WO1991000413A1 - Dispositif de mesure dynamometrique pour tige de forage - Google Patents

Dispositif de mesure dynamometrique pour tige de forage Download PDF

Info

Publication number
WO1991000413A1
WO1991000413A1 PCT/FR1990/000467 FR9000467W WO9100413A1 WO 1991000413 A1 WO1991000413 A1 WO 1991000413A1 FR 9000467 W FR9000467 W FR 9000467W WO 9100413 A1 WO9100413 A1 WO 9100413A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
sensors
electronic circuit
collector
drill pipe
Prior art date
Application number
PCT/FR1990/000467
Other languages
English (en)
Inventor
Henri Henneuse
Frédéric CLAYER
Jean-Luc Tanguy
Jean Lutz
Original Assignee
Societe Nationale Elf Aquitaine (Production)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale Elf Aquitaine (Production) filed Critical Societe Nationale Elf Aquitaine (Production)
Priority to US07/655,436 priority Critical patent/US5347859A/en
Priority to DE69014567T priority patent/DE69014567T2/de
Priority to EP90910123A priority patent/EP0431136B1/fr
Publication of WO1991000413A1 publication Critical patent/WO1991000413A1/fr
Priority to NO910771A priority patent/NO178641C/no

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/007Measuring stresses in a pipe string or casing
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling

Definitions

  • the present invention relates to a dynamometric measuring device for a drill pipe.
  • a first object of the invention is therefore to overcome at least one of these drawbacks.
  • the dynamometric measuring device for drilling rod comprises, integral with the rotating rod, sensors and an electronics for conditioning the signals supplied by these sensors, this electronics being integral with the rotating parts, the sensors arranged in a groove and the measurement signals being transmitted to a fixed part by a fixed brush rotating collector assembly, the crossing of the brush collecting assembly being carried out at zero current.
  • the measurement signals from each sensor are transmitted by a channel consisting of an independent track and a ground track, each of the two tracks being in contact with a double pair of brushes, each brush having its own resonant frequency.
  • the device comprises sensors for measuring the traction, the torsion, the longitudinal and transverse accelerations, the temperature and the speed of rotation of the drill pipe.
  • the electronics integral with the rotating parts, connected between the sensors and the rotating collector consists of amplifier stages with low output impedance for each measurement channel.
  • the supply of the electronics driven in rotation is ensured by two additional channels.
  • Another object of the invention is to significantly improve the information that can be used from the sensors.
  • a second electronic circuit is mounted on the fixed part connected to the brushes, this electronic circuit comprising, downstream of each brush, a stage of follower amplifiers with very high input impedance.
  • Another object of the invention is to limit the number of compatible channels to a minimum while maintaining the best quality of signal analysis.
  • the second electronic circuit comprises, downstream of each follower amplifier, a circuit for separating the static component and a circuit for separating the dynamic component of the signal.
  • the separation path of the static component comprises a low pass filter with cutoff frequency equal to 10 KHz in series with a line amplifier.
  • the channel for separating the dynamic component comprises a cut-off capacitor for the static component in series with a dynamic band-pass filter with cut-off frequency between 0.1 Hertz and 1 KHz in series with the line amplifier.
  • the assembly is mounted in a volume limited at its ends by upper and lower flanges rotatably mounted relative to the drill pipe and in a sealed manner, and a cylindrical sheath of length corresponding to the distance separating the upper and lower flanges to form a sealed annular space between the drill pipe and the inside of the sleeve.
  • FIG. 1 shows an overview of the dynamometric measuring device
  • FIG. 2 shows the block diagram of the electrical and electronic components of the assembly
  • FIG. 3B shows the diagram of the fixed electronic circuit located downstream of the brush collector
  • FIG. 4 shows the diagram of the power supply part of the electronic circuit.
  • the dynamometric measuring device is placed on a drill rod (l) in a space delimited by an upper flange (110) rotatably mounted and tightly relative to the rod by means of a bearing (11).
  • a lower flange (120) is rotatably mounted by means of a bearing (12) on the rod (1).
  • a sheath (100) is put in place to form a sealed volume delimited by the upper flange (110) and the lower flange (120) and the internal diameter of the sheath (100).
  • traction gauges 60,61
  • torque 70 , 71
  • temperature gauge 50
  • pair of longitudinal accelerometers (20,21)
  • transverse accelerometers 40,41,42
  • Each of these gauges constitutes a measurement channel.
  • An electronic circuit (3) for processing the signals supplied by these various sensors is mounted integral with the drill pipe (1) inside the volume delimited by the flanges.
  • a set of tracks forming a rotary collector (80). A pair of tracks is associated with each measurement channel.
  • the signals delivered by each pair of tracks are picked up by two pairs of brushes associated with each channel and represented by the reference (81).
  • the brush holder assembly (81) is made integral with the upper flange (110) which is itself made integral, by means of a rotation stop arm, with the fixed part constituted by the drilling mast.
  • the brushes are connected to a second electronic signal processing circuit of each measurement channel, the outputs of which are sent via a connector (90) to a transmission cable with N pairs individually shielded by an external shield for N / 2 measurement channels.
  • the signals delivered by the sensors (20,40,70,60) are sent to a first electronic circuit (3) located upstream of the rotary collector (80) and the fixed brush assembly (81).
  • the signals recovered by the fixed brush assembly (81) are sent to an electronic circuit (9) located downstream of the latter and the outputs of this electronic circuit are sent to an ADF connector (90) for transmission to the shielded cable.
  • the collector-brush assembly includes two other pairs of tracks intended to transmit the power coming from the fixed electronic circuit to supply the sensors and the rotating electronic circuit (3 ).
  • a first pair of tracks from the collector (80) is connected by a capacitor (395), as shown in FIG. 4.
  • This pair of tracks provides on one side a voltage of + 12 volts, on the other side the ground to rotating electronic circuit.
  • the pair of tracks is connected to a double pair of brushes (81) connected to the terminals of a capacitor (955) itself connected in parallel to the terminals of a capacitor (954).
  • This capacitor (954) is connected on the one hand to the output of a regulator circuit (953) and on the other hand to one of the terminals of a capacitor (952) 'whose other terminal is connected to the input of this regulator circuit (953).
  • Another capacitor (951) is also connected in parallel between the terminals of the capacitor (952).
  • a self-protecting device (950) is connected in parallel to the terminals of the capacitor (951) and receives, via the connector (90), on the one hand the +18 power supply. volts and, on the other hand the mass.
  • a circuit identical to that represented in FIG. 4 and bearing the reference (96) will be used to constitute the negative supply -12 volts necessary for the operation of the sensors and of the rotating electronics (3).
  • FIG. 3A A measurement channel of the device constituting the electronic circuit (3) located upstream is shown in FIG. 3A.
  • This measurement channel comprises a gauge (20) consisting, for example, of a Wheatstone bridge formed by association of four resistors (20,31,32,33).
  • the diagonal of this bridge is connected, on the one hand to the positive terminal, on the other hand to the negative terminal of a differential amplifier (34) while the other diagonal of this Wheatstone bridge is connected, of a on the other hand to the + 12 volt supply, on the other hand to the - 12 volt supply.
  • the output of the differential amplifier (34) is connected to the positive input of a second differential amplifier (35) whose output is looped over to its negative input.
  • This second amplifier (35) constitutes a follower stage with very low output impedance.
  • the output of this amplifier (35) is sent to one ring of the collector assembly (80), the other ring of the collector constituting the measurement channel is formed by ground.
  • the signal sent by the pair of rings is taken from a double pair of brushes (81, fig 3B) and sent to the positive input of a differential amplifier (91) whose output is looped back to its negative input.
  • the output of this amplifier (91) is sent, on the one hand to a circuit for extracting the static component, on the other hand to a circuit (94) for extracting the dynamic component of the measurement signal.
  • These stages are followed by a line amplifier and protection stage.
  • the amplifier (91) constitutes a follower stage with very high input impedance. The association of the follower stage with low output impedance with the follower stage with very high input impedance located respectively upstream and downstream of the brush collector assembly, makes it possible to ensure transmission of the measurement signals to zero current.
  • the stage for separating the static components of the measurement signals consists of an integrator circuit formed by a resistor (920) connected in series with a capacitor (921) between the output of the amplifier (91) and the ground. The point common to the resistor (920) and the capacitor (921) is connected to the positive input of a line amplifier (930) whose output is looped back to the negative input.
  • the output of this line amplifier (930) is sent to a resistor (931), the output of which is connected on the one hand to the connector (90), on the other hand to ground, via a protective element (932), such as, for example, a Zener diode.
  • the dynamic component extraction circuit (94) consists of a capacitor (940) connected to the output of the amplifier (91). This capacitor (940) is also connected to ground by a circuit consisting of a resistor (941) in series with a capacitor (943). The common point of the resistor (941) and the capacitor (943) is connected, on the one hand, by a resistor (942), to the negative input of a differential amplifier (945) and, on the other hand, by a resistor (947), at the output of this amplifier (945).
  • the output of the amplifier (945) is also connected by a capacitor (946) to the negative input of the latter.
  • the positive input of the amplifier (945) is connected, by a resistor (944) to ground.
  • the output of this amplifier (945) is sent to a low-pass filter consisting of a resistor (922) connected by a capacitor (923) to ground.
  • the common point of the resistor (922) and the capacitor (923) is connected to the positive input of a line amplifier (930) whose output is looped back to the negative input.
  • the output of this amplifier is sent to a resistor (931) connected, on the one hand to the connector (90), on the other part, by a fuse (932) to ground.
  • the capacitor (940) allows the elimination of the DC component of the signals and the circuit constituted by the amplifier (945), the resistors (941,942,944,947), the capacitors (943,946) constitute a band-pass filter whose cut-off frequencies are between 0.1 and KHz.
  • the separation of the static and dynamic components and the extreme amplification of the latter before transmission makes it possible to significantly improve the information that we can hope to use after measurement.
  • the separate transport of the static component and the dynamic component amplified 300 times makes it possible to hope for a signal to noise ratio 300 times higher after transmission.
  • this dynamic component is subsequently processed by a digital assembly, it is a non-negligible increase in the resolution which the technique of separation of the static and dynamic components of the signal allows.
  • the static and dynamic components are separated downstream of the collector to reduce the number of collector rings and thus the volume and the cost of the device.
  • the device thus produced corresponds to a reduced bulk, to a minimum number of parts and to optimum security and quality of measurement.
  • the presence of as many line amplifiers as there are channels to be transmitted upstream of the connectors (90) makes it possible to improve the characteristics of the signals transmitted and in particular to reduce the noise level of the transmission, in particular when the equipment are getting old.
  • the protection stages provided either at the level of the output stages, that is to say after the line amplifiers or at the level of the input stages of the power supplies protect the equipment against the hazards of the site or more simply against interference from lightning or the switching of large electrical machines nearby.

