JPS58126288A - Propeller for ship - Google Patents

Propeller for ship

Info

Publication number
JPS58126288A
JPS58126288A JP538582A JP538582A JPS58126288A JP S58126288 A JPS58126288 A JP S58126288A JP 538582 A JP538582 A JP 538582A JP 538582 A JP538582 A JP 538582A JP S58126288 A JPS58126288 A JP S58126288A
Authority
JP
Japan
Prior art keywords
propeller
blade
small
lift
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP538582A
Other languages
Japanese (ja)
Other versions
JPS6033712B2 (en
Inventor
Hitoshi Narita
成田 仁
Hajime Yuasa
肇 湯浅
Norio Ishii
規夫 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP538582A priority Critical patent/JPS6033712B2/en
Publication of JPS58126288A publication Critical patent/JPS58126288A/en
Publication of JPS6033712B2 publication Critical patent/JPS6033712B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/14Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in non-rotating ducts or rings, e.g. adjustable for steering purpose

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Ship Loading And Unloading (AREA)

Abstract

PURPOSE:To increase the propelling force by providing small blades at each blade tip to obtain a lift by the blade tip eddy generated by the rotation of a propeller and arranging a rectifying ring in front of blades to accelerate and equalize the flow to small blades. CONSTITUTION:When each blade 12 of a propeller 11 is rotated, a lift L is generated on the blade face to obtain a proplling force T and a revolution torque Q. Furthermore, due to the mutual interference between the lift L and a rectifying ring 15 to enclose the outside of the revolution locus of each small blade 13 and 14, a propelling force is generated on this rectifying ring 15 to accelerate this flow. At this moment, a flow speed U works on the tip parts of the blades 12 and a flow U1 goes from the front part of each blade 12 around to the backsides and generates a lift l by working on small blades 13 and 14 with a fixed angle of incidence for obtaining a propelling force (t) for each small blade 12 and an oppositely revolving torque (q) as its component force. Thereby, the propelling force is increased by (t) and the revolution torque is decreased by (q). This construction permits to increase the propelling force, and simultaneously prevent the cavitation caused by the blade tip eddy.

Description

【発明の詳細な説明】 この発明は船舶用推進器に関し、特に小翼付きプロペラ
と整流環とを組み合わせた推進器に係わるものでおる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a marine propulsion device, and more particularly to a propulsion device that combines a propeller with small blades and a rectifying ring.

一般に船舶に推進器として装備されるプロペラは、主機
関の出力を最も効率よく推進力に変換するために、プロ
ペラを形成する□翼の輪郭2面積とか断面形状について
の理論計算、模型試験などが実行され、その結果がプロ
ペラの設計に有効に活用されているところである。
In order to convert the output of the main engine into propulsive force most efficiently, propellers, which are generally installed on ships, require theoretical calculations and model tests on the area and cross-sectional shape of the blades that form the propeller. The results are now being effectively utilized in propeller design.

ここで従来のプロペラの正面並びに断面を第1図(a)
 、 (b)K示しであるが、このようなプロ、→蒼お
いては、次のような点で必ずしも満足し得る推進性能を
期待し得なかった。すなわち1.これらの各図において
、プロペラ1が矢印ムに示す方向に回転し、船舶が矢印
BK示す方向に進行する場合についてみると、プ田ペッ
1を形成している各員2の先端部からは渦流、いわゆる
翼端渦3が放出される。
Here, the front and cross-section of a conventional propeller are shown in Figure 1 (a).
, (b) As indicated by K, such professional propulsion performance could not necessarily be expected to be satisfactory in the following respects. That is, 1. In each of these figures, when the propeller 1 rotates in the direction shown by the arrow M and the ship moves in the direction shown by the arrow BK, a vortex flows from the tip of each member 2 forming the putapet 1. , a so-called blade tip vortex 3 is released.

