WO1990008953A1 - Schaltung zum messen des innenwiderstandes einer lambdasonde - Google Patents

Schaltung zum messen des innenwiderstandes einer lambdasonde Download PDF

Info

Publication number
WO1990008953A1
WO1990008953A1 PCT/DE1990/000006 DE9000006W WO9008953A1 WO 1990008953 A1 WO1990008953 A1 WO 1990008953A1 DE 9000006 W DE9000006 W DE 9000006W WO 9008953 A1 WO9008953 A1 WO 9008953A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
voltage
transistor
probe
measuring
Prior art date
Application number
PCT/DE1990/000006
Other languages
English (en)
French (fr)
Inventor
Manfred Grabs
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6373417&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1990008953(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to KR1019900701928A priority Critical patent/KR0169088B1/ko
Priority to BR909004929A priority patent/BR9004929A/pt
Publication of WO1990008953A1 publication Critical patent/WO1990008953A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4065Circuit arrangements specially adapted therefor

Definitions

  • the invention relates to a circuit for measuring the internal resistance of a lambda probe, as is used in particular in motor vehicles for measuring the oxygen content in the exhaust gas. It is known that, at low temperatures, the probe voltage depends strongly on the temperature, which is why they should only be used for control from a minimum temperature. 1. Above the minimum temperature, the measurement results are due to the internal resistance of the sounder falsified, if the measurement is not performed without electricity " , which is not possible in practice.
  • the internal resistance changes over several powers of ten when the lambda probe is heated, namely from a few megohms at 200 ° C. down to less than 100 ohms at 800 ° C. If the internal resistance is to be measured in this entire resistance value range using the circuit mentioned above, it is necessary to use several load resistors with very different resistance values. This is because, in order to be able to first determine when the probe is sufficiently warm and then to obtain reliable measurement results, the value of the load resistance must match the internal resistance in its magnitude. This means that the internal resistance must first be roughly measured by loading with an arbitrarily chosen load widder.
  • the internal resistance of a probe can be measured with any circuit without any DC voltage load, as described in DE 31 17 790 A1 (US 4,419,190).
  • An alternating current of known strength is sent through the probe and the alternating voltage dropping at the probe is measured.
  • the AC voltage component is separated from the probe DC voltage component and the internal resistance is determined from AC and AC voltage.
  • the measuring method that can be carried out with this circuit is therefore simple; however, the circuit effort is also considerable.
  • the invention has for its object to provide a simple circuit for measuring the internal resistance of a lambda probe.
  • the circuit according to the invention is characterized by a barrier layer component, which can be selectively switched with the help of a switch to the lambda probe. There is a means for measuring the probe voltage in a loaded and unloaded state.
  • This circuit has the advantage that a voltage occurs in the loaded state, which changes with the logarithm of the internal resistance.
  • a voltage in the loaded state of 800 mV was measured. For each power of ten increase in resistance, the measuring voltage changed by about 70 mV, so that a voltage of 420 mV was tapped at an internal resistance of about 1 MOhm (about 280 ° C).
  • junction current that is included in the measurement result is highly temperature-dependent. This temperature dependency is not noticeable only if care is taken that only slight temperature fluctuations occur on the circuit, e.g. B. in that this is brought in a control unit whose temperature is regulated.
  • the barrier layer component in good thermal contact with a temperature measuring element.
  • further components of a control unit are arranged in good thermal contact with this temperature measuring element, which makes it possible to compensate for temperature-dependent properties of these components with the aid of the temperature measurement. This measure can also be taken with great advantage, if the temperature-dependent components in the control unit do not include a junction component for a circuit for measuring the internal resistance of a lambda probe.
  • a transistor is particularly advantageous as a junction component. This is because in the case of transistors with the same current gain, the reverse current is essentially independent of component properties. B. does not apply to diodes. Regardless of the transistor used, the same measurement results are obtained for a given type with the same probe voltage and the same internal resistance. In addition, the strongly temperature-dependent reverse current can then be measured easily, namely by detecting it at a second transistor which is in good thermal contact with the stressing transistor. When the circuit via two constant current sources has, it is also mög ⁇ Lich with the aid of the second transistor, the. Measure temperature voltage.
  • Reverse current and temperature voltage can be measured not only with the aid of a second transistor, but also with the aid of the loaded transistor. However, a larger number of switches are then required. The additional transistor is less expensive than additional switches and the measuring process is simpler without constantly switching.
  • FIG. 1 shows a circuit diagram of a circuit for measuring the internal resistance of a lambda probe with the aid of a loading transistor
  • Fig. 2 circuit diagram corresponding to that of Fig. 1, but supplemented by a circuit part for measuring reverse current and temperature voltage.
  • a lambda probe 10 is represented by its equivalent circuit diagram, which consists of a probe voltage source 11 and a probe resistor 12.
  • the probe voltage source 11 outputs the probe voltage U.
  • the probe resistor 12 has an internal resistance RS, which strongly depends on the temperature of the probe. He is z. B. at 800 ° C about 100 ohms and at 280 ° C about 1 MOhm.
  • the probe voltage US is detected by a means for measuring the probe voltage, which is designed as a microcomputer 13.
  • the probe voltage amplified by a probe voltage amplifier 14 is converted by an A / D converter 15 into a digital signal which can be processed by the microcomputer 13.
