WO1990012278A1 - Procede pour mesurer sans detecteur l'ecart angulaire de machines synchrones sans amortisseur, de preference a activation par aimant permanent - Google Patents

Procede pour mesurer sans detecteur l'ecart angulaire de machines synchrones sans amortisseur, de preference a activation par aimant permanent Download PDF

Info

Publication number
WO1990012278A1
WO1990012278A1 PCT/AT1990/000024 AT9000024W WO9012278A1 WO 1990012278 A1 WO1990012278 A1 WO 1990012278A1 AT 9000024 W AT9000024 W AT 9000024W WO 9012278 A1 WO9012278 A1 WO 9012278A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
measurement
carried out
synchronous machine
rotation
Prior art date
Application number
PCT/AT1990/000024
Other languages
German (de)
English (en)
Inventor
Manfred Schrödl
Thomas Stefan
Original Assignee
Elin Energieanwendung Gesellschaft M.B.H.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elin Energieanwendung Gesellschaft M.B.H. filed Critical Elin Energieanwendung Gesellschaft M.B.H.
Publication of WO1990012278A1 publication Critical patent/WO1990012278A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/185Circuit arrangements for detecting position without separate position detecting elements using inductance sensing, e.g. pulse excitation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/243Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the phase or frequency of ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/03Synchronous motors with brushless excitation

