |
US7115722B1 (en) | 1997-05-22 | 2006-10-03 | Viventia Biotech, Inc. | Antigen binding fragments that specifically detect cancer cells, nucleotides encoding the fragments, and use thereof for the prophylaxis and detection of cancers |
WO2006126208A2 (fr) * | 2005-05-26 | 2006-11-30 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Compositions et methodes d'utilisation desdites compositions dans l'administration d'agents dans un organe cible protege par une barriere sanguine |
US7217796B2 (en) | 2002-05-24 | 2007-05-15 | Schering Corporation | Neutralizing human anti-IGFR antibody |
US7326567B2 (en) | 2003-11-12 | 2008-02-05 | Schering Corporation | Plasmid system for multigene expression |
US7396811B2 (en) | 2001-04-30 | 2008-07-08 | Zystor Therapeutics, Inc. | Subcellular targeting of therapeutic proteins |
WO2008134828A2 (fr) | 2007-05-04 | 2008-11-13 | Katholieke Universiteit Leuven | Protection contre la dégénérescence tissulaire |
US7462642B2 (en) | 2002-03-22 | 2008-12-09 | Cancer Research Technology Limited | Anti-cancer combinations |
US7510830B2 (en) | 2000-07-28 | 2009-03-31 | Cancer Research Technology Limited | Cancer treatment by combination therapy |
US7560424B2 (en) | 2001-04-30 | 2009-07-14 | Zystor Therapeutics, Inc. | Targeted therapeutic proteins |
US7585893B2 (en) | 2002-11-01 | 2009-09-08 | Cancer Research Technology Limited | Anti-cancer composition comprising DMXAA or related compound |
US7629309B2 (en) | 2002-05-29 | 2009-12-08 | Zystor Therapeutics, Inc. | Targeted therapeutic proteins |
WO2010035261A2 (fr) | 2008-09-29 | 2010-04-01 | Ben Gurion University Of The Negev Research And Development Authority | Beta-peptides amyloides et procédés d'utilisation associés |
US7723056B1 (en) | 1997-10-16 | 2010-05-25 | The University Of Manchester | Particles |
US7785856B2 (en) | 2004-02-10 | 2010-08-31 | Zystor Therapeutics, Inc. | Acid alpha-glucosidase and fragments thereof |
US7795232B1 (en) | 2000-08-25 | 2010-09-14 | Genta Incorporated | Methods of treatment of a bcl-2 disorder using bcl-2 antisense oligomers |
WO2010108665A1 (fr) | 2009-03-24 | 2010-09-30 | Life & Brain Gmbh | Promotion de l'intégration neuronale dans des greffons de cellules souches neurales |
US7811562B2 (en) | 2004-12-03 | 2010-10-12 | Schering Corporation | Biomarkers for pre-selection of patients for anti-IGF1R therapy |
US7863321B2 (en) | 2001-09-03 | 2011-01-04 | Cancer Research Technology Limited | Anti-cancer combinations |
EP2274011A2 (fr) * | 2008-04-17 | 2011-01-19 | Banyan Biomarkers, Inc. | Vésicule synthétique reliée à un anticorps, contenant des molécules d agent actif |
EP2274978A1 (fr) | 2003-09-12 | 2011-01-19 | Tercica, Inc. | Méthodes de traitement de la déficience du facteur de croissance de type insuline 1 (IGF-1) |
EP2281828A2 (fr) | 2000-12-29 | 2011-02-09 | The Kenneth S. Warren Institute, Inc. | Compositions comprenant de l'érythropoiétine modifiée |
WO2011063980A1 (fr) | 2009-11-26 | 2011-06-03 | Inflarx Gmbh | Fractions de liaison anti-c5a à activité bloquante élevée |
WO2011070177A2 (fr) | 2009-12-11 | 2011-06-16 | Baltic Technology Development, Ltd. | Procédés destinés à faciliter la survie de cellules neuronales en utilisant des mimétiques de ligands de la famille des gdnf (gfl) ou des activateurs de la voie de signalisation du ret |
US7981864B2 (en) | 2001-10-16 | 2011-07-19 | Biomarin Pharmaceutical Inc. | Methods and compositions for targeting proteins across the blood brain barrier |
US8017735B2 (en) | 2003-11-21 | 2011-09-13 | Schering Corporation | Anti-IGFR1 antibody therapeutic combinations |
EP2371855A1 (fr) | 2005-08-05 | 2011-10-05 | Araim Pharmaceuticals, Inc. | Peptides protecteurs de tissus et utilisations associées |
WO2012061907A2 (fr) | 2010-11-10 | 2012-05-18 | Katholieke Universiteit Leuven | Activité des ostéoclastes |
WO2013093891A1 (fr) | 2011-12-22 | 2013-06-27 | Nuvo Research Gmbh | Compositions liposomales comprenant des chlorites ou chlorates |
US8835654B2 (en) | 2004-12-22 | 2014-09-16 | Bhi Limited Partnership | Method and compositions for treating amyloid-related diseases |
WO2014140934A2 (fr) | 2013-03-11 | 2014-09-18 | Life Science Nutrition As | Lipides naturels contenant des acides gras non oxydables |
WO2014143614A1 (fr) | 2013-03-11 | 2014-09-18 | Jan Remmereit | Compositions lipidiques contenant des acides gras bioactifs |
US8895303B2 (en) | 2006-11-13 | 2014-11-25 | Charite-Universitatsmedizin Berlin | Method of cell culture and method of treatment comprising a vEPO protein variant |
US20150125497A1 (en) * | 2003-04-28 | 2015-05-07 | Children's Hospital Medical Center | Saposin C-DOPS: A Novel Anti-Tumor Agent |
WO2015098989A1 (fr) | 2013-12-25 | 2015-07-02 | Jcrファーマ株式会社 | Nouvel anticorps anti-récepteur de transferrine qui traverse la barrière hémato-encéphalique |
EP2933264A2 (fr) | 2008-01-22 | 2015-10-21 | Araim Pharmaceuticals, Inc. | Peptides protecteurs de tissu et analogues peptidiques pour la prévention et le traitement de maladies et de troubles associés à un endommagement tissulaire |