Landscapes

  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geophysics (AREA)
  • General Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Earth Drilling (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

La présente invention concerne un dispositif de mesure dynamométrique pour tige de forage comprenant, solidaires de la tige tournante (1), des capteurs (20, 40, 60, 70, 50) et un premier circuit électronique (3) de conditionnement des signaux fournis par ces capteurs, caractérisé en ce que le circuit électronique (3) est solidaire des pièces tournantes (1), les capteurs sont disposés dans une gorge (10) les signaux de mesure sont transmis à une partie fixe (110, 9, 81) par un ensemble collecteur tournant (80) balai fixe (81), et la traversée de l'ensemble collecteur (80) balai (81) s'effectue à courant nul.

Description

DISPOSITIF DE MESURE DYNAMOMETRI UE POUR TIGE DE FORAGE
La présente invention concerne un dispositif de mesure dynamométrique pour tige de forage.
Pour réaliser un dispositif dynamométrique de mesure des forces et contraintes exercées sur la tige de forage, le problème majeur n'est pas de prélever la mesure mais de la transmettre dans des conditions optimales vers l'ensemble d'acquisition chargé de la traiter. Ainsi, compte tenu de la longueur des câbles reliant l'ensemble de mesure à l'ensemble d'acquisition, il est capital de se prémunir de toutes les causes imaginables de dégradation des signaux à transmettre.
Par ailleurs, il est nécessaire de transmettre les signaux électriques de l'ensemble en rotation constitué par la garniture de forage vers un repère fixe constitué par le mât.
Enfin, il est nécessaire de prendre des mesures pour éviter que les signaux envoyés soient perturbés par le passage des pièces mobiles aux pièces fixes. Un premier but de l'invention est donc de pallier au moins un de ces inconvénients.
Ce but est atteint par le fait que le dispositif de mesure dynamométrique pour tige de forage comprend, solidaires de la tige tournante, des capteurs et une électronique de conditionnement des signaux fournis par ces capteurs, cette électronique étant solidaire des pièces tournantes, les capteurs disposés dans une gorge et les signaux de mesure étant transmis à une partie fixe par un ensemble collecteur tournant balai fixe, la traversée de l'ensemble collecteur balai s'effectuant à courant nul.
Selon une autre particularité de l'invention, les signaux de mesure de chaque capteur sont transmis par une voie constituée d'une piste indépendante et une piste de masse, chacune des deux pistes étant en contact avec une double paire de balais, chaque balai ayant une fréquence de résonnance propre.
Selon une autre particularité, le dispositif comprend des capteurs pour mesurer la traction, la torsion, les accélérations longitudinales et transversales, la température et la vitesse de rotation de la tige de forage.
Un autre but de l'invention est d'assurer un compromis entre la manoeuvrabilité et l'emplacement de l'électronique.
Ce but est atteint par le fait que l'électronique solidaire des pièces tournantes, branchée entre les capteurs et le collecteur tournant, est constituée d'étages amplificateurs à basse impédance de sortie pour chaque voie de mesure.
Selon une autre particularité, l'alimentation de l'électronique entraînée en rotation est assurée par deux voies supplémentaires.
Un autre but de l'invention est d'améliorer significativement l'information que l'on peut exploiter en provenance des capteurs.
Ce but est atteint par le fait qu'un deuxième circuit électronique est monté sur la partie fixe reliée aux balais, ce circuit électronique comportant, en aval de chaque balai, un étage d'amplificateurs suiveurs à très haute impédance d'entrée.
Un autre but de l'invention est de limiter au minimum le nombre de voies compatibles tout en maintenant la meilleure qualité d'analyse de signal. Ce but est atteint par le fait que le second circuit électronique comporte, en aval de chaque amplificateur suiveur, un circuit de séparation de la composante statique et un circuit de séparation de la composante dynamique du signal. Selon une autre particularité de l'invention, la voie de séparation de la composante statique comporte un filtre passe-bas de fréquence de coupure égale à 10 KHz en série avec un amplificateur de ligne.
Selon une autre particularité de l'invention, la voie de séparation de la composante dynamique comprend un condensateur de coupure de la composante statique en série avec un filtre dynamique passe-bande de fréquence de coupure comprise entre 0,1 Hertz et 1 KHz en série avec l'amplificateur de ligne.
Un autre but de l'invention est de constituer un dispositif fiable, étanche et anti-déflagrant.
Ce but est atteint par le fait que l'ensemble est monté dans un volume limité à ses extrémités par des collerettes supérieures et inférieures montées tournantes par rapport à la tige de forage et de façon étanche, et un fourreau cylindrique de longueur correspondant à la distance séparant les collerettes supérieures et inférieures pour former un espace annulaire étanche entre la tige de forage et l'intérieur du fourreau.
D'autres particularités et avantages de la présente invention apparaîtront plus clairement à la lecture de la description ci-après faite en référence aux dessins annexés dans lesquels :
