WO1990008061A1 - Marine propulsion apparatus - Google Patents
Marine propulsion apparatus Download PDFInfo
- Publication number
- WO1990008061A1 WO1990008061A1 PCT/JP1990/000065 JP9000065W WO9008061A1 WO 1990008061 A1 WO1990008061 A1 WO 1990008061A1 JP 9000065 W JP9000065 W JP 9000065W WO 9008061 A1 WO9008061 A1 WO 9008061A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- propeller
- turbine
- marine propulsion
- blade
- turbine blade
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H5/00—Arrangements on vessels of propulsion elements directly acting on water
- B63H5/07—Arrangements on vessels of propulsion elements directly acting on water of propellers
- B63H5/08—Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
- B63H5/10—Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H1/00—Propulsive elements directly acting on water
- B63H1/02—Propulsive elements directly acting on water of rotary type
- B63H1/12—Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
- B63H1/14—Propellers
- B63H1/28—Other means for improving propeller efficiency
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H5/00—Arrangements on vessels of propulsion elements directly acting on water
- B63H5/07—Arrangements on vessels of propulsion elements directly acting on water of propellers
- B63H5/08—Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
- B63H5/10—Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type
- B63H2005/103—Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type of co-rotative type, i.e. rotating in the same direction, e.g. twin propellers
Definitions
- the present invention relates to a marine propulsion device.
- a tandem piper Japanese Patent Application Laid-Open No. 57-205297
- at least two sets of propellers are attached to the propulsion shaft with the propulsion shaft separated from the front and rear, the front and rear propeller diameters
- Tandem propellers Japanese Utility Model Application Laid-Open No. 56-30195, Japanese Utility Model Application Laid-open No. 57-139500
- propeller labs with fins Japanese Patent Application Laid-Open No. 63-154494
- the direction of the induced velocity induced by the front propeller accelerates the flow behind the propeller axis, and the direction of rotation is the same as the direction in which the propeller rotates in the same direction as the rotation direction.
- the efficiency of the rear propeller operating in the wake must be poor. For this reason, it was difficult to improve propeller efficiency with tandem propellers.
- tandem propeller will be outlined with reference to FIGS. 9 to ⁇ and FIGS. 30 to 31.
- Fig. 9 shows a view of one propeller wing viewed from the rudder side. Let the radius of the propeller be R and the arbitrary radius position be r.
- Fig. 10 shows the exploded view.
- Propeller blades have a pitch similar to screws, and have a pitch angle to the direction of rotation (the so-called Nose-Tail Line, which connects the front of the wing and the rear of the wing, defines the pitch plane).
- the cross section of the wing has a chamber in front of the propeller (see Fig. 11).
- the lift L acts at right angles to the water inflow direction, and its forward component is the thrust T and its rotational component is the rotational resistance F.
- V 0 ⁇ T / F cot ⁇ i (2)
- the guidance speed of the front propeller is added to be placed in the wake of the front propeller (the propeller guidance speed is accelerated and becomes faster as going backward).
- the induction speed of the propeller itself is added, and /? I becomes i "as shown in Fig. 31.
- the rotational torque transmitted from the engine can be absorbed by the sum of the front and rear propellers. Since the propeller diameter, pitch, etc. are changed, it is not possible to conclude the improvement of efficiency only with the above explanation.However, the induction speed of the front and rear propellers has an adverse effect on each other, and the propeller efficiency is improved. The obvious is clear.
- Figs. 20 and 21 show the values obtained when the propeller designed for a medium-speed ship is rotating in a uniform flow using the propeller lifting surface theory and the infinite blade number theory. Is indicated by a solid line.
- Fig. 20 shows the distribution in the radial direction at the propeller position
- W x is the propeller guidance speed that is sucked into the propeller and swept backward
- W e is the rotation of the propeller in the rotation direction.
- Propeller induction speed It can be seen that both W x and We are rapidly accelerated at the propeller position.
- FIGS. 23 and 24 show the radial distribution of thrust reduction and rotational resistance torque increase (propeller lifting surface theoretical calculation results) corresponding to the propeller guidance speed in Fig. 20.
- the solid line is the result during uniform flow, and the broken line is the result during wake.
- the thrust reduction due to the induction speed of the probe is In the wake, it increases to 10% of the propeller thrust, compared to 4% of the force.
- Both the rotational resistance torque and the increase due to the propeller induction speed are 21% of the whole in the uniform flow, but are increased to 28% in the wake. From FIGS.
- Japanese Patent Application Laid-Open Publication No. 63-154494 discloses a fin-mounted perabo-cap (hereinafter abbreviated as PBCF) provided with a rectifying fin on a propeller-boacap.
- PBCF perabo-cap
- This rectifying fin acts as a rectifying plate to guide the water flow in the wake of the propeller boss trap in a direction to reduce the generation of hub vortices, and the hub vortices are diffused to form vortices on the propeller blade surface. It is said that the induced drag is reduced, but as mentioned above, the propeller efficiency depends on the propeller guidance speed, especially in the uneven stern wake. Without this, the effect cannot be sufficiently achieved.
- the present invention was devised in order to solve the above-mentioned problems of the prior art.Firstly, it was attempted to improve the propeller efficiency by installing a turbine blade behind the propeller blade and to reduce the torque. Aim.
- the basic difference between a propeller and a turbine is that the former is a device that gives energy to a fluid and generates propulsion by the reaction force, whereas the latter is a device that rotates from the energy of the fluid. Devices that drive Also occurs in the opposite direction. Focusing on this fundamental difference, the above-mentioned first object was achieved.
- the turbine blade when the turbine blade is mounted on the rear side of the propeller blade, the turbine blade is created separately from the propeller boss and the propeller cap, and the turbine blade is formed between the propeller boss or the boss and the pier cap.
- the second object is to provide a marine propulsion device with turbine blades by using the existing cap as it is for the existing propeller by detachably mounting it on the propeller.
- the present invention employs the following technical means to achieve the first object.
- the present invention relates to a marine propulsion device in which a propeller blade 2 and a turbine blade 3 are mounted on a propeller shaft 1, wherein the propeller blade 2 is mounted on a front side and the turbine blade 3 is mounted on a rear side.
- the shaft lengths of the turbine blades 3 are assumed to be 6% or more, the number of turbine blades 3 is an integral multiple of the number of blades of the propeller blades 2, and the diameter of the turbine blades 3 is smaller than that of the propeller blades 2.
- Marine propulsion characterized by a diameter of 33 to 60%.
- the axial length ⁇ is a value (%) obtained by dividing the distance between the center lines of the two wings 2 and 3 by the diameter of the opening propeller.
- the present invention is the pitch angle e T of the pitch angle 6 [rho and turbine blades 3 of a propeller blade 2 is, 0. 3 ⁇ r / R ⁇ 0. At the position of 6 5 ⁇ ⁇ ⁇ p + 20 . By doing so, You have achieved 1 objectives.
- the present invention employs the following technical means to achieve the second object.
- the turbine blade 3 mounted on the rear side of the propeller blade 2 has a flange 13A at its base, and the flange 13A is detachably screwed onto the outer periphery of the port Peravos 2A.
- the turbine blade 3 mounted on the rear side of the propeller blade 2 has a ring 3A at its base, and the ring 3A is connected to the propeller boss 2A and the propeller cap 4 behind the boss 2A. It is characterized in that it is interposed between it and it in a removable manner.
- the turbine blade 3 is characterized by being integrally formed with the ring 3A.
- the turbine blade 3 is detachably attached to the ring 3A via a screw fastening means.
- the turbine blade 3 is characterized in that it is detachably fitted into an axial groove 3B formed on the outer periphery of the ring 3A along the axial direction.
- FIG. 1 is a front view showing an embodiment of the present invention
- FIG. 2 is a side view similarly
- FIG. 3 is a flow field diagram of a wing cross section of a front propeller according to the embodiment of the present invention
- FIG. The figure also shows the cross-sectional flow diagram of the rear turbine blade, respectively.
- Fig. 5 is an explanatory diagram showing the front-rear positional relationship between the propeller blade and the turbine blade
- Fig. 6 is the propeller efficiency
- a graph showing the relationship between the amount of turbine and the turbine blade position
- Fig. 7 is a graph showing the relationship between the propeller efficiency increase and the number of turbine blades
- Fig. 8 is a propeller efficiency increase.
- Fig. 5 is an explanatory diagram showing the front-rear positional relationship between the propeller blade and the turbine blade
- Fig. 6 is the propeller efficiency
- a graph showing the relationship between the amount of turbine and the turbine blade position
- Fig. 7 is a graph showing the relationship between the propeller efficiency
- FIG. 9 is a front view of one propeller blade
- Fig. 10 is a flow field diagram of a cross section of a propeller blade
- Fig. 11 is a graph of a cross section of a propeller blade.
- Fig. 12 and Fig. 13 are side views of the essential parts showing two embodiments of the present invention in which a turbine wing is interposed between the propeller cap and the propeller cap
- Fig. 17 is a front view showing three examples of mounting the turbine blades on the ring.
- Fig. 17 is a side view of the main part where a turbine blade is mounted on a propeller boss via a flange.
- Fig. 18 is a flanged version.
- Fig. 17 is a side view of the main part where a turbine blade is mounted on a propeller boss via a flange.
- Fig. 18 is a flanged version.
- e P in FIG. 24 is a graph showing the radial distribution of the rotational resistance torque increase due to the propeller induced velocity
- FIG. 25 medium speed marine propeller uniform flow is Comparison graph of ⁇ T i- , Fig.
- FIG. 26 is a comparison graph of 0 F and T i in the wake of a medium-speed ship propeller
- Fig. 27 is ⁇ ? And 9 T in the wake of another medium-speed ship propeller.
- Figure 29 is a graph showing the relationship between the zero-lift angle and key Yanba ratio
- Fig. 31 is a flow field diagram of the cross section of the wing of the front propeller of the tandem propeller.
- Fig. 31 is a flow field diagram of the cross section of the wing of the rear propeller.
- a propeller shaft 1 has a propeller blade 2 mounted on a front side (a traveling direction side or a hull side) and a turbine blade 3 mounted on a rear side, and the axial length of the two wings 2 and 3 is shown.