US9198733B2 (en) | 2008-04-29 | 2015-12-01 | Virginia Tech Intellectual Properties, Inc. | Treatment planning for electroporation-based therapies |
US9283051B2 (en) | 2008-04-29 | 2016-03-15 | Virginia Tech Intellectual Properties, Inc. | System and method for estimating a treatment volume for administering electrical-energy based therapies |
US9469683B2 (en) | 2008-05-07 | 2016-10-18 | Biomarin Pharmaceutical Inc. | Lysosomal targeting peptides and uses thereof |
US9499480B2 (en) | 2006-10-12 | 2016-11-22 | Bhi Limited Partnership | Methods, compounds, compositions and vehicles for delivering 3-amino-1-propanesulfonic acid |
US9598691B2 (en) | 2008-04-29 | 2017-03-21 | Virginia Tech Intellectual Properties, Inc. | Irreversible electroporation to create tissue scaffolds |
US9764145B2 (en) | 2009-05-28 | 2017-09-19 | Angiodynamics, Inc. | System and method for synchronizing energy delivery to the cardiac rhythm |
US9867652B2 (en) | 2008-04-29 | 2018-01-16 | Virginia Tech Intellectual Properties, Inc. | Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds |
US9895189B2 (en) | 2009-06-19 | 2018-02-20 | Angiodynamics, Inc. | Methods of sterilization and treating infection using irreversible electroporation |
WO2018050848A1 (fr) | 2016-09-15 | 2018-03-22 | Universität Stuttgart | Protéine de liaison à l'antigène contre her3 |
WO2018087720A1 (fr) | 2016-11-14 | 2018-05-17 | Novartis Ag | Compositions, méthodes et utilisations thérapeutiques associées à une protéine fusogène minion |
US9988427B2 (en) | 2005-05-13 | 2018-06-05 | Charite Universitaetsmedizen-Berlin | Erythropoietin variants |
EP3345545A1 (fr) | 2011-04-21 | 2018-07-11 | The Regents of The University of California | Nanoparticules magnétiques fonctionnalisées et leur utilisation dans l'imagerie de dépôts amyloïdes et d'enchevêtrements neurofibrillaires |
WO2018184739A1 (fr) | 2017-04-03 | 2018-10-11 | Inflarx Gmbh | Traitement de maladies inflammatoires par des inhibiteurs de l'activité de c5a |
US10117707B2 (en) | 2008-04-29 | 2018-11-06 | Virginia Tech Intellectual Properties, Inc. | System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies |
WO2018226992A1 (fr) | 2017-06-07 | 2018-12-13 | Adrx, Inc. | Inhibiteur d'agrégation de tau |
US10154874B2 (en) | 2008-04-29 | 2018-12-18 | Virginia Tech Intellectual Properties, Inc. | Immunotherapeutic methods using irreversible electroporation |
WO2018234118A1 (fr) | 2017-06-23 | 2018-12-27 | Inflarx Gmbh | Traitement de maladies inflammatoires par des inhibiteurs de l'activité de c5a |
WO2019036725A2 (fr) | 2017-08-18 | 2019-02-21 | Adrx, Inc. | Inhibiteurs peptidiques d'agrégation de tau |
US10238447B2 (en) | 2008-04-29 | 2019-03-26 | Virginia Tech Intellectual Properties, Inc. | System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress |
US10245105B2 (en) | 2008-04-29 | 2019-04-02 | Virginia Tech Intellectual Properties, Inc. | Electroporation with cooling to treat tissue |
US10272178B2 (en) | 2008-04-29 | 2019-04-30 | Virginia Tech Intellectual Properties Inc. | Methods for blood-brain barrier disruption using electrical energy |
US10292755B2 (en) | 2009-04-09 | 2019-05-21 | Virginia Tech Intellectual Properties, Inc. | High frequency electroporation for cancer therapy |
US10335224B2 (en) | 2000-08-17 | 2019-07-02 | Angiodynamics, Inc. | Method of destroying tissue cells by electroporation |
US10463426B2 (en) | 2001-08-13 | 2019-11-05 | Angiodynamics, Inc. | Method for treating a tubular anatomical structure |
US10471254B2 (en) | 2014-05-12 | 2019-11-12 | Virginia Tech Intellectual Properties, Inc. | Selective modulation of intracellular effects of cells using pulsed electric fields |
WO2020055768A1 (fr) | 2018-09-10 | 2020-03-19 | Cold Spring Harbor Laboratory | Méthodes de traitement de la pancréatite |
US10694972B2 (en) | 2014-12-15 | 2020-06-30 | Virginia Tech Intellectual Properties, Inc. | Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment |
US10702326B2 (en) | 2011-07-15 | 2020-07-07 | Virginia Tech Intellectual Properties, Inc. | Device and method for electroporation based treatment of stenosis of a tubular body part |
WO2020182384A1 (fr) | 2019-03-11 | 2020-09-17 | Inflarx Gmbh | Composés bicycliques pipéridinyles fusionnés et composés apparentés en tant que modulateurs du récepteur c5a |
WO2021190770A1 (fr) | 2020-03-27 | 2021-09-30 | Inflarx Gmbh | Inhibiteurs de c5a pour le traitement d'une infection par un coronavirus |
US11254926B2 (en) | 2008-04-29 | 2022-02-22 | Virginia Tech Intellectual Properties, Inc. | Devices and methods for high frequency electroporation |
US11272979B2 (en) | 2008-04-29 | 2022-03-15 | Virginia Tech Intellectual Properties, Inc. | System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies |
US11311329B2 (en) | 2018-03-13 | 2022-04-26 | Virginia Tech Intellectual Properties, Inc. | Treatment planning for immunotherapy based treatments using non-thermal ablation techniques |
US11382681B2 (en) | 2009-04-09 | 2022-07-12 | Virginia Tech Intellectual Properties, Inc. | Device and methods for delivery of high frequency electrical pulses for non-thermal ablation |
