WO1990016071A1 - Kernkraftwerk mit einer sicherheitshülle und verfahren zu seiner druckentlastung - Google Patents

Kernkraftwerk mit einer sicherheitshülle und verfahren zu seiner druckentlastung Download PDF

Info

Publication number
WO1990016071A1
WO1990016071A1 PCT/EP1989/000678 EP8900678W WO9016071A1 WO 1990016071 A1 WO1990016071 A1 WO 1990016071A1 EP 8900678 W EP8900678 W EP 8900678W WO 9016071 A1 WO9016071 A1 WO 9016071A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
nuclear power
relief
power plant
container
Prior art date
Application number
PCT/EP1989/000678
Other languages
English (en)
French (fr)
Inventor
Bernd Eckardt
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to PCT/EP1989/000678 priority Critical patent/WO1990016071A1/de
Priority to JP1506676A priority patent/JP2818237B2/ja
Priority to SU895010995A priority patent/RU2062514C1/ru
Priority to UA5010995A priority patent/UA22155A1/uk
Publication of WO1990016071A1 publication Critical patent/WO1990016071A1/de

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/004Pressure suppression
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to a method for relieving pressure in a nuclear power plant with a safety cover for the inclusion of activity carriers and with an outlet for a relief flow which flows from the safety cover through a filter into the
  • the invention also relates to a nuclear power plant for applying the method.
  • the filter comprises a molecular sieve known per se, in particular with silver nitrate coating for iodine sorption filtering, which is heated with the relief stream via heat exchanger surfaces, that the discharge stream is dehumidified with a metal fiber filter and aerosol-filtered, that the relief stream then through expansion is dried and that the dried relief stream is brought into direct contact with the molecular sieve.
  • a self-heated molecular sieve e.g. with silver nitrate coating
  • an upstream metal fiber filtering and intermediate throttling - without further active heating device - for iodine sorption filtering can be used advantageously to relieve the pressure on the reactor safety cover, which means that in addition to the separation of the elemental iodine, the organoiodine filtering can also be achieved passively can.
  • iodine retention can also be achieved with gas components such as CO, which can influence iodine retention in washing liquids, is carried out in long-term operation.
  • the molecular sieve is accommodated or heated in a closed chamber in the inflow region of the high-pressure gas region, so that a direct heat transfer from the relief flow to the molecular sieve is achieved.
  • either the molecular chamber is flowed around or / and is heated directly by heat transfer tubes fitted in the molecular sieve.
  • Condensate accumulating on the heating surfaces can fall back into a condensate collection room.
  • Remaining fine droplets are separated together with aerosols in the metal fiber filter part and transferred into the condensate collection space. After aerosol filtering, pressure is reduced (expansion) via fixed or controllable throttles and the drying of the relief flow is thus dried.
  • the gas of the relief stream dried by throttling in combination with the constant temperature control of the sorption filter, avoids the annoying condensation on the molecular sieve and thus ensures the iodine sorption mechanism in the relief stream.
  • the dew point distance is advantageously 5 "C.
  • the required temperature level is set in a self-regulating manner. By installing a further throttling point, pressure sorption operation (0.5-3 bar) can be set so that the gas volume flow reduction reduces the required molecular sieve quantities up to 50% can take place. In the event of volume changes in the relief flow, the desired molecular sieve overheating can be ensured continuously by means of a sliding operating pressure control in the individual stages,
  • the new filter device can also be combined with an upstream free-blowing Venturi scrubber, so that an additional aerosol and iodine separation takes place.
  • the apparatus of the filter device can also be set up in the safety cover due to their small dimensions.
  • FIG. 1 shows a nuclear power plant according to the invention with the facilities provided for carrying out the method according to the invention
  • 2 shows a container in which the molecular sieve and metal fiber filter are arranged together
  • 3 shows another embodiment of a container with molecular sieve and metal fiber filter
  • FIG. 4 shows a container with a molecular sieve and filter, in which a venturi scrubber is additionally provided, and
  • FIG. 5 shows a nuclear power plant, in the safety shell of which the containers are installed with the devices important for realizing the invention.
  • the nuclear power plant is only indicated in FIG. 1 by its safety cover 1, which is preferably designed in the form of a steel ball.
  • the safety cover has to catch the activity carriers which can be released inside the safety cover 1 in the event of a fault.
  • the reactor may be of any desired design, in particular is' a water-cooled nuclear reactor, the cooling water le event of a fault to an increased pressure inside thecruhül ⁇ 1 performs.
  • the safety cover 1 is designed for the excess pressure in the event of a malfunction, ie also for the evaporation of the entire cooling water, it has recently been demanded that further pressure exits are absorbed by relieving the pressure on the safety cover 1.
  • an outlet 2 is provided, to which an outlet line 3 with two shut-off valves 4 and 5 connected in series is connected. With the outlet line 3, the relief flow represented by an arrow 6 is led into a cylindrical container 10, which has a diameter of e.g. 2 m and also has a height of 2 m.