Definitions

  • the invention relates to a method for sensorless rotation angle detection of damperless, preferably permanently magnet-excited, synchronous machines, the reaction of electrical test signals sent to the synchronous machine being measured.
  • REPLACEMENT LEAF Stator winding-induced voltage space vector is in general unambiguously related to the rotor position sought. Non-sinusoidal induction distributions in the air gap can also be permitted. This induced voltage space vector can be calculated from the terminal voltages taking into account the ohmic and inductive voltage drops.
  • the varying magnetic saturation caused by the permanent magnets is measured by means of electrical test signals. Since this type of measurement can be reproduced, the rotor position can be determined exactly. The knowledge of the polarity of the magnets necessary for carrying out the measurement can be determined by changing the magnetic operating point and measuring its effect on the impedance. It is hier'eLL Eru réelle the rotor position can also be at a standstill • "machine.
  • a relatively high-frequency current generated by means of a converter is superimposed as a test signal on the actual useful signal.
  • the basic idea here is that an electrical alternating signal switched in a certain (space vector) direction generally also causes a reaction in the orthogonal direction due to the different inductances in the longitudinal and transverse axes. Such a coupling does not occur only in the event that the alternating signal is applied exactly in the longitudinal or transverse direction of the rotor. This results in a criterion as to whether the signal is applied in the desired excellent direction or not.
  • a prerequisite for achieving exact measurement results is a permanent magnet-excited synchronous machine with salient pole character, that is to say with unequal inductivities in the longitudinal and transverse directions, such as in the case of flux-concentrating arrangements.
  • the majority of the permanent magnet excited synchronous machines are not constructed in a flux-concentrating manner, but with a constant air gap and magnets glued onto the rotor surface. This is simpler in terms of production technology and, when using high-quality samarium-cobalt or neodymium-iron magnets, allows air gap induction of approximately 1 Tesla.
  • the object of the invention is therefore to implement a method for sensor-free position detection of the rotor of a permanent magnet-excited synchronous machine by measuring only electrical variables and to avoid the disadvantages or inaccuracies of the known methods.
  • test signals are voltage jumps generated by a feeding converter belonging to the synchronous machine to be measured, and that the measured data determined are fed to a computer which calculates the rotor position from the dependence of the stator reactance, and that at the start of the A pre-magnetization is set in the synchronous machine and a measurement is carried out with a field-weakening and a field-strengthening effect.
  • the advantage of the method according to the invention lies both in its great accuracy and in the fact that no analog additional current sources are required for the pole wheel location, but rather the supply converter, which is present anyway, is used as a test signal generator.
  • pole wheel locating method according to the invention can be implemented without any problems in the usual control concepts (tolerance band guidance, pulse pattern specification, etc.).
  • two successive test measurements are carried out with a short measuring frequency.
  • Another feature of the invention is that a test measurement is carried out with instantaneous estimates of the angle of rotation and speed and a current space pointer.
  • FIG. 1 shows a measuring method with fixed measuring times.
  • 2 shows the integration of the method according to the invention into a voltage control with a fixed pulse pattern.
  • the application of the invention with defined current changes in a drive with a tolerance band current regulator is shown in FIG. 3.
  • the circuit is only drawn for one strand of the stator winding; it is of course analogous for the other two strands.
  • the method according to the invention is based on the fact that, at air gap induction values of approximately 1 Tesla, certain iron parts are saturated in the machine. With permanent magnet excitation, the stator teeth are primarily saturated. Furthermore, a certain saturation in the yoke is conceivable with the appropriate design. ,
  • a (small) fan current signal causes an additional magnetic field in the stator which, depending on the direction of the current pointer, runs on paths with different magnetic conductivities.
  • the additional magnetic field runs in the areas which are heavily magnetically loaded; when the current space vector is applied normally, the saturated areas are largely unaffected.
  • the magnetic distribution in the machine thus defines an operating point on the magnetic characteristic curve for each spatial pointer direction of a measuring stator current, which indicates the relationship between the spatial pointer amounts of flooding and magnetic flux.
  • this working point fluctuates between a minimum value in the linear part and a maximum value in the curvature of the characteristic.
  • This modulation of the operating point can be detected by measuring the differential inductance of the space pointer direction under consideration.
  • the change in current compared to the nominal current is negligible, so that the magnetic conditions are almost unaffected.
  • the influence of the stator resistance is so small that it can be neglected.
  • the converter itself is used as a test signal generator in the method according to the invention.
  • Switched voltages from the converter branches are switched to the synchronous machine as a test signal.
  • the differential inductance is then determined on the basis of the increase in the current space pointer amount.
  • a measurement with equivalent information as by means of an analog additional signal source can be achieved. Repeated measurements during operation can be used to carry out a statistical evaluation of the information which is obtained, and thus a high measurement accuracy can be achieved.
  • the effect of the rotationally induced voltage is largely eliminated by combining two measurements. Two measurements are carried out, a switching operation being carried out after the first measurement in one branch (for example branch A or alternatively in all other branches except A; both result in a measurement in the same spatial pointer direction). The value of measurement 2 is then subtracted from the value of measurement 1.
  • the voltage difference space pointer points in the direction of the string connected to the switched inverter branch, so that it is sufficient to measure the current change during the intervals I and II only in the relevant string. (Due to the different inductances due to the presaturation, the voltage and measuring current space pointers deviate slightly from one another. Under normal saturation conditions, this deviation is a maximum of 7 degrees. However, this deviation is a reproducible effect and therefore a correctable error.) By this Measuring strategy, the effect of the rotationally induced voltage is compensated.