US11464868B2 (en) | 2017-04-03 | 2022-10-11 | Inflarx Gmbh | Treatment of inflammatory diseases with inhibitors of C5A activity |
US11607537B2 (en) | 2017-12-05 | 2023-03-21 | Virginia Tech Intellectual Properties, Inc. | Method for treating neurological disorders, including tumors, with electroporation |
US11638603B2 (en) | 2009-04-09 | 2023-05-02 | Virginia Tech Intellectual Properties, Inc. | Selective modulation of intracellular effects of cells using pulsed electric fields |
US11723710B2 (en) | 2016-11-17 | 2023-08-15 | Angiodynamics, Inc. | Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode |
US11925405B2 (en) | 2018-03-13 | 2024-03-12 | Virginia Tech Intellectual Properties, Inc. | Treatment planning system for immunotherapy enhancement via non-thermal ablation |
US11931096B2 (en) | 2010-10-13 | 2024-03-19 | Angiodynamics, Inc. | System and method for electrically ablating tissue of a patient |
US11950835B2 (en) | 2019-06-28 | 2024-04-09 | Virginia Tech Intellectual Properties, Inc. | Cycled pulsing to mitigate thermal damage for multi-electrode irreversible electroporation therapy |
US12102376B2 (en) | 2012-02-08 | 2024-10-01 | Angiodynamics, Inc. | System and method for increasing a target zone for electrical ablation |
US12114911B2 (en) | 2014-08-28 | 2024-10-15 | Angiodynamics, Inc. | System and method for ablating a tissue site by electroporation with real-time pulse monitoring |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4480041A (en) * | 1982-07-09 | 1984-10-30 | Collaborative Research, Inc. | Use of phosphotriester intermediates for preparation of functionalized liposomes |
US4621023A (en) * | 1982-10-15 | 1986-11-04 | Parfums Christian Dior | Method of homogenizing dispersions of hydrated lipidic lamellar phases and suspensions obtained by the said method |
US4837028A (en) * | 1986-12-24 | 1989-06-06 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
JPH01149718A (ja) * | 1987-12-07 | 1989-06-12 | Yoshikatsu Eto | 脳血液関門を通過し易いリポゾーム製剤 |
US4946787A (en) * | 1985-01-07 | 1990-08-07 | Syntex (U.S.A.) Inc. | N-(ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor |
-
1990
- 1990-09-21 AU AU65013/90A patent/AU6501390A/en not_active Abandoned
- 1990-09-21 CA CA 2025907 patent/CA2025907A1/fr not_active Abandoned
- 1990-09-21 WO PCT/US1990/005349 patent/WO1991004014A1/fr unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4480041A (en) * | 1982-07-09 | 1984-10-30 | Collaborative Research, Inc. | Use of phosphotriester intermediates for preparation of functionalized liposomes |
US4621023A (en) * | 1982-10-15 | 1986-11-04 | Parfums Christian Dior | Method of homogenizing dispersions of hydrated lipidic lamellar phases and suspensions obtained by the said method |
US4946787A (en) * | 1985-01-07 | 1990-08-07 | Syntex (U.S.A.) Inc. | N-(ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor |
US4837028A (en) * | 1986-12-24 | 1989-06-06 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
JPH01149718A (ja) * | 1987-12-07 | 1989-06-12 | Yoshikatsu Eto | 脳血液関門を通過し易いリポゾーム製剤 |
Non-Patent Citations (7)
Title |
---|
A.G. GITMAN et al., "Targeting of Loaded Sendai Virus Envelopes by Covalently Attached Insulin Molecules...", Proc. Natl. Acad. Sci. USA, November 1985, Vol. 82, 7309-7313, (Eng.). * |
CHEMICAL ABSTRACTS, Volume 102, No. 3, 17315d, issued 1984, (Columbus, Ohio, USA), T. OSANAI et al., "Suppression of Experimental Allergic Encephalomyelitis (EAE) with Liposome-Encapsulated Protease Inhibitor..."; & NEUROCHEM. RES., 9(10), 1407-16-5, (Eng.). * |
CHEMICAL ABSTRACTS, Volume 103, No. 22, 183502c, issued 1984, (Columbus, Ohio, USA), K. YAGI, "Enzyme Replacement Therapy Using Liposomes of Novel Composition"; & ICSU SHORT REPORT, 7 (Adv. Gene Technology), 120-123, (Eng.). * |
CHEMICAL ABSTRACTS, Volume 109, No. 14, 115952y, issued 1988, (Columbus, Ohio, USA), F. UMEZAWA et al., "Liposome Targeting to Mouse Brain: Mannose as a Recognition Marker"; & BIOCHEM. BIOPHYS. RES. COMMUN., 153(3), 1038-44 (Eng.). * |
CHEMICAL ABSTRACTS, Volume 112, No. 6, 42271a, issued 1989, (Columbus, Ohio, USA), T. OSANAI et al., "Blood-Brain Barrier Model and Liposome Method"; & KAGAKU (KYOTO), 44(9), 624-5, (Eng.). * |
CHEMICAL ABSTRACTS, Volume 12, No. 16, 145572d, issued 1989, (Columbus, Ohio, USA), Y. ITO; & JP,A,1 149 718, 12 June 1989, (Eng.). * |
CHEMICAL ABSTRACTS, Volume 94, No. 11, 81079y, issued 1980, (Columbus, Ohio, USA), M. NAOI et al., "Incorporation of Enzyme Through Blood-Brain Barrier into Brain by Means of Liposomes"; & BIOCHEM. INT., 1(6), 591-6, (Eng.). * |
Cited By (152)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5948384A (en) * | 1990-09-14 | 1999-09-07 | Syngenix Limited | Particulate agents |
US6562318B1 (en) | 1990-09-14 | 2003-05-13 | Syngenix Limited | Particular agents |
US6339060B1 (en) | 1990-11-01 | 2002-01-15 | Oregon Health & Science University | Conjugate of biologically active compound and polar lipid conjugated to a microparticle for biological targeting |