  • Molecular sieves with silver nitrate coating 11 in the middle region are arranged in the container 10 and are provided with an encapsulation 12.
  • the encapsulation 12 forms heat exchanger surfaces via which the gas-steam mixture flowing into the container 10 of the relief current heats up the molecular sieves 11 before it escapes through a line 15 connected to the bottom of the container 10.
  • the line 15 leads into a second cylindrical container 16, which has a height of 5 m with a diameter of 3 m.
  • the horizontal inlet connection 16 is angled vertically upward in the container axis.
  • a metal fiber filter 18, acting as a droplet separator, is located above this, and is followed by a fine dust filter 19. Condensate is guided downwards through a guide insert 20 pointing into the lower region of the container 16.
  • a condensate level 21 results, under which the guide jacket 20 extends.
  • An outlet line 30 leads from the clean gas side of the molecular sieves 11 via a throttle point 31 and a rupture disk 32 into a chimney 33 and thus into the atmosphere.
  • the throttle point 31 results in a stepped relaxation of the relief flow. It ensures that the molecular sieves 11 are operated with a sliding pressure between 5 bar and atmospheric pressure. 6
  • the throughput can be kept at a constant value, which is favorable for iodine sorption.
  • the pressure in the container 16 is at least 1.2 times the pressure in the capsules 12 due to the throttle 26.
  • the pressure in the container 16 is preferably higher by a factor of 1.5 to 2.5.
  • the rupture disk 32 ensures that the containers 10 and 16 with their internals are sealed off from the outside air in normal operation and only become effective in the event of a malfunction which requires the safety cover 1 to be depressurized.
  • a pressure relief valve could also be used instead of the rupture disc.
  • the height is more than twice the diameter.
  • the molecular sieve 11 together with the metal fiber filters 18 are accommodated in the enlarged space. Both filters 11, 18 are ring-shaped and arranged coaxially.
  • the container 40 is provided with thermal insulation 41 in its lower part.
  • the molecular sieve 11 has, as heat exchanger surfaces, which are provided in addition to the encapsulation 12, heating tubes 43 which run through the sieve mass in the vertical direction.
  • the air gas mixture flows through these heating pipes 43, the free path upwards of which is additionally hindered by an installation 44 in the region of the molecular sieve 11.
  • the discharge stream emerging from the droplet separators 19 is fed to the capsules 12 through an overflow channel 45, which can be in the form of an annular channel or consist of several individual tubes which can optionally also be guided outside the container 40.
  • a throttle point 26 ' is provided before entering the encapsulation 12, which enables expansion drying before direct contact with the molecular sieve 11.
  • the throttle point 26 ensures an moderate distribution of the relief current over the ring cross-section of the molecular sieve 11.
  • the molecular sieves 11 and the metal fiber filters 18 and droplet separators 19 are also arranged together.
  • the capsules 12 of the molecular sieves 11 are arranged separately from the container wall 51, so that the molecular sieves 11 are heated more quickly.
  • the heating pipes 43 lead with an outlet line 52 into a central insert 53, which ensures in the upper part of the container 50 that the ring-shaped metal fiber filter 18 as a droplet separator and the fine filter 19 are flowed through from the outside in the direction of the container axis.
  • thermal insulation can be dispensed with because the capsules 12, which are acted upon by the throttle point 26 ', have no heat-conducting contact with the container wall 51. '
  • a venturi washer 62 is additionally arranged in the lower part, the inlet 63 of which is below the condensate level 21. A pre-cleaning of the relief flow is thus achieved before the main cleaning takes place in the aerosol filter 18.
  • radiators 65 are arranged, which can be fed via a connection 66.
  • the radiators 65 are provided with ribs 67 which force an escaping gas flow, as shown by the arrow 68.
  • heating element 65 With heating element 65, additional heating can be applied for start-up operation. It can also be used to compensate for the cooling that may occur during operation of the venturi scrubber 62.
  • the container 10 'and 16' are arranged inside the security case 1.
  • the molecular sieves 11 are heated directly from the interior 70 of the security sleeve 1, as shown by the arrows 71 and 72.
  • the entire wall of the container 10 ′ serves as a heat exchanger surface for heating the molecular sieves 11.
  • the outlet 2 ' which leads into the outlet line 3 1 , lies here at the bottom 73 of the container 16 ". If the rupture disk 74 opens when there is an internal overpressure, the ventilation flow enters the container 16' and via the metal fiber filter 18 and the ultrafine filter 19 through the line 76 with the throttle point 26 '• into the capsules 12 of the molecular sieves 11 in the container 10 1.
  • the outlet line 3' with the throttle point 31 ' can be acted upon via a line 77 with a valve 78 with nitrogen in order to achieve a To achieve inertization, since the pressure relief devices, as stated at the outset, will probably never be actuated, but should always be ready, and the bursting disk 74 can also be opened in a controlled manner with a nitrogen overpressure, but the bursting disk can also be opened 74 in order to reduce the external overpressure acting on the containers 10 ', 16' by means of a connection to the interior 70 of the security cover 1 n.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