  • the probe voltage US fluctuates between a few millivolts with a warm probe, which measures a lean mixture, and about 900 mV with a warm probe in a rich mixture.
  • This voltage is amplified by the factor 5 by the probe voltage amplifier 14.
  • a load transistor 16 is present for loading the lambda probe 10 and can be connected in parallel with the aid of a load switch 17 of the probe 10.
  • the load switch 17 is controlled by a load switch relay 18. This receives its control signal from an output S1 from the microcomputer 13. It should be noted that in a practical embodiment, there is no circuit-breaker relay with a mechanical switch, but rather a switching transistor. In a practical embodiment, there is no circuit-breaker relay with a mechanical switch, but rather a switching transistor. In Fig. 1, and also in Fig. 2, however, all switches are shown as mechanical switches with relays and not as transistors, so that tra sistors, which are important for the function of the resistance measuring circuit, emerge particularly clearly.
  • the voltage UL which occurs when the lambda probe 10 is loaded occurs at the probe voltage amplifier 14 when the load switch 17 is closed, that is to say is in the other position, as shown in FIG. 1. Because of the in Flg. In another position, only the probe voltage US is shown there when the probe is not loaded at the input of the probe voltage amplifier 14.
  • Equation (2) inserted in equation (1) gives for the internal resistance RS:
  • the load transistor 16 is arranged in a control device 19, the temperature of which is regulated to a constant value.
  • the control device 19 is shown in FIG. 1 by a dash-dotted line.
  • the values of reverse current ISP and temperature voltage UT are known.
  • the internal resistance is then obtained from equation (3).
  • thermocouple 20 is present in the exemplary embodiment according to FIG. 1, which is in good thermal contact with the load transistor 16.
  • thermocouple 20 This good heat-conducting contact is indicated by a dashed line which encloses the load transistor 16 and the thermocouple 20.
  • the voltage from the thermocouple 20 is fed to the microcomputer 13 after amplification by a thermal voltage amplifier 21.
  • the latter calculates the internal resistance from equation (3), using the value valid for the reverse current ISP and the temperature voltage UT for the temperature measured in each case.
  • thermocouple 20 it is advantageous if not only the load transistor 16 is brought into good thermal contact with the thermocouple 20 or another temperature measuring element, but if this measure is also taken for other electronic components in the control unit which have temperature-dependent properties. So far, efforts have been made to counteract temperature-dependent properties of control unit components by means of special compensation circuits or by selecting components with a low temperature response. For example, a reference voltage that is as little temperature-dependent as possible is generated with a special circuit. This circuit can be simplified considerably if the temperature of temperature-dependent components is known and then temperature influences are computationally compensated for by the microcomputer present in each control device.
  • the measure of a temperature measuring element in good thermal contact with electronic components Arranging parts that have temperature-dependent properties is therefore not only advantageous in connection with a circuit for measuring the internal resistance of a lambda sensor. Rather, the measure can also be applied to control devices which do not have a circuit for measuring the internal resistance of a lambda probe.
  • the circuit according to FIG. 2 differs from that according to FIG. 1 only in that the thermocouple 20 with the associated thermal voltage amplifier 21 are not present and that instead the points P2.1-P2 shown in FIG. 1 are present.
  • 4 there is a circuit part which serves to compensate for temperature effects.
  • This circuit part has a compensation transistor 22, a compensation switch 23, a changeover switch 24 and two constant current sources which are formed by two resistors R1 and R2 which are connected to the supply voltage + VS of e.g. B. 5 V are connected.
  • the compensation switch 23 is controlled by a compensation switch relay 25 and the changeover switch 24 by a changeover relay 26. These receive their control signals via connections S2 and S3 on the microcomputer 1.
  • the load transistor 16 itself could also be used as the compensation transistor 22, but more switches would then be required than the embodiment according to FIG. 2 requires. It is pointed out that in the exemplary embodiment according to FIG. 2, the load switching relay 18 can also easily switch the compensation switch 23. In the practical version, two transistors are available as switches, the base of which is driven together.
  • Equation (2) is used to calculate the reverse current ISP using the known load current IR1 and the measured voltage UR1 as follows:
  • ISP IR1 x exp (-UR1 / UT) (4)
  • the value for the reverse current ISP in equation (3) which is calculated with the aid of equation (4), is used there is only one quantity which is not exactly known, namely the temperature voltage UT.
  • the value of the temperature voltage UT can be set to an average value as it is e.g. B. applies to 20 ° C.
  • the temperature voltage UT can be set to an average value as it is e.g. B. applies to 20 ° C.
  • ISP IR2 x exp (-UR2 / UT) (4 1 )
  • the temperature voltage UT is calculated as follows from equations (4) and (4 1 ):
  • the value for the temperature voltage UT calculated from equation (5) can be used directly in equation (3).
  • the value of the temperature voltage UT is Equation (3) is used to evaluate equation (3).
  • the internal resistance RS can thus be determined precisely without the temperature of the control device 19 itself being known.
  • barrier layer component in particular a diode
  • diodes have the disadvantage that their reverse current is component-dependent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

Die Erfindung betrifft eine Schaltung zum Messen des Innenwiderstandes einer Lambdasonde (10). Sie verfügt über ein Sperrschicht-Bauteil (16) zum wahlweisen Belasten der Sonde. Das Belasten der Sonde durch eine Sperrschicht hat den Vorteil, daß eine Innenwiderstandsmessung in einem sehr weiten Bereich von einigen Ohm bis zu einigen MOhm auf einfache Art und Weise vorgenommen werden kann.