US5827819A (en) * | 1990-11-01 | 1998-10-27 | Oregon Health Sciences University | Covalent polar lipid conjugates with neurologically active compounds for targeting |
US6024977A (en) * | 1990-11-01 | 2000-02-15 | Oregon Health Sciences University | Covalent polar lipid conjugates with neurologically active compounds for targeting |
US6436437B1 (en) | 1990-11-01 | 2002-08-20 | Oregon Health And Science University | Covalent polar lipid conjugates with neurologically active compounds for targeting |
US6858582B2 (en) | 1990-11-01 | 2005-02-22 | Oregon Health And Sciences University | Composition containing porous microparticle impregnated with biologically-active compound for treatment of infection |
US6919067B2 (en) | 1991-09-13 | 2005-07-19 | Syngenix Limited | Compositions comprising a tissue glue and therapeutic agents |
AU677216B2 (en) * | 1992-07-27 | 1997-04-17 | Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services, The | Targeting of liposomes to the blood-brain barrier |
WO1994002178A1 (fr) * | 1992-07-27 | 1994-02-03 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Ciblage de liposomes sur la barriere hemato-encephalique |
WO1994017821A1 (fr) * | 1993-02-09 | 1994-08-18 | Basf Aktiengesellschaft | Utilisation d'inhibiteurs de la thrombine pour lutter contre des maladies neurodegeneratives |
WO1995007092A1 (fr) * | 1993-09-10 | 1995-03-16 | The University Of Medicine And Dentistry Of New Jersey | Vecteurs de transport d'agents neurologiques traversant la barriere hemato-encephalique |
US6117454A (en) * | 1994-02-28 | 2000-09-12 | Medinova Medical Consulting Gmbh | Drug targeting to the nervous system by nanoparticles |
US7423010B2 (en) | 1994-05-19 | 2008-09-09 | Oregon Health & Science University | Nonporous microparticle-prodrug conjugates for treatment of infection |
US7166286B2 (en) | 1996-05-22 | 2007-01-23 | Viventia Biotech Inc. | Antigen binding fragments that specifically detect cancer cells, nucleotides encoding the fragments, and use thereof for prophylaxis and detection of cancers |
US6207153B1 (en) | 1996-05-22 | 2001-03-27 | Viventia Biotech, Inc. | Antigen binding fragments that specifically detect cancer cells, nucleotides encoding the fragments, and use thereof for the prophylaxis and detection of cancers |
US6569664B1 (en) | 1996-11-06 | 2003-05-27 | The Regents Of The University Of California | Native TNF receptor releasing enzyme |
US6858402B2 (en) | 1996-11-06 | 2005-02-22 | The Regents Of The University Of California | System for discovering and producing polypeptides that cause TNF receptor shedding |
US6573062B1 (en) | 1996-11-06 | 2003-06-03 | The Regents Of The University Of California | Method for obtaining modulators of TNF receptor releasing enzyme |
US7115722B1 (en) | 1997-05-22 | 2006-10-03 | Viventia Biotech, Inc. | Antigen binding fragments that specifically detect cancer cells, nucleotides encoding the fragments, and use thereof for the prophylaxis and detection of cancers |
US7723056B1 (en) | 1997-10-16 | 2010-05-25 | The University Of Manchester | Particles |
US7510830B2 (en) | 2000-07-28 | 2009-03-31 | Cancer Research Technology Limited | Cancer treatment by combination therapy |
US10335224B2 (en) | 2000-08-17 | 2019-07-02 | Angiodynamics, Inc. | Method of destroying tissue cells by electroporation |
US7795232B1 (en) | 2000-08-25 | 2010-09-14 | Genta Incorporated | Methods of treatment of a bcl-2 disorder using bcl-2 antisense oligomers |
EP2281828A2 (fr) | 2000-12-29 | 2011-02-09 | The Kenneth S. Warren Institute, Inc. | Compositions comprenant de l'érythropoiétine modifiée |
US7396811B2 (en) | 2001-04-30 | 2008-07-08 | Zystor Therapeutics, Inc. | Subcellular targeting of therapeutic proteins |
US9814762B2 (en) | 2001-04-30 | 2017-11-14 | Biomarin Pharmaceutical Inc. | Targeted therapeutic proteins |
US8859498B2 (en) | 2001-04-30 | 2014-10-14 | Biomarin Pharmaceutical Inc. | Targeted therapeutic proteins |
US7858576B2 (en) | 2001-04-30 | 2010-12-28 | Zystor Therapeutics, Inc. | Method for targeting lysosomal enzymes |
US10300113B2 (en) | 2001-04-30 | 2019-05-28 | Biomarin Pharmaceutical Inc. | Targeted therapeutic proteins |
US7560424B2 (en) | 2001-04-30 | 2009-07-14 | Zystor Therapeutics, Inc. | Targeted therapeutic proteins |
US8492337B2 (en) | 2001-04-30 | 2013-07-23 | Biomarin Pharmaceutical Inc. | Targeted therapeutic proteins |
US10463426B2 (en) | 2001-08-13 | 2019-11-05 | Angiodynamics, Inc. | Method for treating a tubular anatomical structure |
US7868040B2 (en) | 2001-09-03 | 2011-01-11 | Cancer Research Technology Limited | Anti-cancer combinations |
US7868039B2 (en) | 2001-09-03 | 2011-01-11 | Cancer Research Technology Limited | Anti-cancer combinations |
US7863321B2 (en) | 2001-09-03 | 2011-01-04 | Cancer Research Technology Limited | Anti-cancer combinations |
US7863322B2 (en) | 2001-09-03 | 2011-01-04 | Cancer Research Technology Limited | Anti-cancer combinations |
US7863320B2 (en) | 2001-09-03 | 2011-01-04 | Cancer Research Technology Limited | Anti-cancer combinations |