- la figure 1 représente une vue d'ensemble du dispositif de mesure dynamométrique; - la figure 2 représente le schéma de principe des composants électriques et électroniques de l'ensemble;
- la figure 3A représente le schéma du circuit électronique tournant situé en amont du collecteur à balai;
- la figure 3B représente le schéma du circuit électronique fixe situé en aval du collecteur à balai;
- la figure 4 représente le schéma de la partie alimentation du circuit électronique. Le dispositif de mesure dynamométrique est placé sur une tige de forage (l) dans un espace délimité par une collerette supérieure (110) montée tournante et de façon étanche par rapport à la tige au moyen d'un roulement (11) . De même, une collerette inférieure (120) est montée tournante au moyen d'un roulement (12) sur la tige (1) . Un fourreau (100) vient se mettre en place pour former un volume étanche délimité par la collerette supérieure (110) et la collerette inférieure (120) et le diamètre intérieur du fourreau (100) .
A l'intérieur du volume annulaire compris entre le fourreau (100) et la tige (1) on dispose, dans une gorge (10) de la tige (1) , des jauges de traction (60,61), un couple (70,71) de jauges formant une jauge de torsion, une jauge de température (50) , un couple d'accéléromètres longitudinaux (20,21) et trois accéléromètres transversaux (40,41,42). Chacune de ces jauges constitue une voie de mesure. Un circuit électronique (3) de traitement des signaux fournis par ces différents capteurs est monté solidaire de la tige de forage (1) à l'intérieur du volume délimité par les collerettes. Au-dessus de la gorge (10) et solidaire de la tige (1) est monté un ensemble de pistes formant un collecteur tournant (80) . Une paire de pistes est associée à chaque voie de mesure. Les signaux délivrés par chaque paire de pistes sont prélevés par deux paires de balais associés à chaque voie et représentés par la référence (81) . L'ensemble porte balais (81) est rendu solidaire de la collerette supérieure (110) qui est elle- même rendue solidaire, au moyen d'un bras d'arrêt en rotation, de la partie fixe constituée par le mât du forage. Les balais sont reliés à un second circuit électronique de traitement des signaux de chaque voie de mesure dont les sorties sont envoyées par l'intermédiaire d'un connecteur (90) vers un câble de transmission à N paires blindées individuellement par un blindage extérieur pour N/2 voies de mesure. Les signaux délivrés par les capteurs (20,40,70,60) sont envoyés à un premier circuit électronique (3) situé en amont du collecteur tournant (80) et de l'ensemble balai fixe (81) . Les signaux récupérés par l'ensemble balai fixe (81) sont envoyés sur un circuit électronique (9) situé en aval de ces derniers et les sorties de ce circuit électronique sont envoyées à un connecteur ADF (90) pour transmission au câble blindé. En plus de chaque voie de mesure constituée par une paire de pistes collecteur tournant, l'ensemble collecteur-balai comporte deux autres paires de pistes destinées à transmettre l'alimentation provenant du circuit électronique fixe pour alimenter les capteurs et le circuit électronique tournant (3) .
Une première paire de pistes du collecteur (80) est reliée par un condensateur (395) , comme représenté à la figure 4. Cette paire de pistes fournit d'un côté une tension de + 12 volts, de l'autre côté la masse au circuit électronique tournant. La paire de pistes est reliée à une double paire de balais (81) branchés aux bornes d'un condensateur (955) lui-même connecté en parallèle aux bornes d'un condensateur (954) . Ce condensateur (954) est branché d'une part à la sortie d'un circuit régulateur (953) et d'autre part à une des bornes d'un condensateur (952)' dont l'autre borne est reliée à l'entrée de ce circuit régulateur (953) . Un autre condensateur (951) est également branché en parallèle entre les bornes du condensateur (952) . Enfin un dispositif auto-protecteur (950) est branché en parallèle aux bornes du condensateur (951) et reçoit, par le connecteur (90), d'une part l'alimentation +18. volts et, d'autre part la masse.
Un circuit identique à celui représenté à la figure 4 et portant la référence (96) sera utilisé pour constituer l'alimentation négative -12 volts nécessaire au fonctionnement des capteurs et de l'électronique tournante (3) .
Une voie de mesure du dispositif constituant le circuit électronique (3) situé en amont est représenté à la figure 3A. Cette voie de mesure comprend une jauge (20) constitué, par exemple, un pont de Wheatstone constitué par association de quatre résistances (20,31,32,33). La diagonale de ce pont est reliée, d'une part à la borne positive, d'autre part à la borne négative d'un amplificateur différentiel (34) tandis que l'autre diagonale de ce pont de Wheatstone est reliée, d'une part à l'alimentation de + 12 volts, d'autre part à l'alimentation de - 12 volts. La sortie de l'amplificateur différentiel (34) est relié à l'entrée positive d'un deuxième amplificateur différentiel (35) dont la sortie est bouclée sur son entrée négative. Ce deuxième amplificateur (35) constitue un étage suiveur à très basse impédance de sortie. La sortie de cet amplificateur (35) est envoyée sur une bague de l'ensemble collecteur (80), l'autre bague du collecteur constituant la voie de mesure est formée par la masse.