Bei einem Verfahren zur Druckentlastung eines Kernkraftwerkes mit einer Sicherheitshülle (1) zum Einschluß von Aktivitätsträgern und mit einem Auslaß (3) für einen Entlastungsstrom, der über ein Filter in die Atmosphäre führt, umfaßt das Filter ein an sich bekanntes Molekularsieb (11) vorzugsweise mit Silbernitratauflage zur Jodsorptionsfilterung, das über Wärmetauscherflächen (12, 43) mit dem Entlastungsstrom beheizt wird, der mit einem Metallfaserfilter (18) entfeuchtet und aerosolgefiltert und dann durch Expansion getrocknet wird, bevor er in direktem Kontakt mit dem Molekularsieb (11) gebracht wird.

Description

'
Kernkraftwerk mit einer Sicherheitshülle und Verfahren zu 5 seiner Druckentlastung
Die Erfindung betrifft ein Verfahren zur Druckentlastung eines Kernkraftwerks mit einer Sicherheitshülle zum Einschluß von Aktivitätsträgern und mit einem Auslaß für einen Entlastungs- 0 ström, der aus der Sicherheitshülle über ein Filter in die
Atmosphäre führt. Gegenstand der Erfindung ist ferner ein Kern¬ kraftwerk zur Anwendung des Verfahrens.
Kernkraftwerke der eingangs genannten Art sind z. B. Gegen- 5 stand der Patentanmeldungen P 36 37 795.3 (VPA 86 P 6081),
P 37 29 501.2 (VPA 87 P 6022) und P 38 12 893.4 ( VPA 88 P 3154), Zur Filterung sind dabei unter anderem Kiesbettfilter oder Sandfilter zur Rückhaltung von Jod und Aerosolen sowie Me¬ tallfaserfilter mit nachgeschalteten Jodsorptionsfiltern oder 0 Venturiwäscher eingesetzt. Demgegenüber versucht die Erfindung durch eine neuartige Verfahrensweise und entsprechende Ein¬ richtungen dazu mit geringerem Aufwand auszukommen. Insbeson¬ dere sollen die baulichen Abmessungen verringert werden, die ganz wesentlich den Preis solcher Filter bestimmen, weil die Druckentlastung ohnehin nur bei einem äußerst unwahrscheinli¬ chen Störfall von Nutzen sein können.
Erfindungsgemäß ist vorgesehen, daß das Filter ein an sich bekanntes Molekularsieb, insbesondere mit Silbernitratauflage zur Jodsorptionsfilterung, umfaßt, das über Wärmetauscherflä¬ chen mit dem Entlastungsstrom beheizt wird, daß der Entlasturigs- strom mit einem Metallfaserfilter entfeuchtet und aerosolgefil¬ tert wird, daß der Entlastungsstrom dann durch Expansion ge- trocknet wird und daß der getrocknete Entlastungsstrom in di¬ rekten Kontakt mit dem Molekularsieb gebracht wird.
Weitere Ausgestaltungen des Verfahrens nach der Erfindung sind in den Ansprüchen 2 bis 6 angegeben. Die Ansprüche 7 bis 13 beschreiben Einrichtungen, die zur Anwendung des erfindungsge¬ mäßen Verfahrens besonders gut geeignet sind.
Es wurde gefunden, daß ein eigenmedienbeheiztes Molekularsieb, z.B. mit Silbernitratbelegung, kombiniert mit einer vorgeschal¬ teten Metallfaserfilterung und zwischengeschalteter Drosselung - ohne weitere aktive Beheizungseinrichtung - zur Jodsorptions¬ filterung bei der Entlastung der Reaktorsicherheitshülle vor¬ teilhaft eingesetzt werden kann, womit neben der Abscheidung des elementaren Jodes auch passiv die Organojodfilterung er¬ reicht werden kann.
Mit Molekularsieben in Form von nicht brennbaren Sorptionsfil¬ tern kann die Jodrückhaltung auch bei Gasbestandteilen, wie z.B. CO, die die Jodrückhaltung in Waschflüssigkeiten beein¬ flussen können, im Langzeitbetrieb durchgeführt werden.
Die Unterbringung bzw. Beheizung des Molekularsiebes erfolgt hierbei in einer geschlossenen Kammer im Zuströmbereich des Gashochdruckbereiches, so daß ein direkter Wärmeübergang von dem Entlastungsstrom auf das Molekularsieb erreicht wird. Hier¬ bei wird entweder die Molekularkammer umströmt oder/und- durch im Molekularsieb angebrachter Wärmeübertragungsrohre direkt beheizt. An den Beheizungsflächen anfallendes Kondensat kann in einen Kondensatsammeiraum zurückfallen. Verbleibende Feinst¬ tropfen werden im Metallfaserfilterteil mitsamt Aerosolen ab¬ geschieden und in den Kondensatsammeiraum überführt. Nach der Aerosolfilterung erfolgt über festeingestellte oder regelbare Drosseln eine Druckabsenkung (Expansion) und somit Trocknung des Entlastungsstroms. Das durch Drosselung getrocknete Gas des Entlastungsstroms vermeidet in Kombination mit der ständigen Temperierung des Sorptionsfilters die störende Kondensation am Molekularsieb und stellt somit bei dem Entlastungsstrom den Jodsorptionsmechanis- mus sicher. Der Taupunktabstand beträgt vorteilhaft 5 "Cj das erforderliche Temperaturniveau stellt sich jeweils selbst¬ regelnd ein. Durch Einbau einer weiteren Drosselstelle kann ein Drucksorptionsbetrieb (0,5 - 3 bar) eingestellt werden, so daß durch die Gasvolumenstromverkleinerung eine Reduzierung der er- forderlichen Molekularsiebmengen um bis zu 50 % erfolgen kann. Bei Volumenänderungen des Entlastungsstromes kann durch eine gleitende Betriebsdruckregelung in den einzelnen Stufen die ge¬ wünschte Molekularsiebüberhitzung ständig sichergestellt werden,