EP1446007A4 (fr) * | 2001-10-16 | 2005-12-07 | Zystor Therapeutics Inc | Techniques et compositions permettant le ciblage de proteines sous-glycosylees a travers la barriere hemato-encephalique |
EP1446007A1 (fr) * | 2001-10-16 | 2004-08-18 | Symbiontics, Inc. | Techniques et compositions permettant le ciblage de proteines sous-glycosylees a travers la barriere hemato-encephalique |
US7981864B2 (en) | 2001-10-16 | 2011-07-19 | Biomarin Pharmaceutical Inc. | Methods and compositions for targeting proteins across the blood brain barrier |
US7462642B2 (en) | 2002-03-22 | 2008-12-09 | Cancer Research Technology Limited | Anti-cancer combinations |
US7217796B2 (en) | 2002-05-24 | 2007-05-15 | Schering Corporation | Neutralizing human anti-IGFR antibody |
US7851181B2 (en) | 2002-05-24 | 2010-12-14 | Schering Corporation | Neutralizing human anti-IGFR antibody |
US7629309B2 (en) | 2002-05-29 | 2009-12-08 | Zystor Therapeutics, Inc. | Targeted therapeutic proteins |
US8207114B2 (en) | 2002-05-29 | 2012-06-26 | Biomarin Pharmaceutical Inc. | Targeted therapeutic proteins |
US7585893B2 (en) | 2002-11-01 | 2009-09-08 | Cancer Research Technology Limited | Anti-cancer composition comprising DMXAA or related compound |
US10188698B2 (en) * | 2003-04-28 | 2019-01-29 | Children's Hospital Medical Center | Saposin C-DOPS: a novel anti-tumor agent |
US20150125497A1 (en) * | 2003-04-28 | 2015-05-07 | Children's Hospital Medical Center | Saposin C-DOPS: A Novel Anti-Tumor Agent |
EP2274978A1 (fr) | 2003-09-12 | 2011-01-19 | Tercica, Inc. | Méthodes de traitement de la déficience du facteur de croissance de type insuline 1 (IGF-1) |
US8062886B2 (en) | 2003-11-12 | 2011-11-22 | Schering Corporation | Plasmid system for multigene expression |
US7326567B2 (en) | 2003-11-12 | 2008-02-05 | Schering Corporation | Plasmid system for multigene expression |
US8017735B2 (en) | 2003-11-21 | 2011-09-13 | Schering Corporation | Anti-IGFR1 antibody therapeutic combinations |
US7785856B2 (en) | 2004-02-10 | 2010-08-31 | Zystor Therapeutics, Inc. | Acid alpha-glucosidase and fragments thereof |
US7811562B2 (en) | 2004-12-03 | 2010-10-12 | Schering Corporation | Biomarkers for pre-selection of patients for anti-IGF1R therapy |
US8835654B2 (en) | 2004-12-22 | 2014-09-16 | Bhi Limited Partnership | Method and compositions for treating amyloid-related diseases |
US9988427B2 (en) | 2005-05-13 | 2018-06-05 | Charite Universitaetsmedizen-Berlin | Erythropoietin variants |
WO2006126208A2 (fr) * | 2005-05-26 | 2006-11-30 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Compositions et methodes d'utilisation desdites compositions dans l'administration d'agents dans un organe cible protege par une barriere sanguine |
US9943481B2 (en) | 2005-05-26 | 2018-04-17 | Biorest Ltd. | Compositions and methods using same for delivering agents into a target organ protected by a blood barrier |
US10722463B2 (en) | 2005-05-26 | 2020-07-28 | Zuli Holdings Ltd. | Compositions and methods using same for delivering agents into a target organ protected by a blood barrier |
EP2279726A3 (fr) * | 2005-05-26 | 2012-06-20 | Biorest Ltd. | Compositions et méthodes d'utilisation desdites compositions dans l'administration d'agents dans un organe cible protégé par une barrière sanguine |
WO2006126208A3 (fr) * | 2005-05-26 | 2007-09-20 | Yissum Res Dev Co | Compositions et methodes d'utilisation desdites compositions dans l'administration d'agents dans un organe cible protege par une barriere sanguine |
EP2540309A2 (fr) | 2005-08-05 | 2013-01-02 | Araim Pharmaceuticals, Inc. | Peptides protecteurs de tissus et utilisations associées |
EP2594279A1 (fr) | 2005-08-05 | 2013-05-22 | Araim Pharmaceuticals, Inc. | Peptides protecteurs de tissus et utilisations associées |
EP2371855A1 (fr) | 2005-08-05 | 2011-10-05 | Araim Pharmaceuticals, Inc. | Peptides protecteurs de tissus et utilisations associées |
US10857109B2 (en) | 2006-10-12 | 2020-12-08 | Bellus Health, Inc. | Methods, compounds, compositions and vehicles for delivering 3-amino-1-propanesulfonic acid |
US11020360B2 (en) | 2006-10-12 | 2021-06-01 | Bellus Health Inc. | Methods, compounds, compositions and vehicles for delivering 3-amino-1-propanesulfonic acid |
US10238611B2 (en) | 2006-10-12 | 2019-03-26 | Bellus Health Inc. | Methods, compounds, compositions and vehicles for delivering 3-amino-1-propanesulfonic acid |
US9499480B2 (en) | 2006-10-12 | 2016-11-22 | Bhi Limited Partnership | Methods, compounds, compositions and vehicles for delivering 3-amino-1-propanesulfonic acid |
US8895303B2 (en) | 2006-11-13 | 2014-11-25 | Charite-Universitatsmedizin Berlin | Method of cell culture and method of treatment comprising a vEPO protein variant |
WO2008134828A2 (fr) | 2007-05-04 | 2008-11-13 | Katholieke Universiteit Leuven | Protection contre la dégénérescence tissulaire |
EP2933264A2 (fr) | 2008-01-22 | 2015-10-21 | Araim Pharmaceuticals, Inc. | Peptides protecteurs de tissu et analogues peptidiques pour la prévention et le traitement de maladies et de troubles associés à un endommagement tissulaire |