Le signal envoyé par la paire de bagues est prélevé dans une double paire de balais (81,fig 3B) et envoyé sur l'entrée positive d'un amplificateur différentiel (91) dont la sortie est rebouclée sur son entrée négative. La sortie de cet amplificateur (91) est envoyée, d'une part vers un circuit d'extraction de la composante statique, d'autre part vers un circuit (94) d'extraction de la composante dynamique du signal de mesure. Ces étages sont suivis d'un étage amplificateur de ligne et de protection. L'amplificateur (91) constitue un étage suiveur à très haute impédance d'entrée. L'association de l'étage suiveur à basse impédance de sortie avec l'étage suiveur à très haute impédance d'entrée situés respectivement en amont et en aval de l'ensemble collecteur balai, permet d'assurer une transmission des signaux de mesure à courant nul. Ceci permet de disposer d'une bande passante relativement large et de conserver à la mesure sa précision, bien que l'état de propreté ou d'usure des disques et balais du collecteur constitue la principale source de bruit à l'intérieur du dispositif de mesure dynamométrique. Par ailleurs, la séparation des composantes statiques et dynamiques et l'amplification extrême de cette dernière avant transmission permet d'améliorer significativement l'information que l'on va par la suite exploiter. L'étage de séparation des composantes statiques des signaux de mesure est constitué d'un circuit intégrateur formé d'une résistance (920) montée en série avec un condensateur (921) entre la sortie de l'amplificateur (91) et la masse. Le point commun à la résistance (920) et au condensateur (921) est relié à l'entrée positive d'un amplificateur de ligne (930) dont la sortie est rebouclée sur l'entrée négative. La sortie de cet amplificateur de ligne (930) est envoyée sur une résistance (931) dont la sortie est reliée d'une part au connecteur (90) , d'autre part à la masse, par l'intermédiaire d'un élément protecteur (932) , tel que, par exemple, une diode Zener. Le circuit d'extraction de la composante dynamique (94) est constitué d'un condensateur (940) branché à la sortie de l'amplificateur (91) . Ce condensateur (940) est d'autre part relié à la masse par un circuit constitué d'une résistance (941) en série avec un condensateur (943) . Le point commun à la résistance (941) et au condensateur (943) est relié, d'une part, par une résistance (942) , à l'entrée négative d'un amplificateur différentiel (945) et, d'autre part, par une résistance (947) , à la sortie de cet amplificateur (945) . La sortie de l'amplificateur (945) est également reliée par un condensateur (946) à l'entrée négative de ce dernier. L'entrée positive de l'amplificateur (945) est reliée, par une résistance (944) à la masse. La sortie de cet amplificateur (945) est envoyée sur un filtre passe-bas constitué d'une résistance (922) reliée par un condensateur (923) à la masse. Le point commun à la résistance (922) et au condensateur (923) est relié à l'entrée positive d'un amplificateur de ligne (930) dont la sortie est rebouclée sur l'entrée négative. La sortie de cette amplificateur est envoyée sur une résistance (931) reliée, d'une part au connecteur (90) , d'autre part, par un fusible (932) à la masse. Le condensateur (940) permet l'élimination de la composante continue des signaux et le circuit constitué par l'amplificateur (945), les résistances (941,942,944,947), les condensateurs (943,946) constituent un filtre passe-bande dont les fréquence de coupure sont comprises entre 0,1 et KHz.
La séparation des composantes statiques et dynamiques et l'amplification extrême de cette dernière avant transmission permet d'améliorer significativement l'information que l'on peut espérer exploiter après mesure. Par exemple, le transport séparé de la composante statique et de la composante dynamique amplifiée 300 fois permet d'espérer un rapport signal sur bruit 300 fois supérieur après transmission.
Si l'on suppose que cette composante dynamique est par la suite traitée par un ensemble numérique, c'est un accroissement non négligeable de la résolution que permet la technique de séparation des composantes statique et dynamique du signal.
La séparation des Composantes statiques et dynamiques est effectuée en aval du collecteur pour diminuer le nombre de bagues du collecteur et ainsi le volume et le coût du dispositif. Le dispositif ainsi réalisé correspond à un encombrement réduit, à un nombre de pièces minimum et à une sécurité et une qualité de mesure optimum.
Enfin la présence d'autant d'amplificateurs de lignes que de canaux à transmettre en amont de la connectique (90) permet d'améliorer les caractéristiques des signaux transmis et en particulier de diminuer le niveau de bruit de la transmission, notamment quand les équipements vieillissent. Par ailleurs, les étages de protection prévus soit au niveau des étages de sortie, c'est-à-dire après les amplificateurs de ligne soit au niveau des étages d'entrée des alimentations, protègent l'équipement contre les aléas du chantier ou plus simplement contre les parasites liés à la foudre ou à la commutation de machines électriques importantes situées à proximité.
D'autres modifications de l'invention à la portée de l'homme de métier font également partie de l'esprit de l'invention.