  • the measuring process of interval II can be split into two partial measurements, the first part being carried out before and the second part after interval I. (The same voltage space vector is applied in both partial measurements.) As a result, practically the same (average) value of the induced voltage occurs.
  • the induced voltage is also not negligible at higher speeds. As a result of this voltage, the current change no longer takes place parallel to the stator voltage space vector applied, but in the direction of the difference between the stator voltage and induced voltage space vector.
  • the measurement is apparently carried out in intervals I and II in more or less different spatial pointer directions. It is (using the
  • the polarity is determined by using the converter alone. After determining the direction of the minimum and maximum inductance, which is directly related to the position of the magnet wheel or the direction of magnetization of the rotor, in a relatively large stator current space vector is applied in this direction, as a result of which there is a certain shift in the magnetic operating point. An inductance measurement, as described above, is now carried out at this new magnetic operating point. A decision can be made as to whether this additional signal has brought an increase or a decrease in saturation if the opposite additional flooding is applied and the differential inductance is determined again.
  • the amount of flux linked to the stator changes linearly with time, while the current increases progressively when the magnetic saturation range is reached.
  • the inductance is measured, for example, with a constant current change interval. The times between the switching operations are then a measure of the differential inductance.
  • the low stator inductance has the consequence that even currents in the order of magnitude of the nominal value do not result in a serious change in the saturation conditions in the machine.
  • the inductance ellipses 11 are somewhat flattened, the course of the angle-dependent inductance is retained and the effect is measurable. It is possible to store the load-dependent saturation conditions in a read-only memory and to query the corresponding characteristic values depending on the load current.
  • the load points can be restricted to the extent that only stator current components that are normal to the flow, that is to say torque-forming, occur.
  • the two most important methods are to specify a fixed measuring interval or a fixed amount of current change. If a fixed measuring interval is specified, the time of interval I is set equal to that of interval II and constant. If one assumes that the inductance is to be measured in the direction of the strand A, the state of the inverter branches A, B, C in the interval I is, for example, 1, 0, 0 (1 means: inverter branch at positive double circuit potential) and in the interval II, for example 0, 0, 0 or 1, 1, 1 or 0, 1, 1. In any case, the differential voltage space pointer points in the direction of the strand axis A. If one mentally places the real axis of the space pointer coordinate system in the strand axis to be measured, the result is that the reciprocal of the inductance sought is proportional to the difference between the relevant phase current changes in the interval I and II.
  • Fig. 1 shows the integration of this variant in a current-controlled, permanent magnet-excited synchronous machine with time-discrete switching state control, namely in one phase (1) of the stator winding.
  • the regulation of the phase current is carried out in such a way that a target-actual comparison is carried out with the aid of a comparator (2) without hysteresis, which is then used at discrete, equidistant times as a criterion as to whether an affected inverter bridge branch (3) is up to the next Interrogation time is switched to positive or negative DC link potential or remains.
  • the time is discretized using a D flip-flop (4).
  • the additional measuring device consists of a logic (5) which carries out a measuring cycle as required, regardless of the target / actual comparison. As already mentioned, this consists of two time periods I and II, which in this case are of the same length. At higher speeds, the
  • Measurement can be extended to four time periods (Cycles I-II-II-I or vice versa), which means for both Measuring sections is the same mean rotor position.
  • an actual value acquisition or processing is carried out, which records the magnitude of the current changes.
  • the current actual value is recorded via a current transformer (6), the current actual value is fed to the N input of the comparator (2) and a module (8) for analog signal processing of a computer (7).
  • the module (8) for analog signal processing provides the information regarding the current setpoint to the P input of the comparator (2).
  • Two lines (10 and 11) connect a module (9) for digital control with the logic (5) and transmit information about the comparator or bridge status.
  • the synchronization clock is fed from the module (9) for digital control to the dynamic input of the D flip-flop (4) via a line (12).
  • FIG. 2 the method described with reference to FIG. 1 is integrated into a voltage control with a fixed pulse pattern.
  • the measuring cycles are inserted directly into the pulse pattern; the signal processing is then informed via status lines when a measurement cycle is carried out.
  • Fig. 2 shows the stator winding of a permanent magnet excited synchronous machine - with the circuit according to the invention for one strand (21) - and an inverter bridge arm (22).
  • a pulse noise generator (23) with integrated measuring cycles receives the voltage or frequency specification from a control module (26) via two lines (24 and 25).
  • the control signal is transmitted from the pulse pattern generator (23) to the inverter bridge branch (22) via a line (30).
  • the current actual value acquisition for measuring the current change takes place via a current transformer (28)
  • the actual current value is fed to the control module (27) via a line (29).
  • the principle of the current regulation is based on the fact that the difference between the current target value and the actual value is fed to a comparator (42) which is subject to hysteresis.
  • the logic output of the comparator (42) controls an inverter bridge arm (43) which is responsible for a string (41), as a result of which the current (mostly) is prevented from leaving the tolerance band defined by the hysteresis.
  • the extension for the position measurement is - ⁇ similar to the method of Fig. 1 - from a higher-level logic (45) for the measuring operation, whereby a control of an inverter drive and control logic (4), regardless of the comparator (42) is possible.
  • the current actual value is recorded via a current transformer (46), the current actual value is fed to the N input of the comparator (42).
  • a control module (47) provides the information regarding the current setpoint to the P input of the comparator (42).
  • Two lines (48 and 49) connect the control module (47) to the higher-level logic (45) for the measuring process and transmit the information about the comparator or bridge status.
  • a measuring cycle is now carried out by keeping the current setpoint constant in the relevant branch and preventing switching operations in the other branches.