Besonders günstig kann man mit Festdrosseln im gesamten Be¬ triebsbereich von 2 - 10 bar weiterhin eine Volumenstrombegren¬ zung bei Erreichen des kritischen Druckgefälles mit entsprechen¬ der Betriebsdruck- und Überhitzungsstufung des Metallfaserfil¬ ters und des Molekularsiebbereiches erreichen.
Die neue Filtereinrichtung kann auch mit einem vorgeschalteten frei ausblasenden Venturiwäseher kombiniert werden, so daß zu¬ sätzlich noch eine Aerosol- und Jodvorabscheidung erfolgt.
Die Apparate der Filtereinrichtung können wegen ihrer kleinen Abmessungen auch in der Sicherheitshülle aufgestellt werden.
Zur näheren Erläuterung der Erfindung werden anhand der Zeichnung Ausführungsbeispiele beschrieben. Dabei zeigt
FIG 1 ein Kernkraftwerk nach der Erfindung mit den zur Ausübung des erfindungsgemäßen Verfahrens vorgesehenen Einrichtungen,
FIG 2 einen Behälter, in dem Molekularsieb und Metallfaser- filter gemeinsam angeordnet sind, FIG 3 eine andere Ausführungsform eines Behälters mit Mole¬ kularsieb und Metallfaserfilter,
FIG 4 ein Behälter mit Molekularsieb und Filter, in dem zusätz- lieh ein Venturiwäscher vorgesehen ist und
FIG 5 ein Kernkraftwerk, in dessen Sicherheitshülle die Behäl¬ ter mit den für die Verwirklichung der Erfindung wichtigen Einrichtungen eingebaut sind.
Der Einfachheit halber ist in FIG 1 das Kernkraftwerk nur durch seine Sicherheitshülle 1 angedeutet, die vorzugsweise in Form einer Stahlkugel ausgeführt ist. Die Sicherheitshülle hat die Aktivitätsträger aufzufangen, die bei einem Stδrfall im Inneren der Sicherheitshülle 1 freigesetzt werden können. Der Reaktor kann beliebiger Bauart sein, insbesondere handelt es sich um' einen wassergekühlten Kernreaktor, dessen Kühlwasser bei einem Störfall zu einem erhöhten Druck im Inneren der Sicherheitshül¬ le 1 führt.
Obwohl die Sicherheitshülle 1 an sich für den Überdruck im Stör¬ fall, also auch bei Verdampfung d-es gesamten Kühlwassers ausge¬ legt ist, wird neuerdings gefordert, daß weitere Druckausstiege durch eine Druckentlastung der Sicherheitshülle 1 aufgefangen werden. Zu diesem Zweck ist ein Auslaß 2 vorgesehen, an den ei¬ ne Auslaßleitung 3 mit zwei in Reihe geschalteten Absperrventi¬ len 4 und 5 angeschlossen ist. Mit der Auslaßleitung 3 -wird der durch einen Pfeil 6 dargestellte Entlastungsstrom in einen zylindrischen Behälter 10 geführt, der einen Durchmesser von z.B. 2 m und eine ebenfalls 2 m betragende Höhe aufweist.
In dem Behälter 10 sind Molekularsiebe mit Silbernitratauflage 11 im mittleren Bereich angeordnet, die mit einer Kapselung 12 versehen sind. Die Kapselung 12 bildet Wärmetauscherflächen, über die das in den Behälter 10 einströmende Gas-Dampfgemisch des Entlastungsstroms eine Aufheizung der Molekularsiebe 11 vornimmt, bevor es durch eine an den Boden des Behälters 10 angeschlossene Leitung 15 entweicht.
Die Leitung 15 führt in einen zweiten zylindrischen Behälter 16, der bei einem Durchmesser von 3 m eine Höhe von 5 m hat. Wie man sieht, ist der horizontale Eintrittsstutzen 16 in der Behälterachse vertikal nach oben abgewinkelt. Dort ist ein Prallblech 17 zur Tropfenabscheidung vorgesehen. Darüber sitzt ein als Tropfenabscheider wirkendes Metallfaserfilter 18, dem ein Feinstaerosolfilter 19 nachgeschaltet ist. Durch einen in den unteren Bereich des Behälters 16 weisenden Führungseinsatz 20 wird Kondensat nach unten geführt. Es ergibt sich ein Kon¬ densatspiegel 21, unter den der Führungsmantel 20 reicht.
Das mit dem Metall aserfilter 18 getrocknete und mit dem Feinst- faserfilter 19 aerosolgefilterte Luft-Dampfgemisch entweicht aus dem Behälter 16 über eine Leitung 25. Sie führt über eine Drossel 26, der ein Regelventil 27 parallel geschaltet ist, in die Kapselungen 12 der Molekularsiebe 11 im Behälter 10. Dort gelangt der Entlastungsstrom, der durch die Expansion hinter der Drosselung 26 auf eine Feuchtigkeit von z.B. 80 % getrock¬ net wurde, in direkten Kontakt mit den Molekularsieben 11. Da diese durch die Kapselung 12 auf eine Temperatur aufgeheizt sind, die z. B. 5* C über der jeweiligen Sattdampftemperatur liegt, erfolgt dort eine praktisch vollständige Sorption von Jod, das als Aktivitätsträger zurückgehalten werden soll. Bei geringeren Anforderungen an die Aerosolrückhaltung können die Filter 18 und 19 auch zusammengefaßt werden.
Von der Reingasseite der Molekularsiebe 11 führt eine Ausla߬ leitung 30 über eine Drosselstelle 31 und eine Berstscheibe 32 in einen Kamin 33 und damit in die Atmsophäre. Die Drossel¬ stelle 31 ergibt eine gestufte Entspannung der Entlastungs- Strömung. Sie sorgt dafür, daß die Molekularsiebe 11 mit Gleit¬ druck zwischen 5 bar und Atmosphärendruck betrieben werden. 6 Dabei kann durch eine kritische Drosselung der Durchsatz auf einem konstanten Wert gehalten werden, wie das für die Jod¬ sorption günstig ist. Der Druck im Behälter 16 beträgt aber aufgrund der Drossel 26 mindestens das 1,2-fache des Druckes in den Kapseln 12. Vorzugsweise liegt der Druck im Behälter 16 um den Faktor 1, 5 bis 2,5 höher.