Claims

REVENDICATIONS
1) Dispositif de mesure dynamométrique pour tige de forage comprenant, solidaires de la tige tournante (1), des capteurs (20,40,60,70,50) et un premier circuit électronique (3) de conditionnement des signaux fournis par ces capteurs, caractérisé en ce que le circuit électronique (3) est solidaire des pièces tournantes (1) , les capteurs sont disposées dans une gorge (10) les signaux de mesure sont transmis à une partie fixe (110,9,81) par un ensemble collecteur tournant (80) balai fixe (81) , et la traversée de l'ensemble collecteur (80) balai (81) s'effectue à courant nul.
2) Dispositif selon la revendication 1, caractérisé en ce que les signaux de chaque voie de mesure fournie par chaque capteur ou chaque jauge sont transmis par une piste indépendante du collecteur et une piste de masse.
3) Dispositif selon la revendication 1 ou 2, caractérisé en ce que l'alimentation de l'électronique (3) entraînée en rotation est assurée par une deux voies supplémentaires.
4) Dispositif selon une des revendications 1 à 3, caractérisé en ce que l'électronique solidaire des parties tournantes et branchée entre les capteurs (20,40,60) et le collecteur (80) tournant est constituée pour chaque voie d'un étage amplificateur (35) à basse impédance de sortie.
5) Dispositif selon la revendication 4, caractérisé en ce qu'il comprend des capteurs, pour mesurer la traction, (70,71), la torsion, (20,21), les accélérations longitudinales, (40,41,42) les accélérations transversales, (50), la température et la vitesse de rotation de la tige de forage.
6) Dispositif selon une des revendicatons précédentes caractérisé en ce qu'un deuxième circuit électronique (9) est monté sur la partie fixe reliée aux balais (81) , ce circuit électronique comportant, en aval de chaque paire de balais (81) , un étage d'amplificateurs suiveurs (91) à très haute impédance d'entrée.
7) Dispositif selon la revendication 6, caractérisé en ce que le deuxième circuit électronique comporte, en aval de chaque amplificateur suiveur (91) de chaque voie, un circuit de séparation de la composante statique et un circuit de séparation de la composante dynamique du signal. 8) Dispositif selon la revendication 7, caractérisé en ce que le circuit de séparation de la composante statique comporte un filtre passe-bas (920,921), de fréquence de coupure égale à 10 KHz en série avec un amplificateur de ligne (930) et un élément de protection (932) .
9) Dispositif selon la revendication 7, caractérisé en ce que le circuit de séparation de la composante dynamique du signal comprend un condensateur (940) de coupure de la composante statique en série avec un filtre dynamique passe-bande de fréquence de coupure comprise entre 0,1 Hertz et 1 KHz, un amplificateur de ligne (930) et un circuit de protection (932) .
10) Dispositif selon une des revendications précédentes, caractérisé en ce que l'ensemble est monté dans un volume limité à ses extrémités par des collerettes supérieures (110) et inférieures (120) montées de façon étanche et tournantes par rapport à la tige de forage (1) , et un fourreau cylindrique (100) de longueur correspondant à la distance séparant les collerettes supérieures (110) et inférieures (120) pour former un espace annulaire étanche entre la tige de forage et l'intérieur du fourreau.
PCT/FR1990/000467 1989-06-28 1990-06-26 Dispositif de mesure dynamometrique pour tige de forage WO1991000413A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US07/655,436 US5347859A (en) 1989-06-28 1990-06-26 Dynamometric measuring device for a drill pipe
DE69014567T DE69014567T2 (de) 1989-06-28 1990-06-26 Vorrichtung zur kraftmessung für ein bohrgestänge.
EP90910123A EP0431136B1 (fr) 1989-06-28 1990-06-26 Dispositif de mesure dynamometrique pour tige de forage
NO910771A NO178641C (no) 1989-06-28 1991-02-27 Dynamometrisk måleinnretning for borerör

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8908649A FR2649155B1 (fr) 1989-06-28 1989-06-28 Dispositif de mesure dynamometrique pour tige de forage
FR89/08649 1989-06-28

Publications (1)

Publication Number Publication Date
WO1991000413A1 true WO1991000413A1 (fr) 1991-01-10

Family

ID=9383228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1990/000467 WO1991000413A1 (fr) 1989-06-28 1990-06-26 Dispositif de mesure dynamometrique pour tige de forage

Country Status (8)

Country Link
US (1) US5347859A (fr)
EP (1) EP0431136B1 (fr)
CA (1) CA2035477C (fr)
DE (1) DE69014567T2 (fr)
FR (1) FR2649155B1 (fr)
NO (1) NO178641C (fr)
OA (1) OA09285A (fr)
WO (1) WO1991000413A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4447287C1 (de) * 1994-12-30 1996-11-07 Cevc Gregor Präparat zum Wirkstofftransport durch Barrieren
US7912678B2 (en) 1999-02-17 2011-03-22 Denny Lawrence A Oilfield equipment identification method and apparatus
WO2011128068A2 (fr) 2010-04-12 2011-10-20 Universität Siegen Système de communication permettant la transmission d'informations par l'intermédiaire de tiges de forage