Abstract

On mesure l'effet de sauts de tension générés par un changeur de fréquence qui fait partie d'une machine synchrone sans amortisseur, de préférence à activation par aimant permanent, et qui affectent cette machine synchrone; comme la réactance du stator est dépendante de l'angle, on peut calculer sur cette base la position du rotor.
PCT/AT1990/000024 1989-04-06 1990-04-03 Procede pour mesurer sans detecteur l'ecart angulaire de machines synchrones sans amortisseur, de preference a activation par aimant permanent WO1990012278A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA810/89 1989-04-06
AT0081089A AT408591B (de) 1989-04-06 1989-04-06 Verfahren zur sensorlosen drehwinkelerfassung von dämpferlosen, vorzugsweise permanentmagneterregten, synchronmaschinen

Publications (1)

Publication Number Publication Date
WO1990012278A1 true WO1990012278A1 (fr) 1990-10-18

Family

ID=3500243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT1990/000024 WO1990012278A1 (fr) 1989-04-06 1990-04-03 Procede pour mesurer sans detecteur l'ecart angulaire de machines synchrones sans amortisseur, de preference a activation par aimant permanent

Country Status (2)

Country Link
AT (1) AT408591B (fr)
WO (1) WO1990012278A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0462729A2 (fr) * 1990-06-21 1991-12-27 Seagate Technology International Méthode et appareil de détection de la position du rotor d'un moteur à courant continu sans balai
WO1992019038A1 (fr) * 1991-04-11 1992-10-29 Elin Energieanwendung Gesellschaft M.B.H. Procede et circuits pour determiner des variables d'etat electromagnetiques et mecaniques liees a la machine sur des generateurs a induction electrodynamiques alimentes par l'intermediaire de convertisseurs
WO2000072437A1 (fr) * 1999-05-19 2000-11-30 Abb Industry Oy Procedure de demarrage de commande d'un vecteur en boucle ouverte dans une machine synchrone
FR2844403A1 (fr) * 2002-09-05 2004-03-12 Alstom Procede et calculateur de determination de la position angulaire a l'arret d'un rotor, unite de commande et systeme incorporant ce calculateur
DE10311028A1 (de) * 2003-03-13 2004-10-07 Siemens Ag Verfahren zur Bestimmung einer Startrotorlage und Drehzahl bei Impulsfreigabe einer stromrichtergespeisten, permanenterregten Synchronmaschine ohne Lage-und Drehzahlgeber
EP1133049A4 (fr) * 1999-09-20 2006-01-04 Mitsubishi Electric Corp Detecteur de position du pole pour moteur synchrone
EP2051368A1 (fr) * 2007-10-16 2009-04-22 ABB Schweiz AG Procédé destiné à la détermination de la position du rotor d'une machine électrique à excitation indépendante
DE102009045247A1 (de) * 2009-10-01 2011-04-21 GÄRTNER ELECTRONIC-DESIGN GmbH Verfahren und Einrichtung zur Überwachung und Korrektur einer sensorlosen Rotorlageerkennung bei permanenterregten Motoren
EP2453571A1 (fr) 2010-11-11 2012-05-16 Celeroton AG Convertisseur et procédé de commande d'une machine électrique à courant alternatif
US10396692B2 (en) 2015-02-10 2019-08-27 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft Method for operating a brushless direct current motor
EP1856792B2 (fr) 2005-02-22 2021-12-22 Robert Bosch GmbH Détection de la position d'un rotor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8358095B2 (en) * 2009-07-31 2013-01-22 GM Global Technology Operations LLC Method and system for testing electric motors
DE102018127412A1 (de) 2018-11-02 2020-05-07 Elmos Semiconductor Aktiengesellschaft Verfahren zur sensorlosen Positionsdetektion eines Motors mittels Löschung der magnetischen Vorgeschichte
DE102019127051A1 (de) 2018-11-06 2020-05-07 Elmos Semiconductor Aktiengesellschaft Verfahren zur geräuschlosen, messpulsfreien Regelung der Kommutierung eines BLDC-Motors im Haltebetrieb