Description

-i-
Schaltung zum Messen des Innenwiderstandes einer Lambdasonde
Die Erfindung betrifft eine Schaltung zum Messen des Innen¬ widerstandes einer Lambdasonde, wie sie insbesondere in Kraft fahrzeugen zum Messen des Sauerstoffantei ls im Abgas verwen¬ det wird. Es ist bekannt, daß, die Sondenspa.nnύng bei tiefen Temperaturen stark von der Temperatur ab.häπgt, weswegen sie erst ab einer Mindesttemperatur zum Regeln verwendet werden sol 1..Oberha-lb der Mindesttemperatur sind die Meßergebnisse durch den Innenwiderstand der So-nde verfälscht, falls nicht striomlos gemessen" wird. was in der Praxis nicht möglich ist.
Stand .der Technik
Aus EP Θ 258 5" 3'- A2 ist eine. Schaltung z<ύm Messen des Innen¬ widerstandes einer LamD'dasonde bekannt, die einen' Lastwider¬ stand aufweist, der wahlweise der Sonde durch einen Schalter paral,lel geschaltet wird. Ein Mittel zu Messen- de-r Sonden¬ spannung mißt dieselbe in belastetem und unbelastetem Zustand Aus den beiden Spannungswerten und dem Widerstandswert des Lastwiderstandes wird der Innenwiderstand berechnet. Sobald dieser unter einen vorgegebenen Schwellenwert gefallen ist, wird die Spannung der unbelasteten Sonde für Regelzwecke ver¬ wendet. Für alle Schaltungen, mit denen die Spannung einer Lambda¬ sonde erfaßt wird, läßt sich mit Hilfe des Innenwiderstandes der Sonde bei ausreichend warmer Sonde ein Zusammenhang zwischen der ge¬ messenen Spannung und derjenigen Spannung aufstellen, die bei einem jewei vorliegenden Lambdawert eigentlich gemessen würde, wenn der Innenwiderstand demjenigen einer betriebswarmen Sonde ent¬ sprechen würde. Die gemessene Spannung läßt sich also mit Hilfe des Innenwiderstandes korrigieren. Problematisch ist, daß sich der Innenwiderstand beim Erwärmen der Lambdasonde über mehrere Zehnerpotenzen ändert, nämlich von einigen MegOh bei 200 °C bis herunter auf weniger als 100 Ohm bei 800 °C. Soll in diesem gesamten Widerstandswertbereich der Innenwi¬ derstand mit dar oben genannten Schaltung gemessen werden, ist es erforderlich, mehrere Lastwiderstände mit sehr unter¬ schiedlichen Widerstandswerten zu verwenden. Dies, weil, um zunächst feststellen zu können, wann die Sonde ausreichend betriebswarm i und um danach zuverlässige Meßergebnisse zu erhalten, der Wert des Last¬ widerstandes in seiner Größenordnung mit dem Innenwiderstand übereinstimm muß. Dies führt dazu, daß der Innenwiderstand zunächst durch Belasten mit einem willkürlich gewählten Lastwiders and grob gemessen werden muß. Ist durch diese Messung der Innenwiderstand abgeschätzt, muß auf einen Last¬ widerstand mit einem Widerstandswert umgeschal tet werden, der in de Größenordnung des Innenwiderstandes liegt. Erst dann kann de Inneπwiderstand zuverlässig gemessen werden. Bei Temperatur¬ änderungen der Sonde, also insbesondere im Warmlauf, ist es dadurch erforderlich, immer wieder von einem Lastwiderstand auf einen anderen umzuschalten. Der Schaltungsaufbau und das mit ihm ausführbare Meßverfahren sind also kompliziert.
In einem engen Widerstandsbereich kann der Innenwiderstand einer Sonde oh jede Gleichspannungsbelastung mit einer Schaltung gemessen werden, wie si DE 31 17 790 A1 (US 4.419.190) beschrieben ist. Es wird ein Wechselstrom bekannter Stärke durch die Sonde geschickt und die an der Sonde abfallende Wechselspaπnung wird gemessen. Der Wechselspannungsanteil wird vom Sondengleichspannungsan¬ teil abgetrennt und aus Wechselstrom und Wechselspannung wir der Innenwiderstand bestimmt. Das mit dieser Schaltung aus¬ führbare Meßverfahren ist also einfach; jedoch ist der Schal tungsaufwand ebenfalls erheblich.
Der Erfindung liegt die Aufgabe zugrunde, eine einfache Scha tung zum Messen des Innenwiderstandes einer Lambdasonde an¬ zugeben.
Vorteile der Erfindung
Die erfindungsgemäße Schaltung zeichnet sich durch ein Sperr schicht-Bauteil aus, das mit Hilfe eines Schalters wahlweise der Lambdasonde paral lelschaltbar ist. Es ist ein Mittel zum Messen der Sondenspannung in belastetem und unbelastetem Zu¬ stand vorhanden.