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6536520B1 (en) * 2000-04-17 2003-03-25 Weatherford/Lamb, Inc. Top drive casing system
US6276466B1 (en) 1999-10-29 2001-08-21 Anthony R. Boyd System for measuring the direction and revolution of a production string
US7644760B2 (en) * 2005-02-07 2010-01-12 Precision Energy Services, Ltd Self contained temperature sensor for borehole systems
BE1016460A3 (fr) * 2005-02-21 2006-11-07 Diamant Drilling Services Sa Dispositif pour le suivi d'une operation de forage ou de carottage et installation comprenant un tel dispositif.
DE102008052510B3 (de) * 2008-10-21 2010-07-22 Tracto-Technik Gmbh & Co. Kg Verfahren zum Bestimmen des Verschleißes eines mit Kräften belasteten Gestänges einer Erdarbeitsvorrichtung
US8240371B2 (en) 2009-06-15 2012-08-14 Tesco Corporation Multi-function sub for use with casing running string
US8136603B2 (en) * 2009-09-01 2012-03-20 Tesco Corporation Method of preventing dropped casing string with axial load sensor
US9091604B2 (en) 2011-03-03 2015-07-28 Vetco Gray Inc. Apparatus and method for measuring weight and torque at downhole locations while landing, setting, and testing subsea wellhead consumables
US9019118B2 (en) 2011-04-26 2015-04-28 Hydril Usa Manufacturing Llc Automated well control method and apparatus
US9624768B2 (en) 2011-09-26 2017-04-18 Saudi Arabian Oil Company Methods of evaluating rock properties while drilling using downhole acoustic sensors and telemetry system
US9903974B2 (en) 2011-09-26 2018-02-27 Saudi Arabian Oil Company Apparatus, computer readable medium, and program code for evaluating rock properties while drilling using downhole acoustic sensors and telemetry system
US10551516B2 (en) 2011-09-26 2020-02-04 Saudi Arabian Oil Company Apparatus and methods of evaluating rock properties while drilling using acoustic sensors installed in the drilling fluid circulation system of a drilling rig
US9447681B2 (en) 2011-09-26 2016-09-20 Saudi Arabian Oil Company Apparatus, program product, and methods of evaluating rock properties while drilling using downhole acoustic sensors and a downhole broadband transmitting system
US10180061B2 (en) 2011-09-26 2019-01-15 Saudi Arabian Oil Company Methods of evaluating rock properties while drilling using downhole acoustic sensors and a downhole broadband transmitting system
US9234974B2 (en) 2011-09-26 2016-01-12 Saudi Arabian Oil Company Apparatus for evaluating rock properties while drilling using drilling rig-mounted acoustic sensors
US9074467B2 (en) 2011-09-26 2015-07-07 Saudi Arabian Oil Company Methods for evaluating rock properties while drilling using drilling rig-mounted acoustic sensors
US8672040B2 (en) 2011-10-27 2014-03-18 Vetco Gray Inc. Measurement of relative turns and displacement in subsea running tools
US20130299001A1 (en) * 2012-05-08 2013-11-14 Logimesh IP, LLC Smart storage tank and drainage scheduling
CN103912265B (zh) * 2013-01-06 2017-03-08 中国石油化工股份有限公司 一种方位伽马测井仪的实验装置
CA2925096C (fr) 2013-10-18 2022-03-22 Frank's International, Llc Appareil et procedes de pose de coins sur un element tubulaire
CN107035358B (zh) * 2017-03-20 2018-07-31 中国科学院地质与地球物理研究所 一种近钻头伽马成像模拟实验装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3626482A (en) * 1968-10-30 1971-12-07 Aquitaine Petrole Method and apparatus for measuring lithological characteristics of rocks
US3714822A (en) * 1969-11-12 1973-02-06 Petroles D Aquitaire Soc Nat D Process for measuring wear on a drilling tool
US4715451A (en) * 1986-09-17 1987-12-29 Atlantic Richfield Company Measuring drillstem loading and behavior
DE3728968A1 (de) * 1987-08-29 1989-03-09 Staiger Mohilo & Co Gmbh Drehuebertrager fuer messsignale
US4821563A (en) * 1988-01-15 1989-04-18 Teleco Oilfield Services Inc. Apparatus for measuring weight, torque and side force on a drill bit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1665822A (en) * 1926-02-18 1928-04-10 Shimizu Seizo Torsion meter
US3047827A (en) * 1959-01-26 1962-07-31 Curtiss Wright Corp Slip ring assembly
US3614726A (en) * 1969-10-30 1971-10-19 Texaco Inc Slipring assembly
US3855857A (en) * 1973-05-09 1974-12-24 Schlumberger Technology Corp Force-measuring apparatus for use in a well bore pipe string
GB1591620A (en) * 1976-12-21 1981-06-24 Nat Res Dev Signal-conditioning circuits
US4545261A (en) * 1983-03-21 1985-10-08 International Harvester Company Shaft torque measuring system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3626482A (en) * 1968-10-30 1971-12-07 Aquitaine Petrole Method and apparatus for measuring lithological characteristics of rocks
US3714822A (en) * 1969-11-12 1973-02-06 Petroles D Aquitaire Soc Nat D Process for measuring wear on a drilling tool
US4715451A (en) * 1986-09-17 1987-12-29 Atlantic Richfield Company Measuring drillstem loading and behavior
DE3728968A1 (de) * 1987-08-29 1989-03-09 Staiger Mohilo & Co Gmbh Drehuebertrager fuer messsignale
US4821563A (en) * 1988-01-15 1989-04-18 Teleco Oilfield Services Inc. Apparatus for measuring weight, torque and side force on a drill bit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4447287C1 (de) * 1994-12-30 1996-11-07 Cevc Gregor Präparat zum Wirkstofftransport durch Barrieren
US7912678B2 (en) 1999-02-17 2011-03-22 Denny Lawrence A Oilfield equipment identification method and apparatus
US9534451B2 (en) 1999-02-17 2017-01-03 Den-Con Electronics, Inc. Oilfield equipment identification method and apparatus
WO2011128068A2 (fr) 2010-04-12 2011-10-20 Universität Siegen Système de communication permettant la transmission d'informations par l'intermédiaire de tiges de forage
DE102010047568A1 (de) 2010-04-12 2011-12-15 Peter Jantz Einrichtung zur Übertragung von Informationen über Bohrgestänge
US9982529B2 (en) 2010-04-12 2018-05-29 Universitaet Siegen Communication system for transmitting information via drilling rods