EP2274011A4 (fr) * | 2008-04-17 | 2013-04-24 | Banyan Biomarkers Inc | Vésicule synthétique reliée à un anticorps, contenant des molécules d agent actif |
EP2274011A2 (fr) * | 2008-04-17 | 2011-01-19 | Banyan Biomarkers, Inc. | Vésicule synthétique reliée à un anticorps, contenant des molécules d agent actif |
US9598691B2 (en) | 2008-04-29 | 2017-03-21 | Virginia Tech Intellectual Properties, Inc. | Irreversible electroporation to create tissue scaffolds |
US10238447B2 (en) | 2008-04-29 | 2019-03-26 | Virginia Tech Intellectual Properties, Inc. | System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress |
US9283051B2 (en) | 2008-04-29 | 2016-03-15 | Virginia Tech Intellectual Properties, Inc. | System and method for estimating a treatment volume for administering electrical-energy based therapies |
US11272979B2 (en) | 2008-04-29 | 2022-03-15 | Virginia Tech Intellectual Properties, Inc. | System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies |
US11254926B2 (en) | 2008-04-29 | 2022-02-22 | Virginia Tech Intellectual Properties, Inc. | Devices and methods for high frequency electroporation |
US9198733B2 (en) | 2008-04-29 | 2015-12-01 | Virginia Tech Intellectual Properties, Inc. | Treatment planning for electroporation-based therapies |
US9867652B2 (en) | 2008-04-29 | 2018-01-16 | Virginia Tech Intellectual Properties, Inc. | Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds |
US11453873B2 (en) | 2008-04-29 | 2022-09-27 | Virginia Tech Intellectual Properties, Inc. | Methods for delivery of biphasic electrical pulses for non-thermal ablation |
US10537379B2 (en) | 2008-04-29 | 2020-01-21 | Virginia Tech Intellectual Properties, Inc. | Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds |
US12059197B2 (en) | 2008-04-29 | 2024-08-13 | Virginia Tech Intellectual Properties, Inc. | Blood-brain barrier disruption using reversible or irreversible electroporation |
US11974800B2 (en) | 2008-04-29 | 2024-05-07 | Virginia Tech Intellectual Properties, Inc. | Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds |
US10959772B2 (en) | 2008-04-29 | 2021-03-30 | Virginia Tech Intellectual Properties, Inc. | Blood-brain barrier disruption using electrical energy |
US11655466B2 (en) | 2008-04-29 | 2023-05-23 | Virginia Tech Intellectual Properties, Inc. | Methods of reducing adverse effects of non-thermal ablation |
US10828086B2 (en) | 2008-04-29 | 2020-11-10 | Virginia Tech Intellectual Properties, Inc. | Immunotherapeutic methods using irreversible electroporation |
US11952568B2 (en) | 2008-04-29 | 2024-04-09 | Virginia Tech Intellectual Properties, Inc. | Device and methods for delivery of biphasic electrical pulses for non-thermal ablation |
US10117707B2 (en) | 2008-04-29 | 2018-11-06 | Virginia Tech Intellectual Properties, Inc. | System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies |
US10828085B2 (en) | 2008-04-29 | 2020-11-10 | Virginia Tech Intellectual Properties, Inc. | Immunotherapeutic methods using irreversible electroporation |
US10154874B2 (en) | 2008-04-29 | 2018-12-18 | Virginia Tech Intellectual Properties, Inc. | Immunotherapeutic methods using irreversible electroporation |
US11890046B2 (en) | 2008-04-29 | 2024-02-06 | Virginia Tech Intellectual Properties, Inc. | System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress |
US11607271B2 (en) | 2008-04-29 | 2023-03-21 | Virginia Tech Intellectual Properties, Inc. | System and method for estimating a treatment volume for administering electrical-energy based therapies |
US11737810B2 (en) | 2008-04-29 | 2023-08-29 | Virginia Tech Intellectual Properties, Inc. | Immunotherapeutic methods using electroporation |
US10286108B2 (en) | 2008-04-29 | 2019-05-14 | Virginia Tech Intellectual Properties, Inc. | Irreversible electroporation to create tissue scaffolds |
US10470822B2 (en) | 2008-04-29 | 2019-11-12 | Virginia Tech Intellectual Properties, Inc. | System and method for estimating a treatment volume for administering electrical-energy based therapies |
US10272178B2 (en) | 2008-04-29 | 2019-04-30 | Virginia Tech Intellectual Properties Inc. | Methods for blood-brain barrier disruption using electrical energy |
US10245105B2 (en) | 2008-04-29 | 2019-04-02 | Virginia Tech Intellectual Properties, Inc. | Electroporation with cooling to treat tissue |
US10245098B2 (en) | 2008-04-29 | 2019-04-02 | Virginia Tech Intellectual Properties, Inc. | Acute blood-brain barrier disruption using electrical energy based therapy |
US11351231B2 (en) | 2008-05-07 | 2022-06-07 | Biomarin Pharmaceutical Inc. | Lysosomal targeting peptides and uses thereof |
US9469683B2 (en) | 2008-05-07 | 2016-10-18 | Biomarin Pharmaceutical Inc. | Lysosomal targeting peptides and uses thereof |
WO2010035261A2 (fr) | 2008-09-29 | 2010-04-01 | Ben Gurion University Of The Negev Research And Development Authority | Beta-peptides amyloides et procédés d'utilisation associés |
WO2010108665A1 (fr) | 2009-03-24 | 2010-09-30 | Life & Brain Gmbh | Promotion de l'intégration neuronale dans des greffons de cellules souches neurales |