Diese Schaltung hat den Vorteil, daß sich eine Spannung im belasteten Zustand einstellt, die sich mit dem Logarithmus des Innenwiderstandes ändert. In einem Ausführungsbeispiel wurde bei Belasten mit einem Transistor bei Vorliegen eines fetten Gemisches bei 100 Ohm Innenwiderstand (etwa 800 °C) eine Spannung im bela¬ steten Zustand von 800 mV gemessen. Pro Zehnerpotenz Iπnen- widerstaπdserhöhung änderte sich die Meßspannung um etwa 70 mV, so daß bei einem Innenwiderstand von etwa 1 MOhm (etwa 280 °C) eine Spannung von 420 mV abgegriffen wurde.
Problematisch beim Verwenden eines Sperrschicht-Bauteils stat eines Ohmschen Widerstandes als Lastwiderstandsbauteil ist, daß der in das Meßergebnis eingehende Sperrstrom stark tem¬ peraturabhängig ist. Diese Temperaturabhängigkeit macht sich nur dann nicht störend bemerkbar, wenn dafür gesorgt wird, daß nur geringe Temperaturschwankungen an der Schaltung auf¬ treten, z. B. dadurch, daß diese in einem Steuergerät unter¬ gebracht wird, dessen Temperatur geregelt wird.
Ist die Schaltung Temperaturänderungen unterworfen, ist es von Vorteil, das Sperrschicht-Bauteil in gutem Wärmekontakt mit einem Temperatur-Meßelement anzuordnen. Vorteilhafter¬ weise sind noch weitere Bauteile eines Steuergerätes in gutem Wärmekontakt mit diesem Temperatur-Meßelement angeordnet, wodurch es möglich ist, temperaturabhängige Eigenschaften dieser Bauteile mit Hilfe der Temperaturmessung zu kompensie¬ ren- Diese Maßnahme kann auch dann mit großem Vorteil ergrif¬ fen werden, wenn zu den temperaturabhängigen Bauteilen im Steuergerät kein Sperrschicht-Bauteil für eine Schaltung zum Messen des Innenwiderstandes einer Lambdasonde gehört.
Als Sperrschicht-Bauteil ist ein Transistor von besonderem Vorteil. Dies, weil bei Transistoren gleicher Stromverstärkung der Sperr¬ strom im wesentlichen unabhängig von Bauteileigenschaften ist, was z. B. für Dioden nicht gilt. Unabhängig vom verwendeten Transistor ergeben sich damit bei vorgegebenem Typ bei jeweils gleicher Sondenspannung und gleichem Innenwiderstand gleiche Meßergebnisse. Außerdem ist dann der stark temperaturabhängige Sperrstrom leicht meßbar, nämlich dadurch, daß er an einem zweiten Transistor erfaßt wird, der in gutem Wärmekontakt mit dem belastenden Transi¬ stor steht. Wenn die Schaltung über zwei Konstantstromquellen verfügt, ist es mit Hilfe des zweiten Transistors auch mög¬ lich, die.Temperaturspannung zu messen.
Sperrstrom und Temperaturspannung können nicht nur mit Hilfe eines zweiten Transistors, sondern auch mit Hilfe des bela¬ stenden Transistors gemessen werden. Jedoch sind dann eine größere Anzahl von Schaltern erforderlich. Der zusätzliche Transistor ist kostengünstiger, als es zusätzliche Schalter sind und das Meßverfahren gestaltet sich ohne dauernd erfor¬ derliches Umschalten einfacher.
Zeichnung
Fig. 1 Schaltbild einer Schaltung zum Messen des Innen¬ widerstandes einer Lambdasonde mit Hilfe eines be¬ lastenden Transistors; und
Fig. 2 Schaltbild entsprechend dem von Fig. 1 , jedoch er¬ gänzt um einen Schaltungsteil zum Messen von Sperr¬ strom und Temperaturspannung.
Beschreibung von Ausführungsbeispielen
In der Schaltung gemäß Fig. 1 ist unter anderem eine Lambda¬ sonde 10 durch ihr Ersatzschaltbild dargestellt, das aus eine Sondenspannungsquelle 11 und einem Sondenwiderstand 12 be¬ steht. Die Sondenspannungsquelle 11 gibt die Sondenspannung U ab. Der Sondenwiderstand 12 weist einen Innenwiderstand RS auf, der von der Temperatur der Sonde stark abhängt. Er be¬ trägt z. B. bei 800 °C etwa 100 Ohm und bei 280 °C etwa 1 MOhm. Die Sondenspannung US wird durch ein Mittel zum Messen der Sondenspannung erfaßt, das als Mikrocomputer 13 ausgebildet ist. Die von einem Sondenspannungsverstärker 14 verstärkte Sondenspannung wird durch einen A/D-Wandler 15 in ein digitales Signal umgewandelt, das vom Mikrocomputer 13 verarbeitbar ist. Die Sondenspannung US schwankt zwischen einigen wenigen Millivolt bei warmer Sonde, die ein mageres Gemisch mißt, und etwa 900 mV bei warmer Sonde in fettem Ge¬ misch. Diese Spannung wird durch den Sondenspannungsverstär¬ ker 14 um den Faktor 5 verstärkt. In dieser Anmeldung wird jedoch immer auf unverstärkte Spannungen Bezug genommen. Zum Belasten der Lambdasonde 10 ist ein Lasttransistor 16 vorhanden, der mit Hilfe eines Lastschalters 17 der Sonde 10 parallelschaltbar ist. Der Lastschalter 17 wird von einem Lastschalterrelais 18 angesteuert. Dieses erhält sein Steuer signal von einem Ausgang S1 vom Mikrocomputer 13. Es wird darauf hingewiesen, daß bei einer praktischen Ausführung kei Lastschaltrelais mit mechanischem Schalter vorhanden ist, sondern ein Schalttraπsistor. In Fig. 1, und auch in Fig. 2, sind jedoch alle Schalter als mechanische Schalter mit Relai und nicht als Transistoren dargestellt, damit diejenigen Tra sistoren, auf die es für die Funktion der Widerstandsmeßscha tung ankommt, besonders deutlich hervortreten.