Die Berstscheibe 32 sorgt dafür, daß die Behälter 10 und 16 mit ihren Einbauten im Normalbetrieb von der Außenluft abge- schlössen sind und erst bei einem Störfall wirksam werden, der eine Druckentlastung der Sicherheitshülle 1 erfordert. Anstelle der Berstscheibe könnte auch ein Überdruckventil verwendet wer¬ den.
Bei dem in FIG 2 dargestellten Behälter 40 betagt die Höhe mehr als das Doppelte des Durchmessers. In dem vergrößerten Raum sind das Molekularsieb 11 gemeinsam mit den Metallfa¬ serfiltern 18 untergebracht. Beide Filter 11, 18 sind ring¬ förmig ausgebildet und koaxial angeordnet. Der Behälter 40 ist in seinem unteren Teil mit einer Wärmeisolierung 41 versehen.
Das Molekularsieb 11 besitzt als Wärmetauscherflächen, die zusätzlich zu der Kapselung 12 vorgesehen sind, Heizrohre 43, die in vertikaler Richtung durch die Siebmasse verlaufen. Durch diese Heizrohre 43 strömt das Luftgasgemisch, dessen freier Weg nach oben zusätzlich durch einen Einbau 44 im Bereich des Mole¬ kularsiebs 11 behindert ist. Der aus den Tropfenabscheidern 19 austretende Entlastungsstrom wird den Kapseln 12 durch einen Überströmkanal 45 zugeführt, der in Form eines Ringkanals aus- gebildet sein kann oder aus mehreren einzelnen Rohren besteht, die gegebenenfalls auch außerhalb des Behälters 40 geführt wer¬ den können. In jedem Falle ist vor dem Eintritt in die Kapse¬ lung 12 eine Drosselstelle 26' vorgesehen, die eine Expansions¬ trocknung vor dem direkten Kontakt mit dem Molekularsieb 11 er- möglicht. Ferner sorgt die Drosselstelle 26' für eine gleich- mäßige Verteilung des Entlastungsstroms auf den Ringquerschnitt des Molekularsiebs 11. Der Anschluß der Leitung 30, die durch die Pfeile 30' angedeutet ist, erfolgt an Stutzen 46, die durch die Wärmeisolierung 41 hindurchführen.
Auch in dem Behälter 50 nach FIG 3 sind die Molekularsiebe 11 und die Metallfaserfilter 18 und Tropfenabscheider 19 gemeinsam angeordnet. Hierbei sind die Kapseln 12 der Molekularsiebe 11 von der Behälterwand 51 getrennt angeordnet, so daß die Auf- heizung der Molekularsiebe 11 schneller erfolgt. Die Heizrohre 43 führen mit einer Auslaßleitung 52 in einen zentralen Einsatz 53, der im oberen Teil des Behälters 50 dafür sorgt, daß die ringförmig ausgebildeten Metallfaserfilter 18 als Tropfenab¬ scheider und der Feinstfilter 19 von außen in Richtung zur Behälterachse hin durchströmt werden. Bei dem Behälter nach FIG 3 kann auf eine Wärmeisolierung verzichtet werden, weil die Kapseln 12, die über die Drosselstelle 26' beaufschlagt werden, keinen wärmeleitenden Kontakt mit der Behälterwand 51 haben. '
Bei dem Behälter 60 nach FIG 4 ist im unteren Teil noch zu¬ sätzlich ein Venturiwäscher 62 angeordnet, dessen Einlaß 63 unterhalb des Kondensatspiegels 21 liegt. Damit wird eine Vorreinigung des Entlastungsstroms erreicht, bevor die Haupt¬ reinigung im Aerosolfilter 18 stattfindet.
Im oberen Teil des Behälters 60 sind elektrische Heizkörper 65 angeordnet, die über einen Anschluß 66 gespeist werden- können. Die Heizkörper 65 sind mit Rippen 67 versehen, die eine äan- drierende Gasströmung erzwingen, wie durch den Pfeil 68 darge- stellt ist. Mit den Heizkörper 65 kann eine zusätzliche Erwär¬ mung für den Anfahrbetrieb aufgebracht werden. Außerdem kann damit die Abkühlung kompensiert werden, die gegebenenfalls beim Betrieb des Venturiwäschers 62 auftritt.
Bei dem Ausführungsbeispiel nach FIG 5 sind die Behälter 10' und 16' im Inneren der Sicherheitshülle 1 angeordnet. Hierbei * 8 erfolgt die Beheizung der Molekularsiebe 11 direkt aus dem Inneren 70 der Sicherheitshülle 1, wie durch die Pfeile 71 und 72 dargestellt ist. Zusätzlich dient dabei die gesamte Wand des Behälters 10' als Wärmetauscherfläche zur Beheizung der Molekularsiebe 11.
Der Auslaß 2', der in die Auslaßleitung 31 führt, liegt hier am Boden 73 des Behälters 16". Öffnet nämlich bei einem inneren Überdruck die Berstscheibe 74, so gelangt die Entlüftungsstrδ- ung in den Behälter 16' und über das Metallfaserfilter 18 und das Feinstfilter 19 durch die Leitung 76 mit der Drosselstelle 26'• in die Kapseln 12 der Molekularsiebe 11 im Behälter 101. Die Auslaßleitung 3' mit der Drosselstelle 31' kann über eine Leitung 77 mit einem Ventil 78 mit Stickstoff beaufschlagt werden, um eine Inertisierung zu erreichen, da die Druckentla¬ stungseinrichtungen, wie eingangs gesagt, voraussichtlich nie betätigt werden, aber ständig bereit sein sollen. Ferner kann mit einem Stickstoffüberdruck auch die Berstscheibe 74 ge¬ steuert geöffnet werden. Es ist aber auch möglich, die Berst- scheibe 74 wegzulassen, um durch eine Verbindung mit dem Inne¬ ren 70 der Sicherheitshülle 1 den auf die Behälter 10' , 16' wirkenden äußeren Überdruck zu reduzieren.
13 Patentansprüche 5 Figuren

Claims

Patentansprüche
1. Verfahren zur Druckentlastung eines Kernkraftwerks mit einer Sicherheitshülle zum Einschluß von Aktivitätsträgern und mit einem Auslaß für einen Entlastungsstrom, der aus der Sicher¬ heitshülle über ein Filter in die Atmosphäre führt, d a d u r c h g e k e n n z e i c h n e t, daß das Filter ein an sich bekanntes Molekularsieb (11), ins¬ besondere mit Silbernitratauflage zur Jodsorptionsfilterung, umfaßt, das über Wärmetauscherflächen (12, 43) mit dem Ent¬ lastungsstrom beheizt wird, daß der Entlastungsstrom mit einem Metallfaserfilter (18) ent¬ feuchtet und aerosolgefiltert wird, daß der Entlastungsstrom dann durch Expansion getrocknet wird und daß der getrocknete Entlastungsstrom in direkten Kontakt mit dem Molekularsieb (11) gebracht wird.
2. Verfahren nach Anspruch 1, d a d u r c h e- k e n n z e i c h n e t , daß das Molekularsieb (11) mit Gleitdruck-zwischen 5 bar und Atmosphärendruck betrieben wird.
3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß das Metallfaserfilter (18) mit mindestens dem 1,2-fachen des Molekularsiebdruckes be¬ trieben wird.
4. Verfahren nach Anspruch 1, d a d u r c h g e¬ k e n n z e i c h n e t , daß der Entlastungsstrom durch eine hinter dem Molekularsieb (11) erfolgende kritische Dros¬ selung (261) auf einem konstanten Durchsatzwert gehalten wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , daß die Expansion des Entla- stungsstroms zur Trocknung durch Drosselung (26) geregelt wird. 1 6. Verfahren nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , daß der Entlastungsstrom zwi¬ schen der Sicherheitshülle (1) und der Atmosphäre in mehreren Stufen (26, 31) expandiert.
5
7. Kernkraftwerk zur Anwendung des Verfahrens nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h¬ n e t , daß das Molekularsieb (11) und der Metallfaserfilter (18) in zylindrischen Behältern (10, 16) kreisförmig angeordnet 0 sind.
8. Kernkraftwerk nach Anspruch 7, d a d u r c h g e¬ k e n n z e i c h n e t , daß die Behälter (101, 16') im Inneren der Sicherheitshülle (1) angeordnet sind. 5
9. Kernkraftwerk nach Anspruch 7 oder 8, d a d u r c h g e k e n n z e i c h n e t , daß das Molekularsieb (11) und das Metallfaserfilter (18) in einem gemeinsamen Behälter (40, 50, 60) angeordnet sind.
20
10. Kernkraftwerk nach Anspruch 9, d a d u r c h g e¬ k e n n z e i c h n e t , daß der Behälter (40, 50, 60) mit seinem Unterteil einen Kondensatsammeiraum (21) bildet.
25 11. Kernkraftwerk nach Anspruch 10, d a d u r ch g e¬ k e n n z e i c h n e t , daß der Behälter (60) einen Ventu- riwäscher (62) enthält. -
12. Kernkraftwerk nach einem der Ansprüche 7 bis 10, 30 d a d u r c h g e k e n n z e i c h n e t , daß dem Mo¬ lekularsieb (11) eine Querschnittsverengung (26') zur gleich¬ mäßigen Verteilung des Entlastungsstroms vorgeschaltet ist.
35 11 13. Kernkraftwerk nach einem der Ansprüche 7 bis 12, d a d u r c h g e k e n n z e i c h n e t , daß der Behälter (60) mit dem Molekularsieb (11) Heizelemente (65) mit Fremdenergie aufweist.
PCT/EP1989/000678 1988-05-09 1989-06-16 Kernkraftwerk mit einer sicherheitshülle und verfahren zu seiner druckentlastung WO1990016071A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/EP1989/000678 WO1990016071A1 (de) 1988-05-09 1989-06-16 Kernkraftwerk mit einer sicherheitshülle und verfahren zu seiner druckentlastung
JP1506676A JP2818237B2 (ja) 1988-05-09 1989-06-16 格納容器付きの原子力発電所および格納容器の圧力放出方法
SU895010995A RU2062514C1 (ru) 1988-05-09 1989-06-16 Способ разгрузки давления на аэс и устройство для его осуществления
UA5010995A UA22155A1 (uk) 1988-05-09 1989-06-16 Спосіб розваhтажеhhя тиску hа аес та пристрій для його здійсhеhhя

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3815850A DE3815850A1 (de) 1988-05-09 1988-05-09 Kernkraftwerk mit einer sicherheitshuelle und verfahren zu seiner druckentlastung
PCT/EP1989/000678 WO1990016071A1 (de) 1988-05-09 1989-06-16 Kernkraftwerk mit einer sicherheitshülle und verfahren zu seiner druckentlastung

Publications (1)

Publication Number Publication Date
WO1990016071A1 true WO1990016071A1 (de) 1990-12-27

Family

ID=6354012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1989/000678 WO1990016071A1 (de) 1988-05-09 1989-06-16 Kernkraftwerk mit einer sicherheitshülle und verfahren zu seiner druckentlastung

Country Status (5)

Country Link
JP (1) JP2818237B2 (de)
DE (1) DE3815850A1 (de)
RU (1) RU2062514C1 (de)
UA (1) UA22155A1 (de)
WO (1) WO1990016071A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0507155A1 (de) * 1991-04-03 1992-10-07 RWE Energie Aktiengesellschaft Notfallfilter für Kernreaktor
CN101908385A (zh) * 2010-07-02 2010-12-08 华北电力大学 利用盐溶液吸湿特性缓解核电站严重事故的装置
CN101916594A (zh) * 2010-07-16 2010-12-15 华北电力大学 一种非能动的核电站破口事故缓解系统
DE102010035509A1 (de) 2010-08-25 2012-03-01 Areva Np Gmbh Verfahren zur Druckentlastung eines Kernkraftwerks, Druckentlastungssystem für ein Kernkraftwerk sowie zugehöriges Kernkraftwerk
DE102010035510A1 (de) 2010-08-25 2012-03-01 Areva Np Gmbh Verfahren zur Druckentlastung eines Kernkraftwerks, Druckentlastungssystem für ein Kernkraftwerk sowie zugehöriges Kernkraftwerk
US8218709B2 (en) * 2003-06-25 2012-07-10 Areva Np Gmbh Nuclear plant and method for the pressure relief in a nuclear plant
US8670517B2 (en) * 2003-06-25 2014-03-11 Areva Gmbh Nuclear technology plant and method for the pressure relief of a nuclear technology plant
CN104064238A (zh) * 2014-06-13 2014-09-24 长江勘测规划设计研究有限责任公司 地下核电站气载放射性流出物非能动水洗过滤系统
US20160019987A1 (en) * 2013-03-27 2016-01-21 Areva Gmbh Pressure relief system for the containment of a nuclear power facility, nuclear power facility and method of operating a pressure relief system
US20160189809A1 (en) * 2014-12-19 2016-06-30 Caverion Deutschland GmbH Nuclear power plant
US10176901B2 (en) 2013-08-14 2019-01-08 Ge-Hitachi Nuclear Energy Americas Llc Systems, methods, and filters for radioactive material capture