- £ (see Fig. 5) is 6% or more, the number of turbine blades 3 is an integral multiple of the number of propeller blades 2, and the diameter of turbine blades 3 is smaller than the diameter of propeller blades 2.
- the marine propulsion device is shown as 33-60%.
- 2A indicates propeller boss and 4 indicates cap.
- the axial length is a value (%) obtained by dividing the distance between the center lines of the two wings 2 and 3 by the diameter of the opening propeller (see FIG. 5).
- the geometry of the propeller blades 2 and turbine blades 3 is higher in pitch and
- 0 is the zero lift angle of the wing cross section (the angle between the water inflow direction and the pitch plane when the lift becomes zero). The forward is positive, the backward is negative, and the rear is negative. Zero means zero.
- propeller The basic difference between a propeller and a turbine is that the former (probe) is a device that gives energy to the fluid and gives propulsion by the reaction force, while the latter (turbine) is It is a device that receives rotational torque from the energy of
- Fig. 3 and Fig. 4 show the flow fields at the cross section of the front propeller and the rear turbine blade of the propeller with turbine blades.
- a thrust ⁇ ⁇ ' is obtained by applying a rotational torque equivalent to the rotational resistance F ⁇ '
- a thrust as shown in Fig. 4 is obtained with a turbine blade.
- the rolling resistance becomes a car F T " that reduces it.
- the thrust is generated by a propeller, and the turbine blade only functions as an auxiliary wing that reduces the rotational resistance torque by extracting energy from the wake of the propeller.
- the propeller with a turbine wing is completely different from a tandem propeller. It can be said that.
- the induction speed of the turbine blade is generated in a direction completely opposite to that of the propeller. While the propeller induction speed is sucked into the propeller and rotates in the propeller rotation direction, the turbine blade induction speed pushes the flow forward and rotates in the opposite direction to the propeller rotation.
- the turbine wing can be designed to meet The rates are even better. Ti is small at the front side of the propeller, and if a turbine blade is placed behind the propeller, the propeller guidance speed is accelerated and Ti becomes large, which is effective. Furthermore, when the wake of the propeller collides with the turbine blade surface, the turbine blade becomes a solid wall, and the effect of damping the wake of the propeller is also considered. In particular, if the turbine blade is placed in the wake of the propeller or while the propeller guidance speed is accelerating, the damming effect will be greater.
- the efficiency of the propeller with turbine blades in the wake was changed by changing the number of blades, diameter, etc. of the turbine blades located behind. Calculated by lifting surface theory. For the front and rear positions of the turbine blade, the distance from the propeller center line to the turbine center line measured on the boss surface is divided by the propeller diameter, and the value when the turbine blade is placed behind the propeller is shown. Be positive (see Fig. 5). The turbine blade diameter is displayed as a percentage of the propeller diameter.
- Tables 1 and 6 show the results obtained by changing the turbine blade number to 4 blades, changing the diameter to 45% of the propeller diameter, and changing the turbine blade position to 0%, 13%, and 20%. Shown in the figure.
- ⁇ ⁇ is the thrust coefficient (-TZ pn ⁇ D p- : T: thrust, p: water Density, n: propeller speed, D P:.
- the turbine blade position is 13%, the turbine blade number is 4 blades, and the turbine blade diameter is 25%, 35%, 45%, 55
- Table 3 and Figure 8 show the results when the value was changed to 65%. From these charts, it can be seen that increasing the diameter of the turbine blade increases the amount of efficiency increase, while increasing it too much decreases the efficiency.
- a turbine blade can be obtained by determining the pitch and camber of the rear blade so as to satisfy Equation (4) .However, when Equation ( 4 ) is rewritten using the symbols in Fig. 4, the following equation is obtained. .
- the pitch angle ⁇ of the rear wing is made to coincide with the direction ⁇ Ti of the wake of the propeller, the induction speed by the rear wing becomes zero, and ' Ti is equal to Ti .
- the pitch angle of the flat rear wing is
- the rear blade is a turbine blade.
- FIGS. 25 to 28 show the comparison results of the T i using a propeller lifting surface theory and endless blades number theory, compared to ⁇ pitch angle of the propeller.
- Fig. 25 shows the result of the middle-speed ship propeller in uniform flow
- Fig. 26 shows the result of the same propeller wake as in Fig. 25,
- Fig. 27 shows the result of another medium-speed ship propeller.
- Figure 28 shows the results during the wake of a high-speed propeller.
- Equation (11) is for a flat plate.
- FIGS. 12 to 19 installation of turbine blade 3 (Attachment) Some embodiments of the means are illustrated.
- Figs. 12 and 13 show the ring 3A provided at the base of the turbine blade 3 on the propeller shaft 1 with the ring interposed between the propeller boss 2A and the propeller cap 4 behind the boss. In this case, propeller boss 2A, ring 3A and cap 4 are fastened together by bolt 5 in Fig. 12.
- Fig. 12 and 13 show the ring 3A provided at the base of the turbine blade 3 on the propeller shaft 1 with the ring interposed between the propeller boss 2A and the propeller cap 4 behind the boss. In this case, propeller boss 2A, ring 3A and cap 4 are fastened together by bolt 5 in Fig. 12.
- Fig. 12 and 13 show the ring 3A provided at the base of the turbine blade 3 on the propeller shaft 1 with the ring interposed between the propeller boss 2A and the propeller cap 4 behind the boss. In this case, propeller boss 2A, ring
- FIG. 13 shows an example in which a ring 3A is fastened to a propeller boss 2A with a bolt 6 and a cap 4 is fastened to a ring 3A with a bolt 7.
- the bolts 5, 6, 7 are fastened using the bolt insertion holes 3C formed in the ring 3A in the axial direction in a radial arrangement.
- FIG. 17 to 19 show an embodiment in which the turbine blade 3 is detachably mounted on the outer peripheral surface of the propeller boss 2A by screw fastening means.
- the turbine blade 3 has a fastening hole 13B at its base.
- the flange 13A has a flat plate shape, and the flange 13A is superimposed on the outer peripheral surface of the propeller boss 2A, and the bolt 13C is passed through each of the fastening holes 13B, and each bolt 13C is fastened to the female screw formed on the boss. It becomes.
- FIGS. 14 to 16 show the relationship between the ring 3A and the turbine blade 3, and FIG. 14 shows that a groove 3B is formed in the axial direction at the outer radial position of the ring 3A.
- a dovetail-shaped projection 3D formed on the base of the turbine blade 3 in a state where the base end surface of the turbine blade 3 is superimposed on the outer peripheral surface of the ring 3A is fitted into the groove 3B from the axial direction.
- the projection 3D Axial restrictions are enforced by Propeller Boss 2 A and Propeller Cap 4.
- FIG. 15 shows an embodiment in which the turbine blade 3 and the ring 3A are integrally formed by a metal or welding.
- the turbine blade 3 and the flange 13A are integrally formed in the same manner as described above.
- FIG. 16 shows an embodiment in which a mounting hole 3E is formed in a ring 3A in a radial arrangement, a projection 3D having a screw portion is passed through the mounting hole 3E, and a nut 8 is used to fasten the screw. .
- the ring 3A can be a split ring, and the turbine blade 3 can be provided with mounting angle adjusting means.
- turbine blade 3 and the ring 3A or the flange 13A can be made of the same material (for example, copper alloy) as the mouth prop or a composite material such as FRP.
- the present invention is as described above, and the turbine blade is provided behind the propeller blade.Therefore, as the propeller guiding speed increases, that is, as the flow to the rear of the propeller shaft increases, the squeezing occurs in the rotation direction. The larger the flow is, the more effective it is, and here the propeller efficiency can be improved.
- the turbine blade has a flange or ring at the base.
- the flanges on the outer periphery of the propeller boss or the ring between the boss and the flapper cap are detachable, so that the existing cap can be used for the existing propeller as it is.
- the propulsion device with turbine blades can be retrofitted at low cost, and the appropriate thickness of the ring allows the turbine blades to be installed in an integrated, welded, inset, bolted, etc. It is much freer and easier to design and manufacture.
- the present invention can be used for a marine propulsion device in which a propeller shaft and a turbine blade are mounted on a propeller shaft.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Hydraulic Turbines (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
This invention relates to a marine propulsion apparatus. To improve propeller efficiency by utilizing the flow in the backward direction of a propeller shaft and the flow turning in the rotating direction of the propeller, the present invention provides a marine propulsion apparatus which has propeller vanes (2) and turbine vanes (3) fitted to the propeller shaft (1). The propeller vanes (2) are fitted on the front side and the turbine vanes (3), on the rear side, and an axial length (l) obtained by dividing the distance between the center lines of both vanes (2) and (3) by the diameter of the propeller is at least 6 % and the number of turbine vanes (3) is integral multiples of the number of propeller vanes (2). Furthermore, the diameter of the turbine vanes (3) is 33 to 60 % of the diameter of the propeller vanes (2) and the pitch angle ($g(U)p?) of the propeller vanes (2) and the pitch angle ($g(U)T?) of the turbine vanes (3) satisfy the relation $g(U)T? $g(U)p? + 20 at the position satisfying the relation 0.3 r/R 0.6.
Description
明 i Akira i
舶 用 推 進 装 置 技 術 分 野 Marine propulsion equipment technology
本発明は、 舶用推進装置に関する。 The present invention relates to a marine propulsion device.
背 景 技 術 Background technology
舶用推進器 (装置) と して、 少な く とも 2組のプロぺ ラを前後に離間させて推進軸に取付けたタ ンデムプ πぺ ラ (特開昭 57— 205297号公報) 、 前後のプロペラ直径の 比率を変えているタ ンデムプロペラ (実開昭 56— 301 95 号公報、 実開昭 57— 139500号公報) およびフィ ン付プロ ペラボスキ ャ ッ プ (特開昭 63— 154494号公報) 等がある , 前述のタンデムプロペラでは、 前側のプロペラによつ て誘起される誘導速度の方向がプロペラ軸後方に流れを 加速し、 また、 回転方向と同じ方向につれまわる方向で あるために、 この前側プロペラの後流中で作動する後側 プロペラの効率は悪く ならざるをえない。 このため、 タ ンデムプロペラによるプロペラ効率の改善はむずかしい ものであった。 As a marine propulsion device (device), a tandem piper (Japanese Patent Application Laid-Open No. 57-205297) in which at least two sets of propellers are attached to the propulsion shaft with the propulsion shaft separated from the front and rear, the front and rear propeller diameters Tandem propellers (Japanese Utility Model Application Laid-Open No. 56-30195, Japanese Utility Model Application Laid-open No. 57-139500) and propeller labs with fins (Japanese Patent Application Laid-Open No. 63-154494). In the tandem propeller described above, the direction of the induced velocity induced by the front propeller accelerates the flow behind the propeller axis, and the direction of rotation is the same as the direction in which the propeller rotates in the same direction as the rotation direction. The efficiency of the rear propeller operating in the wake must be poor. For this reason, it was difficult to improve propeller efficiency with tandem propellers.
すなわち、 第 9〜; Π図および第 30図〜第 31図を参照し てタ ンデムプロ ペラ について概説する。 That is, the tandem propeller will be outlined with reference to FIGS. 9 to Π and FIGS. 30 to 31.
第 9図にプロペラの 1翼を舵側から見た図を示す。 プ 口ペラ半径を R、 任意の半径位置を r とする。 Fig. 9 shows a view of one propeller wing viewed from the rudder side. Let the radius of the propeller be R and the arbitrary radius position be r.
プロペラ翼を半径 r の円筒で切って切り 口を平面に延
ばした図を第 10図に示す。 プロペラ翼はネジと同じよう にピッチがあり、 回転方向に対してピッチ角 (翼の前 緣と翼の後緣を結んだいわゆる Nose- Tail Lineでピッチ 面を定義する) がついている。 また、 翼の断面にはプロ ペラ前方向にキャ ンバ一がついている (第 11図参照) 。 プロペラが面転し、 前進した場合、 水は回転方向に対 して i の方向から入って く る (なお、 第 10図中、 プロ ペラ誘導速度とは、 プロペラの回転、 前進運動によって 誘起される水の流れであり、 プロペラに吸い込まれ、 か つプロペラ面転方向につれまわる) 。 翼に働く揚力 Lは、 Θ と β i の差、 すなわち仰角 ー i が大きい程、 また 翼断面のキャンバーが大きい程大き く なる。 Cut the propeller blade with a cylinder of radius r and extend the cut Fig. 10 shows the exploded view. Propeller blades have a pitch similar to screws, and have a pitch angle to the direction of rotation (the so-called Nose-Tail Line, which connects the front of the wing and the rear of the wing, defines the pitch plane). The cross section of the wing has a chamber in front of the propeller (see Fig. 11). When the propeller turns and moves forward, water enters from the direction of i in the direction of rotation. (In Fig. 10, the propeller guided speed is induced by the rotation and forward movement of the propeller. Flow of water that is drawn into the propeller and stumbled in the direction of the propeller plane rotation). The lift L acting on the wing increases as the difference between Θ and β i, that is, as the elevation angle -i increases, and as the camber of the wing cross section increases.
また、 揚力 Lは水の流入方向に直角に働き、 その前進 方向成分が推力 T、 回転方向成分が回転抵抗力 F となる。 The lift L acts at right angles to the water inflow direction, and its forward component is the thrust T and its rotational component is the rotational resistance F.
Τ = L cos β i Τ = L cos β i
(1)式 (1 set
F = L sin ^ i F = L sin ^ i
エンジンから伝えられる回転トルク と回転抵抗 トルク Q = F X rが釣り合うようにピッチとキャ ンバーが決め られ、 プロペラ効率 はこの推力と回転抵抗力の比 TZFが大きい程良い。 The pitch and camber are determined so that the rotation torque and the rotation resistance torque Q = F X r transmitted from the engine are balanced, and the propeller efficiency is better as the ratio TZF between the thrust and the rotation resistance is larger.
V 0 ∞ T/ F =cot β i (2)式 V 0 ∞ T / F = cot β i (2)
次にタンデムプロペラについて考える。 タ ンデムプロ ペラの場合、 前側プロペラば後側プロペラの前方におか れるために、 後側プロペラによる誘導速度が加わり、 第 30図に示すように ^ i は少し大き く なつて i' となる。
その結果、 (2)式からわかるよ う に ?? o は小さ く なり、 プ 口ペラ効率は悪 く なる。 Next, consider a tandem propeller. In the case of a tandem propeller, since the front propeller is located in front of the rear propeller, the guidance speed of the rear propeller is added, and as shown in Fig. 30, ^ i becomes slightly larger and becomes i '. As a result, as can be seen from equation (2)? ? o becomes smaller and the propeller efficiency becomes worse.
後側プロペラについても同様に、 前側プロペラの後流 中におかれるために前側プロペラによる誘導速度が加わ り (プロペラ誘導速度は加速されて後方にい く ほど速 く なる) 、 さ らに後側プロペラ 自体による誘導速度が加え られて第 31図に示すよう に /? i は大き く i "となる。 ェ ンジ ンから伝えられる回転 トルクを前後のプロペラ合計 で吸収すれば良く 、 また、 前後のプロペラの直径、 ピッ チ等を変化させう るので、 以上の様な説明のみで効率改 善について結論づけられないが、 前後のプ口ペラの誘導 速度が相互に悪影響してプロペラ効率が改善されに く い こ とは明らかである。 Similarly, for the rear propeller, the guidance speed of the front propeller is added to be placed in the wake of the front propeller (the propeller guidance speed is accelerated and becomes faster as going backward). The induction speed of the propeller itself is added, and /? I becomes i "as shown in Fig. 31. The rotational torque transmitted from the engine can be absorbed by the sum of the front and rear propellers. Since the propeller diameter, pitch, etc. are changed, it is not possible to conclude the improvement of efficiency only with the above explanation.However, the induction speed of the front and rear propellers has an adverse effect on each other, and the propeller efficiency is improved. The obvious is clear.
次にプロペラ誘導速度、 と く に船尾伴流中におけるプ 口ペラ誘導速度とプロペラ効率との関係について、 プロ ペラ揚力面理論と無限翼数理論による計算例を用いて検 討する。 プロペラ誘導速度の大き さ は、 プロペラの半径 位置あるいは前後位置で異なる。 一例と して、 中速船用 に設計されたプロペラが一様な流れの中で回転している 時の値をプロペラ揚力面理論と無限翼数理論により求め た結果を第 20図、 第 21図に実線で示している。 第 20図は プロペラ位置における半径方向の分布形であり、 第 21図 は r / R = 0 . 3 における前後方向の分布形である。 図中 W x はプ αペラに吸い込まれ、 後方に掃き出されるプロ ペラ誘導速度であり、 W e はプロペラ回転方向につれ回
るプロペラ誘導速度である。 Wx , W e ともプロペラ位 置で急激に加速されていることがわかる。 Next, the relationship between the propeller guiding speed, especially the propeller guiding speed in the stern wake and the propeller efficiency will be discussed using calculation examples based on propeller lifting surface theory and infinite blade number theory. The magnitude of the propeller guidance speed differs depending on the radius position of the propeller or the front-back position. As an example, the values obtained when the propeller designed for a medium-speed ship is rotating in a uniform flow using the propeller lifting surface theory and the infinite blade number theory are shown in Figs. 20 and 21. Is indicated by a solid line. Fig. 20 shows the distribution in the radial direction at the propeller position, and Fig. 21 shows the distribution in the front-rear direction at r / R = 0.3. In the figure, W x is the propeller guidance speed that is sucked into the propeller and swept backward, and W e is the rotation of the propeller in the rotation direction. Propeller induction speed. It can be seen that both W x and We are rapidly accelerated at the propeller position.
実際にはプロペラは複雑な船尾水流中で作動するので プロペラ誘導速度も変化する。 船尾のプロペラ位置にお ける流れについて考えると、 水に粘性があるために船体 表面近傍の水が船にひっぱられて、 プロペラ位置での流 れは船速 Vs より も少し遅く Vs(l— W)となる。 Vs.W が船に引っぱられる氷の速度であり、 この流れを伴流と 呼び、 Wを伴流係数と呼ぶ。 伴流はプロペラ円板内にお いて不均一な分布をしている。 (この分布を伴流分布と 呼ぶ。 ) 中速船の伴流分布を第 22図に示す。 一般商船で は通常第 22図のように、 中心部で伴流が大き くて流れが 遅く、 翼先端側程伴流が小さ くて流れが速く なっている c この伴流中でプロペラが回転している時のプロペラ誘導 速度の計算結果を第 20図、 第 21図中に破線で示している < 一様流中と比較して伴流中では、 伴流が大きい r /R = 0.2 〜 r R =0.6 の範囲でプロペラ誘導速度が大幅に 増加することがわかる。 In practice, propellers operate in a complex stern stream, so propeller guidance speed also varies. Considering the flow at the stern propeller position, the viscous water causes the water near the hull surface to be pulled by the ship, and the flow at the propeller position is slightly slower than the ship speed Vs Vs (l—W ). Vs.W is the speed of the ice being pulled by the ship, this flow is called the wake, and W is the wake coefficient. The wake is unevenly distributed in the propeller disk. (This distribution is called the wake distribution.) Figure 22 shows the wake distribution of a medium-speed ship. As in the normal Fig. 22 in merchant ships, slow flow wakes rather large propeller c in this wake in the wake higher blade tip side is the rather small flows are faster rotation at the center The calculation results of the propeller guidance speed during the wake are shown by broken lines in Fig. 20 and Fig. 21 <The wake is larger in the wake than in the uniform flow r / R = 0.2 to It can be seen that the propeller induction speed greatly increases in the range of rR = 0.6.
プロべラ誘導速度はプロぺラの推力の低下及び回転抵 抗 トルクの増大、 すなわちプロペラ効率の低下をもたら す。 第 20図のプロペラ誘導速度に対応した推力低下量と 回転抵抗トルク増加量の半径方向分布形 (プロペラ揚力 面理論計算結果) を第 23図、 第 24図に示す。 実線が一様 流中の結果であり、 破線が伴流中の結果である。 プロべ ラ誘導速度による推力低下量は、 一様'流中、 プ πペラ推
力の 4 %であるのに対して、 伴流中ではプロペラ推力の 1 0 %に増大している。 プロペラ誘導速度による回転抵抗 トルク も増加量も、 一様流中、 全体の 21 %であるのに対 して、 伴流中では 28 %に増えている。 第 23図、 第 24図か ら、 それらはいずれも伴流の大きい範囲に対応した r = 0 . 2 〜 r R = 0 . 6 に集中していることがわかる。 特開昭 63— 154494号公報で開示されているフィ ン付プ 口ペラボスキャ ップ (以下、 P B CFと略称する) は、 プロ ペラボスキャ ップに整流フ ィ ンを設けたものである。 こ の整流フ ィ ンがプロ ペラ ボスキ ヤ ッ プ後流における水流 をハブ渦の発生を減らす方向に案内するための整流板の 作用をし、 ハブ渦が拡散されてプロペラ翼面上の渦によ る誘起抗力が減少するとされているが、 前述する様にプ 口ペラ効率はプロペラ誘導速度、 と く に不均一な船尾伴 流中におけるプロペラ誘導速度に依存するものであり、 この点を解決することな く しては充分にその効果を達成 することが出来ないものである。 Propeller induction speed results in reduced propeller thrust and increased rotational resistance torque, ie, reduced propeller efficiency. Figures 23 and 24 show the radial distribution of thrust reduction and rotational resistance torque increase (propeller lifting surface theoretical calculation results) corresponding to the propeller guidance speed in Fig. 20. The solid line is the result during uniform flow, and the broken line is the result during wake. The thrust reduction due to the induction speed of the probe is In the wake, it increases to 10% of the propeller thrust, compared to 4% of the force. Both the rotational resistance torque and the increase due to the propeller induction speed are 21% of the whole in the uniform flow, but are increased to 28% in the wake. From FIGS. 23 and 24, it can be seen that both of them are concentrated at r = 0.2 to rR = 0.6 corresponding to the range of a large wake. Japanese Patent Application Laid-Open Publication No. 63-154494 discloses a fin-mounted perabo-cap (hereinafter abbreviated as PBCF) provided with a rectifying fin on a propeller-boacap. This rectifying fin acts as a rectifying plate to guide the water flow in the wake of the propeller boss trap in a direction to reduce the generation of hub vortices, and the hub vortices are diffused to form vortices on the propeller blade surface. It is said that the induced drag is reduced, but as mentioned above, the propeller efficiency depends on the propeller guidance speed, especially in the uneven stern wake. Without this, the effect cannot be sufficiently achieved.
本発明は上述した従来技術の問題点を解決するために 案出されたものであり、 プロペラ翼の後方にタービン翼 を取付けてプロペラ効率を改善するとともに ト ルク減少 を図ったことを第 1 の目的とする。 The present invention was devised in order to solve the above-mentioned problems of the prior art.First, it was attempted to improve the propeller efficiency by installing a turbine blade behind the propeller blade and to reduce the torque. Aim.
すなわち、 プロペラとター ビ ンの基本的な違いは、 前 者は流体にエネルギーを与えてその反力により推進力を う る装置であるのに対して、 後者は流体のもつエネルギ 一から回転 ト ルクをう る装置であり、 それらの誘導速度
も全く逆方向に生じる。 この基本的相違に着目して前述 の第 1 の目的を達成したのである。 In other words, the basic difference between a propeller and a turbine is that the former is a device that gives energy to a fluid and generates propulsion by the reaction force, whereas the latter is a device that rotates from the energy of the fluid. Devices that drive Also occurs in the opposite direction. Focusing on this fundamental difference, the above-mentioned first object was achieved.
本発明は、 プロペラ翼の後側にタービン翼を装着する に当って、 タービン翼をプロペラボス、 プロペラキヤ ッ プとは別に作成して、 プロペラボス又は、 該ボスとプ口 ペラキャ ップとの間に着脱自在に取付けることによって 既存のプロペラに対して既存のキヤ ップをそのまま使用 してタービン翼付の舶用推進装置を提供することを第 2 の目的とする。 According to the present invention, when the turbine blade is mounted on the rear side of the propeller blade, the turbine blade is created separately from the propeller boss and the propeller cap, and the turbine blade is formed between the propeller boss or the boss and the pier cap. The second object is to provide a marine propulsion device with turbine blades by using the existing cap as it is for the existing propeller by detachably mounting it on the propeller.
—発 明 の 開 示 本発明は、 前述の第 1 の目的を達成するために、 次の 技術的手段を講じている。 —Disclosure of Invention The present invention employs the following technical means to achieve the first object.
すなわち、 本発明は、 プロペラ軸 1 に、 プロペラ翼 2 とタービン翼 3 とを装着した舶用推進装置であって、 前記プロペラ翼 2 が前側でタービン翼 3 が後側に装着 されており、 前記両翼 2 , 3 の軸長 £が 6 %以上とされ、 タービン翼 3 の翼数はプロペラ翼 2 の翼数の整数倍とさ れており、 更に、 タ―ビン翼 3 の直径はプロペラ翼 2 の 直径の 33〜 60 %とされていることを特徴とする舶用推進 但し、 前記軸長 ^は、 両翼 2 , 3 の中央線間の距離をプ 口ペラ直径で割った値(%)である。 That is, the present invention relates to a marine propulsion device in which a propeller blade 2 and a turbine blade 3 are mounted on a propeller shaft 1, wherein the propeller blade 2 is mounted on a front side and the turbine blade 3 is mounted on a rear side. The shaft lengths of the turbine blades 3 are assumed to be 6% or more, the number of turbine blades 3 is an integral multiple of the number of blades of the propeller blades 2, and the diameter of the turbine blades 3 is smaller than that of the propeller blades 2. Marine propulsion characterized by a diameter of 33 to 60%. However, the axial length ^ is a value (%) obtained by dividing the distance between the center lines of the two wings 2 and 3 by the diameter of the opening propeller.
また、 本発明は、 プロペラ翼 2 のピッチ角 6 Ρ とター ビン翼 3 のピッチ角 e T が、 0. 3≤ r / R≤0. 6 の位置 において 5 τ ≤ Θ p + 20。 にすることにより、 前述の第
1 の目的を達成している。 Further, the present invention is the pitch angle e T of the pitch angle 6 [rho and turbine blades 3 of a propeller blade 2 is, 0. 3≤ r / R≤0. At the position of 6 5 τ ≤ Θ p + 20 . By doing so, You have achieved 1 objectives.
本発明は、 前述の第 2の目的を達成するために、 次の 技術的手段を講じている。 The present invention employs the following technical means to achieve the second object.
即ち、 プロペラ翼 2 の後側に装着されるター ビン翼 3 がその基部にフラ ンジ 1 3A を有し、 該フラ ンジ 13A をプ 口ペラボス 2 Aの外周上に着脱自在にねじ締結してなるこ とを特徴とする。 また、 プロペラ翼 2 の後側に装着され るタービン翼 3 がその基部にリ ング 3 Aを有し、 該リ ング 3 Aを、 プロペラボス 2 Aと該ボス 2 A後方のプロペラキ ヤ ッ プ 4 との間に、 着脱固定自在に介在したことを特徴とす る。 更に、 ター ビン翼 3 は、 リ ング 3 Aに一体成形されて いることを特徴とする。 また、 タービ ン翼 3 は、 リ ング 3Aにネジ締結手段を介して着脱固定自在に取付けられて いることを特徴とする。 最後に、 タ一ビン翼 3 は、 リ ン グ 3 Aの外周に軸方向に沿って形成されたァリ溝 3 Bに着脱 可能に嵌合されていることを特徴とする。 That is, the turbine blade 3 mounted on the rear side of the propeller blade 2 has a flange 13A at its base, and the flange 13A is detachably screwed onto the outer periphery of the port Peravos 2A. This is the feature. Further, the turbine blade 3 mounted on the rear side of the propeller blade 2 has a ring 3A at its base, and the ring 3A is connected to the propeller boss 2A and the propeller cap 4 behind the boss 2A. It is characterized in that it is interposed between it and it in a removable manner. Further, the turbine blade 3 is characterized by being integrally formed with the ring 3A. Further, the turbine blade 3 is detachably attached to the ring 3A via a screw fastening means. Finally, the turbine blade 3 is characterized in that it is detachably fitted into an axial groove 3B formed on the outer periphery of the ring 3A along the axial direction.
図 面 の 簡単 な 説 明 第 1 図は本発明の実施例を示す正面図、 第 2図は同じ く側面図、 第 3図は本発明実施例による前側プロペラの 翼断面流れ場図、 第 4図は同じ く後側タービン翼断面流 れ場図をそれぞれ示しており、 第 5図はプロペラ翼とタ 一ビン翼との前後位置関係を示す説明図、 第 6図はプロ ペラ効率ア ップ量とター ビン翼位置との関孫を示すグラ フ、 第 7図はプロペラ効率ア ップ量とタ ー ビン翼の翼数 との関係を示すグラフ、 第 8図はプロペラ効率ア ップ量
とタ 一ビン翼の直径との閬係を示すグラフ、 第 9図はプ 口ペラ 1翼の正面図、 第 10図はプロペラ翼断面流れ場図、 第 11図はプロペラ翼断面のキャ ンバーを示し、 第 12図と 第 13図はタ一ビン翼をプ口ペラボスとプロペラキャップ との間に介在させた本発明の 2つの実施例を示す要部側 面図、 第 14図から第 16図はリ ングに対するタービン翼の 取付実施例の 3例を示す正面図、 第 17図ばプロペラボス にフ ラ ンジを介してタ一ビン翼を取付けた要部側面図、 第 18図はフラ ンジ付タービン翼の側面図、 第 19図は同平 面図、 第 20図ばプロペラ誘導速度の半径方向分布 (プロ ペラ位置) を示すグラフ、 第 21図はプロペラ誘導速度の 前後方向分布 ( r Z R = 0. 3 ) を示すグラ フ、 第 22図は 中速船の伴流分布を示す説明図、 第 23図はプロペラ誘導 速度による推力低下量の半径方向分布を示すグラフ、 第 24図はプロペラ誘導速度による回転抵抗 トルク増加量の 半径方向分布を示すグラフ、 第 25図は中速船用プロペラ 一様流中における e P と ^ T i-の比較グラフ、 第 26図は中 速船用プ口ペラ伴流中における 0 F と T iの比較グラフ、 第 27図は他の中速船用プロペラ伴流中における θ ? と 9 T iの比較グラフ、 第 28図は高速船用プロペラ伴流中に おける e P と ^ T iの比較グラフ、 第 29図は零揚力角とキ ャンバー比の関係を示すグラフ、 第 30図は従来例である タ ンデムプロペラにおける前側プロペラの翼断面流れ場 図、 第 31図は同じく後側プロペラの翼断面流れ場図であ る。
発明を実施するための最良の形態 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front view showing an embodiment of the present invention, FIG. 2 is a side view similarly, FIG. 3 is a flow field diagram of a wing cross section of a front propeller according to the embodiment of the present invention, FIG. The figure also shows the cross-sectional flow diagram of the rear turbine blade, respectively.Fig. 5 is an explanatory diagram showing the front-rear positional relationship between the propeller blade and the turbine blade, and Fig. 6 is the propeller efficiency A graph showing the relationship between the amount of turbine and the turbine blade position, Fig. 7 is a graph showing the relationship between the propeller efficiency increase and the number of turbine blades, and Fig. 8 is a propeller efficiency increase. Fig. 9 is a front view of one propeller blade, Fig. 10 is a flow field diagram of a cross section of a propeller blade, and Fig. 11 is a graph of a cross section of a propeller blade. Fig. 12 and Fig. 13 are side views of the essential parts showing two embodiments of the present invention in which a turbine wing is interposed between the propeller cap and the propeller cap, Figs. 14 to 16 Fig. 17 is a front view showing three examples of mounting the turbine blades on the ring. Fig. 17 is a side view of the main part where a turbine blade is mounted on a propeller boss via a flange. Fig. 18 is a flanged version. Fig. 19 is a side view of the turbine blade, Fig. 19 is a plan view, Fig. 20 is a graph showing the radial distribution of propeller induction speed (propeller position), and Fig. 21 is a front-rear distribution of propeller induction speed (r ZR = Graph showing 0.3), Fig. 22 is an explanatory diagram showing the wake distribution of medium-speed vessels, and Fig. 23 is propeller guidance. Graph showing the radial distribution of the thrust decrease by the speed, and e P in FIG. 24 is a graph showing the radial distribution of the rotational resistance torque increase due to the propeller induced velocity, FIG. 25 medium speed marine propeller uniform flow is Comparison graph of ^ T i- , Fig. 26 is a comparison graph of 0 F and T i in the wake of a medium-speed ship propeller, and Fig. 27 is θ ? And 9 T in the wake of another medium-speed ship propeller. i comparison graph, comparison graph of Figure 28 fast marine propeller definitive to wake during e P and ^ T i, Figure 29 is a graph showing the relationship between the zero-lift angle and key Yanba ratio, FIG. 30 prior art Fig. 31 is a flow field diagram of the cross section of the wing of the front propeller of the tandem propeller. Fig. 31 is a flow field diagram of the cross section of the wing of the rear propeller. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明の実施例と作用を説明す る。 Hereinafter, embodiments and operations of the present invention will be described with reference to the drawings.
第 1図および第 2図において、 プロペラ軸 1 に、 プロ ペラ翼 2 が前側 (進行方向側、 又は船体側) でタービン 翼 3 が後側に装着されており、 前記両翼 2 , 3 の軸長 £ ( 第 5図参照) が 6 %以上とされ、 タービン翼 3 の翼数は プロペラ翼 2 の翼数の整数倍とされており、 更に、 ター ビン翼 3 の直径はプロペラ翼 2 の直径の 33〜60 %とされ た舶用推進装置^示されており、 第 2図において、 2 Aは プロペラボス、 4 はキャ ップを示している。 In FIGS. 1 and 2, a propeller shaft 1 has a propeller blade 2 mounted on a front side (a traveling direction side or a hull side) and a turbine blade 3 mounted on a rear side, and the axial length of the two wings 2 and 3 is shown. £ (see Fig. 5) is 6% or more, the number of turbine blades 3 is an integral multiple of the number of propeller blades 2, and the diameter of turbine blades 3 is smaller than the diameter of propeller blades 2. The marine propulsion device is shown as 33-60%. In Fig. 2, 2A indicates propeller boss and 4 indicates cap.
但し、 前記軸長 は、 両翼 2 , 3 の中央線間の距離をプ 口ペラ直径で割った値(%)である (第 5図参照) 。 However, the axial length is a value (%) obtained by dividing the distance between the center lines of the two wings 2 and 3 by the diameter of the opening propeller (see FIG. 5).
プロペラ翼 2 とタービン翼 3 の幾何形状は、 プロペラ 翼ではピッチとキャ ンバー力く The geometry of the propeller blades 2 and turbine blades 3 is higher in pitch and
θ + α ο - β i > 0 (3)式 θ + α ο-β i> 0 Equation (3)
に設計されるのに対して、 タービン翼では Whereas turbine blades
θ + ο - β i < 0 (4)式 θ + ο-β i <0 (4)
に設計される。 なお、 " 0 は翼断面の零揚力角 (揚力が 零となる時の水の流入方向とピッチ面とがなす角) であ り、 キャ ンバーが前向きでは正、 後向きでは負、 キャ ン バーが零では零となる。 Designed to. Note that “0 is the zero lift angle of the wing cross section (the angle between the water inflow direction and the pitch plane when the lift becomes zero). The forward is positive, the backward is negative, and the rear is negative. Zero means zero.
プロペラとタービンの基本的な違いは、 前者 (プロべ ラ) が流体にエネルギーを与えてその反力により推進力 をう る装置であるのに対して、 後者 (タービン) は流体
のもつエネルギーから回転トルクをう る装置である。 The basic difference between a propeller and a turbine is that the former (probe) is a device that gives energy to the fluid and gives propulsion by the reaction force, while the latter (turbine) is It is a device that receives rotational torque from the energy of
タービン翼付きプロペラの前側プロペラと後側タ一ビ ン翼断面の流れ場を第 3図、 第 4図に示す。 第 3図に示 すようにプロペラ翼でば、 回転抵抗力 F Ρ 'に相当した回 転トルクを与えて推力 Τ Ρ 'をうるのに対して、 タービン 翼では第 4図に示すように推力は後向きの祗抗カ— Τ τ " となるかわりに、 回転抵抗力はそれを減らすカー F T"と なる。 推力はプロペラが発生し、 タービン翼はプロペラ 後流からエネルギ一をえて回転抵抗トルクを減らす補助 翼としての機能しかはたさない点、 タ一ビン翼付きプロ ペラはタ ンデムプロペラとは全く異なる装置といえる。 Fig. 3 and Fig. 4 show the flow fields at the cross section of the front propeller and the rear turbine blade of the propeller with turbine blades. As shown in Fig. 3, with a propeller blade, a thrust Τ Ρ 'is obtained by applying a rotational torque equivalent to the rotational resistance F Ρ', while a thrust as shown in Fig. 4 is obtained with a turbine blade. Instead of being a backward-facing chi-car Τ τ ", the rolling resistance becomes a car F T " that reduces it. The thrust is generated by a propeller, and the turbine blade only functions as an auxiliary wing that reduces the rotational resistance torque by extracting energy from the wake of the propeller.The propeller with a turbine wing is completely different from a tandem propeller. It can be said that.
タービン翼の誘導速度はプロペラ誘導速度と全く逆方 向に生ずる。 プロペラ誘導速度がプロペラに吸い込まれ、 かつプロペラ回転方向につれ回るのに対して、 タービン 翼の誘導速度は流れを前方に押し出し、 かつプロペラ回 転と逆方向に回転する。 The induction speed of the turbine blade is generated in a direction completely opposite to that of the propeller. While the propeller induction speed is sucked into the propeller and rotates in the propeller rotation direction, the turbine blade induction speed pushes the flow forward and rotates in the opposite direction to the propeller rotation.
タービン翼付きプロペラの効率について考える。 前側 プロペラについてはタービン翼の誘導速度によって P i が ' P i と小さ く なる。 その結果、 前側プロペラの効率 は向上する。 一方、 後側タービン翼については、 発生す る力の方向がプロペラと逆方向であるために β i が大き い程効率が良い。 プロペラ翼の P iと比較してタ一ビン 翼の ^ T iが Consider the efficiency of a propeller with turbine blades. P i is rather small and 'P i by induction speed of the turbine blades for the front propeller. As a result, the efficiency of the front propeller is improved. On the other hand, for the rear turbine blades, the direction of the generated force is opposite to that of the propeller, so the larger β i, the better the efficiency. In comparison with the P i of the propeller blade ^ T i of data one bottle wing
β F iく β T i (5)式 β F i β β T i (5)
を潢たすようにタ一ビン翼を設計することができれば効
率はさ らに良く なる。 プロペラの前側では T iは小さい 力く、 プロペラの後側にター ビン翼を置けばプロペラ誘導 速度が加速されて T iが大き く なり、 有効である。 さら に、 プロペラ後流がタービン翼面に衝突するとター ビン 翼が固体壁となり、 プロペラ後流をせき止める効果も考 えられる。 と く に、 プロペラ後流中、 プロペラ誘導速度 が加速されている中にター ビ ン翼を置けば、 このせき止 め効果も大き く なると思われる。 If the turbine wing can be designed to meet The rates are even better. Ti is small at the front side of the propeller, and if a turbine blade is placed behind the propeller, the propeller guidance speed is accelerated and Ti becomes large, which is effective. Furthermore, when the wake of the propeller collides with the turbine blade surface, the turbine blade becomes a solid wall, and the effect of damping the wake of the propeller is also considered. In particular, if the turbine blade is placed in the wake of the propeller or while the propeller guidance speed is accelerating, the damming effect will be greater.
また、 前述の船尾伴流中のプロペラ誘導速度とプロべ ラ効率の関係から、 ター ビン翼付きプロペラの効果は伴 流中で大き く 、 また、 ター ビン翼の直径は伴流の大きい 範囲で選定すれば良いものと思われる。 Also, from the relationship between the propeller guidance speed in the wake of the stern and the propeller efficiency, the effect of the propeller with a turbine blade is large in the wake, and the diameter of the turbine blade is large in the large wake range. It seems that it should be selected.
以上の考察をもとにして高速船用 4翼プロペラを対象 として、 その後方に配置したター ビン翼の翼数、 直径等 を変更して伴流中のター ビン翼付きプロペラの効率をプ 口ペラ揚力面理論により計算した。 ター ビン翼の前後位 置については、 ボス表面上、 プロペラ中央線から測った ター ビン翼中央線までの距離をプロペラ直径で割った値 で表わし、 ター ビン翼をプロペラ後方に置いた場 合を正とする (第 5図参照) 。 ター ビン翼の直径につい ては、 プロペラ直径のパーセ ン ト表示する。 Based on the above considerations, for a 4-blade propeller for a high-speed ship, the efficiency of the propeller with turbine blades in the wake was changed by changing the number of blades, diameter, etc. of the turbine blades located behind. Calculated by lifting surface theory. For the front and rear positions of the turbine blade, the distance from the propeller center line to the turbine center line measured on the boss surface is divided by the propeller diameter, and the value when the turbine blade is placed behind the propeller is shown. Be positive (see Fig. 5). The turbine blade diameter is displayed as a percentage of the propeller diameter.
ター ビ ン翼の翼数を 4翼と し、 直径をプロペラ直径の 45 %と してター ビン翼の位置を 0 %, 13 % , 20 %と変更 して計算した結果を表 1 、 第 6図に示す。 表中、 Κ τ は スラス ト係数 (- T Z p n ^ D p - : T : 推力、 p : 水の
密度、 n : プロペラ回転数、 D P : プロペラ直径), K Q ば トルク係数 (= Q Z p n 2D F 5, Q = トルク) 、 △ "。 はプロペラ単体の効率と比較した効率ア ツブ量(%)であ る。 これらの図表から、 タービン翼を = よりプロ ペラ後方に配置すれば、 プロペラ効率がアップし、 ター ビン翼の設計、製造等のコ ス トを考慮して効率ァ ップ 1.8 %以上のアップの範囲に限ると、 は Tables 1 and 6 show the results obtained by changing the turbine blade number to 4 blades, changing the diameter to 45% of the propeller diameter, and changing the turbine blade position to 0%, 13%, and 20%. Shown in the figure. In the table, τ τ is the thrust coefficient (-TZ pn ^ D p- : T: thrust, p: water Density, n: propeller speed, D P:. Propeller diameter), KQ if torque coefficient (= QZ pn 2 D F 5 , Q = Torque), △ "efficiency A Tsubu amount compared to the efficiency of the propeller itself (% From these charts, if the turbine blades are located at the rear of the propeller, the propeller efficiency will be improved and the efficiency will be improved in consideration of the cost of turbine blade design and manufacturing 1.8. When limited to the range of more than%,
£ > 6 ¾ (6)式 £> 6 式 (6)
となる。 Becomes
表 1 table 1
タービン翼位置を jg = 13%とし、 タービン翼の直径を プロペラ直径の 45%として、 タービン翼の翼数を 4翼、 8翼、 12翼と変更した場合の結果を表 2 と第 7図に示す, これらの図表から、 タービン翼の翼数をプロペラ翼数の 整数倍 ( 1 〜 3倍) とすれば、 効率 1.8%以上のア ップ となることがわかる。
表 2 Table 2 and Fig. 7 show the results when the turbine blade position is jg = 13%, the turbine blade diameter is 45% of the propeller diameter, and the number of turbine blades is changed to 4, 8, and 12 blades. From these charts, it can be seen that if the number of turbine blades is an integral multiple of the number of propeller blades (1 to 3 times), the efficiency will increase by more than 1.8%. Table 2
タービ ン翼位置を 13%とし、 ター ビ ン翼の翼数を 4翼として、 ター ビン翼の直径を 25%, 35% , 45% , 55 The turbine blade position is 13%, the turbine blade number is 4 blades, and the turbine blade diameter is 25%, 35%, 45%, 55
65%と変更した場合の結果を表 3 と第 8図に示す。 これらの図表から、 タービン翼の直径を増やせば効率ァ プ量は増加するが、 増やしすぎると逆に減少し、 Table 3 and Figure 8 show the results when the value was changed to 65%. From these charts, it can be seen that increasing the diameter of the turbine blade increases the amount of efficiency increase, while increasing it too much decreases the efficiency.
33 % D P <ター ビ ン翼直径く 60 % D F (7)式 の範囲で効率 1.8 %以上 0ア ップが可能であることがわ かる。 33% D P <turbine blade diameter less than 60% DF It can be seen that efficiency up to 1.8% or more can be achieved in the range of Eq. (7).
表 3 Table 3
次に前側プロペラのピッチ角と後側タ一ビン翼のピッ チ角の相関について調べた。 基本的には (4)式を満たすよ うに後側の翼のピッチとキャ ンバーを決めればタービン 翼となるが、 第 4図中の記号を用いて (4)式を書き直すと 次式となる。 Next, the correlation between the pitch angle of the front propeller and the pitch angle of the rear turbine blade was investigated. Basically, a turbine blade can be obtained by determining the pitch and camber of the rear blade so as to satisfy Equation (4) .However, when Equation ( 4 ) is rewritten using the symbols in Fig. 4, the following equation is obtained. .
6 τ + το - β ' τι< 0 (4) '式 ただし、 ατο : 後側タービン翼の零揚力角 6 τ + το -β 'τι <0 (4)' where α το : Zero lift angle of rear turbine blade
ここで、 仮に後側の翼のキャ ンバ—を零、 すなわち平板 とすれば τοが零となり、 (4) '式は Here, if the rear wing chamber is assumed to be zero, that is, if it is a flat plate, το is zero, and the equation ( 4 ) ′ is
θ τ - 9 ' τ i < 0 (8)式 となる。 θ τ-9 'τ i <0 (8)
さ らに、 後側の翼のピッチ角 τ をプロペラ後流の方 向 β Tiに一致させれば、 後側の翼による誘導速度が零と なって ' T iは Ti と等し く なる。 すなわち、 平板とし た後側の翼のピッチ角を Furthermore, if the pitch angle τ of the rear wing is made to coincide with the direction β Ti of the wake of the propeller, the induction speed by the rear wing becomes zero, and ' Ti is equal to Ti . In other words, the pitch angle of the flat rear wing is
θ τ< β Ti (9)式 とすれば、 後側の翼はタービン翼となる。 If θ τ <β Ti (9), the rear blade is a turbine blade.
そこで、 プロペラ揚力面理論と無限翼数理論を用いて Tiを計箕して、 プロペラのピッチ角 Ρ と比較した。 比較結果を第 25図〜第 28図に示す。 第 25図は中速船用プ 口ペラの一様流中の結果であり、 第 26図は第 25図と同じ プロペラの伴流中の結果、 第 27図ば別の中速船用プロぺ ラの伴流中の結果、 第 28図は高速船用プロペラの伴流中 の結果である。 図中、 Ti(0) , ? T i (10) , ^ T i (20) はそれぞれ ί = 0 ¾, 10%, 20 %における β である。
この結果から、 プロペラに入る流れやプロペラ自体の違 いにかかわらず、 6 %の位置では Therefore, by Keimino the T i using a propeller lifting surface theory and endless blades number theory, compared to Ρ pitch angle of the propeller. The comparison results are shown in FIGS. 25 to 28. Fig. 25 shows the result of the middle-speed ship propeller in uniform flow, Fig. 26 shows the result of the same propeller wake as in Fig. 25, and Fig. 27 shows the result of another medium-speed ship propeller. Figure 28 shows the results during the wake of a high-speed propeller. In the figure, Ti (0),? T i (10), ^ T i (20) each ί = 0 ¾, 10%, a β at 20%. From this result, regardless of the flow into the propeller and the difference in the propeller itself, at 6% position
β d P for 0.3≤ r / R ≤ 0.6 (10)式 といえる。 これを (9)式に代入すれば β d P for 0.3 ≤ r / R ≤ 0.6 (10) Substituting this into equation ( 9 ) gives
θ τ < Θ p for 0.3≤ r / ≤0.6 (U)式 となる。 (11)式は平板の場合であり、 これにキャ ンバーを つければ θ τ <Θ p for 0.3 ≤ r / ≤ 0.6 (U). Equation (11) is for a flat plate.
θ τ < Θ p - a t0 for 0.3≤ r / R ≤ 0.6 02)式 となる。 キャ ンバー比 (=キャ ンバーノ翼巾) と "。 の 関係の一例を第 2'9図に示す。 第 29図から、 キャ ンバー比 1 %に対して零揚力角がおおよそ 1 。変化すると言える。 タービン翼のキャ ンバーが後方につけられ、 キヤ ンバー 比が高々 20%までとすれば、 02)式は θ τ <Θ p-a t0 for 0.3 ≤ r / R ≤ 0.6 02) An example of the relationship between the camber ratio (= camberno span) and ". Is shown in Fig. 2'9. From Fig. 29, it can be said that the zero lift angle changes by approximately 1 for a camber ratio of 1%. Assuming that the turbine blade is mounted at the rear and the chamber ratio is up to 20%, Equation 02)
T≤ eF+20。 for 0.3≤ r / R≤0.6 (13)式 となる。 (なお、 αο)式〜な3)式中の Rはプロペラ半径であ る。 ) すなわち、 r Z R O.3 〜 r Z R = 0.6 の位置に おいて、 to)式を満たすように後側の翼のピッチ角を選定 すれば、 タービン翼となり、 前述の効果が期待される。 r Z R < 0.3においては、 /9 Tiが急激に大き く なり、 θ Ί をかなり大きい値としてもタービン翼となるので、 ここ ではと く には制限しない。 また、 r Z R = 0.3 〜 rノ R = 0.6の間の一部分の範囲で(13)式を満たさないように τ を選定しても翼全体としてタービン翼の機能を持たす設 計が可能であるが、 前述の効果が減少すると考えられる。 第 12図から第 19図を参照すると、 タービン翼 3 の装着
(取付) 手段の実施例のい く つかが例示されている。 第 12図及び第 13図は、 ター ビン翼 3 の基部に設けたリ ング 3Aを、 プロペラボス 2Aとこのボス後方のプロペラキ ヤ ップ 4 との間に介在させてプロペラ軸 1 に被せ、 ボル ト 5 , 6 , 7 で着脱固定自在に取付けたものであり、 この場 合、 第 12図ではボル ト 5 でプロペラボス 2A、 リ ング 3A及 びキャ ップ 4 の三者を共締めした実施例を示し、 第 13図 は、 プロペラボス 2Aに リ ング 3Aをボル ト 6 で締結し、 リ ング 3 Aにキャ ップ 4 をボル ト 7 で締結したものを示して おり、 第 14図〜第 16図で示す如く リ ング 3 Aに放射状配置 で軸方向に形成したボルト挿通孔 3Cを利用して各ボルト 5 , 6 , 7 が締結される。 T≤ e F +20. for 0.3≤ r / R≤0.6 (13) (Note that R is the propeller radius in the formula αο) to 3 ). In other words, if the pitch angle of the rear blade is selected at r ZR O.3 to r ZR = 0.6 so as to satisfy the expression to), the blade will be a turbine blade, and the above-mentioned effect is expected. When r ZR <0.3, / 9 Ti increases rapidly, and even if θ か な り is set to a considerably large value, it becomes a turbine blade, so there is no particular limitation here. Even if τ is selected so as not to satisfy Equation (13) in a part of the range between r ZR = 0.3 and r no R = 0.6, it is possible to design the whole blade to have the function of a turbine blade. It is believed that the aforementioned effects are reduced. Referring to FIGS. 12 to 19, installation of turbine blade 3 (Attachment) Some embodiments of the means are illustrated. Figs. 12 and 13 show the ring 3A provided at the base of the turbine blade 3 on the propeller shaft 1 with the ring interposed between the propeller boss 2A and the propeller cap 4 behind the boss. In this case, propeller boss 2A, ring 3A and cap 4 are fastened together by bolt 5 in Fig. 12. Fig. 13 shows an example in which a ring 3A is fastened to a propeller boss 2A with a bolt 6 and a cap 4 is fastened to a ring 3A with a bolt 7. As shown in FIG. 16, the bolts 5, 6, 7 are fastened using the bolt insertion holes 3C formed in the ring 3A in the axial direction in a radial arrangement.