Sobald der Lasttransistor 16 der Lambdasonde 10 parallelge¬ schaltet ist, fließt ein Laststrom IL durch den so gebildete Stromkreis. Dieser Laststrom IL erzeugt am Sondenwiderstand einen Spannungsabfall vom Wert RS x IL, der der Sondenspan¬ nung US entgegengerichtet ist. Die Spannung UL bei Last be¬ trägt demgemäß
UL = US - RS x IL.
Daraus berechnet sich der Innenwiderstand der Sonde zu: RS = (US - UL)/IL (1)
Es wird darauf hingewiesen, daß die bei Belastung der Lambda sonde 10 anfallende Spannung UL dann am Sondenspannungsver¬ stärker 14 auftritt, wenn der Lastschalter 17 geschlossen ist, sich also gerade in der anderen Stellung befindet, wie sie in Fig. 1 dargestellt ist. Wegen der in Flg. 1 anderen Stellung ist dort auch nur die Sondenspannung US bei unbela¬ steter Sonde am Eingang des Sondenspannungsverstärkers 14 eingezeichnet.
In Gleichung (1 ) ist der Laststrom als unbekannte Größe ent¬ halten. Für diesen gilt: IL = ISP x exp(UL/UT), mit (2)
ISP = Sperrstrom (bauteilunabhängige Transistorkonstante und UT = Temperaturspannung (kT/eO)
Gleichung (2) in Gleichung (1) eingesetzt ergibt für den In¬ nenwiderstand RS:
RS = (1/ISP) x (US - UL) x exp(-UL/UT) (3)
Es sei zunächst angenommen, daß der Lasttransistor 16 in eine Steuergerät 19 angeordnet ist, dessen Temperatur auf einen konstanten Wert geregelt wird. Das Steuergerät 19 ist in Fig. 1 durch eine strichpunktierte Linie dargestellt. Bei be¬ kannter konstanter Temperatur sind die Werte von Sperrstrom ISP und Temperaturspannung UT bekannt. Mit den gemessenen Werten der Spannung US der Sonde im unbelasteten Zustand und der Spannung UL der Sonde im belasteten Zustand ergibt sich dann aus Gleichung (3) der Innenwiderstand.
Mit der Schalturig gemäß Fig. 1, d. h. unter Verwendung eines npn-Transistors, dessen Basis und Kollektor zusammengeschal¬ tet sind, als Lasttransistor 16, ergaben sich für die gemes¬ sene Spannung UL im belasteten Zustand bei einer Sondenleer- laufspannung von IV die folgenden Werte:
RS 100 fi. 1 kΛ 10 k ≥ 100 kΛ 1 MÄ
UL 700 mV 630 mV 560 mV 490 mV 420 mV
Aus diesem Beispiel ist ersichtlich, daß sich die Meßwerte deutlich voneinander unterscheiden und daß sie in einem gut erfaßbaren Bereich liegen. Der Innenwiderstand kann somit über seinen gesamten Bereich von mehreren Zehnerpotenzen ge¬ nau und mit geringem Aufwand gemessen werden. In der Praxis ist es die Ausnahme, daß die Temperatur eines Steuergerätes geregelt wird. Normalerweise ist die Temperatur des Steuergerätes nicht bekannt und sie ändert sich in weiten Grenzen. Dann schwankt aber auch die Temperaturspaπnung UT etwas und der Sperrstrom ISP schwankt sehr stark. Um die Tem¬ peratur des Lasttransistors 16 zum anschließenden Berechnen von Sperrstrom und Temperaturspannung messen zu können, ist beim Ausführungsbeispiel gemäß Fig. 1 ein Thermoelement 20 vorhanden, das in gut wärmeleitendem Kontakt mit dem Last¬ transistor 16 steht. Dieser gut wärmeleitende Kontakt ist durch eine gestrichelte Linie angedeutet, die den Lasttran¬ sistor 16 und das Thermoelement 20 umschließt. Die Spannung vom Thermoelement 20 wird nach Verstärkung durch einen Ther- mospannungsverstärker 21 dem Mikrocomputer 13 zugeführt. Die¬ ser berechnet den Innenwiderstand aus Gleichung (3), wobei er für den Sperrstrom ISP und die Temperaturspannung UT den für die jeweils gemessene Temperatur gültigen Wert einsetzt.
Es ist von Vorteil, wenn nicht nur der Lasttransistor 16 in gut wärmeleitendem Kontakt mit dem Thermoelement 20 oder ein anderen Temperatur-Meßelement gebracht wird, sondern wenn diese Maßnahme auch für andere elektronische Bauteile im Steuergerät ergriffen wird, die temperaturabhängige Eigen¬ schaften aufweisen. Bisher bemühte man sich, temperaturabhän gige Eigenschaften von Steuergerätebauteilen durch besondere Kompensationsschaltungen oder durch Auswahl von Bauteilen mi geringem Temperaturgang zu begegnen. Z. B. wird eine mög¬ lichst wenig temperaturabhängige Referenzspannung mit einer Spezialschaltung erzeugt. Diese Schaltung kann erheblich ver einfacht werden, wenn die Temperatur temperaturabhängiger Bauteile bekannt ist und dann Temperatureinflüsse auf rech¬ nerischem Wege durch den in jedem Steuergerät vorhandenen Mikrocomputer kompensiert werden. Die Maßnahme, ein Tempera¬ tur-Meßelement in gutem Wärmekontakt mit elektronischen Bau- teilen anzuordnen, die temperaturabhängige Eigenschaften auf¬ weisen, ist also nicht nur in Zusammenhang mit einer Schaltun zum Messen des Innenwiderstandes einer Lambdasonde von Vor¬ teil. Die Maßnahme kann vielmehr auch bei solchen Steuergerä¬ ten angewandt werden, die über keine Schaltung zum Messen des Innenwiderstandes einer Lambdasonde verfügen.
Die Schaltung gemäß Fig. 2 unterscheidet sich von der gemäß Fig. 1 nur dadurch, daß das Thermoelement 20 mit dem zugehö¬ rigen Thermospannungsverstärker 21 nicht vorhanden sind und daß stattdessen zwischen den in Fig. 1 eingezeichneten Punk¬ ten P2.1 - P2.4 ein Schaltungsteil vorhanden ist, das zum Ausgleichen von Temperatureffekten dient. Dieses Schaltungs¬ teil verfügt über einen Kompensationstransistor 22, einen Kompensationsschalter 23, einen Umschalter 24 und zwei Kon¬ stantstromquellen, die durch zwei Widerstände R1 und R2 ge¬ bildet sind, die an die Versorgungsspannung +VS von z. B. 5 V angeschlossen sind. Der Kompensationsschalter 23 wird von einem Kompensationsschalterrelais 25 und der Umschalter 24 von einem Umschalterrelais 26 gesteuert. Diese erhalten ihre Ansteuersignale über Anschlüsse S2 bzw. S3 am Mikrocomputer 1 Als Kompensationstransistor 22 könnte auch der Lasttransi¬ stor 16 selbst verwendet werden, jedoch wären dann noch mehr Schalter erforderlich, als sie das Ausführungsbeispiel gemäß Fig. 2 erfordern. Es wird darauf hingewiesen, daß beim Aus¬ führungsbeispiel gemäß Fig. 2 das Lastschaltrelais 18 ohne weiteres auch das Schalten des Kompensationsschalters 23 vor¬ nehmen kann. In der praktischen Ausführung sind als Schalter zwei Transistoren vorhanden, deren Basis gemeinsam angesteuer wird.
Mit Hilfe des soeben erläuterten Schaltungsteiles läßt sich unter Ausnutzung von Gleichung (2) der Sperrstrom ISP berech¬ nen. Dazu wird ein konstanter Laststrom IL vom Wert IR1 ein- gestellt, d. h. ein Strom, dessen Stärke durch die Werte von Versorgungsspannung VS und erstem Widerstand R1 bestimmt ist. Die am Transistor abfallende Spannung wird als URT bezeichnet Aus Gleichung (2) errechnet sich mit Hilfe des bekannten Laststromes IR1 und der gemessenen Spannung UR1 der Sperr¬ strom ISP wie folgt:
ISP = IR1 x exp(-UR1/UT) (4)
Wenn der mit Hilfe von Gleichung (4) berechnete Wert für den Sperrstrom ISP in Gleichung (3) eingesetzt wird, ist dort nur noch eine nicht genau bekannte Größe enthalten, nämlich die Temperaturspannung UT. Für Messungen, die keine allzu hohe Genauigkeit verlangen, kann der Wert der Temperaturspan¬ nung UT auf einen mittleren Wert gesetzt werden, wie er z. B. für 20 °C gilt. Für genauere Messungen wird dagegen wie folgt weiterverfahren.
Nachdem die am Kompensationstransistor 22 abfallende Spannung UR1 beim Durchfließen eines konstanten Stromes IR1 gemessen worden ist, wird auch eine Spannung UR2 gemessen, die an ihm beim Durchfließen eines kosntaπten zweiten Stromes IR2 ab¬ fällt. Es gilt dann eine Gleichung entsprechend der Gleichung (4), nämlich:
ISP = IR2 x exp(-UR2/UT) (41)
Aus den Gleichungen (4) und (41) errechnet sich die Tempera¬ turspannung UT wie folgt:
UT = (UR2 - UR1)/LN(UR2/UR1) (5)
Der aus Gleichung (5) berechnete Wert für die Temperaturspan¬ nung UT kann-unmittelbar in Gleichung (3) eingesetzt werden. Außerdem wird der Wert der Temperaturspannung UT in Glei- chung (4) eingesetzt und der dadurch genau bestimmte Wert der Sperrspannung ISP wird zum Auswerten von Gleichung (3) ver¬ wendet. So läßt sich der Innenwiderstand RS genau bestimmen, ohne daß die Temperatur des Steuergerätes 19 selbst bekannt ist.
Statt eines Transistors kann als belastendes Bauteil auch ein anderes Sperrschicht-Bauteil verwendet werden, insbeson¬ dere eine Diode. Jedoch weisen Dioden den Nachteil auf, daß bei ihnen der Sperrstrom bauteilabhängig ist.