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2082308A5 (fr) * 1970-03-10 1971-12-10 Mo
SE372858B (fr) * 1971-12-31 1975-01-13 Asea Ab
US4743786A (en) * 1984-11-20 1988-05-10 Kabushiki Kaisha Sg Rotational position detection device
US4764767A (en) * 1985-08-27 1988-08-16 Kabushiki Kaisha Sg Absolute rotational position detection device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4450396A (en) * 1980-09-23 1984-05-22 Massachusetts Institute Of Technology Electrically controlled synchronous machine
DE3306642A1 (de) * 1983-02-25 1984-09-13 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren zur fortschaltung des staenderdrehfeldes einer synchronmaschine
EP0228535A1 (fr) * 1985-12-04 1987-07-15 Siemens Aktiengesellschaft Méthode et appareil pour la détermination de l'angle de flux d'une machine à induction et d'autre part pour le fonctionnement de la machine en orientation de position
JP2585376B2 (ja) * 1987-06-12 1997-02-26 株式会社日立製作所 誘導電動機の制御方法
US4814677A (en) * 1987-12-14 1989-03-21 General Electric Company Field orientation control of a permanent magnet motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2082308A5 (fr) * 1970-03-10 1971-12-10 Mo
SE372858B (fr) * 1971-12-31 1975-01-13 Asea Ab
US4743786A (en) * 1984-11-20 1988-05-10 Kabushiki Kaisha Sg Rotational position detection device
US4764767A (en) * 1985-08-27 1988-08-16 Kabushiki Kaisha Sg Absolute rotational position detection device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0462729A2 (fr) * 1990-06-21 1991-12-27 Seagate Technology International Méthode et appareil de détection de la position du rotor d'un moteur à courant continu sans balai
EP0462729A3 (en) * 1990-06-21 1993-04-21 Seagate Technology International Method and apparatus for detecting the rotor position of a brushless dc motor
WO1992019038A1 (fr) * 1991-04-11 1992-10-29 Elin Energieanwendung Gesellschaft M.B.H. Procede et circuits pour determiner des variables d'etat electromagnetiques et mecaniques liees a la machine sur des generateurs a induction electrodynamiques alimentes par l'intermediaire de convertisseurs
US5796235A (en) * 1991-04-11 1998-08-18 Schrodl; Manfred Process and circuits for determining machine-related electro-magnetic and mechanical state variables on electrodynamic induction machines supplied via converters
WO2000072437A1 (fr) * 1999-05-19 2000-11-30 Abb Industry Oy Procedure de demarrage de commande d'un vecteur en boucle ouverte dans une machine synchrone
US6498452B1 (en) 1999-05-19 2002-12-24 Abb Oy Starting procedure of open-loop vector control in synchronous machine
AU761856B2 (en) * 1999-05-19 2003-06-12 Abb Oy Starting procedure of open-loop vector control in synchronous machine
EP1133049A4 (fr) * 1999-09-20 2006-01-04 Mitsubishi Electric Corp Detecteur de position du pole pour moteur synchrone
EP1398869A1 (fr) * 2002-09-05 2004-03-17 Alstom Procédé et calculateur de détermination de la position angulaire à l'arrêt d'un rotor, unité de commande et système incorporant ce calculateur.
US6850863B2 (en) 2002-09-05 2005-02-01 Alstom Method and a computer for determining the stopped angular position of a rotor, a control unit, and a system incorporating the computer
FR2844403A1 (fr) * 2002-09-05 2004-03-12 Alstom Procede et calculateur de determination de la position angulaire a l'arret d'un rotor, unite de commande et systeme incorporant ce calculateur
DE10311028A1 (de) * 2003-03-13 2004-10-07 Siemens Ag Verfahren zur Bestimmung einer Startrotorlage und Drehzahl bei Impulsfreigabe einer stromrichtergespeisten, permanenterregten Synchronmaschine ohne Lage-und Drehzahlgeber
DE10311028B4 (de) * 2003-03-13 2008-06-19 Siemens Ag Verfahren zur Bestimmung einer Startrotorlage und Drehzahl bei Impulsfreigabe einer stromrichtergespeisten, permanenterregten Synchronmaschine ohne Lage-und Drehzahlgeber
EP1856792B2 (fr) 2005-02-22 2021-12-22 Robert Bosch GmbH Détection de la position d'un rotor
EP2051368A1 (fr) * 2007-10-16 2009-04-22 ABB Schweiz AG Procédé destiné à la détermination de la position du rotor d'une machine électrique à excitation indépendante
DE102009045247A1 (de) * 2009-10-01 2011-04-21 GÄRTNER ELECTRONIC-DESIGN GmbH Verfahren und Einrichtung zur Überwachung und Korrektur einer sensorlosen Rotorlageerkennung bei permanenterregten Motoren
US8766579B2 (en) 2009-10-01 2014-07-01 Gärtner-Electronic-Design Gmbh Method and device for monitoring and correcting a sensorless rotor position detection in permanently excited motors
EP2453571A1 (fr) 2010-11-11 2012-05-16 Celeroton AG Convertisseur et procédé de commande d'une machine électrique à courant alternatif
US10396692B2 (en) 2015-02-10 2019-08-27 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft Method for operating a brushless direct current motor