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3117221B2 (ja) * 1990-12-17 2000-12-11 株式会社東芝 原子炉格納容器フィルタードベント装置
DE59105324D1 (de) * 1991-02-07 1995-06-01 Siemens Ag Verfahren und Anlage zur Druckentlastung der Sicherheitshülle eines Kernkraftwerks.
DE102011056889B3 (de) * 2011-12-22 2013-03-07 Yit Germany Gmbh Filtervorrichtung zur Filtration eines mit Aerosolen und/oder gasförmigem Jod beladenen Gasstroms
FR2985437A1 (fr) * 2012-01-10 2013-07-12 Alstom Technology Ltd Procede de filtration d'effluents gazeux d'une installation industrielle
FR2985595A1 (fr) 2012-01-10 2013-07-12 Alstom Technology Ltd Procede de filtration d'effluents gazeux nocifs d'une centrale nucleaire
FR2985438A1 (fr) 2012-01-10 2013-07-12 Alstom Technology Ltd Membrane pour procede de filtration d'effluents gazeux d'une installation industrielle
KR101363772B1 (ko) 2012-02-29 2014-02-17 한국수력원자력 주식회사 액체 피동밸브를 이용한 격납건물 압력제어장치
DE102012005204B3 (de) * 2012-03-16 2013-01-17 Westinghouse Electric Germany Gmbh Reaktordruckentlastungsfiltersystem
KR101542473B1 (ko) 2014-03-02 2015-08-12 주식회사 미래와도전 분자체가 여과배기용기의 외부에 위치하는 여과 배기 계통
KR101555692B1 (ko) * 2014-03-02 2015-09-25 주식회사 미래와도전 격납건물 내부에 설치되는 원자로 여과배기 계통
KR101588883B1 (ko) * 2014-03-02 2016-01-28 주식회사 미래와도전 원자로 건물 배기 여과 시스템에서 사용하는 하이브리드 사이클론필터를 포함하는 여과 장치
KR101513725B1 (ko) * 2014-03-03 2015-04-22 주식회사 미래와도전 원자력발전소에 사용되는 여과 배기 계통
EP2937867B1 (de) 2014-03-03 2018-11-14 Fnctech Gefiltertes entlüftungssystem des sicherheitsbehälters (cfvs) für ein kernkraftwerk
EP3170183B1 (de) * 2014-07-14 2018-08-01 Framatome Inc. Trockenes system zur konvektiven gefilterten druckentlastung des containments
JP6578096B2 (ja) * 2014-11-10 2019-09-18 三菱重工業株式会社 放射性物質除去装置および放射性物質除去システム
JP6513055B2 (ja) * 2016-07-01 2019-05-15 日立Geニュークリア・エナジー株式会社 フィルタ付ベント装置及びその装置周囲への保温材の配置方法
DE102020004299B4 (de) * 2020-07-17 2022-06-09 Westinghouse Electric Germany Gmbh Reaktordruckentlastungsfiltersystem

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2055241A (en) * 1979-08-01 1981-02-25 Hochtemperatur Kernkraftwerk Pressure relief system in nuclear reactors
DE3212265A1 (de) * 1982-04-02 1983-10-13 Hochtemperatur-Reaktorbau GmbH, 5000 Köln Verfahren und einrichtung zur gezielten aktivitaetsableitung aus dem reaktorschutzgebaeude einer gasgekuehlten kernkraftanlage
EP0285845A1 (de) * 1987-03-23 1988-10-12 Siemens Aktiengesellschaft Verfahren und Einrichtung zur Druckentlastung eines Kernkraftwerkes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3635342A1 (de) * 1986-10-17 1988-04-28 Kernforschungsz Karlsruhe Druckabbausystem fuer den sicherheitsbehaelter eines kernreaktors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2055241A (en) * 1979-08-01 1981-02-25 Hochtemperatur Kernkraftwerk Pressure relief system in nuclear reactors
DE3212265A1 (de) * 1982-04-02 1983-10-13 Hochtemperatur-Reaktorbau GmbH, 5000 Köln Verfahren und einrichtung zur gezielten aktivitaetsableitung aus dem reaktorschutzgebaeude einer gasgekuehlten kernkraftanlage
EP0285845A1 (de) * 1987-03-23 1988-10-12 Siemens Aktiengesellschaft Verfahren und Einrichtung zur Druckentlastung eines Kernkraftwerkes