この翼端渦3は、船舶の進行方向Bに対し、各員2の正
面側からその先端を越えて背面@に4!Aり込み、背面
側で渦巻く流れであ)、この渦3の中心部では圧力が低
下してキャビテーションを発生する。そしてこのキャビ
テーションは、プロペラ1が船舶後方のよどみの中で回
転されるためKその迎角が大きく、背面の圧力分布が低
下して、通常は第2図(&) 、 (b)に符号4で示
すような分布状態で観察される。
This wing tip vortex 3 flows from the front side of each member 2, beyond its tip, to the rear @4! in the direction of travel of the ship. This is a flow that swirls on the back side), and the pressure decreases at the center of this vortex 3, causing cavitation. This cavitation occurs because the propeller 1 rotates in the stagnation behind the ship, so its angle of attack is large and the pressure distribution on the back surface is reduced. The distribution is observed as shown in .

従ってこの従来のプロペラ1では、翼端渦3とキャビテ
ーション4とによシ、推進力そのものが低下するばかり
でなく、発生した気泡が消滅するときの衝撃で翼面が浸
蝕され、かつその浸蝕がすすんで翼面の平滑性が失なわ
れ、より一層推進効率が悪くなシ、ついには翼自体の破
損を招くこともあり、さらにキャビテーションの発生、
消滅0繰シ返しに附随する船尾振動が問題となるもので
あった。
Therefore, in this conventional propeller 1, the blade tip vortex 3 and cavitation 4 not only reduce the propulsion force itself, but also cause the blade surface to be eroded by the impact when the generated bubbles disappear. As a result, the smoothness of the wing surface is lost, resulting in even worse propulsion efficiency, which can eventually lead to damage to the wing itself, and cavitation.
The stern vibration associated with the zero-extinction cycle was a problem.

またこのような通常プロペラでの問題点を解消する丸め
、各員の先端部に翼端渦によって揚力を発生する小翼を
設け、この揚力の一成分としての推進力と負の回転トル
クを得て、推進力の増加並びにキャビテーションの発生
防止を図った小翼付きプロペラもあるが、この小翼付き
プロご5)にあっても、これが船舶後方のよどみの中で
回転すると、よどみの不均一性のために、小翼に流入し
てくる流れの迎角はプロペラが1回転する間に大きく変
化してしまって、小翼の効果を最大限に活用し得ないと
いう欠点があった。
In addition, to solve this problem with conventional propellers, a small blade is installed at the tip of each member that generates lift by a blade tip vortex, and a propulsive force as a component of this lift and negative rotational torque are obtained. There are also propellers with small blades that are designed to increase propulsive force and prevent cavitation, but even with these propellers with small blades, if they rotate in stagnation at the rear of the ship, they may cause uneven stagnation. Because of this, the angle of attack of the flow flowing into the winglet changes greatly during one revolution of the propeller, making it impossible to take full advantage of the effect of the winglet.

この発明は従来のプロペラのむのような欠点に鑑み、小
翼付きプロペラに整流環を組み合わせて、この整流環に
よシ小翼付きプロペラに流入してくる流れの不拘−性管
緩和させ、小翼の効果を最大限に発揮させるようにし友
ものである。
In view of the shortcomings of conventional propellers, this invention combines a propeller with small blades with a rectifying ring, and the rectifying ring relaxes the unrestrained flow of the flow flowing into the propeller with small blades. It is a companion that maximizes the effect of the small wings.

以下、ヒの発明に係わる推進器の実施例につき、第3図
表いし第13図を参照して詳細に説明する。
Hereinafter, embodiments of the propulsion device according to the invention will be described in detail with reference to FIGS. 3 to 13.

第3図および第4図(−9伽)は、第1実施例の斜視図
および部分正面、断面図であシ、第6図は同上作用の説
明図である。これらO各図において、プロぺ911は複
数の翼12を有して矢印Cに示す方向に回転され、各員
12の先端には、同翼12と70〜16Gの角度#1を
なして矢印りに示す船舶O進行方向に突出する小翼1s
およびこの小翼13に隣接して反対方向に翼12と70
〜160°の角度0[で小翼14が一体的に設けられて
いる。またプロペラ11の前方側にあって、各小翼13
,14の回転軌跡外方を取シ囲むようKして整流環15
が配設されている。
3 and 4 (-9) are a perspective view, a partial front view, and a sectional view of the first embodiment, and FIG. 6 is an explanatory view of the same operation. In each of these figures, the propeller 911 has a plurality of blades 12 and is rotated in the direction shown by arrow C. A small wing 1s protruding in the direction of ship O shown in
and wings 12 and 70 in opposite directions adjacent to this winglet 13.
The winglets 14 are integrally provided at an angle of ~160°. Also, each small wing 13 is located on the front side of the propeller 11.
, 14 so as to surround the outside of the rotation locus of the rectifying ring 15.
is installed.

従ってこの第1実施例においては、プロペラ110各翼
12が矢印C方向に回転すると、その真面形状によって
揚力りが発生し、その−成分とじて推進力Tと回転トル
クQとが得られ、かつ揚力りと整流環15との相互干渉
によって、この整流環15に推進力を生じ、整流環15
内の流れを加速する。このとき翼12の先端部には符号
Uで示す流速が作用し、この流速Utもつ流れUlは、
各員12の正面側から背面側へmb込み、各小翼13.
14に対し所期の迎角で作用することになり、このため
各小翼13,14には、流れυ!に直交する揚力tが発
生し、その分力として各員12に対する推進力tと、回
転トルクQK対向する逆方向回転トルクqとが得られる
。これによって結果的に各員12に固有の推進力Tはt
分だけ増加し、また回転トルクQはq分だ妙減少するこ
とになる。
Therefore, in this first embodiment, when each blade 12 of the propeller 110 rotates in the direction of arrow C, a lift force is generated due to its true shape, and a propulsive force T and rotational torque Q are obtained as the -components of the lift force. The mutual interference between the lifting force and the rectifying ring 15 generates a propulsive force in the rectifying ring 15, and the rectifying ring 15
Accelerate the flow within. At this time, a flow velocity indicated by the symbol U acts on the tip of the blade 12, and the flow Ul having this flow velocity Ut is as follows:
mb from the front side of each member 12 to the back side, each small wing 13.
14 at the desired angle of attack, and therefore each winglet 13, 14 has a flow υ! A lift force t perpendicular to is generated, and as its component force, a propulsive force t for each member 12 and a rotational torque q in the opposite direction opposite to the rotational torque QK are obtained. As a result, the propulsion force T specific to each member 12 is t
The rotational torque Q will decrease by q.

また第6図および第7図(2)、伽)は、前記第3図お
よび第4図(a) 、 (b) K対応して示す第21
11!施例の斜視図および部分正面、断面図である。こ
の第2実施例においては、前記した矢印C方向に回転す
るプロペラ11のそれぞれ各員12の先端部に1前記小
翼14を欠落し小翼13と同様の小翼16を、翼12と
70°−160°の角度θを表して船舶の進行方向DK
向って突設させたものである。さらに第8図社前記第7
図+b)K対応して示す第3実施例の部分断面図であp
、この第3@施例においては、前記各小翼18,14を
それぞれ逆方向に突設させ九もOである。
In addition, Fig. 6 and Fig. 7 (2), 弽) correspond to Fig. 21 shown in Fig. 3 and Fig. 4 (a), (b) K.
11! FIG. 2 is a perspective view, a partial front view, and a sectional view of the embodiment. In this second embodiment, at the tip of each member 12 of the propeller 11 rotating in the direction of the arrow C described above, one small blade 14 is missing and a small blade 16 similar to the small blade 13 is installed. Representing the angle θ of °-160°, the ship's traveling direction DK
This is a structure that protrudes toward the front. Furthermore, Fig. 8, above, No. 7
Figure + b) A partial sectional view of the third embodiment shown corresponding to K.
In this third embodiment, the small wings 18 and 14 are provided to protrude in opposite directions.

そして第2爽施例での小異1枚付きプロペラにあっては
前記第1奥施例での小翼13と同様に作用し、riIJ
様の効果が得られるのズある。第3実施例での小翼2枚
付きプロペラにあっては前記第1実施例での小翼1B、
14の位置関係は逆転しているが、作用効果はほぼ同様
に現われる。
The propeller with a single small blade in the second rear embodiment functions in the same manner as the small blade 13 in the first rear embodiment, and riIJ
There are many ways to achieve similar effects. In the propeller with two small blades in the third embodiment, the small blade 1B in the first embodiment,
Although the positional relationship of 14 is reversed, the effect appears to be almost the same.

前記各実施例において線小翼付きプロペラ巳前方に配置
された整流環15は軸対称形であるが、本作用効果を引
き出すこと、および船尾形状との取シ合い等の観点より
、第9図〜第35図のように整流環15の形状、小翼付
きプ闘ベラ1ユと整流環1sとの位置関係の組合わせが
それぞれ適用され石。さらに船尾端17と整流環15と
の位置関係についても第36図および第37図に示す例
が用いられる。一般に、上部が長く下部が短かい上下非
対称な整流環が多く用いられる。
In each of the embodiments described above, the rectifying ring 15 disposed in front of the propeller with small linear blades is of an axially symmetrical type, but from the viewpoint of bringing out this effect and coordinating with the stern shape, the rectifying ring 15 is shown in Fig. 9. ~ As shown in Fig. 35, the shape of the rectifying ring 15 and the combination of the positional relationship between the small-winged fishing rod 1 and the rectifying ring 1s are applied. Furthermore, the example shown in FIGS. 36 and 37 is also used for the positional relationship between the stern end 17 and the rectifying ring 15. Generally, a vertically asymmetric rectifying ring with a long upper part and a short lower part is often used.

ここで前記各実施例での小翼付きプロペラ11と整流環
15の作用効果を確認するために行なっ71j櫨々の実
験結果について述べる。
Here, the results of an experiment 71j conducted in order to confirm the effects of the propeller with small blades 11 and the rectifying ring 15 in each of the above embodiments will be described.

まず第38図は第1.第3実施例での小翼2紋付キフo
へ511 、および従来例でのプロペラ1における揚抗
比と迎角との関係を比較して示す説明図であって、揚抗
比はX12の揚力と抗力とを3分力計でIft測してそ
の比を表わし、縦軸に揚抗比、横軸に迎角をとっておシ
、実線R1は第1実施例のプロペラ、鎖#R2は第3実
施例のプロペラ。
First of all, Figure 38 shows the 1. Kifu with small wings 2 crests in the third embodiment
Fig. 511 is an explanatory diagram comparing and showing the relationship between the lift-drag ratio and the angle of attack in the propeller 1 in the conventional example, and the lift-drag ratio is obtained by measuring the lift force and drag force of X12 in Ift with a 3-component force meter. The vertical axis represents the lift-drag ratio, and the horizontal axis represents the angle of attack. The solid line R1 represents the propeller of the first embodiment, and the chain #R2 represents the propeller of the third embodiment.

破#R8は従来例のプロペラの各値を示している。Break #R8 indicates each value of the conventional propeller.

すなわち、この第38図からも明らかなよ′うに、各実
施例によるプロペラ11の性能が従来例のプロペラ1よ
りも優れていることが、迎角α0を中心にして社められ
る。
That is, as is clear from FIG. 38, it can be seen that the performance of the propeller 11 according to each embodiment is superior to that of the conventional propeller 1, mainly at the angle of attack α0.

また第39図は各員12の翼面に対する小翼13.14
の突設角度θを種々にとった場合の揚抗比RθをR3で
除した比率の変化を示す説明図であり、縦軸に揚抗比、
横軸に角度θをとっていて、この第39図から角度θの
有効範囲が70°〜160°であることが判る。
Also, Figure 39 shows the small wings 13 and 14 for the wing surface of each member 12.
It is an explanatory diagram showing a change in the ratio of the lift-drag ratio Rθ divided by R3 when the protrusion angle θ is varied, and the vertical axis shows the lift-drag ratio,
The angle θ is plotted on the horizontal axis, and it can be seen from FIG. 39 that the effective range of the angle θ is 70° to 160°.

次に第40図および第41図は前記第7図値)。Next, FIGS. 40 and 41 are the values shown in FIG. 7).

(b)に示した翼12における各小舅13.14の展開
図、および一方の小翼13の縦横寸法ts 、 tcの
比14唇、いわゆるアスペクト比と揚抗比の関係を示す
説明図であり、ここでは他方の小翼14のアスペクト比
は一定とし、縦軸に揚抗比、横軸にアスペクト比をとっ
ていて、この第41図から小翼13のアスペクト比が大
きいほど揚抗比が大きくなって効果的であることが判る
が、この場合、強度面や幾何学的な制約により限度を有
するため、設計に際してはそれぞれ個々に決定する必要
があり、一般的にム/ の範囲は1.0〜5.0が実用
tJa である。
It is an explanatory diagram showing a developed view of each of the winglets 13 and 14 in the wing 12 shown in (b), and the ratio of the vertical and horizontal dimensions ts and tc of one winglet 13, ie, the relationship between the so-called aspect ratio and lift-drag ratio. Here, the aspect ratio of the other winglet 14 is assumed to be constant, and the vertical axis is the lift-drag ratio, and the horizontal axis is the aspect ratio. From this Fig. 41, the larger the aspect ratio of the winglet 13, the higher the lift-drag ratio It can be seen that it is effective to increase the size, but in this case, there is a limit due to strength and geometric constraints, so it is necessary to determine each individually when designing, and generally the range of M/ is 1 .0 to 5.0 is the practical tJa.

さらに第42図は従来のプロペラ1および小翼付きプロ
ペラ11と、この発明での小翼付きプロペラ11.整流
環15の組み合わせによる推進器との性能を比較して示
す説明図であり、一般にプロペラの単独性能を表わすた
めに用いられるもので、横軸には次式から導かれる前進
係数Jを、また縦軸には同様に次式から導かれるプロペ
ラの単独効率ηa、あるいはプ冨ペッ、整流環系全体の
単独効率17 vowをそれぞれとっており、従来のプ
a<う1を破線Pi、小翼付きプロペラUを実線P―。
Furthermore, FIG. 42 shows a conventional propeller 1 and a small-blade propeller 11, and a small-blade propeller 11 according to the present invention. It is an explanatory diagram that compares and shows the performance of the propeller in combination with the rectifier ring 15, and is generally used to express the independent performance of the propeller. On the vertical axis, the independent efficiency ηa of the propeller, which is similarly derived from the following equation, or the independent efficiency of the entire rectifying ring system, 17 vow, is plotted. The propeller U with a solid line P-.

この発明での小翼付きプ薗ぺ211.整流環15の組み
合せによる推進器を鎖線P3で示している。
Pusonpe with small wings in this invention 211. A propulsion device formed by a combination of rectifier rings 15 is shown by a chain line P3.

前進係数 弓=凰 D Va ・・・・水の流入速度 N・・・・・プロペ2の回転数 D・・・・・プロペラの直径 プロペラ単体として作動させる場合 に? ・・・・スラスト係数 KQ ・・・・トルク係数 に丁=−1− /)N 2 D4 !・・・・・推力 ρ・・・・・水の密度 にげ扉i q・・・・プロペラの回転Lルク プロペラ、整流環系として作動させる場合KvW!  
・・・・・全スラスト係数Tν・・・・・・プロペラ推
力 TD・・・・・・整流環推力 q・・・・・プロペラの回転トルク この第42図から明らかなように、小翼付きプロペ71
1は従来のプロペラ1よりも単独性能において優れてい
るが、さらにこの小翼付きプロペラ11に整流環15を
組み合わせるととくより、通常船舶でのプロペラ作動点
付近ではより一層の効果を発揮し得るものである。
Advance coefficient bow = 凰D Va...Water inflow speed N...Rotation speed of propeller 2 D...Propeller diameter When operating as a single propeller? ...Thrust coefficient KQ ...Torque coefficient = -1- /) N 2 D4! ...Thrust ρ...Density of water i q...Rotation of the propeller L Luk When operating as a propeller and rectifying ring system, KvW!
...Total thrust coefficient Tν ...Propeller thrust TD ...Commutated ring thrust q ...Propeller rotational torque As is clear from this Fig. 42, with small blades Prope 71
The propeller 1 has better performance alone than the conventional propeller 1, but when the rectifier ring 15 is combined with the propeller 11 with small blades, it can be even more effective near the propeller operating point on a normal ship. It is something.

なお、前記実施例においては、整流環15の形状として
上下KIIり長さの等しい、いわゆる上下対称盟の場合
について述べたが、発明者らの知見によれば整流環15
の形状を、側方からみて上部長さを大きく下部に向って
漸次小さくした、いわゆる上下非対称型にした場合も同
様の効果を得られることが確認されえ。
In the above embodiment, the shape of the rectifying ring 15 is so-called symmetrical in that the upper and lower KII lengths are equal, but according to the findings of the inventors, the rectifying ring 15
It has been confirmed that the same effect can be obtained when the shape is made into a so-called vertically asymmetric type in which the upper length is large when viewed from the side and gradually decreases toward the lower part.