Also Published As

Publication number Publication date
NO178641C (no) 1996-05-02
NO910771D0 (no) 1991-02-27
NO178641B (no) 1996-01-22
OA09285A (fr) 1992-08-31
EP0431136B1 (fr) 1994-11-30
FR2649155A1 (fr) 1991-01-04
DE69014567D1 (de) 1995-01-12
NO910771L (no) 1991-04-25
US5347859A (en) 1994-09-20
CA2035477C (fr) 1995-03-07
FR2649155B1 (fr) 1991-09-13
DE69014567T2 (de) 1995-07-20
CA2035477A1 (fr) 1990-12-29
EP0431136A1 (fr) 1991-06-12

Similar Documents

Publication Publication Date Title
EP0431136B1 (fr) Dispositif de mesure dynamometrique pour tige de forage
EP3304022B1 (fr) Dispositif de mesure de pression à fiabilité améliorée et procédé de calibrage associé
EP0042790B1 (fr) Dispositif pour mesurer la pression de pneumatiques notamment pour aéronefs
EP0550333B1 (fr) Procédé et dispositif pour la mesure de débit gazeux
EP3264116A1 (fr) Dispositif de détection d'un arc électrique à partir de sa signature acoustique
EP0768533B1 (fr) Amplificateur de charge différentiel pour capteur piézoélectrique
WO2011003852A2 (fr) Circuit d'excitation de capteurs a courant continu
FR3067471B1 (fr) Equipement electrique destine a etre relie a un tachymetre
EP1277034A1 (fr) Procede et installation pour detecter et localiser une source de bruits et vibrations
EP0987554A1 (fr) Circuit de mesure
EP0492394B1 (fr) Dispositif de contrÔle non destructif à courants de Foucault, à commutation flux additifs-flux soustractifs
EP1250607A1 (fr) Procede et dispositif de controle d'un cable de telecommunication
EP0065904B1 (fr) Procédé de détermination de l'état d'un signal alternatif modulé en tout ou rien en milieu perturbé
FR3032276A1 (fr) Capteur de courant et reseau electrique comprenant un tel capteur de courant
EP0061956A1 (fr) Procédé de contrôle non destructif par courants de Foucault avec correction des effets d'entrefer et dispositif de mise en oeuvre
FR2552874A1 (fr) Tete de mesure monovoie et installation de telemesure en comportant application
CH658908A5 (en) Measurement circuit and its use
FR2573199A1 (fr) Procede de detection a distance de l'usure des paliers d'une machine tournante et dispositif pour la mise en oeuvre de ce procede
EP0477087A1 (fr) Dispositif de traitement d'un signal provenant d'un capteur ayant une réponse du type dérivatif
FR2630238A1 (fr) Dispositif de surveillance par cable
EP0210093A1 (fr) Procédé et dispositif de contrôle de la transmission de signaux de protection différentielle
FR2547423A1 (fr) Procede de controle de la position d'une cible a l'interieur d'une enveloppe a parois epaisses, et appareil correpondant
CH674578A5 (fr)
FR2689784A1 (fr) Dispositif de détection de colmatage de filtres.
JPH0344533A (ja) 回転機の異常監視方法およびその装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BF BJ CF CG CH CM DE DK ES FR GA GB IT LU ML MR NL SE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1990910123

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2035477

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 1990910123

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990910123

Country of ref document: EP

ENP Entry into the national phase

Ref country code: CA

Ref document number: 2035477

Kind code of ref document: A

Format of ref document f/p: F