Claims

Ansprüche
1. Schaltung zum Messen des Innenwiderstandes einer Lambda¬ sonde (10) mit
- einem Lastwiderstands-Bautei1 und
- einem Schalter (17) zum wahlweisen Parallelschalten des Lastwiderstands-Bauteils zur Sonde, und
- einem Mittel (13) zum Messen der Sondenspannung in belaste¬ tem und unbelastetem Zustand, d adurch gekennze i chnet , daß
- das Lastwiderstands-Bautei1 ein Sperrschicht-Bauteil (T6) ist.
2. Schaltung nach Anspruch 1, dadurch gekennze i ch¬ net , daß das Sperrschicht-Bauteil ein Transistor (16) ist.
3. Schaltung nach Anspruch 2, d adu rch gekennze i ch ¬ net , daß das Sperrschicht-Bauteil ein npn-Transistor (16) ist, und daß die Basis und der Kollektor dieses Transistors zusammengeschaltet sind.
4. Schaltung nach einem der Ansprüche 1 - 3, gekenn¬ ze i chnet durch ein Temperatur-Meßelement (20) in gutem Wärmekontakt mit dem Sperrschicht-Bauteil (16), zum Messen der Temperatur des letzteren.
5. Schaltung nach Anspruch 4, d a d u r c h g e k e n n z e i c h ¬ n e t , daß das Temperatur-Meßelement in einem Steuerge¬ rät (19) in gutem Wärmekontakt mit elektronischen Bauteilen angeordnet ist, die temperaturabhängige Eigenschaften auf¬ weisen .
6. Schaltung nach einem der Ansprüche 1 - 3, g e k e n n ¬ z e i c h n e t d u r c h einen Kompensationstransistor (22), der in gutem Wärmekontakt mit dem belastenden Transistor (16) steht, zum Messen des temperaturabhängigen Transistorsperr¬ stroms.
7. Schaltung nach Anspruch 6, g e k e n n z e i c h n e t d u r c h eine erste Konstantstromquelle (VS + R1) zum Erzeugen eines konstanten Stromflusses mit einer ersten bekannten Strom¬ stärke durch den Kompensationstransistor (22).
8. Schaltung nach Anspruch 7, g e k e n n z e i c h n e t d u r c h eine zweite Konstantstromquelle (VS + R2) zum Erzeugen eines konstanten Stromflusses mit einer zweiten bekannten Strom¬ stärke durch den Kompensationstransistor (16), abwechselnd mit dem Stromfluß der ersten Stromstärke, zum Bestimmen der Temperaturspannung aus den bei den beiden Stromstärken am Kompensationstransistor abfallenden Spannungen.
PCT/DE1990/000006 1989-02-04 1990-01-10 Schaltung zum messen des innenwiderstandes einer lambdasonde WO1990008953A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019900701928A KR0169088B1 (ko) 1989-02-04 1990-01-10 람다 프로브의 내부 저항 측정 회로
BR909004929A BR9004929A (pt) 1989-02-04 1990-01-10 Circuito para a medicao da resistencia interna de uma sonda lambda

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP3903314.7 1989-02-04
DE3903314A DE3903314A1 (de) 1989-02-04 1989-02-04 Schaltung zum messen des innenwiderstandes einer lambdasonde

Publications (1)

Publication Number Publication Date
WO1990008953A1 true WO1990008953A1 (de) 1990-08-09

Family

ID=6373417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1990/000006 WO1990008953A1 (de) 1989-02-04 1990-01-10 Schaltung zum messen des innenwiderstandes einer lambdasonde

Country Status (8)

Country Link
US (1) US5091698A (de)
EP (1) EP0418329B1 (de)
JP (1) JP2810541B2 (de)
KR (1) KR0169088B1 (de)
BR (1) BR9004929A (de)
DE (2) DE3903314A1 (de)
ES (1) ES2046774T3 (de)
WO (1) WO1990008953A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4113316C2 (de) * 1991-04-24 2003-09-11 Bosch Gmbh Robert Anschlußschaltung für eine Lambdasonde und Prüfverfahren für eine solche Schaltung
DE4137626A1 (de) * 1991-11-15 1993-05-19 Bosch Gmbh Robert Anschlussschaltung fuer eine sauerstoffsonde und pruefverfahren fuer richtigen sondenanschluss
US5219228A (en) * 1992-05-11 1993-06-15 General Motors Corporation Exhaust gas temperature measuring system utilizing existing oxygen sensor
US5392643A (en) * 1993-11-22 1995-02-28 Chrysler Corporation Oxygen heater sensor diagnostic routine
DE4409708A1 (de) * 1994-03-22 1995-09-28 Teves Gmbh Alfred Schaltungsanordnung zur Aufbereitung und A/D-Wandlung eines analogen Signals
US5549280A (en) * 1995-06-06 1996-08-27 Vesuvius Crucible Company Probe system for reliably monitoring a condition in a metallurgical process
DE10029795C2 (de) 2000-06-16 2002-05-08 Siemens Ag Vorrichtung zum Messen des Innenwiderstandes einer linearen Lambdasonde
JP2004504609A (ja) 2000-07-13 2004-02-12 シーメンス アクチエンゲゼルシヤフト 線形のλセンサの内部抵抗を突き止めるための回路装置
DE10034060A1 (de) * 2000-07-13 2002-02-28 Siemens Ag Schaltungsanordnung zur Bestimmung des Innenwiderstandes einer linearen Lambdasonde
US6679238B2 (en) 2002-03-19 2004-01-20 General Motors Corporation Exhaust gas temperature determination and oxygen sensor heater control
US6856147B2 (en) * 2003-01-15 2005-02-15 Daimlerchrysler Corporation Resistive load measurement system
DE10331158B3 (de) * 2003-07-10 2005-08-25 Robert Bosch Gmbh Verfahren und elektronischer Schaltkreis eines elektrischen Kontaktes
DE102012213068A1 (de) * 2012-07-25 2014-01-30 Robert Bosch Gmbh Verfahren und Fehlersimulator zur Überprüfung der Fehlererkennung eines Steuergerätes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2744844A1 (de) * 1976-10-08 1978-04-13 Nissan Motor Verfahren und vorrichtung zur regelung des luft-brennstoff-gemisches einer brennkraftmaschine
DE3117790A1 (de) * 1981-05-06 1982-11-25 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und vorrichtung zur temperaturmessung bei sauerstoffsonden
US4609452A (en) * 1984-02-08 1986-09-02 Mitsubishi Denki Kabushiki Kaisha Engine air/fuel ratio sensing device
US4609453A (en) * 1984-02-08 1986-09-02 Mitsubishi Denki Kabushiki Kaisha Engine air/fuel ratio sensing device
EP0258543A2 (de) * 1986-08-23 1988-03-09 VDO Adolf Schindling AG Verfahren und Schaltungsanordnung zur Erkennung der Betriebsbereitschaft einer Sauerstoffmesssonde