以上詳述したようKこの発明によれば、船舶用のプロペ
ラKibって、各JIの先端部に小翼を設け、プロペラ
回転時に正面側から背面側に廻シ込む翼端渦で揚力を得
られるようKすると共に、この小翼付きプロペラの前方
K、小翼の回転軌跡外方を取り囲むようkして整流環を
組み合わせて、この整流環によシ船尾の不均一な流れの
よどみを加速均一化し、小翼への流れの迎角の変化を小
さくしたものであるから、小翼の揚力成分として最適な
推進力と負の回転トルクを効果的に得られ、これKより
プロペラの推進力を従来に比較して着るしく増加でき、
その単独性能を格段に向上させ得るほか、翼端渦による
キャビテーションの発生を阻止して、翼面および整流環
15の内面の浸蝕による効率低下とか破損を防止し、併
せてキャビテーションの抑制によシ船尾振動を軽減し得
るなどの特長を有するものである。
As detailed above, according to this invention, a propeller for a ship is provided with a small blade at the tip of each JI, and lift is obtained from the wing tip vortices that circulate from the front side to the back side when the propeller rotates. At the same time, a rectifier ring is combined to surround the front K of the propeller with small blades and the outside of the rotation trajectory of the small blade, and this rectifier ring accelerates the stagnation of the uneven flow at the stern. Since it is made uniform and the change in the angle of attack of the flow to the small blade is reduced, it is possible to effectively obtain the optimal propulsive force and negative rotational torque as the lift component of the small blade, and from this, the propulsive force of the propeller is can be more comfortable to wear than before,
In addition to significantly improving its independent performance, it also prevents the occurrence of cavitation due to blade tip vortices, prevents a decrease in efficiency or damage due to erosion of the blade surface and the inner surface of the straightening ring 15, and also prevents cavitation by suppressing cavitation. It has features such as being able to reduce stern vibration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(−9(6)および第2図−)、伽)は従来例に
よるプロペラとそのキャビテーシ璽ン分布を示す正面お
よび断面図、第3図、第4図(転)、伽)および第5a
llはこの発明に係る小翼付きプロペラと整流環とを組
み食わせ九推進器の第1実施例を示す斜視図9部分圧面
および断面図、ならびに作用説明図、第6図、第7図ω
、(転)は同上第2奥施例を示す斜視図9部分圧■およ
び断面図、第8図は同上第3実施例を示す部分断面図、
第9図〜第35図は、小翼付きプロペラと整流環の形状
および位置関係の組合わせ図、第36図および菖37図
は船尾端と整流環との位置関係を示す図、第38図はプ
ロペラにおける迎角と揚抗比との関係を示す説明図、第
39図はプロペラの小翼角度と揚抗比との関係を示す説
明図、第40図はプロペラ翼の展開図、第41図は小翼
の7スペクト比と揚抗比との関係を示す説明図、第42
11d過常のプロペラおよび小翼付量プロペラと、小翼
付きプロペラに整流環を組み合わせ九場合の前進係数と
単独効率との関係を示す説明図である。 11・・・・小翼付きプロペラ、12・・・・翼、13
,14,1i−−−小翼、l!−−−・整流環、1T・
・・・船尾端。 特許出願人 三井造船株式金社 代理人 山川政樹(鑞か1名) ■   − 法 502−
Figure 1 (-9 (6) and Figure 2-), 伽) is a front and cross-sectional view showing a conventional propeller and its cavity distribution; Chapter 5a
11 is a perspective view showing a first embodiment of a nine-propeller in which a propeller with small blades and a rectifying ring according to the present invention are combined; 9 partial pressure surface and sectional view; and action explanatory diagram; FIGS. 6 and 7;
, (roll) is a perspective view 9 partial pressure ■ and a sectional view showing the second rear embodiment of the same as above, FIG. 8 is a partial sectional view showing the third embodiment of the same as above,
Figures 9 to 35 are combination diagrams of the shape and positional relationship between the propeller with small blades and the straightening ring, Figures 36 and 37 are diagrams showing the positional relationship between the stern end and the straightening ring, and Figure 38. is an explanatory diagram showing the relationship between the angle of attack and the lift-drag ratio in a propeller, FIG. 39 is an explanatory diagram showing the relationship between the small blade angle of the propeller and the lift-drag ratio, FIG. The figure is an explanatory diagram showing the relationship between the 7 spectral ratio of the small wing and the lift-drag ratio, No. 42.
11d is an explanatory diagram showing the relationship between the advance coefficient and the independent efficiency in the case of a propeller with an excessive amount of small blades and a propeller with small blades, and a combination of a rectifying ring with a propeller with small blades. 11... Propeller with small wings, 12... Wings, 13
, 14, 1i --- small wing, l! --- Rectifier ring, 1T
...Stern end. Patent Applicant Mitsui Engineering & Shipbuilding Co., Ltd. Agent Masaki Yamakawa (1 person) ■ - Law 502 -

Claims (1)

【特許請求の範囲】[Claims] プロペラを構成する各員の先端部に、プ田ペツ回転時に
翼端部に発生する翼端渦で揚力を得る小翼を設けると共
に、この小翼付きプロペラの前方に、小翼の回転軌跡外
方を取シ囲んで、この小翼への流れを加速均一化する整
流環を組み合わせ配置したことを特徴とする船舶用推進
器。
At the tip of each member that makes up the propeller, a small blade is installed that obtains lift from the tip vortex generated at the blade tip when the propeller rotates. A marine propulsion device characterized in that a rectifying ring is arranged in combination to surround the wing and accelerate and equalize the flow to the small blade.
JP538582A 1982-01-19 1982-01-19 Marine propulsion device Expired JPS6033712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP538582A JPS6033712B2 (en) 1982-01-19 1982-01-19 Marine propulsion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP538582A JPS6033712B2 (en) 1982-01-19 1982-01-19 Marine propulsion device