US11638603B2 (en) | 2009-04-09 | 2023-05-02 | Virginia Tech Intellectual Properties, Inc. | Selective modulation of intracellular effects of cells using pulsed electric fields |
US11382681B2 (en) | 2009-04-09 | 2022-07-12 | Virginia Tech Intellectual Properties, Inc. | Device and methods for delivery of high frequency electrical pulses for non-thermal ablation |
US10448989B2 (en) | 2009-04-09 | 2019-10-22 | Virginia Tech Intellectual Properties, Inc. | High-frequency electroporation for cancer therapy |
US10292755B2 (en) | 2009-04-09 | 2019-05-21 | Virginia Tech Intellectual Properties, Inc. | High frequency electroporation for cancer therapy |
US9764145B2 (en) | 2009-05-28 | 2017-09-19 | Angiodynamics, Inc. | System and method for synchronizing energy delivery to the cardiac rhythm |
US11707629B2 (en) | 2009-05-28 | 2023-07-25 | Angiodynamics, Inc. | System and method for synchronizing energy delivery to the cardiac rhythm |
US9895189B2 (en) | 2009-06-19 | 2018-02-20 | Angiodynamics, Inc. | Methods of sterilization and treating infection using irreversible electroporation |
EP3670532A1 (fr) | 2009-11-26 | 2020-06-24 | InflaRx GmbH | Fractions de liaison anti-c5a présentant une forte activité de blocage |
EP3181582A1 (fr) | 2009-11-26 | 2017-06-21 | InflaRx GmbH | Fractions de liaison anti-c5a présentant une forte activité de blocage |
WO2011063980A1 (fr) | 2009-11-26 | 2011-06-03 | Inflarx Gmbh | Fractions de liaison anti-c5a à activité bloquante élevée |
US8901129B2 (en) | 2009-12-11 | 2014-12-02 | Genecode As | Methods of facilitating neural cell survival using GDNF family ligand (GFL) mimetics or RET signaling pathway activators |
WO2011070177A2 (fr) | 2009-12-11 | 2011-06-16 | Baltic Technology Development, Ltd. | Procédés destinés à faciliter la survie de cellules neuronales en utilisant des mimétiques de ligands de la famille des gdnf (gfl) ou des activateurs de la voie de signalisation du ret |
US11931096B2 (en) | 2010-10-13 | 2024-03-19 | Angiodynamics, Inc. | System and method for electrically ablating tissue of a patient |
WO2012061907A2 (fr) | 2010-11-10 | 2012-05-18 | Katholieke Universiteit Leuven | Activité des ostéoclastes |
EP3345545A1 (fr) | 2011-04-21 | 2018-07-11 | The Regents of The University of California | Nanoparticules magnétiques fonctionnalisées et leur utilisation dans l'imagerie de dépôts amyloïdes et d'enchevêtrements neurofibrillaires |
US10702326B2 (en) | 2011-07-15 | 2020-07-07 | Virginia Tech Intellectual Properties, Inc. | Device and method for electroporation based treatment of stenosis of a tubular body part |
WO2013093891A1 (fr) | 2011-12-22 | 2013-06-27 | Nuvo Research Gmbh | Compositions liposomales comprenant des chlorites ou chlorates |
US12102376B2 (en) | 2012-02-08 | 2024-10-01 | Angiodynamics, Inc. | System and method for increasing a target zone for electrical ablation |
WO2014143614A1 (fr) | 2013-03-11 | 2014-09-18 | Jan Remmereit | Compositions lipidiques contenant des acides gras bioactifs |
WO2014140934A2 (fr) | 2013-03-11 | 2014-09-18 | Life Science Nutrition As | Lipides naturels contenant des acides gras non oxydables |
US11957405B2 (en) | 2013-06-13 | 2024-04-16 | Angiodynamics, Inc. | Methods of sterilization and treating infection using irreversible electroporation |
EP3450557A1 (fr) | 2013-12-25 | 2019-03-06 | JCR Pharmaceuticals Co., Ltd. | Nouvel anticorps du récepteur anti-transferrin qui passe à travers la barrière hémato-encéphalique |
WO2015098989A1 (fr) | 2013-12-25 | 2015-07-02 | Jcrファーマ株式会社 | Nouvel anticorps anti-récepteur de transferrine qui traverse la barrière hémato-encéphalique |
US9994641B2 (en) | 2013-12-25 | 2018-06-12 | Jcr Pharmaceuticals Co., Ltd. | Anti-human transferrin receptor antibody that passes through blood-brain barrier |
US10471254B2 (en) | 2014-05-12 | 2019-11-12 | Virginia Tech Intellectual Properties, Inc. | Selective modulation of intracellular effects of cells using pulsed electric fields |
US11406820B2 (en) | 2014-05-12 | 2022-08-09 | Virginia Tech Intellectual Properties, Inc. | Selective modulation of intracellular effects of cells using pulsed electric fields |
US12114911B2 (en) | 2014-08-28 | 2024-10-15 | Angiodynamics, Inc. | System and method for ablating a tissue site by electroporation with real-time pulse monitoring |
US11903690B2 (en) | 2014-12-15 | 2024-02-20 | Virginia Tech Intellectual Properties, Inc. | Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment |
US10694972B2 (en) | 2014-12-15 | 2020-06-30 | Virginia Tech Intellectual Properties, Inc. | Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment |
WO2018050848A1 (fr) | 2016-09-15 | 2018-03-22 | Universität Stuttgart | Protéine de liaison à l'antigène contre her3 |
WO2018087720A1 (fr) | 2016-11-14 | 2018-05-17 | Novartis Ag | Compositions, méthodes et utilisations thérapeutiques associées à une protéine fusogène minion |
US11723710B2 (en) | 2016-11-17 | 2023-08-15 | Angiodynamics, Inc. | Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode |
US11273225B2 (en) | 2017-04-03 | 2022-03-15 | Inflarx Gmbh | Treatment of inflammatory diseases with inhibitors of C5a activity |
US11464868B2 (en) | 2017-04-03 | 2022-10-11 | Inflarx Gmbh | Treatment of inflammatory diseases with inhibitors of C5A activity |
EP3978523A1 (fr) | 2017-04-03 | 2022-04-06 | InflaRx GmbH | Traitement de maladies inflammatoires au moyen d'inhibiteurs de l'activité c5a |
EP4272821A2 (fr) | 2017-04-03 | 2023-11-08 | InflaRx GmbH | Traitement de maladies inflammatoires au moyen d'inhibiteurs de l'activité c5a |
US11890349B2 (en) | 2017-04-03 | 2024-02-06 | Inflarx Gmbh | Treatment of inflammatory diseases with inhibitors of C5A activity |
WO2018184739A1 (fr) | 2017-04-03 | 2018-10-11 | Inflarx Gmbh | Traitement de maladies inflammatoires par des inhibiteurs de l'activité de c5a |
WO2018226992A1 (fr) | 2017-06-07 | 2018-12-13 | Adrx, Inc. | Inhibiteur d'agrégation de tau |
WO2018234118A1 (fr) | 2017-06-23 | 2018-12-27 | Inflarx Gmbh | Traitement de maladies inflammatoires par des inhibiteurs de l'activité de c5a |
WO2019036725A2 (fr) | 2017-08-18 | 2019-02-21 | Adrx, Inc. | Inhibiteurs peptidiques d'agrégation de tau |
US11607537B2 (en) | 2017-12-05 | 2023-03-21 | Virginia Tech Intellectual Properties, Inc. | Method for treating neurological disorders, including tumors, with electroporation |
US11925405B2 (en) | 2018-03-13 | 2024-03-12 | Virginia Tech Intellectual Properties, Inc. | Treatment planning system for immunotherapy enhancement via non-thermal ablation |
US11311329B2 (en) | 2018-03-13 | 2022-04-26 | Virginia Tech Intellectual Properties, Inc. | Treatment planning for immunotherapy based treatments using non-thermal ablation techniques |
WO2020055768A1 (fr) | 2018-09-10 | 2020-03-19 | Cold Spring Harbor Laboratory | Méthodes de traitement de la pancréatite |
WO2020182384A1 (fr) | 2019-03-11 | 2020-09-17 | Inflarx Gmbh | Composés bicycliques pipéridinyles fusionnés et composés apparentés en tant que modulateurs du récepteur c5a |
US11950835B2 (en) | 2019-06-28 | 2024-04-09 | Virginia Tech Intellectual Properties, Inc. | Cycled pulsing to mitigate thermal damage for multi-electrode irreversible electroporation therapy |
WO2021190770A1 (fr) | 2020-03-27 | 2021-09-30 | Inflarx Gmbh | Inhibiteurs de c5a pour le traitement d'une infection par un coronavirus |
Also Published As
Publication number | Publication date |
---|---|
CA2025907A1 (fr) | 1991-03-22 |
AU6501390A (en) | 1991-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1991004014A1 (fr) | Procede de transport de compositions a travers la barriere hemato-encephalique | |
US5258499A (en) | Liposome targeting using receptor specific ligands | |
US6063400A (en) | Targeted liposomal constructs for diagnostic and therapeutic uses | |
US8303983B2 (en) | Targeted liposomal drug delivery system | |
JP4672817B2 (ja) | 弱塩基性薬物を担持するイオン運搬体―中介リポゾーム | |
US5225212A (en) | Microreservoir liposome composition and method | |
EP0662820B1 (fr) | Compositions de traitement de tissus enflammes | |
CA2067133C (fr) | Composition de microreservoirs de liposome et methode | |
US5366958A (en) | Localized delivery using fibronectin conjugates | |
Karathanasis et al. | Preparation of in vivo cleavable agglomerated liposomes suitable for modulated pulmonary drug delivery | |
JPH10502333A (ja) | バソアクティブ・インテスティナル・ポリペプチド | |
CA2141216A1 (fr) | Ciblage de liposomes vers la barriere hemato-encephalique | |
Vitols et al. | Low density lipoprotein for delivery of a water-insoluble alkylating agent to malignant cells. In vitro and in vivo studies of a drug-lipoprotein complex | |
US20080227722A1 (en) | Targeted Drug Delivery of Pain and Addiction Therapies Using Opioid Receptor-Mediated Internalization | |
WO1999059545A9 (fr) | Systeme de liberation ciblee de medicament encapsule dans des liposomes | |
Keshavarz et al. | CAR, a homing peptide, prolongs pulmonary preferential vasodilation by increasing pulmonary retention and reducing systemic absorption of liposomal fasudil | |
Sethi et al. | Liposomal vasoactive intestinal peptide | |
OA12210A (en) | Iron chelator delivery system. | |
US20050058697A1 (en) | Cell penetrating therapeutic agents | |
WO1987007150A1 (fr) | Systemes d'apport de medicaments a recepteur cible | |
Rubinstein et al. | Conformation and vasoreactivity of VIP in phospholipids: effects of calmodulin☆ | |
Crommelin et al. | Liposomes and immunoliposomes for controlled release or site specific delivery of anti-parasitic drugs and cytostatics | |
JP2817883B2 (ja) | 高度に完全なリポソームおよびその製剤法と用途 | |
WO1994026251A1 (fr) | Procede d'apport sous-cutane de liposomes | |
EP0577146A2 (fr) | Liposomes couplés sur des hormones |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AT AU BB BG BR CA CH DE DK ES FI GB HU JP KP KR LK LU MC MG MW NL NO RO SD SE SU |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BF BJ CF CG CH CM DE DK ES FR GA GB IT LU ML MR NL SE SN TD TG |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
NENP | Non-entry into the national phase |
Ref country code: CA |