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR880000160B1 (ko) * 1983-10-14 1988-03-12 미쓰비시전기 주식회사 기관의 공연비 제어 장치
DE3644472A1 (de) * 1986-10-30 1988-07-07 Vdo Schindling Verfahren und schaltungsanordnung zur erkennung der betriebsbereitschaft einer sauerstoffmesssonde

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2744844A1 (de) * 1976-10-08 1978-04-13 Nissan Motor Verfahren und vorrichtung zur regelung des luft-brennstoff-gemisches einer brennkraftmaschine
DE3117790A1 (de) * 1981-05-06 1982-11-25 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und vorrichtung zur temperaturmessung bei sauerstoffsonden
US4609452A (en) * 1984-02-08 1986-09-02 Mitsubishi Denki Kabushiki Kaisha Engine air/fuel ratio sensing device
US4609453A (en) * 1984-02-08 1986-09-02 Mitsubishi Denki Kabushiki Kaisha Engine air/fuel ratio sensing device
EP0258543A2 (de) * 1986-08-23 1988-03-09 VDO Adolf Schindling AG Verfahren und Schaltungsanordnung zur Erkennung der Betriebsbereitschaft einer Sauerstoffmesssonde

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Patent Abstracts of Japan, Band 10, Nr 60, P435, Zusammenfassung von JP 60-203846, YANMAR DIESEL K.K. publ 1985-10-15 *
Patent Abstracts of Japan, Band 7, Nr 133, M221, Zusammenfassung von JP 58- 48750, TOYOTA JIDOSHA KOGYO K.K. publ 1983-03-22 *
Patent Abstracts of Japan, Band 7, Nr 2, P166, Zusammenfassung von JP 57-163862, OKI DENKI KOGYO K.K. publ 1982-10-08 *
Patent Abstracts of Japan, Band 8, Nr 23, P251, Zusammenfassung von JP 58-179349, FUJI DENKI SEIZO. publ 1983-10-20 *

Also Published As

Publication number Publication date
US5091698A (en) 1992-02-25
DE59003140D1 (de) 1993-11-25
ES2046774T3 (es) 1994-02-01
EP0418329A1 (de) 1991-03-27
BR9004929A (pt) 1991-08-06
DE3903314A1 (de) 1990-08-09
EP0418329B1 (de) 1993-10-20
KR910700452A (ko) 1991-03-15
JPH03503935A (ja) 1991-08-29
KR0169088B1 (ko) 1999-03-30
JP2810541B2 (ja) 1998-10-15

Similar Documents

Publication Publication Date Title
DE19841202C1 (de) Temperatursensor
EP0525235B1 (de) Hallsensor mit Selbstkompensation
WO1990008953A1 (de) Schaltung zum messen des innenwiderstandes einer lambdasonde
EP0377600B1 (de) Verfahren, anwendung desselben und vorrichtung zur lambdawerterfassung
DE2237210A1 (de) Temperaturueberwachungsschaltung
EP1144958A1 (de) Verfahren und sensor zur messung eines massenflusses
DE102017123881A1 (de) System und Verfahren zur Temperaturerfassung und -steuerung resistiver Heizelemente
DE2917237A1 (de) Widerstands-fernabtastschaltung
DE19757258C2 (de) Sensor mit temperaturabhängigem Meßwiderstand und dessen Verwendung zur Temperaturmessung
DE102019101408B3 (de) Strommesseinrichtung, Strommessverfahren und Kalibrierungsverfahren
DE3322942C2 (de) Schaltung zur Messung der magnetischen Induktion mit einer Hall-Feldsonde
DE3832273A1 (de) Verfahren und anordnung zur bestimmung des waermewiderstandes von igbt-bauelementen
DE3311350A1 (de) Regeleinrichtung fuer die gemischzusammensetzung einer brennkraftmaschine
DE3626162A1 (de) Luft-kraftstoff-verhaeltnisermittlungssystem fuer ein motorauspuffgas
DE3836045A1 (de) Verfahren und vorrichtung zur lambdasonden-innenwiderstandsbestimmung und zur heizungsregelung mit hilfe des innenwiderstandes
EP0203350B1 (de) Temperaturmessvorrichtung zur Erfassung grosser Temperaturschwankungen
DE19722872B4 (de) Schaltung zur Messung des Elektrodenstroms eines keramischen Gassensors
EP1352255B1 (de) Vorrichtung zur bestimmung des innenwiderstandes einer linearen sauerstoffsonde
DE2710782C2 (de) Vorrichtung zur Messung von Temperaturdifferenzen
DE3330043C2 (de) Ladungsverstärkerschaltung
DE19855870B4 (de) Flußsensor der wärmeempfindlichen Art
DE102006030337A1 (de) Verfahren zur Steuerung einer Sitzheizung eines Fahrzeugsitzes, sowie Sitzheizung
DE3011499C2 (de) Spannungsprüfvorrichtung
DE2451281C3 (de) Meßverstärker
WO2002059588A1 (de) Vorrichtung und verfahren zum messen einer wärmeleitfähigkeit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990900079

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990900079

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990900079

Country of ref document: EP