Publications (2)

Publication Number Publication Date
JPS58126288A true JPS58126288A (en) 1983-07-27
JPS6033712B2 JPS6033712B2 (en) 1985-08-05

Family

ID=11609696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP538582A Expired JPS6033712B2 (en) 1982-01-19 1982-01-19 Marine propulsion device

Country Status (1)

Country Link
JP (1) JPS6033712B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405243A (en) * 1990-12-14 1995-04-11 Stealth Propulsion Pty. Ltd. Propeller with shrouding ring attached to blade
WO2001085538A1 (en) * 2000-05-05 2001-11-15 Saunders, Amanda, Maria Anti-cavitation tunnel for marine propellers
KR100394464B1 (en) * 2000-12-01 2003-08-09 현대중공업 주식회사 Y-shaped stator
JP2010000906A (en) * 2008-06-20 2010-01-07 Kawasaki Heavy Ind Ltd Thruster with duct for ship
CN105947160A (en) * 2016-05-05 2016-09-21 哈尔滨工程大学 Propeller for reducing stress at positions of blade roots and decreasing tip vortexes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405243A (en) * 1990-12-14 1995-04-11 Stealth Propulsion Pty. Ltd. Propeller with shrouding ring attached to blade
WO2001085538A1 (en) * 2000-05-05 2001-11-15 Saunders, Amanda, Maria Anti-cavitation tunnel for marine propellers
KR100394464B1 (en) * 2000-12-01 2003-08-09 현대중공업 주식회사 Y-shaped stator
JP2010000906A (en) * 2008-06-20 2010-01-07 Kawasaki Heavy Ind Ltd Thruster with duct for ship
CN105947160A (en) * 2016-05-05 2016-09-21 哈尔滨工程大学 Propeller for reducing stress at positions of blade roots and decreasing tip vortexes
CN105947160B (en) * 2016-05-05 2018-07-24 哈尔滨工程大学 It is a kind of to reduce stress at blade root and reduce the propeller in tip whirlpool

Also Published As

Publication number Publication date
JPS6033712B2 (en) 1985-08-05

Similar Documents

Publication Publication Date Title
CN109625226B (en) Design method of axial-flow type high-power-density water jet propulsion pump
JP2006347285A (en) Stern structure of vessel, and designing method thereof
JP6490595B2 (en) Ship propulsion device
CN105377692B (en) Composite propeller hub cap for reducing rotational flow and hub vortex and improving propulsion efficiency
JPS58126288A (en) Propeller for ship
US3549271A (en) Backflow recovery propeller device
CN106886630B (en) Pump jet propeller hydraulic model with shunting short blades and design method
JP6638941B2 (en) Ship rudder with stern fins
JPS6018599B2 (en) marine propeller
WO1990008061A1 (en) Marine propulsion apparatus
Rowinski et al. Evaluation of effectiveness of waterjet propulsor for a small underwater vehicle
KR101225169B1 (en) Propulsion apparatus and ship including the same
CA1328056C (en) Energy efficient asymmetric pre-swirl vane and twisted propeller propulsion system
US2754919A (en) Propeller
JPH04212695A (en) Screw propeller
KR20120068250A (en) Duct structure for ship
JPH0659871B2 (en) Marine counter-rotating propeller
KR102647301B1 (en) Movable type pre-swirl stator
JPS6225997Y2 (en)
KR20150135906A (en) Propeller Duct with Pin
CN213566415U (en) Pod propeller fin structure for increasing hydrodynamic performance
CN216003033U (en) Ship propeller blade with vortex reducing plate
KR20150035640A (en) Propulsion apparatus for vessel
US1884906A (en) Screw propeller
WO2019014873A1 (en) Propeller for dredger