第 17図から第 19図は、 タービン翼 3 をプロペラボス 2A の外周面上にねじ締結手段により着脱固定自在に取付け た実施例であり、 タービン翼 3 はその基部に、 締結孔 13 B を有する平板状のフランジ 13A を有し、 このフラ ンジ 13A をプロペラボス 2Aの外周面上に重ね合せてボルト 13 C を各締結孔 13B に揷通し、 各ボルト 13C をボスに形成 した雌ネジに締結してなる。 17 to 19 show an embodiment in which the turbine blade 3 is detachably mounted on the outer peripheral surface of the propeller boss 2A by screw fastening means.The turbine blade 3 has a fastening hole 13B at its base. The flange 13A has a flat plate shape, and the flange 13A is superimposed on the outer peripheral surface of the propeller boss 2A, and the bolt 13C is passed through each of the fastening holes 13B, and each bolt 13C is fastened to the female screw formed on the boss. It becomes.
第 14図から第 16図は、 リ ング 3Aとタービン翼 3 との関 係を示しており、 第 14図は、 リ ング 3 Aの外周放射状位置 に軸方向にァリ溝 3Bを形成し、 タ—ビン翼 3 の基部端面 をり ング 3 Aの外周面上に重ね合せた状態でタービン翼 3 の基部に形成した鳩尾状の突起 3 Dを、 前記ァリ溝 3 Bに軸 方向から嵌合させたものであり、 この実施例では突起 3D
の軸方向規制はプロペラボス 2 Aとプロペラキヤ ップ 4 で なされる。 FIGS. 14 to 16 show the relationship between the ring 3A and the turbine blade 3, and FIG. 14 shows that a groove 3B is formed in the axial direction at the outer radial position of the ring 3A. A dovetail-shaped projection 3D formed on the base of the turbine blade 3 in a state where the base end surface of the turbine blade 3 is superimposed on the outer peripheral surface of the ring 3A is fitted into the groove 3B from the axial direction. In this example, the projection 3D Axial restrictions are enforced by Propeller Boss 2 A and Propeller Cap 4.
第 15図はター ビン翼 3 とリ ング 3 Aとを錶物又は溶接等 により一体成形した実施例を示している。 なお、 第 1 7〜 19図に示す実施例でもター ビン翼 3 とフ ラ ンジ 13A は前 述同様に一体成形される。 FIG. 15 shows an embodiment in which the turbine blade 3 and the ring 3A are integrally formed by a metal or welding. In the embodiment shown in FIGS. 17 to 19, the turbine blade 3 and the flange 13A are integrally formed in the same manner as described above.
第 16図はリ ング 3Aに、 放射状配置で取付け孔 3 Eを形成 し、 この取付け孔 3Eにネジ部を有する突起 3 Dを揷通して ナ ツ ト 8 でネジ締結した実施例を示している。 FIG. 16 shows an embodiment in which a mounting hole 3E is formed in a ring 3A in a radial arrangement, a projection 3D having a screw portion is passed through the mounting hole 3E, and a nut 8 is used to fasten the screw. .
なお、 上述した各実施例において、 リ ング 3 Aはこれを 割型リ ングとすることができ、 タ一ビン翼 3 は取付角度 調整手段を具備させることもできる。 In each of the above-described embodiments, the ring 3A can be a split ring, and the turbine blade 3 can be provided with mounting angle adjusting means.
また、 ター ビ ン翼 3 とリ ング 3 A又はフラ ンジ 13 A はプ 口ペラと同材料 (例えば銅合金) あるいは F R P等の複 合材料等で作成できる。 Further, the turbine blade 3 and the ring 3A or the flange 13A can be made of the same material (for example, copper alloy) as the mouth prop or a composite material such as FRP.
本発明は以上の通りであり、 プロペラ翼の後方にター ビン翼を設けたものであるから、 プロペラ誘導速度が大 きい程、 すなわちプロペラ軸後方への流れが速い程、 ま た回転方向につれまわる流れが大きい程効果があり、 こ こに、 プロペラ効率が向上できる。 The present invention is as described above, and the turbine blade is provided behind the propeller blade.Therefore, as the propeller guiding speed increases, that is, as the flow to the rear of the propeller shaft increases, the squeezing occurs in the rotation direction. The larger the flow is, the more effective it is, and here the propeller efficiency can be improved.
また、 トルクが減少するので、 既就航船において、 船 体汚損や主機の老朽化などで、 プロペラの回転が重く な つた (回転が低下した) プロペラにター ビン翼を取りつ ければ回転を軽く するこ ともできる。 In addition, since the torque is reduced, the rotation of the propeller became heavy due to the fouling of the hull and the aging of the main engine of the existing ship, and the rotation was reduced if the turbine blade was attached to the propeller. You can do it.
更に、 タービン翼の基部にフラ ンジ又はリ ングを有し
てプロペラボスの外周上にフラ ンジを、 又は該ボスとブ 口ペラキヤ ップとの間にリ ングを着脱自在にしているの で、 既存のプロペラに対して既存のキャ ップをそのまま 使用できてタービン翼付の推進装置に低コス トで改造で きるし、 リ ングの肉厚を適当とすることにより、 タービ ン翼の取付けも、 一体型、 溶接型、 はめこみ式、 ボル ト 止め等、 かなり自由になり、 設計製造が容易となる。 In addition, the turbine blade has a flange or ring at the base. The flanges on the outer periphery of the propeller boss or the ring between the boss and the flapper cap are detachable, so that the existing cap can be used for the existing propeller as it is. The propulsion device with turbine blades can be retrofitted at low cost, and the appropriate thickness of the ring allows the turbine blades to be installed in an integrated, welded, inset, bolted, etc. It is much freer and easier to design and manufacture.
産業上の利用可能性 本発明は、 プロペラ軸に、 プロペラ翼とタービン翼と を装着した舶用推進装置に利用できる。
INDUSTRIAL APPLICABILITY The present invention can be used for a marine propulsion device in which a propeller shaft and a turbine blade are mounted on a propeller shaft.
Claims
(1) プロペラ軸(1)に、 プロペラ翼(2)とター ビン翼(3) とを装着した舶用推進装置であって、 (1) A marine propulsion device in which a propeller blade (2) and a turbine blade (3) are mounted on a propeller shaft (1),
前記プロペラ翼(2) が前側でター ビン翼(3) が後側 に装着されており、 前記両翼(2) (3)の軸長 が 6 %以 上とされ、 ター ビン翼(3) の翼数はプロペラ翼(2) の 翼数の整数倍とされており、 更に、 ター ビン翼(3) の 直径はプロペラ翼(2) の直径の 33〜 60%とされている ことを特徴とする舶用推進装置。 The propeller wing (2) is mounted on the front side and the turbine wing (3) is mounted on the rear side. The axial length of the two wings (2) and (3) is set to 6% or more. The number of blades is an integral multiple of the number of blades of the propeller blade (2), and the diameter of the turbine blade (3) is 33 to 60% of the diameter of the propeller blade (2). Marine propulsion equipment.
但し、 前記輪長 )は、 両翼(2) (3)の中央線間の距 離をプロペラ直径で割った値(% )である。 However, the wheel length is a value (%) obtained by dividing the distance between the center lines of the two wings (2) and (3) by the propeller diameter.
(2) プロペラ翼(2) のピ ッ チ角( P )とター ビン翼(3)の ピッチ角( τ) が、 0.3 ≤ r / R ≤ 0.6 の位置におい て、 eT≤ Ρ +20。 であることを特徴とする請求の範 囲第 1項記載の舶用推進装置。 (2) When the pitch angle (P) of the propeller blade (2) and the pitch angle ( τ ) of the turbine blade (3) are 0.3 ≤ r / R ≤ 0.6, e T ≤ Ρ +20. The marine propulsion device according to claim 1, wherein:
但し、 (R)はプロペラ翼半径、. ( r )は任意の半径位 置である。 However, (R) is the radius of the propeller blade, and (r) is any radius position.
(3) プロペラ翼(2) の後側に装着されるター ビン翼(3) がその基部にフ ラ ンジ(13A)を有し、 該フ ラ ンジ(13A) をプロペラボス(2A)の外周上に着脱自在にねじ締結し てなることを特徴とする請求の範囲第 1項記載の舶用 推進装置。 (3) The turbine wing (3) mounted on the rear side of the propeller wing (2) has a flange (13A) at its base, and the flange (13A) is attached to the outer periphery of the propeller boss (2A). 2. The marine propulsion device according to claim 1, wherein the marine propulsion device is detachably screwed onto the upper part.
(4) プロペラ翼(2) の後側に装着されるター ビン翼(3) がその基部にリ ング(30を有し、 該リ ング(3A)を、 プ 口ペラボス(2A)と該ボス(2A)後方のプロペラキヤ ッ プ
(4) との間に、 着脱固定自在に介在したことを特徴と する請求の範囲第 1項記載の舶用推進装置。 (4) The turbine wing (3) mounted on the rear side of the propeller wing (2) has a ring at its base (30), and the ring (3A) is connected to the mouth perabos (2A) and the boss. (2A) Rear propeller cap 2. The marine propulsion device according to claim 1, wherein the marine propulsion device is detachably fixed between the marine propulsion device and (4).
(5) タービン翼(3) は、 リ ング(3A)に一体成形されてい ることを特徴とする請求の範囲第 4項記載の舶用推進 (5) The marine propulsion according to claim 4, wherein the turbine blade (3) is formed integrally with the ring (3A).
(6) タ一ビン翼(3) は、 リ ング(3A)にネジ締結手段を介 して着脱固定自在に取付けられていることを特徴とす る請求の範囲第 4項記載の舶用推進装置。 (6) The marine propulsion device according to claim 4, wherein the turbine wing (3) is detachably fixed to the ring (3A) via screw fastening means. .
(7) タービン翼(3) は、 リ ング(3A)の外周に軸方向に沿 (7) The turbine blade (3) extends axially around the outer circumference of the ring (3A).
10 つて形成されたァリ溝(3B)に着脱可能に嵌合されてい ることを特徴とする請求の範囲第 4項記載の舶用推進 The marine propulsion according to claim 4, characterized in that the marine propulsion is removably fitted into the ten groove grooves (3B).
15 Fifteen
20 20
25
twenty five
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019900702091A KR950003362B1 (en) | 1989-01-20 | 1990-01-19 | Marine propulsion apparatus |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1/12534 | 1989-01-20 | ||
JP1253489 | 1989-01-20 | ||
JP1197875A JPH085431B2 (en) | 1989-01-20 | 1989-07-29 | Marine propulsion device |
JP1/197875 | 1989-07-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1990008061A1 true WO1990008061A1 (en) | 1990-07-26 |
Family
ID=26348161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1990/000065 WO1990008061A1 (en) | 1989-01-20 | 1990-01-19 | Marine propulsion apparatus |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0406451B1 (en) |
JP (1) | JPH085431B2 (en) |
KR (1) | KR950003362B1 (en) |
DE (1) | DE69002413T2 (en) |
WO (1) | WO1990008061A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103939262A (en) * | 2014-04-14 | 2014-07-23 | 哈尔滨工程大学 | Impeller power generation system for ship |
CN105270587A (en) * | 2014-07-17 | 2016-01-27 | 台湾国际造船股份有限公司 | Screw propeller |
CN116353802A (en) * | 2023-05-25 | 2023-06-30 | 合肥倍豪海洋装备技术有限公司 | Inflow auxiliary device and propeller with same |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5405872B2 (en) * | 2009-03-30 | 2014-02-05 | 株式会社三井造船昭島研究所 | Ship propulsion device and ship equipped with the same |
KR101236748B1 (en) * | 2010-09-17 | 2013-02-25 | 삼성중공업 주식회사 | Propeller |
KR101302835B1 (en) * | 2010-09-20 | 2013-09-02 | 김소연 | Ship propulsion system using Freewheel clutch Turbine |
DE102011055515A1 (en) * | 2011-11-18 | 2013-05-23 | Becker Marine Systems Gmbh & Co. Kg | Propeller arrangement, in particular for watercraft |
JP6490595B2 (en) | 2013-02-08 | 2019-03-27 | 三星重工業株式会社Samsung Heavy Ind.Co.,Ltd. | Ship propulsion device |
JP6413909B2 (en) * | 2015-04-23 | 2018-10-31 | スズキ株式会社 | Outboard motor |
US11713101B2 (en) | 2020-12-04 | 2023-08-01 | Jeffrey L. HATHAWAY | Propeller hubcap |
JP2024111954A (en) * | 2023-02-07 | 2024-08-20 | ナカシマプロペラ株式会社 | Marine Propeller Cap |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60222391A (en) * | 1984-01-14 | 1985-11-06 | オスタ−マン・メタルヴエルケ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コンパニ− | Unit with screw for ship propeller and guide inpeller positioned on rear side of said screw |
JPS61146699A (en) * | 1984-11-29 | 1986-07-04 | アー ベー ボルボ ペンタ | Marine propeller system |
JPS63154494A (en) * | 1986-07-16 | 1988-06-27 | Osaka Shosen Mitsui Senpaku Kk | Propeller boss cap provided with fin |
JPH05311490A (en) * | 1991-12-25 | 1993-11-22 | Nikko Kinzoku Kk | Hole sealing treatment of gold plated material |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB191007889A (en) * | 1910-04-01 | 1910-09-29 | Fernand Broussouse | An Improved Propeller. |
US1386835A (en) * | 1920-01-24 | 1921-08-09 | Birkett Ralph Whitehead | Regenerative counter-propeller for marine vessels |
DE606119C (en) * | 1933-11-12 | 1934-11-24 | Nicholas Wladimir Akimoff | Device to increase the efficiency of a screw propeller |
FR820738A (en) * | 1936-07-24 | 1937-11-17 | Special auxiliary propeller allowing to increase the speed of either ships or airplanes, without increasing the power of propulsion machinery | |
US2199823A (en) * | 1939-05-02 | 1940-05-07 | Kessery Peter | Propeller |
US2474562A (en) * | 1945-03-30 | 1949-06-28 | Waterval William | Propeller |
JPS5311490A (en) * | 1976-07-20 | 1978-02-01 | Fumio Henmi | Screw propeller |
JPS6212495A (en) * | 1985-07-09 | 1987-01-21 | Mitsubishi Heavy Ind Ltd | Propeller for ship |
-
1989
- 1989-07-29 JP JP1197875A patent/JPH085431B2/en not_active Expired - Lifetime
-
1990
- 1990-01-19 DE DE90901906T patent/DE69002413T2/en not_active Expired - Fee Related
- 1990-01-19 WO PCT/JP1990/000065 patent/WO1990008061A1/en active IP Right Grant
- 1990-01-19 EP EP90901906A patent/EP0406451B1/en not_active Expired - Lifetime
- 1990-01-19 KR KR1019900702091A patent/KR950003362B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60222391A (en) * | 1984-01-14 | 1985-11-06 | オスタ−マン・メタルヴエルケ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コンパニ− | Unit with screw for ship propeller and guide inpeller positioned on rear side of said screw |
JPS61146699A (en) * | 1984-11-29 | 1986-07-04 | アー ベー ボルボ ペンタ | Marine propeller system |
JPS63154494A (en) * | 1986-07-16 | 1988-06-27 | Osaka Shosen Mitsui Senpaku Kk | Propeller boss cap provided with fin |
JPH05311490A (en) * | 1991-12-25 | 1993-11-22 | Nikko Kinzoku Kk | Hole sealing treatment of gold plated material |
Non-Patent Citations (1)
Title |
---|
See also references of EP0406451A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103939262A (en) * | 2014-04-14 | 2014-07-23 | 哈尔滨工程大学 | Impeller power generation system for ship |
CN105270587A (en) * | 2014-07-17 | 2016-01-27 | 台湾国际造船股份有限公司 | Screw propeller |
CN116353802A (en) * | 2023-05-25 | 2023-06-30 | 合肥倍豪海洋装备技术有限公司 | Inflow auxiliary device and propeller with same |
CN116353802B (en) * | 2023-05-25 | 2023-09-08 | 合肥倍豪海洋装备技术有限公司 | Inflow auxiliary device and propeller with same |
Also Published As
Publication number | Publication date |
---|---|
EP0406451A1 (en) | 1991-01-09 |
KR950003362B1 (en) | 1995-04-12 |
DE69002413T2 (en) | 1993-11-25 |
JPH085431B2 (en) | 1996-01-24 |
DE69002413D1 (en) | 1993-09-02 |
EP0406451A4 (en) | 1991-06-12 |
JPH02279490A (en) | 1990-11-15 |
EP0406451B1 (en) | 1993-07-28 |
KR910700173A (en) | 1991-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7517263B1 (en) | Advanced blade sections for high speed propellers | |
JPH06508319A (en) | Propulsion thrust ring system | |
WO1990008061A1 (en) | Marine propulsion apparatus | |
JPS5830896A (en) | Reaction rudder without discontinuous part | |
JPS5950889A (en) | Stern fin to control stern eddy | |
JPH07121716B2 (en) | Propeller boss cap with fins | |
JP2007291874A (en) | Axial flow hydro-turbine runner | |
JP5936033B2 (en) | Stern structure and ship | |
JP6138680B2 (en) | Duct equipment | |
JP2009056989A (en) | Maritime propulsion efficiency improvement device and its construction method | |
CN106886630B (en) | Pump jet propeller hydraulic model with shunting short blades and design method | |
SG183162A1 (en) | Thruster with duct and ship including the same | |
US4653418A (en) | Rudder with wings and method for manufacture thereof | |
JP2013132937A (en) | Ship | |
JPH04212695A (en) | Screw propeller | |
JPS62103294A (en) | Improvement in propeller for ship | |
JPS58126288A (en) | Propeller for ship | |
CN115892418B (en) | Catheter structure and propulsion device for inhibiting tip vortex cavitation of screw | |
JP3886049B2 (en) | Valve, rudder, ship | |
JP3263543B2 (en) | Variable pitch propeller with hub vortex prevention groove | |
JP2013129408A (en) | Ship and manufacturing method thereof | |
KR101323797B1 (en) | A Ship | |
JPH075037Y2 (en) | Reaction fins for ships | |
JP4007824B2 (en) | Ship | |
KR20060033091A (en) | Marine screw propeller with riblet surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): KR |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1990901906 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1990901906 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1990901906 Country of ref document: EP |