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0507155A1 (de) * 1991-04-03 1992-10-07 RWE Energie Aktiengesellschaft Notfallfilter für Kernreaktor
EP1656679B1 (de) * 2003-06-25 2012-10-31 AREVA NP GmbH Kerntechnische anlage und verfahren zur druckentlastung einer kerntechnischen anlage
US8670517B2 (en) * 2003-06-25 2014-03-11 Areva Gmbh Nuclear technology plant and method for the pressure relief of a nuclear technology plant
US8218709B2 (en) * 2003-06-25 2012-07-10 Areva Np Gmbh Nuclear plant and method for the pressure relief in a nuclear plant
CN101908385A (zh) * 2010-07-02 2010-12-08 华北电力大学 利用盐溶液吸湿特性缓解核电站严重事故的装置
CN101908385B (zh) * 2010-07-02 2012-11-21 华北电力大学 利用盐溶液吸湿特性缓解核电站严重事故的装置
CN101916594A (zh) * 2010-07-16 2010-12-15 华北电力大学 一种非能动的核电站破口事故缓解系统
CN101916594B (zh) * 2010-07-16 2012-10-10 华北电力大学 一种非能动的核电站破口事故缓解系统
CN103081022A (zh) * 2010-08-25 2013-05-01 阿海珐Np有限公司 核电站减压方法、核电站减压系统以及相应的核电站
DE102010035510A1 (de) 2010-08-25 2012-03-01 Areva Np Gmbh Verfahren zur Druckentlastung eines Kernkraftwerks, Druckentlastungssystem für ein Kernkraftwerk sowie zugehöriges Kernkraftwerk
WO2012025174A1 (de) 2010-08-25 2012-03-01 Areva Np Gmbh Verfahren zur druckentlastung eines kernkraftwerks, druckentlastungssystem für ein kernkraftwerk sowie zugehöriges kernkraftwerk
DE102010035509A1 (de) 2010-08-25 2012-03-01 Areva Np Gmbh Verfahren zur Druckentlastung eines Kernkraftwerks, Druckentlastungssystem für ein Kernkraftwerk sowie zugehöriges Kernkraftwerk
US8804896B2 (en) 2010-08-25 2014-08-12 Areva Gmbh Method for depressurizing a nuclear power plant, depressurization system for a nuclear power plant, and associated nuclear power plant
US10304573B2 (en) 2010-08-25 2019-05-28 Framatome Gmbh Method for the pressure relief of a nuclear power plant, pressure-relief system for a nuclear power plant and associated nuclear power plant
US20160019987A1 (en) * 2013-03-27 2016-01-21 Areva Gmbh Pressure relief system for the containment of a nuclear power facility, nuclear power facility and method of operating a pressure relief system
US10176901B2 (en) 2013-08-14 2019-01-08 Ge-Hitachi Nuclear Energy Americas Llc Systems, methods, and filters for radioactive material capture
CN104064238A (zh) * 2014-06-13 2014-09-24 长江勘测规划设计研究有限责任公司 地下核电站气载放射性流出物非能动水洗过滤系统
CN104064238B (zh) * 2014-06-13 2016-09-14 长江勘测规划设计研究有限责任公司 地下核电站气载放射性流出物非能动水洗过滤系统
US20160189809A1 (en) * 2014-12-19 2016-06-30 Caverion Deutschland GmbH Nuclear power plant
CN106033687A (zh) * 2014-12-19 2016-10-19 卡夫里昂德国有限责任公司 核电站
US10937555B2 (en) * 2014-12-19 2021-03-02 Caverion Deutschland GmbH Nuclear power plant

Also Published As

Publication number Publication date
RU2062514C1 (ru) 1996-06-20
JPH04505802A (ja) 1992-10-08
DE3815850C2 (de) 1993-05-06
UA22155A1 (uk) 1998-04-30
DE3815850A1 (de) 1989-11-23
JP2818237B2 (ja) 1998-10-30

Similar Documents

Publication Publication Date Title
WO1990016071A1 (de) Kernkraftwerk mit einer sicherheitshülle und verfahren zu seiner druckentlastung
EP0285845B1 (de) Verfahren und Einrichtung zur Druckentlastung eines Kernkraftwerkes
EP2609597B1 (de) Verfahren zur druckentlastung eines kernkraftwerks, druckentlastungssystem für ein kernkraftwerk sowie zugehöriges kernkraftwerk
EP0269847B1 (de) Kernkraftwerk mit einer Sicherheitshülle
DE102010035510A1 (de) Verfahren zur Druckentlastung eines Kernkraftwerks, Druckentlastungssystem für ein Kernkraftwerk sowie zugehöriges Kernkraftwerk
DE2219650C2 (de) Fallstromverdampfer
DE2039962B2 (de) Verfahren und Vorrichtung zur Rückkonzentration eines flüssigen Absorptionsmittels
EP0338324B1 (de) Kernkraftwerk mit einer Sicherheitshülle
DE4029084A1 (de) Kuehlvorrichtung zur atemgaskuehlung in einem atemschutzgeraet
EP0498016A1 (de) Verfahren und Anlage zur Druckentlastung der Sicherheitshülle eines Kernkraftwerks
DE1948429A1 (de) Feuchtigkeitsabscheider mit Nacherwaermung
DE3423561A1 (de) Vorrichtung zur lufttrocknung
DE4040734A1 (de) Verfahren und einrichtung zur oxidation von wasserstoff
DE2347883A1 (de) Waermeaustauscher
DE4343088A1 (de) Kondensationswirbelrohr
EP0558873B1 (de) Vorrichtung zum Entfernen von Aerosolen aus der Luft eines Kernreaktor-Containments
CH414560A (de) Vorrichtung zur Rückgewinnung von Lösungsmitteln, insbesondere von Per- und Trichloräthylen
DE1639239A1 (de) Kernkraftwerk
DE4231813A1 (de) Kühlturm und Verfahren zu seinem Betreiben
DE3818165C1 (de)
DE19751171C1 (de) Vorrichtung zur Kühlung inertisierter Störfallatmosphären und zur Abtrennung und Beseitigung von Wasserstoff
EP0734028A1 (de) Sicherheitsbehälter einer Kernkraftanlage
DE4201424A1 (de) Anordnung zum kontinuierlichen reinigen von oel
DE515296C (de) Verfahren und Vorrichtung zur Abscheidung und Rueckgewinnung von Gasen und Daempfen aus Gasgemischen durch feste Absorptionsmittel, insbesondere aktive Kohle, und durch Wiederaustreibung der absorbierten Stoffe mit Dampf nach Vorerhitzung der Absorptionsmittel
EP0775872A1 (de) Verfahren und Vorrichtung zur Nutzung der restlichen fühlbaren und der latenten Wärme eines Abgases einer Feuerungsanlage

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BG HU JP RO SU