Also Published As

Publication number Publication date
ATA81089A (de) 2001-05-15
AT408591B (de) 2002-01-25

Similar Documents

Publication Publication Date Title
EP0539401B1 (fr) Procede et circuit de detection, sans capteurs, de la position angulaire d'une machine synchrone sans amortisseur, de preference excitee par un aimant permanent, alimentee par convertisseur
EP0536113B1 (fr) Moteur ou transducteur de position
EP0579694B1 (fr) Procede et circuits pour determiner des variables d'etat electromagnetiques et mecaniques liees a la machine sur des generateurs a induction electrodynamiques alimentes par l'intermediaire de convertisseurs
DE3543941C2 (fr)
WO1990012278A1 (fr) Procede pour mesurer sans detecteur l'ecart angulaire de machines synchrones sans amortisseur, de preference a activation par aimant permanent
EP0847617B1 (fr) Procede et dispositif de correction de la direction de flux d'un modele de flux d'un moteur a champ rotatif, commande sans capteur et par orientation de champ jusqu'a une frequence zero
EP3172829B1 (fr) Procédé de détermination d'une fréquence de rotor et/ou d'un angle de rotor d'une machine à réluctance, dispositif de commande et entraînement
DE19860446A1 (de) Verfahren zur Regelung eines spannungs-/frequenzumrichtergesteuerten Mehrphasen-Permanentmagnetmotors
EP2875579A2 (fr) Procédé de détermination de la position du rotor d'un moteur à courant continu multiphasé à commutation électronique
DE3724117A1 (de) Steuereinrichtung fuer induktionsmotoren
EP3288179A1 (fr) Procédé de détermination sans capteur de l'orientation du rotor d'un moteur pmsm sans fer
EP2026461A2 (fr) Procédé de régulation sans capteur d'un moteur à courant triphasé
EP2474090B1 (fr) Procédé et dispositif pour déterminer une position de rotor d'une machine synchrone
DE3102655C2 (de) Verfahren zur Erfassung maschineninterner Größen bei Asynchron-Käfigläufermotoren
AT395487B (de) Verfahren und schaltungsanordnung zur sensorlosen drehwinkelerfassung einer daempferlosen, vorzugsweise permanentmagneterregten, ueber einen stromrichter gespeisten synchronmaschine
DE2132477A1 (de) Elektromotor
DE4407390A1 (de) Verfahren für den Anlauf und die Kommutierung bei Syynchronmaschinen
EP2548301B1 (fr) Procédé et dispositif pour déterminer la fréquence de glissement et pour régler un moteur asynchrone
DE4103270C2 (de) Verfahren zur Bestimmung der Ständerflußverkettung bei einer Drehstrommaschine
EP3704790B1 (fr) Procédé de détermination de la position du rotor de machines électriques synchrones sans capteur mécanique
EP1383231A1 (fr) Méthode de captage du flux magnétique, de la position du rotor et/ou de la vitesse rotative
DE19843133A1 (de) Verfahren zum Messen der Drehzahl einer Induktionsmaschine
DE69915263T2 (de) Korrekturverfahren für den flusshalbierungspunkt in flussgeregelten wechselstromsystemen
AT397440B (de) Verfahren und schaltungsanordnung zur sensorlosen drehwinkelerfassung einer vorzugsweise permanentmagneterregten, über einen stromrichter gespeisten synchronmaschine
EP4016835A1 (fr) Procédé de détermination de la position angulaire du rotor d'un moteur synchrone alimenté par un inverseur et dispositif de mise en oeuvre du procédé

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): HU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE