WO1990002012A1 - Electrodeposition reamer tool - Google Patents

Electrodeposition reamer tool Download PDF

Info

Publication number
WO1990002012A1
WO1990002012A1 PCT/JP1989/000888 JP8900888W WO9002012A1 WO 1990002012 A1 WO1990002012 A1 WO 1990002012A1 JP 8900888 W JP8900888 W JP 8900888W WO 9002012 A1 WO9002012 A1 WO 9002012A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
outer peripheral
peripheral surface
electrodeposition
finishing
Prior art date
Application number
PCT/JP1989/000888
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Kitabayashi
Tadayuki Ishikawa
Hiroyuki Kuroda
Yoshihiko Nakakoji
Masaki Nobuhara
Original Assignee
Kabushiki Kaisha Komatsu Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP1988113908U external-priority patent/JPH0511931Y2/ja
Priority claimed from JP1988115511U external-priority patent/JPH0235624U/ja
Priority claimed from JP1988123046U external-priority patent/JPH0243121U/ja
Priority claimed from JP63291695A external-priority patent/JPH02139115A/en
Priority claimed from JP1988150461U external-priority patent/JPH0270924U/ja
Application filed by Kabushiki Kaisha Komatsu Seisakusho filed Critical Kabushiki Kaisha Komatsu Seisakusho
Priority to KR1019900700872A priority Critical patent/KR0148220B1/en
Priority to EP89909844A priority patent/EP0389637B1/en
Priority to DE68921604T priority patent/DE68921604T2/en
Publication of WO1990002012A1 publication Critical patent/WO1990002012A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D77/00Reaming tools
    • B23D77/14Reamers for special use, e.g. for working cylinder ridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D77/00Reaming tools
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T408/00Cutting by use of rotating axially moving tool
    • Y10T408/44Cutting by use of rotating axially moving tool with means to apply transient, fluent medium to work or product
    • Y10T408/45Cutting by use of rotating axially moving tool with means to apply transient, fluent medium to work or product including Tool with duct
    • Y10T408/455Conducting channel extending to end of Tool
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T408/00Cutting by use of rotating axially moving tool
    • Y10T408/81Tool having crystalline cutting edge

Definitions

  • the present invention relates to an electrodeposition reamer tool used for precision inner diameter hole machining.
  • the reamer A is located at the tip of the reamer main body (base metal) B, and the ⁇ -Caroje portion C is provided over its entire length. It has a cylindrical shape.
  • Abrasive grains D are electrodeposited on the outer peripheral surface of the machined portion C, and a set bolt having a pressing member (not shown) enclosed in the machined portion C is provided at the end. Therefore, the diameter is set by thread expansion and the diameter is set, and the grain size of the electrodeposited abrasive is controlled to obtain 3 ⁇ 41 accuracy.
  • the reference symbol D in the figure is a slit formed in the work portion c.
  • the electrodeposition reamer tool A has the electrodeposition portion of the abrasive grains as described above, that is, the C-shaped column of the C-working portion. Therefore, it is not possible to take a large allowance for the pilot hole that is formed in one shot. Further, since the above-mentioned electrodeposition reamer tool A controls the surface roughness by controlling the working abrasive grain size, the surface roughness is increased accordingly. It is necessary to set a small allowance for the prepared hole formed in the above work.
  • the present invention provides an electrodeposition reamer tool that does not require a complicated pre-processing step and can perform highly accurate precision inner diameter hole machining with high efficiency. This is the purpose of the disclosure of the
  • the electrodeposition reamer tool according to the present invention has a finishing portion having a cylindrical outer peripheral surface and a tapered cutting portion provided on the tip side of the finishing portion. These are constructed by electrodepositing abrasive grains on the outer peripheral surfaces of both processed parts.
  • the electrodeposition reamer tool is inserted into the work-formed prepared hole, and the prepared hole is prepared by the cutting part. In addition to being enlarged, it is finished to the desired hole diameter by the finishing part.
  • the electrodeposition reamer tool described above enables a large allowance for the prepared hole, so it is necessary to pre-process the prepared hole precisely. No pre-processing process A simple explanation of the drawing that makes it extremely easy
  • the figure is a conceptual overall side view showing the first embodiment of the electrodeposition reamer tool according to the present invention.
  • Fig. 2 is a conceptual overall side view showing the second embodiment
  • Fig. 3 is a cross-sectional side view of the essential parts of the electrodeposition reamer tool
  • Fig. 4 is an electric view showing the third embodiment. End view of the wearing tool
  • Fig. 5 is a side view of the main part of the same electrodeposition reamer tool
  • Fig. 6 is a cross-sectional side view of the main part showing the state in which abrasive grains are electrodeposited on the finishing part and the cutting part.
  • Fig. 7 is a side view of the cross section of the main part showing the state in which the abrasive grains are trued in,
  • Fig. 8 is a cross-sectional side view of the essential part showing the state in which the abrasive grains are trued in, which is the fourth embodiment.
  • Figure 9 is a graph showing the relationship between surface roughness and machining length.
  • Fig. 10 shows a side view of the essential parts of the electrodeposition reamer tool showing the fifth embodiment.
  • Fig. 11 shows the end view of the same electrodeposition reamer tool
  • Fig. 12 shows the A-A line cross section of Fig. 11 1.
  • Figure 13 shows a graph showing the relationship between surface roughness and machining length.
  • Fig. 15 is a side view of the entire body of the reamer used in the electrodeposition reamer tool of the sixth embodiment.
  • Figure 16 is a sectional view taken along the line A-A in Figure 15
  • Figure 17 is a sectional view taken along the line B-B in Figure 15
  • Figure 18 shows a cross-sectional side view of the main part of the reamer body shown in Figure 15
  • Fig. 19 is a cross-sectional side view of the main part of an electrodeposition reamer tool in which the outer peripheral surface of the machined part is formed in a straight line in the axial cross section.
  • Fig. 20 shows the oil hole position.
  • Fig. 21 is an explanatory view of each part of the work part
  • Fig. 22 is an overall side view showing a conventional electrodeposition re-imaging tool. Best mode for carrying out the invention.
  • FIG. 1 shows a first embodiment of the electrodeposition reaming tool according to the present invention.
  • the work part 3 of the reamer main body 2 is provided on the tip side of the finishing part 4 having a cylindrical outer peripheral surface and this finishing part 4. It is composed of the provided tapered cutting part 5 and force.
  • the finishing section 4 and the cutting section 5 are both reamed. It is formed coaxially along the center axis of rotation of the main body 2 and has a circular cross section orthogonal to the above-mentioned center of rotation.
  • the above-mentioned machined part 5 has a base end formed to have the same diameter as the above-mentioned machined part 4, and its diameter gradually decreases as it goes to the tip. It is formed as follows.
  • the outer peripheral surface of the cutting part 5 is formed in a straight line in the cross section in the gall direction.
  • abrasive grains 6 for machining are respectively fixed by electrodeposition o.
  • the abrasive grains 6 electrodeposited on the above-mentioned finishing processing part 4 have been subjected to anoiling and have a flat cutting edge, while the above-mentioned cutting processing part 5 is electrodeposited.
  • Abrasive grain 6 has no sharpening and has a sharp cutting edge.
  • the tapered cutting part 5 has a guiding effect.
  • the finishing part 4 finishes the inner surface of the hole, and the work is formed with a hole of a predetermined size.
  • the electrodeposition reamer tool having the above configuration] it is possible to form a hole of a predetermined size in the work without precisely machining the prepared hole.
  • Ru On the other hand, as described above, the abrasive grains 6 electrodeposited on the finishing section 4 have a flat cutting edge and are flattened on the cutting section 5 to the cutting section 5. The inner surface of the enlarged hole is then polished by this flat cutting edge, and the hole diameter is determined, the surface roughness, and the roundness are corrected.
  • the abrasive grains 6 electrodeposited on the finishing portion 4 have a flat tip, the contact area with the inner surface of the hole is large, and thus the reaming tool 1 described above is used.
  • the surface roughness of the inner surface of the hole does not deteriorate even if the feeding speed of the
  • FIGS. 2 and 3 show a second embodiment of the electrodeposition reamer tool according to the present invention.
  • the electrodeposition reamer tool 10 has an outer circumferential surface 1 2 a of the cutting processing portion 1 2 in the shaving working portion 1 1 in the axial direction.
  • the cutting portion 12 has a ceramic force such as T i N.
  • the outer surface shape of the above-mentioned machined part and the configuration other than the ceramics coating are the same as those of the first embodiment.
  • the reference numeral 13 in Fig. 2 is the finishing portion
  • 14 is the reamer body
  • 15 is the abrasive grain of the finishing portion
  • 16 is the cutting processing.
  • Abrasive grain of the part, and 17 indicates the ceramics coating.
  • the hole can be drilled using the electrodeposition re-imaging tool 10 according to the present embodiment.
  • the surface roughness, roundness, and cylindricity are the same as 2 in comparison with the case where the hole is added using the electrodeposited reaming tool 1 of the first embodiment shown.
  • the machining accuracy equivalent to that of the electrodeposited reaming tool 1 of the first embodiment can be obtained. It was That is, the processing efficiency can be increased by 1.5 times.
  • the material of the work used in the experiment is FC 2 5 and the working dimension is ⁇ 2 5 4 5 L mm.
  • the peripheral speed is 20 m / min.
  • the electrodeposition reamer tool 30 has the work part 32 of the reamer main body 31 and the tip of the finishing part 3 3 having a cylindrical outer peripheral surface and the finishing part 3 3 thereof. It is composed of a tapered cutting part 3 4 provided on the side. In addition, divide the outer peripheral surface of the above-mentioned work part 32 into equal parts. Tree 7 Multiple notches that extend along the central axis of the main body 3 1 3 2 a, 3 2 a, ... Forces are formed.
  • the abrasive grains 3 6 having a large grain size in the cutting portion 3 4 are used for drilling a hole.
  • the inner surface of the hole is the same as that of the finishing processing part 3 3 with a finely tuned abrasive grain 3 6 Slide to finish.
  • chips are discharged through the notches 3 2 a, 3 2 a, ... on the outer peripheral surface of the drilling part.
  • Fig. 9 shows an electrodeposition reaming tool with # 100CBN abrasive grains fixed on the outer peripheral surface of the finishing and cutting portions.
  • the cutting tool In addition to fixing the CBN abrasive grains and performing the truing, the cutting tool also solidifies the CBN abrasive grains of # 80 with Rjt. 2)).
  • the tool N 0.2 has a processing length that is approximately 1.5 times longer than that of tool N 0.1. It's power. This is a tool as shown in Fig. 7. N ⁇ .2 In other words, the abrasive grain with a large grain size
  • the abrasive grains 35 of the finishing machined part 3 3 perform only the burnishing action, so that the conventional electrodeposition is performed.
  • the diameter of the tool can be made smaller than that of the reaming tool, and also the finished surface roughness can be improved.
  • the abrasive grains 3 6 of the machined part 3 4 have a large grain size, it is possible to take a large stock removal allowance, and it is possible to use the two-pass type that has been used in the past. Eliminates the need for multiple machining processes (3
  • the electrodeposited reamer tool 40 of the fourth embodiment shown in Fig. 8 has a large abrasive grain size 4 6 at the tip of the outer peripheral surface of the cutting portion 4 4.
  • the outer peripheral surface of the cutting processing section 4 4 and the outer peripheral surface of the finishing section 4 3 and the outer peripheral surface of the finish processing section 4 3 are fixed with S5C.
  • S only the solid abrasive grains 4 5 in the finishing portion 4 3 were subjected to truing, and the other composition was electrodeposited in the third embodiment. It is basically the same as the reaming tool 30.
  • the abrasive grain 4 5 is the CBN abrasive grain of # 100 and the abrasive grain 4 6 is the C ⁇ abrasive grain of # 80.
  • the above-mentioned electrodeposition reamer tool 40 (referred to as tool N 0.3) and the above-mentioned tool N 0.1 and tool N 0.2 As shown in Fig. 9, the tool No. 3 has a slightly longer machining length than the tool No. 0.2, as shown in Fig. 9.
  • This electrodeposited remapping tool 5 ⁇ extends along the center axis so as to equally divide the outer peripheral surface of the work part 5 1 into the work part 5 1 having a circular cross section. Multiple cutouts 5] a, 1... are formed
  • abrasive grains are fixed by electrodeposition on the outer peripheral surfaces of the finish processing section 5 2 and the cutting processing section 5 3 in the single processing section 5 1.
  • the upper reamer tool 50 has an oil supply passage 5 4 drilled along the center axis of rotation and the oil supply passage. 5 4 and a plurality of oil holes 5 5, 5 5, ... that communicate with the part where the notch 5 1 a in the outer peripheral surface of the machined part 5 3 is not formed. Is formed It is
  • the oil hole 5 5 is opened in the direction from the oil supply passage 5 4 toward the tool tip, in other words, the rotation center $.
  • the opening is formed in the outer peripheral surface of the above-mentioned machined part 5 3 at approximately the center in the length direction.
  • the cutting portion 5 3 expands the prepared hole provided in the work.
  • the infinite hole 5 5 is opened on the outer peripheral surface of the cutting portion 5 3, it is possible to always apply a constant working fluid pressure to the working point.
  • the supply of the machining liquid to the outer peripheral surface of the work part 5 1 other than the machining point is performed from the outside of the tool 5 ⁇ via the notch 5 1 a. R.
  • Figure 13 shows a comparison between the electrodeposited reaming tool 50 according to the present embodiment and an electrodeposited reaming tool without a conventional oil wheel. It is shown in the graph of the relationship with Sa.
  • the present embodiment that is, oil In the electrodeposited reaming tool equipped with a hole, the clogging due to the cutting chips is reduced, and the length of the surface where the finished surface begins to deteriorate is extended. ..
  • tools without oil wheels it is difficult to improve the processing conditions because they are clogged by cutting chips, but it is necessary to install oil wheels. This makes it possible to improve the processing conditions.
  • the electrodeposited reaming tool 60 has a forked processing part 61, a finishing processed part 6 2 having a cylindrical outer peripheral surface, and an outer peripheral surface with an axial cross section.
  • the electrodeposited reaming tool 60 is composed of a machined part 6 3 formed in an R shape and an abrasive grain 6 4 is electrodeposited on the outer peripheral surfaces of both machined parts 6 2 and 6 3.
  • the abrasive grains fixed in the finishing section 6 2 above are subjected to the pulling, and the rough processing is performed between points A and B in Fig. 13-3.
  • the intermediate finishing is performed between points B and C, and the finishing machining is performed from point C onward in the finished finishing section 62 with the lining.
  • the outer peripheral surface of the reamer body of the electrodeposition reamer tool 6 ⁇ has a plurality of cuts extending along the center axis of rotation. Missing 6 1 a, 6 1 a, ... Has been formed. Further, in the above electrodeposition reamer tool 60, an oil supply passage 6 is bored along the central axis of rotation, and the oil supply passage 6 5 is formed. An oil hole 6 6 that communicates with the outer peripheral surface of the work part 61 is formed, and the outer surface of the work part 6 1 has the above-mentioned oil. An oil reservoir 6 7 is formed that opens the hole 6 6.
  • Fig. 19 relates to the main body ⁇ in which the outer peripheral surface of the cut processing portion 7 2 in the work processing portion 7 1 is formed into a straight line in the axial cross section. Electroplated reamer tool 7 ° is shown.
  • the work part 7 1 of this electrodeposited remapping tool 70 is a cutting part 7 2 that mainly performs roughing, and a finishing part 7 3 that performs finishing. Since the grain size of the electro-deposited abrasive grains 74 is always variable, the number of abrasive grains that actually affect machining is the number of abrasive grains. 7 It increases between points A and B in the first half of point 2 and between points B and C in the latter half, and the size of the chip pocket decreases conversely. These points B to C are important as parts that are responsible for machining equivalent to semi-finishing, and it is possible to move from rough machining (between points A and B) to finish machining (after the point). Need to move to.
  • the taper shape has a taper angle of 1 degree or less, which is very small. It was difficult to manufacture, and it was necessary to take a lot of tool removal cost. If the machining conditions are further increased, chips will be clogged between points B and C, and the cutting part 7 Even if an on-hole is installed in 2, it is not possible to sufficiently prevent clogging.
  • the sixth embodiment of the electrodeposited reaming tool 60 as shown in FIG. It consists of a finishing part 6 2 (point C and after) and a cutting part 6 3 (between points A and C) whose outer peripheral surface is formed into an R shape in the ⁇ direction cross section. Therefore, the middle finishing range (between points B and C) can be expanded more than the electrodeposition reaming tool 70 described above.
  • the number of abrasive grains 6 4 and the size of the nut pocket from roughing (between points A and B) to finishing force ⁇ (below point C) are two. It changes in a dimensional manner, and the state of application by the electrodeposition reaming tool 70 changes to a smooth force, and the rate of change is small as it approaches point c. A more stable finishing process is possible.
  • Electroplating reaming tool 70 Electroplating reaming tool 80 Surface roughness Ry 2 Ry 1.5 ⁇ Machining size: P21 X 45 i Circularity 2im 1.2 im Work material: FC25
  • Fig. 20 is a calculation diagram for determining the formation position of the oil wheel 6 6 in the electrodeposition tool 60, and the horizontal axis is the tool tip. (Base metal) Radius (mm) and vertical length of each part from the tool tip (mm) o
  • the figure is an explanatory view of each part of the work part 61.
  • the machining allowance (Radius) 0.05 mm.
  • the tool tip radius R is required to be less than 500 mm as shown in Fig. 20.
  • the tool part responsible for roughing and semi-finishing is from the (A) point on the — Ji 'curve in Figure 20 to the (B) point on the L curve. It becomes an area. Therefore, the optimum position for setting the oil wheel is the tool tip force, which is a force of 4 to 14 mm.
  • the electrodeposition reamer tool according to the present invention can be effectively applied when precision inner diameter hole drilling is performed on various works.

Abstract

This invention relates to an electrodeposition reamer tool (1) used for precision inner diameter boring. In this electrodeposition reamer tool (1), a work machining portion (3) in a reamer main body is composed of a finish machining portion (4) having a cylindrical outer peripheral surface and a tapered cut machining portion (5) disposed at the tip side of the finish machining portion (4), and abrasive grains (6) are electrodeposited on the outer peripheral surfaces of the finish machining portion (4) and the cut machining portion (5). When the electrodeposition reamer tool (1) is fitted into a blank hole in a work, the hole is expanded by the cut machining portion (5) and the inner surface of the hole is finish-machined by the finish machining portion (4). Accordingly, a precision inner diameter hole having a predetermined dimension can be formed without precision pre-machining of the blank hole.

Description

明 in]  Ming in]
電 着 リ マ エ 具 技 術 分 野 Electro-deposition reminder tool technology field
本発明 は、 精密内径穴加工 に使用す る 電着 リ ー マ エ 具 に関す る 。 北 技 術  The present invention relates to an electrodeposition reamer tool used for precision inner diameter hole machining. Northern technology
従来か ら 用 い ら れて い る 電着 リ ーマ と し て は、 例え ば、 実開昭 6 0 - 5 3 4 2 7 号公報 に 開示 さ れて い る ラ ッ ピ ン グ リ 一マ (竹沢精機出願) がめ る o  An example of an electrodeposition reamer that has been used in the past is the wrapping grease disclosed in Japanese Utility Model Publication No. 60-0 5 3 4 2 7 publication. Ma (Takezawa Seiki application)
第 2 2 図 に示す よ う に 、 上記 リ 一マ A は、 リ ーマ 本 体 (台金) B の先端部に設 け ら れた ヮ — ク カロェ部 C が そ の 全長 に亘 っ て円柱状 に 構成 さ れて い る 。 こ の 加工 部 C の外周面 に は砥粒 D が電着 さ れて お り 、 上記加工 部 C 内 に封入 さ れた 図示 し な い押圧部材を端部 に 設 け た セ ッ ト ボル ト に よ り 、 ね じ 込み拡径 し て そ の 径を設 定 し 、 電着砥粒径を コ ン ト ロ ール し て ¾1精度を得 る よ う 構成 さ れて い る 。 な お、 図中符号 D は ヮ ー ク 加ェ部 c に形成 さ れた ス リ ッ ト で あ る  As shown in Fig. 22, the reamer A is located at the tip of the reamer main body (base metal) B, and the ヮ -Caroje portion C is provided over its entire length. It has a cylindrical shape. Abrasive grains D are electrodeposited on the outer peripheral surface of the machined portion C, and a set bolt having a pressing member (not shown) enclosed in the machined portion C is provided at the end. Therefore, the diameter is set by thread expansion and the diameter is set, and the grain size of the electrodeposited abrasive is controlled to obtain ¾1 accuracy. The reference symbol D in the figure is a slit formed in the work portion c.
と こ ろ で、 上記電着 リ ー マ 工具 A は 、 上述 し た よ う に加ェ砥粒の電着部分、 すな わ ち ヮ ー ク 加工部 C 力 円 柱状を呈 し て い る た め、 ヮ 一 ク に 形成 さ れ る 下穴の取 り 代を大 き く 取 る こ と 力 で き な い。 ま た、 上記電着 リ ーマ工具 A は、 加工砥粒径を コ ン ト ロ ール し て面粗度を調整 し てい る た め、 面粗度を向 上 さ せ る の に伴い、 上記 ワ ー ク に形成 さ れ る 下穴の取 り 代を小 さ く 設定 し な ければな ら な い。 In this case, the electrodeposition reamer tool A has the electrodeposition portion of the abrasive grains as described above, that is, the C-shaped column of the C-working portion. Therefore, it is not possible to take a large allowance for the pilot hole that is formed in one shot. Further, since the above-mentioned electrodeposition reamer tool A controls the surface roughness by controlling the working abrasive grain size, the surface roughness is increased accordingly. It is necessary to set a small allowance for the prepared hole formed in the above work.
し たが っ て、 上記電着 リ 一マエ具 A を用 い て精密内 径穴加工す る に は、 ワ ー ク に、 目 標に近い寸法精度 と 面粗度の下穴を前加工 し てお く 必要があ り .、 こ の た め . 前加工工程が極めて煩雑 と な る 不都合があ つ た。  Therefore, in order to machine a precision inner diameter hole using the electrodeposited reaming tool A, a work is used to pre-process a prepared hole with dimensional accuracy close to the target and surface roughness. Therefore, the pre-machining process was extremely complicated, which was a disadvantage.
本発明 は上記実状 に鑑みて、 煩雑な前加工工程を要 す る こ と な く 、 高能率 に精密内径穴加工を行な う こ と の で き る 電着 リ ーマ工具を提供す る こ と を 目 的 と す る , 発 明 の 開 示  In view of the above situation, the present invention provides an electrodeposition reamer tool that does not require a complicated pre-processing step and can perform highly accurate precision inner diameter hole machining with high efficiency. This is the purpose of the disclosure of the
本発明 に関わ る 電着 リ ーマ工具は、 円筒状外周面を 有す る 仕上加工部 と 、 上記仕上加工部の先端側 に設け ら れた先細形状の切削加工部 と を有 し 、 こ れ ら 両加工 部の外周面に それぞれ砥粒を電着す る こ と に よ っ て構 成 さ れてい る 。  The electrodeposition reamer tool according to the present invention has a finishing portion having a cylindrical outer peripheral surface and a tapered cutting portion provided on the tip side of the finishing portion. These are constructed by electrodepositing abrasive grains on the outer peripheral surfaces of both processed parts.
こ の構成に よ れば、 電着 リ ーマ工具を、 ワ ー ク に形 成 さ れた下穴に揷入す る こ と に よ り 、 上記下穴が、 切 削加工部 に よ っ て拡大 さ れ る と と も に 、 仕上加工部 に よ っ て所望の穴径に仕上げ ら れ る 。  According to this configuration, the electrodeposition reamer tool is inserted into the work-formed prepared hole, and the prepared hole is prepared by the cutting part. In addition to being enlarged, it is finished to the desired hole diameter by the finishing part.
し たが っ て、 上記電着 リ ーマ工具に よ れば、 下穴の 取 り 代を大 き く と る こ と が可能 と な る ので、 下穴を精 密に前加工す る 必要がな く な り 、 よ っ て、 前加工工程 が極め て容易 と な る 図面の簡単な 説明 Therefore, the electrodeposition reamer tool described above enables a large allowance for the prepared hole, so it is necessary to pre-process the prepared hole precisely. No pre-processing process A simple explanation of the drawing that makes it extremely easy
図 は本発明 に 関わ る 電着 リ ー マ工具の第 1 の 実 施例を示す概念的な 全体側面図、  The figure is a conceptual overall side view showing the first embodiment of the electrodeposition reamer tool according to the present invention.
第 2 図 は第 2 の実施例を示す概念的 な 全体側面図、 第 3 図 は同 じ く 電着 リ ー マ工具の要部断面側面図、 第 4 図 は第 3 の実施例を示す電着 リ 一マエ具 の端面 図、  Fig. 2 is a conceptual overall side view showing the second embodiment, Fig. 3 is a cross-sectional side view of the essential parts of the electrodeposition reamer tool, and Fig. 4 is an electric view showing the third embodiment. End view of the wearing tool,
第 5 図 は同 じ く 電着 リ ー マ工具の要部側面図、 第 6 図 は仕上加工部 と 切削加工部 と に砥粒を電着 し た状態を示す要部断面側面図、  Fig. 5 is a side view of the main part of the same electrodeposition reamer tool, and Fig. 6 is a cross-sectional side view of the main part showing the state in which abrasive grains are electrodeposited on the finishing part and the cutting part.
第 7 図 は砥粒を ツ ルーィ ン グ し た状態を示す要部断 面側面図、  Fig. 7 is a side view of the cross section of the main part showing the state in which the abrasive grains are trued in,
第 8 図 は第 4 の 実施例であ っ て砥粒を ツ ルー ィ ン グ し た状態を示す要部断面側面図、  Fig. 8 is a cross-sectional side view of the essential part showing the state in which the abrasive grains are trued in, which is the fourth embodiment.
第 9 図 は仕上面粗 さ と 加工長 さ と の 関係を示す ダ ラ フ 、  Figure 9 is a graph showing the relationship between surface roughness and machining length.
第 1 〇 図 は第 5 の 実施例を示す電着 リ ー マ工具の要 部側面図、  Fig. 10 shows a side view of the essential parts of the electrodeposition reamer tool showing the fifth embodiment.
第 1 1 図 は同 じ く 電着 リ ー マ工具の端面図、 第 1 2 図 は第 1 1 図の A — A 線断面図  Fig. 11 shows the end view of the same electrodeposition reamer tool, and Fig. 12 shows the A-A line cross section of Fig. 11 1.
第 1 3 図 は仕上面粗 さ と 加工長 さ と の 関係 を示す グ ラ フ 、  Figure 13 shows a graph showing the relationship between surface roughness and machining length.
第 1 4 図第 6 の 実施例を示す電着 リ ー マ 工具の 要部 断面側面図、 Fig. 14 Fig. 6 Main part of the electrodeposition reamer tool showing the sixth embodiment Cross section side view,
第 1 5 図 は第 6 の実施例の電着 リ ーマ工具に お け る リ ーマ本体の 全体側面図、  Fig. 15 is a side view of the entire body of the reamer used in the electrodeposition reamer tool of the sixth embodiment.
第 1 6 図 は第 1 5 図中の A — A線断面図、  Figure 16 is a sectional view taken along the line A-A in Figure 15
第 1 7 図 は第 1 5 図中の B — B 線断面図、  Figure 17 is a sectional view taken along the line B-B in Figure 15
第 1 8 図 は第 1 5 図に示 し た リ ー マ本体の要部断面 側面図  Figure 18 shows a cross-sectional side view of the main part of the reamer body shown in Figure 15
第 1 9 図 は、 切削加工部の外周面を軸方向断面に お い て直線に形成 し た電着 リ ーマ 工具の要部断面側面図 第 2 〇 図 はオ イ ルホール位置を決定す る た め の算定 図、  Fig. 19 is a cross-sectional side view of the main part of an electrodeposition reamer tool in which the outer peripheral surface of the machined part is formed in a straight line in the axial cross section. Fig. 20 shows the oil hole position. Calculation chart for
第 2 1 図 は ワ ー ク 加工部の各部各称説明図、 第 2 2 図 は従来の電着 リ 一マエ具を示す全体側面図 であ る 発明 を実施す る た め の最良の形態  Fig. 21 is an explanatory view of each part of the work part, and Fig. 22 is an overall side view showing a conventional electrodeposition re-imaging tool. Best mode for carrying out the invention.
以下、 本発明を、 第 1 図か ら第 2 1 図 に示す幾つ か の実施例を示す図面に基づい て詳細に説明す る 。  Hereinafter, the present invention will be described in detail with reference to the drawings showing some embodiments shown in FIGS. 1 to 21.
第 1 図 に 、 本発明 に関わ る 電着 リ ーマ工具の第 1 の 実施例を示す。  FIG. 1 shows a first embodiment of the electrodeposition reaming tool according to the present invention.
こ の電着 リ ーマ工具 1 は 、 リ ーマ本体 2 の ワ ー ク 加 ェ部 3 が、 円筒状外周面を有す る 仕上加工部 4 と 、 こ の仕上加工部 4 の先端側に設け ら れた先細形状の切削 加工部 5 と 力、 ら 構成 さ れてい る 。  In this electrodeposition reamer tool 1, the work part 3 of the reamer main body 2 is provided on the tip side of the finishing part 4 having a cylindrical outer peripheral surface and this finishing part 4. It is composed of the provided tapered cutting part 5 and force.
上記仕上加工部 4 と 切削加工部 5 と は、 共に リ ーマ 本体 2 の 回転中心軸 に沿 つ て同軸上 に 形成 さ れてお り 上記回転中心拿由 に 直交す る 断面 は 円形を呈 し て い る 。 ま た上記切削加工部 5 は、 基端が上記仕上加工部 4 と 同一径 に形成 さ れてい る と と も に 、 先端 に行 く に従 つ て そ の 径が序 々 に小 さ く な る よ う に形成 さ れて い る 。 な お、 上記切削加工部 5 の外周面 は、 铀方向断面 に お い て直線 に形成 さ れて い る The finishing section 4 and the cutting section 5 are both reamed. It is formed coaxially along the center axis of rotation of the main body 2 and has a circular cross section orthogonal to the above-mentioned center of rotation. In addition, the above-mentioned machined part 5 has a base end formed to have the same diameter as the above-mentioned machined part 4, and its diameter gradually decreases as it goes to the tip. It is formed as follows. The outer peripheral surface of the cutting part 5 is formed in a straight line in the cross section in the gall direction.
上記仕上加工部 4 と 切削加工部 5 と の外周面 に は 、 そ れぞれ加工用 の砥粒 6 が電着に よ っ て固設 さ れて い る o  On the outer peripheral surface of the finishing portion 4 and the cutting portion 5, abrasive grains 6 for machining are respectively fixed by electrodeposition o.
上記仕上加工部 4 に電着 さ れ た砥粒 6 は、 ッ ノレー ィ ン グが施 さ れて平 ら な 切刃を有 し て お り 、 一方、 上記 切削加工部 5 に電着 さ れた砥粒 6 は、 ツ ル一 イ ン グが 施 さ れてお ら ずに鋭利な 切刃を有 し て い る 。  The abrasive grains 6 electrodeposited on the above-mentioned finishing processing part 4 have been subjected to anoiling and have a flat cutting edge, while the above-mentioned cutting processing part 5 is electrodeposited. Abrasive grain 6 has no sharpening and has a sharp cutting edge.
上記構成の電着 リ ーマエ具 1 に よ っ て穴加工を行な う 場合、 ワ ー ク の下穴 に上記電着 リ ー マ工具 1 を挿入 す る と 、 先ず、 切削加工部 5 に よ っ て上記下穴が拡大 さ れ る 。 こ の と き 、 先細形状の 切削加工部 5 は ガ ィ ド 効果を持つ こ と に な る 。  When performing hole drilling with the electrodeposited reaming tool 1 having the above configuration, first insert the electrodeposited reaming tool 1 into the prepared hole of the work, then The above pilot hole is enlarged. In this case, the tapered cutting part 5 has a guiding effect.
次い で上記電着 リ ーマエ具 1 を さ ら に 挿入 し て い く と 、 仕上加工部 4 に よ っ て穴の 内面が仕上加工 さ れ、 ワ ー ク に所定寸法の穴が形成 さ れ る 。  Next, if the electrodeposition reaming tool 1 is not inserted further, the finishing part 4 finishes the inner surface of the hole, and the work is formed with a hole of a predetermined size. R.
すな わ ち 、 上記構成の電着 リ ー マ工具 】 に よ れば、 下穴を精密に 加工す る こ と な く 、 ワ ー ク に所定寸法の 穴を形成す る こ と がで き る 一方、 上述 し た よ う に 、 仕上加ェ部 4 に電着 さ れた 砥粒 6 は ッ ノレ一ィ ン グ さ れて平 ら な切刃を持 っ てお り 上記切削加工部 5 に よ つ て拡大 さ れた穴の 内面が、 こ の平 ら な切刃 に よ り 研磨 さ れ、 穴径の決定、 面粗度、 真円度の修正等が行な われ る。 That is, with the electrodeposition reamer tool having the above configuration], it is possible to form a hole of a predetermined size in the work without precisely machining the prepared hole. Ru On the other hand, as described above, the abrasive grains 6 electrodeposited on the finishing section 4 have a flat cutting edge and are flattened on the cutting section 5 to the cutting section 5. The inner surface of the enlarged hole is then polished by this flat cutting edge, and the hole diameter is determined, the surface roughness, and the roundness are corrected.
ま た、 仕上加ェ部 4 に電着 さ れた砥粒 6 は、 先端が 平 ら であ る た め、 穴の 内面 と の接触面積が大 き く 、 よ つ て、 上記 リ ーマエ具 1 の送 り 速度を上げて も 穴の 内 面の面粗度が悪化す る こ と はな い  Further, since the abrasive grains 6 electrodeposited on the finishing portion 4 have a flat tip, the contact area with the inner surface of the hole is large, and thus the reaming tool 1 described above is used. The surface roughness of the inner surface of the hole does not deteriorate even if the feeding speed of the
で、 本発明 に関わ る 電着 リ —マエ具 1 を用 い て 穴加工を行な つ た場台 と 、 従来の電着 リ ー マ 工具を用 い て穴加工を行な つ た場合 と の比較を、 第 1 表に示す  Therefore, there is a case where the hole is drilled using the electrodeposition reaming tool 1 related to the present invention, and a case where the hole is drilled using the conventional electrodeposition reaming tool. Table 1 shows the comparison of
Figure imgf000008_0001
Figure imgf000008_0001
加工寸法 ø 2 5 4 5 L  Machining size ø 2 5 4 5 L
被削材 : F C 2 5 こ の表力、 ら も 明 ら か な よ う に 、 本発明 に 関わ る 電着 リ —マエ具 1 に よ れば、 取 り 代を大 き く し 、 送 り を 向上 さ せて加工 し て も 、 従来の工具 と 同等の加工精度が得 ら れ、 ま た従来の工具で は前加工で 6 卿程度の 面粗度 が要求 さ れ、 かつ荒引 き 、 仕上げの 2 工程で そ れぞれ 1 本宛の工具を必要 と し たが、 本発明 に 関わ る 電着 リ 一マエ具で は前加工での面粗度に は影響 さ れず、 1 本 の工具で要求精度を達成す る こ と がで き る 。 Work Material: FC 25 With this surface force, the electrodeposition re-imaging tool 1 according to the present invention is also apparent, and the machining cost is increased and the delivery is improved. At the same time, the same machining accuracy as that of conventional tools is obtained, and with conventional tools, surface roughness of about 6 squares is required for pre-processing, and it is necessary to perform roughing and finishing in two steps. A tool for one tool was required for each, but the electrodeposition reaming tool of the present invention does not affect the surface roughness during pre-machining, and one tool achieves the required accuracy. You can play.
第 2 図お よ び第 3 図 に 、 本発明 に関わ る 電着 リ ー マ 工具の第 2 の実施例を示す。  2 and 3 show a second embodiment of the electrodeposition reamer tool according to the present invention.
こ の電着 リ ー マ工具 1 0 は、 第 3 図 に 示す如 く 、 ヮ — ク 加 工 部 1 1 に お け る 切 削 加 工 部 1 2 の 外 周 面 1 2 a が、 軸方向断面に お い て曲線、 言 い換え れば湾 曲 し て形成 さ れて い る と と も に 、 こ の 切削加工部 1 2 に T i N 等の セ ラ ミ ッ ク ス 力《 コ ー テ ィ ン グ さ れて い る な お、 上記切削加工部の外周面の 形状、 お よ びセ ラ ミ ッ ク ス コ一テ ィ ン グ以外の構成は、 第 1 の 実施例の電 着 リ ー マ工具 1 と 基本的 に 同様で あ り 、 第 2 図中符号 1 3 は仕上加工部、 1 4 は リ ー マ本体、 1 5 は仕上加 ェ部の砥粒、 1 6 は切削加工部の砥粒、 1 7 は セ ラ ミ ッ ク ス コ 一テ ィ ン グを示 し て い る 。  As shown in Fig. 3, the electrodeposition reamer tool 10 has an outer circumferential surface 1 2 a of the cutting processing portion 1 2 in the shaving working portion 1 1 in the axial direction. In addition to being curved in a cross section, in other words curved and formed, the cutting portion 12 has a ceramic force such as T i N. The outer surface shape of the above-mentioned machined part and the configuration other than the ceramics coating are the same as those of the first embodiment. Basically the same as the reamer tool 1, the reference numeral 13 in Fig. 2 is the finishing portion, 14 is the reamer body, 15 is the abrasive grain of the finishing portion, and 16 is the cutting processing. Abrasive grain of the part, and 17 indicates the ceramics coating.
上記構成の電着 リ ー マ工具 1 ◦ に よ っ て穴加工を行 な っ た場合、 上記セ ラ ミ ッ ク ス の作用 に よ り 、 切削加 ェ部 1 2 と ワ ー ク に お け る 下穴の 内周面 と の 摩擦抵抗 が減少す る 。 よ っ て摩擦熱の 発生が抑え ら れ、 切 り 屑 が切削加工部に溶着 し て加工穴径が拡大 し た り 加工面 にむ しれを生 じ た り と い っ た不都合が未然 に防止 さ れ ま た、 T i N 等の セ フ :; ッ ク ス は、 一般に砥粒固定 メ ツ キ層 に用 い ら れてい る 二 ッ ケ ル に比べて、 切 り 屑 の付着性が低い 。 こ の た め、 チ ッ プ ボ ケ ッ 卜 力、 ら の 切 り 屑 の離脱が容易であ り 、 こ れに よ つ て も 加ェ穴径の 拡大や加工面の む し れを未然に防止す る こ と がで き る な お、 実験の結果に よ れば、 本実施例 に よ る 電着 リ 一マエ具 1 0 を用 い て穴加工を行な つ * 口 *、 先に例 示 し た第 1 の実施例の電着 リ 一マエ具 1 を用 い て穴加 ェを行な っ た場合 と 比較 し て、 面粗度、 真円度、 円筒 度が各 2 と 同一であ る の に対 し て送 り を 2 m m / r e v 力、 ら 3 m m / r e v へ と 増加 し て も 第 1 の 実施例の電着 リ 一マエ具 1 と 同等の加工精度が得 ら れた。 すな ち加工 効率を 1 . 5 倍にす る こ と がで き る 。 こ の場合実験に 用 い た ワ ー ク の材質は F C 2 5 で あ り 、 加ェ寸法は Φ 2 5 4 5 L m m . 周速 2 0 m / m i n で め る o When a hole is drilled with the electrodeposition reamer tool 1 ◦ with the above configuration, the cutting tool part 1 2 and the work will be affected by the action of the above ceramics. The frictional resistance with the inner surface of the prepared hole decreases. Therefore, the generation of frictional heat is suppressed, and It is possible to prevent inconveniences, such as welding to the cutting area, expansion of the processing hole diameter, and shavings on the processing surface. Compared to the nickel used for the abrasive grain fixing mes- sage layer, the dust is less likely to adhere to chips. Therefore, the chip bokeh force and the separation of the chips are easy, and the increase in the diameter of the processing hole and the removal of the machined surface can be prevented. According to the result of the experiment, the hole can be drilled using the electrodeposition re-imaging tool 10 according to the present embodiment. The surface roughness, roundness, and cylindricity are the same as 2 in comparison with the case where the hole is added using the electrodeposited reaming tool 1 of the first embodiment shown. However, even if the feed is increased from 2 mm / rev force to 3 mm / rev, the machining accuracy equivalent to that of the electrodeposited reaming tool 1 of the first embodiment can be obtained. It was That is, the processing efficiency can be increased by 1.5 times. In this case, the material of the work used in the experiment is FC 2 5 and the working dimension is Φ 2 5 4 5 L mm. The peripheral speed is 20 m / min.
第 4 図か ら 第 7 図 は、 本発明に関わ る ¾ リ マェ 具の第 3 の実施例を示す。  4 to 7 show a third embodiment of the remote control device according to the present invention.
電着 リ ー マ工具 3 0 は、 リ 一マ本体 3 1 の ワ ー ク 加 ェ部 3 2 を、 円筒状外周面を有す る 仕上加工部 3 3 と こ の 仕上加工部 3 3 の先端側 に設け ら れた先細形状の 切削加工部 3 4 と か ら 構成 し て い る 。 さ ら に、 上記 ヮ ー ク 加工部 3 2 の外周面 に は、 該外周面を等分 し 、 か つ リ 一 7本体 3 1 の 中心軸 に沿 っ て延び る 複数条切 り 欠 き 3 2 a , 3 2 a , … 力 形成 さ れて い る 。 The electrodeposition reamer tool 30 has the work part 32 of the reamer main body 31 and the tip of the finishing part 3 3 having a cylindrical outer peripheral surface and the finishing part 3 3 thereof. It is composed of a tapered cutting part 3 4 provided on the side. In addition, divide the outer peripheral surface of the above-mentioned work part 32 into equal parts. Tree 7 Multiple notches that extend along the central axis of the main body 3 1 3 2 a, 3 2 a, ... Forces are formed.
上記仕上加ェ部 3 3 の外周面 に は、 比較的 目 の 細 力、 い砥粒 3 5 が溶着に よ っ て固設 さ れて い る と と も に 、 上記切削加ェ部 3 4 の外周面 に は、 上記砥粒 3 5 よ り も 粒径の大 き な砥粒 3 6 が溶着に よ っ て固設 さ れて い る 。 な お、 3 の 実施例で は、 第 7 図 に示す如 く 、 仕 上加工部 3 3 に電着 さ れ た砥粒 3 5 に の み ツ ル— イ ン グが施 さ れて い る 。  On the outer peripheral surface of the finish processing part 33, relatively small force, and the abrasive grains 35 are fixed by welding, and the cutting processing part 34 Abrasive grains 36, which have a larger grain size than the above-mentioned abrasive grains 35, are fixed to the outer peripheral surface by welding. In the third embodiment, as shown in Fig. 7, only the abrasive grains 35 electrodeposited on the finishing machined portion 3 3 were subjected to the swelling. ..
上記構成 の電着 リ —マエ具 3 0 に よ れば、 穴加工を 行な う 際、 切削加ェ部 3 4 に お け る 大 き な 粒径の砥粒 3 6 が、 ヮ 一 ク の 下穴を高能率 に削 り と る と と も に 、 仕上加ェ部 3 3 に ね け る /Jヽ さ な粒径の ツ ル一 ィ ン グ さ れた砥粒 3 6 が穴の 内面を滑 ら カ、 に 仕上げ加ェす る 。 な お、 上記穴加工時、 切 り 屑 は 、 ヮ 一 ク 加工部外周面 の 切 り 欠 き 3 2 a , 3 2 a , … を介 し て排出 さ れ る 。  According to the electrodeposition reaming tool 30 having the above-described structure, the abrasive grains 3 6 having a large grain size in the cutting portion 3 4 are used for drilling a hole. In addition to cutting the prepared hole with high efficiency, the inner surface of the hole is the same as that of the finishing processing part 3 3 with a finely tuned abrasive grain 3 6 Slide to finish. During the above hole drilling, chips are discharged through the notches 3 2 a, 3 2 a, ... on the outer peripheral surface of the drilling part.
で 第 9 図 に 、 仕上加ェ部 と 切削加ェ部 と の 外 周面 に # 1 0 0 C B N 砥粒を 固設 し た電着 リ ーマ エ具 Fig. 9 shows an electrodeposition reaming tool with # 100CBN abrasive grains fixed on the outer peripheral surface of the finishing and cutting portions.
(工具 N 0 . 1 と 称す る ) と 、 仕上加工部 に # 1 0 0 の(Called tool N 0.1) and the # 100
C B N 砥粒を 固設 し て ツ ル一ィ ン グ を施す と と も に 、 切削加ェ部に # 8 0 の C B N 砥粒を 固 Rjt し た ½着 リ 一 マエ具 (ェ具 N 0 . 2 と 称す る ) と の比較結果を示す。 In addition to fixing the CBN abrasive grains and performing the truing, the cutting tool also solidifies the CBN abrasive grains of # 80 with Rjt. 2)).
第 9 図 か ら 明 ら 力、 な よ う ίこ 、 工 具 N 0 . 2 は 、 ェ具 N 0 . 1 に比較 し て、 加工長 さ が約 1 . 5 倍 に 延長 さ れ る こ と が わ 力、 つ た 。 こ れ は 、 第 7 図 に 示す如 き 工具 N ο . 2 すな わ ち 切削加工部 3 4 に粒径の大 き な砥粒From Fig. 9, it is clear that the tool N 0.2 has a processing length that is approximately 1.5 times longer than that of tool N 0.1. It's power. This is a tool as shown in Fig. 7. N ο .2 In other words, the abrasive grain with a large grain size
3 6 を固設 し た電着 リ 一マエ具 3 0 で は 、 砥粒間の隙 間で あ る チ ッ プ ポ ケ ッ ト カ 大 き い た め に、 切 り 屑 に よ る 目 詰ま り を起 こ し に く い こ と に起因す る も の と 考え ら れ る 。 In the electrodeposited reaming tool 30 in which 3 6 is fixed, the chip pocket due to the gap between the abrasive grains is large and clogging is caused by chips. It is thought that this is due to the frequency of occurrence.
一方、 本実施例 に よ る 電着 リ ーマ工具 3 ◦ で は 、 仕 上加工部 3 3 の砥粒 3 5 は、 バニ シ ン グ作用 の み を行 な う の で、 従来の電着 リ ーマ工具よ り も 工具の径を小 径 と す る こ と がで き 、 し か も 仕上げ面粗 さ を向上 さ せ る こ と 力 で き る 。 ま た 、 切削加工部 3 4 の砥粒 3 6 は 粒径が大 き い た め、 取 り 代を大 き く 取 る こ と がで き 、 従来行な つ てい た 2 本通 し等の複数の加工工程が不要 と な る (3  On the other hand, in the electrodeposition reaming tool 3 ◦ according to the present embodiment, the abrasive grains 35 of the finishing machined part 3 3 perform only the burnishing action, so that the conventional electrodeposition is performed. The diameter of the tool can be made smaller than that of the reaming tool, and also the finished surface roughness can be improved. In addition, since the abrasive grains 3 6 of the machined part 3 4 have a large grain size, it is possible to take a large stock removal allowance, and it is possible to use the two-pass type that has been used in the past. Eliminates the need for multiple machining processes (3
第 8 図に示 し た第 4 の実施例の電着 リ ーマ工具 4 0 は 切削加ェ部 4 4 の外周面に お け る 先端部に の み粒 径の大 き な砥粒 4 6 を固設す る と と も に、 上記切削加 ェ部 4 4 の先端部以降の外周面 と 仕上加工部 4 3 の外 周面 と に、 粒径の小 さ な砥粒 4 5 を固 S5C し 、 S り に、 仕上加工部 4 3 に固 れた砥粒 4 5 に の み ツ ルーィ ン グを施 し た も の であ り 、 こ の他の構成は第 3 の実施 例の電着 リ 一マエ具 3 0 と 基本的 に同様であ る 。 な お 砥粒 4 5 は # 1 0 0 の C B N砥粒であ り 、 砥粒 4 6 は # 8 0 の C Β Ν砥粒であ る o  The electrodeposited reamer tool 40 of the fourth embodiment shown in Fig. 8 has a large abrasive grain size 4 6 at the tip of the outer peripheral surface of the cutting portion 4 4. In addition to the fixed S5C, the outer peripheral surface of the cutting processing section 4 4 and the outer peripheral surface of the finishing section 4 3 and the outer peripheral surface of the finish processing section 4 3 are fixed with S5C. However, in S, only the solid abrasive grains 4 5 in the finishing portion 4 3 were subjected to truing, and the other composition was electrodeposited in the third embodiment. It is basically the same as the reaming tool 30. The abrasive grain 4 5 is the CBN abrasive grain of # 100 and the abrasive grain 4 6 is the C ΒΝ abrasive grain of # 80.
上記電着 リ ーマ工具 4 0 (工具 N 0 . 3 と 称 す る ) と 、 先に示 し た工具 N 0 . 1 お よ び工具 N 0 . 2 と を比較 し てみ る と 、 第 9 図 に 示す よ う に工具 N o . 3 は 工具 N 0 . 2 よ り も さ ら に加工長 さ が若干延長 さ れ る こ と がわか つ た。 The above-mentioned electrodeposition reamer tool 40 (referred to as tool N 0.3) and the above-mentioned tool N 0.1 and tool N 0.2 As shown in Fig. 9, the tool No. 3 has a slightly longer machining length than the tool No. 0.2, as shown in Fig. 9.
こ れは 、 第 7 図 に示す仕上加工部 3 3 と 切削加工部 3 4 と の境界付近の ツ ル一 ィ ン グ量の大 き い粒径の大 き い砥粒がな く な つ た た め、 目 詰 ま り し に く く な つ た こ と に よ る も の と 考え ら れ る  This is because there was no large abrasive grain with a large amount of truing near the boundary between the finished processed part 33 and the cut processed part 34 shown in Fig. 7. Therefore, it is thought that it is due to clogging
な お、 本実施例 に お い て は C B N 砥粒を # 1 0 0 , # 8 ◦ を使用 し た も につ い て説明 し たが、 こ の選択 は 面粗度 · 真円度 · 円筒度を 2 〃 に 目 指 し た 例であ っ て 要求精度 に よ り 種 々 変更で き る こ と は言 う ま で も な い 第 1 0 図か ら 第 1 2 図 に 、 本発明 に 関わ る 電着 リ ー マエ具の第 5 の実施例を示す o  In this example, we explained using CBN abrasive grains of # 100, # 8 ◦, but this choice was for surface roughness, roundness, and cylinder. It is not necessary to say that this is an example in which the degree is set to 2 〃, and it can be changed variously depending on the required accuracy. Shows the fifth example of the electrodeposition remae tool involved
こ の電着 リ 一マエ具 5 ◦ は 、 円形断面の ワ ー ク 加工 部 5 1 に 、 該加工部 5 1 の外周面を等分す る よ う に 中 心軸 に沿 つ て延 び る 複数条の 切 り 欠 き 5 ] a , 1 … が形成 さ れて い る  This electrodeposited remapping tool 5 ◦ extends along the center axis so as to equally divide the outer peripheral surface of the work part 5 1 into the work part 5 1 having a circular cross section. Multiple cutouts 5] a, 1… are formed
ま た 、 ヮ 一 ク 加工部 5 1 に お け る 仕上加工部 5 2 と 切削加ェ部 5 3 と の外周面 に は、 砥粒が電着 に よ っ て 固設 さ れて い る 。  In addition, abrasive grains are fixed by electrodeposition on the outer peripheral surfaces of the finish processing section 5 2 and the cutting processing section 5 3 in the single processing section 5 1.
さ ら にヽ 上 じ ¾ リ ーマ工具 5 0 に は、 回転中心軸 に沿 つ てオ イ ル供耠通路 5 4 が穿設 さ れて い る と と も に 、 該ォ ィ ル供給通路 5 4 と 切削加工部 5 3 の 外周面 に お け る 切 り 欠 き 5 1 a が形成 さ れて い な い 部分 と を 連通す る 複数の オ イ ルホ一ル 5 5 , 5 5 , … が形成 さ れてい る 。 In addition, the upper reamer tool 50 has an oil supply passage 5 4 drilled along the center axis of rotation and the oil supply passage. 5 4 and a plurality of oil holes 5 5, 5 5, ... that communicate with the part where the notch 5 1 a in the outer peripheral surface of the machined part 5 3 is not formed. Is formed It is
上記オ イ ルホ一ル 5 5 は、 第 1 2 図 に明示す る よ う に 、 オ イ ル供給通路 5 4 か ら工具先端に 向か っ て開 く 方向、 言い換えれば、 回転中心 $由に対 し て斜め先端方 向 に傾斜 し て延設さ れてお り 、 上記切削加工部 5 3 の 外周面に お け る 長 さ 方向の ほぼ中央に開 口 し てい る 。  As shown in Fig. 12 above, the oil hole 5 5 is opened in the direction from the oil supply passage 5 4 toward the tool tip, in other words, the rotation center $. On the other hand, it is extended so as to be inclined toward the tip end, and the opening is formed in the outer peripheral surface of the above-mentioned machined part 5 3 at approximately the center in the length direction.
上記構成の電着 リ 一マエ具 5 0 に よ っ て、 穴加工を 行な う と 、 先ず切削加工部 5 3 が ワ ー ク に設け ら れた 下穴を拡大す る 。  When a hole is drilled by the electrodeposited reaming tool 50 having the above-mentioned structure, first, the cutting portion 5 3 expands the prepared hole provided in the work.
こ の と き 、 切削加工部 5 3 は 内径'加工の ほ とん どを 受け持つ ため に加工負荷が大 き く 、 切粉に よ る 目 詰 ま り が最 も生 じ ゃすい。  In this case, since the cutting part 5 3 is responsible for most of the inner diameter 'machining, the machining load is large, and the clogging by the chips is the most prominent.
し か し 、 上記切削加工部 5 3 に は、 オ イ ル供給通路 However, there is an oil supply passage in the cutting section 5 3 above.
5 4 お よ びオ イ ルホール 5 5 を介 し て加工液が供給 さ れ る た め 、 切削加工部 5 3 に付着す る 切粉は、 こ の加 ェ液に よ つ て押 し流 さ れて し ま う 。 Since the machining fluid is supplied via 5 4 and the oil hole 5 5, the chips adhering to the cutting machining section 5 3 are also washed away by this machining fluid. Let's do it.
ま た、 ォ イ ノレ ホ 一 ル 5 5 は、 切削加工部 5 3 の外周 面に開 口 し てい る た め、 常に一定の加工液圧を加工点 に加え る こ と がで き る 。 な お、 加工点以外の ワ ー ク 加 ェ部 5 1 に お け る 外周 面へ の 加工液の 供給 は、 工具 5 ◦ の外部か ら 切 り 欠 き 5 1 a を介 し て行な われ る 。  Moreover, since the infinite hole 5 5 is opened on the outer peripheral surface of the cutting portion 5 3, it is possible to always apply a constant working fluid pressure to the working point. The supply of the machining liquid to the outer peripheral surface of the work part 5 1 other than the machining point is performed from the outside of the tool 5 ◦ via the notch 5 1 a. R.
第 1 3 図は、 本実施例 に よ る 電着 リ ーマ工具 5 0 と 従来のオ イ ル ホ ール の な い電着 リ 一マエ具 と の比較を 加工長 さ と 仕上げ面あ ら さ と の関係の グラ フ で示 し た も ので あ る 。 こ れに よ れば本実施例すな わ ち 、 オ イ ル ホ ールを設 け た電着 リ 一マエ具 は、 切粉 に よ る 目 詰 ま り が減少す る た め、 仕上げ面あ ら さ が劣化 し 始め る 加 ェ長 さ が延びて い る 。 言い換え ればオ イ ル ホ ールの な い工具で は、 切粉 に よ る 目 詰 り の た め、 加工条件を高 め る こ と が難 し いが、 オ イ ノレホ ールを設け る こ と に よ り 加工条件を高め る こ と がで き る 。 Figure 13 shows a comparison between the electrodeposited reaming tool 50 according to the present embodiment and an electrodeposited reaming tool without a conventional oil wheel. It is shown in the graph of the relationship with Sa. According to this, the present embodiment, that is, oil In the electrodeposited reaming tool equipped with a hole, the clogging due to the cutting chips is reduced, and the length of the surface where the finished surface begins to deteriorate is extended. .. In other words, with tools without oil wheels, it is difficult to improve the processing conditions because they are clogged by cutting chips, but it is necessary to install oil wheels. This makes it possible to improve the processing conditions.
ま た、 A I や N i 合金な どの よ う に長 い 切粉を生 じ る よ う な 被削材は、 電着 リ 一 マ加工を行 な う こ と が困 難で あ つ たが、 オ イ ルホールを設け る こ と に よ り 、 加 ェ条件 に は制約 さ れ る が、 加工で き る よ う に な っ た。  In addition, it has been difficult to perform electrodeposition re-milling for work materials that produce long chips such as AI and Ni alloys. By providing the oil holes, the processing conditions were restricted, but the processing was possible.
第 1 4 図か ら 第 1 8 図 に、 本発明 に 関わ る 電着 リ ー マエ具の第 6 の 実施例を示す。  14 to 18 show a sixth embodiment of the electrodeposition reamer tool according to the present invention.
第 1 4 図に 示すよ う に 、 電着 リ 一マエ具 6 0 は、 ヮ ー ク 加工部 6 1 が、 円筒状外周面を有す る 仕上加工部 6 2 と 、 外周面が軸方向断面に お い て R 形状 に 形成 さ れた 切削加工部 6 3 と から 構成 さ れて お り 、 両加工部 6 2 , 6 3 の外周面 に は、 砥粒 6 4 が電着 さ れて い る ま た、 上記仕上加工部 6 2 に 固設 さ れた砥粒 に は、 ッ ル一 イ ン グが施 さ れてお り 、 第 1 3 図中、 点 A 〜 B 間 で は荒加工、 点 B 〜 C 間で は中仕上げが行 な われ、 ッ ルーィ ン グを施 し た 仕上加工部 6 2 の 点 C 以降で は仕 上加工が行な われ る 。  As shown in Fig. 14, as shown in Fig. 14, the electrodeposited reaming tool 60 has a forked processing part 61, a finishing processed part 6 2 having a cylindrical outer peripheral surface, and an outer peripheral surface with an axial cross section. In this case, it is composed of a machined part 6 3 formed in an R shape and an abrasive grain 6 4 is electrodeposited on the outer peripheral surfaces of both machined parts 6 2 and 6 3. In addition, the abrasive grains fixed in the finishing section 6 2 above are subjected to the pulling, and the rough processing is performed between points A and B in Fig. 13-3. The intermediate finishing is performed between points B and C, and the finishing machining is performed from point C onward in the finished finishing section 62 with the lining.
一方、 第 1 5 図か ら 第 1 8 図 に示す よ う に 、 上記電 着 リ ー マ工具 6 ◦ の リ ー マ本体外周面 に は 、 回転中心 軸 に沿 っ て延び る 複数条の 切 り 欠 き 6 1 a , 6 1 a , …が形成 さ れてい る 。 ま た、 上記電着 リ ー マ工具 6 0 に は、 回転中心軸 に沿 っ てオ イ ル供耠通路 6 が穿設 さ れてい る と と も に、 該オ イ ル供給通路 6 5 と ワ ー ク 加工部 6 1 の外周面 と を連通す る オ イ ルホ 一ル 6 6 力く 形成 さ れて お り 、 さ ら に上記 ワー ク 加工部 6 1 の外周 面に は、 上記オ イ ルホール 6 6 の 開 口す る オ イ ル溜 り 6 7 が形成 さ れてい,る。 On the other hand, as shown in Figs. 15 to 18, as shown in Figs. 15 to 18, the outer peripheral surface of the reamer body of the electrodeposition reamer tool 6 ◦ has a plurality of cuts extending along the center axis of rotation. Missing 6 1 a, 6 1 a, … Has been formed. Further, in the above electrodeposition reamer tool 60, an oil supply passage 6 is bored along the central axis of rotation, and the oil supply passage 6 5 is formed. An oil hole 6 6 that communicates with the outer peripheral surface of the work part 61 is formed, and the outer surface of the work part 6 1 has the above-mentioned oil. An oil reservoir 6 7 is formed that opens the hole 6 6.
こ こ で、 第 1 9 図 に、 ワ ー ク 加工部 7 1 に お け る 切 削加工部 7 2 の外周面を、 軸方向断面 に お い て直線に 形成 し た本発 ^ に関わ る 電着 リ ーマ工具 7 ◦ を示す。  Here, Fig. 19 relates to the main body ^ in which the outer peripheral surface of the cut processing portion 7 2 in the work processing portion 7 1 is formed into a straight line in the axial cross section. Electroplated reamer tool 7 ° is shown.
こ の電着 リ 一マエ具 7 0 に お け る ワ ー ク 加工部 7 1 は、 主に荒加工を行な う 切削加工部 7 2 と 、 仕上加工 を行な う 仕上加工部 7 3 と に分かれて お り 、 ま た、 電 着 さ れ る 砥粒 7 4 の粒径に は必ずバ ラ ツ キ力くあ る た め、 実際に加工 に作用す る 砥粒の数は切削加工部 7 2 の前 半の点 A 〜 B 間 よ り 、 後半の点 B 〜 C 間で増加 し 、 チ ッ プポ ケ ッ 卜 の大 き さ は逆に小 さ く な る 。 こ の 点 B 〜 C 間 は中仕上げに相当す る 加工を受持つ部分 と し て重 要であ り 、 荒加工 (点 A 〜 B 間) か ら 仕上加工 (点 じ 以降) へ滑 ら か に移行す る 必要があ る 。 点 B 〜 C 間で の加工を安定 さ せ る た め に はそ の範囲を広 く す る 必要 があ る が、 テーパ形状で はテ一パ角度が 1 度以下 と微 少と な り 、 製作す る こ と が難 し く 、 ま た工具抜 き 代を 多 く 取 る 必要があ っ た。 さ ら に加工条件を高め る と 点 B 〜 C 間 に 切粉 に よ る 目 詰 り が発生 し 、 切削加工部 7 2 に オ イ ノレ ホ —ルを設け て も こ の 目 詰 り を十分抑制 す る こ と がで き な い 0 The work part 7 1 of this electrodeposited remapping tool 70 is a cutting part 7 2 that mainly performs roughing, and a finishing part 7 3 that performs finishing. Since the grain size of the electro-deposited abrasive grains 74 is always variable, the number of abrasive grains that actually affect machining is the number of abrasive grains. 7 It increases between points A and B in the first half of point 2 and between points B and C in the latter half, and the size of the chip pocket decreases conversely. These points B to C are important as parts that are responsible for machining equivalent to semi-finishing, and it is possible to move from rough machining (between points A and B) to finish machining (after the point). Need to move to. In order to stabilize the machining between points B and C, it is necessary to widen the range, but the taper shape has a taper angle of 1 degree or less, which is very small. It was difficult to manufacture, and it was necessary to take a lot of tool removal cost. If the machining conditions are further increased, chips will be clogged between points B and C, and the cutting part 7 Even if an on-hole is installed in 2, it is not possible to sufficiently prevent clogging.
れに対 し て第 6 の実施例の電着 リ 一マエ具 6 0 で は、 第 1 4 図 に示すよ う に 、 ヮ一ク 加ェ部 6 1 を、 円 同状外周面を有す る 仕上加工部 6 2 (点 C 以降) と 、 外周面が ώ方向断面に お い て R 形状 に形成 さ れた 切削 加ェ部 6 3 (点 A ~ C 間) と か ら 構成す る こ と に よ つ て、 中間の 中仕上げ範囲 (点 B 〜 C 間 ) を、 上記電着 リ 一マエ具 7 0 よ り も 拡げ る こ と がで き る 。  On the other hand, in the sixth embodiment of the electrodeposited reaming tool 60, as shown in FIG. It consists of a finishing part 6 2 (point C and after) and a cutting part 6 3 (between points A and C) whose outer peripheral surface is formed into an R shape in the ώ direction cross section. Therefore, the middle finishing range (between points B and C) can be expanded more than the electrodeposition reaming tool 70 described above.
ま た 、 荒加工 (点 A 〜 B 間) か ら 仕上力 αェ (点 C 以 降) への 、 砥粒 6 4 の数お よ びナ ツ ブ ポ ケ ッ 卜 の大 き さ は、 二次元的 に変化 し 、 上記電着 リ 一マエ具 7 0 よ り 加ェ状況 は滑 ら 力、 に変化す る と と ち に 、 点 c に近付 く 程そ の変化率は小 さ く 、 よ り 安定 し た仕上加ェがで さ る  In addition, the number of abrasive grains 6 4 and the size of the nut pocket from roughing (between points A and B) to finishing force α (below point C) are two. It changes in a dimensional manner, and the state of application by the electrodeposition reaming tool 70 changes to a smooth force, and the rate of change is small as it approaches point c. A more stable finishing process is possible.
こ で、 第 6 の実施例の電着 リ ーマ工具 6 ◦ を用 い て穴加工を行な っ た場合 と 、 第 1 9 図 に示 し た電着 リ ―マ工具 7 0 を用 い て穴加工を行な っ た場合 と の 比較 を、 第 2 表 に示す。  Here, the case where the hole is drilled using the electrodeposition reamer tool 6 ◦ of the sixth embodiment and the case where the electrodeposition reamer tool 70 shown in Fig. 19 is used. Table 2 shows a comparison with the case where hole drilling was performed.
2 2
電着リ一マエ具 70 電着リ一マエ具 80 加 工 条 件 面 粗 度 Ry 2 Ry 1. 5 βη 加工寸法: P21 X 45 i 円 筒 度 2im 1. 2 im 被削材: FC25  Electroplating reaming tool 70 Electroplating reaming tool 80 Surface roughness Ry 2 Ry 1.5 βη Machining size: P21 X 45 i Circularity 2im 1.2 im Work material: FC25
真 円 度 2fm 1. 3 im i≤り : 2mm / rev . Roundness 2fm 1.3 im i ≤ ri: 2mm / rev.
3 / 45mm 3 fls/45min 切削速度: 2Dm /mi n . 工具寿命 32 m 48 m 切削代: 1 DD im/ Φ こ の 表か ら も 明 ら かな よ う に 、 本実施例の 電着 リ ー マエ具 6 0 に よ れば、 同一の加工条件であ れば、 面粗 度、 円筒度及び真円度が改善 さ れる と 共に 、 工具寿命 に お い て も 電着 リ 一マ エ具 7 0 の約 1.5 倍の寿命 と な る こ と 力 わ 力、 つ た。 3 / 45mm 3 fls / 45min Cutting speed: 2Dm / min. Tool life 32m 48m Cutting allowance: 1 DD im / Φ As is clear from this table, according to the electrodeposition reaming tool 60 of this example, the surface roughness, cylindricity and circularity can be obtained under the same processing conditions. In addition to being improved, the tool life was about 1.5 times longer than that of the electrodeposition tool 70, and the power and force were increased.
—方、 上記電着 リ ー マ工具 6 0 に よ っ て穴加工を行 な う 際、 オ イ ル供耠通路 6 5 、 オ イ ルホ一ル 6 6 、 お よ びオ イ ル溜 り 6 7 を介 し て ワ ー ク 加工部 6 1 〖こ加工 液が供給 さ れ る た め、 上記 ワ ー ク 加工部 6 1 に付着す る 切粉が押 し 流 さ れ、 こ れ に よ り 、 上記 ヮ ー ク 加工部 6 1 の 目 詰ま り が抑制 さ れ る 。  On the other hand, when making holes with the above electrodeposition reamer tool 60, the oil supply passage 6 5, the oil wheel 6 6 and the oil reservoir 6 Since the work processing part 6 1 〖〖cutting liquid is supplied via 7, the chips adhering to the work processing part 6 1 above are pushed out and discharged by this. The clogging of the above-mentioned break processing part 6 1 is suppressed.
こ こ で第 2 0 図 は、 電着 リ 一マ エ具 6 0 に お る オ イ ル ホ ール 6 6 の形成位置を決定す る た め の算定図であ り 、 横軸は工具先端 (台金) 半径 ( m m ) 、 縦申.も はェ 具先端か ら の 各部長 さ ( m m ) を示 し てい る o  Here, Fig. 20 is a calculation diagram for determining the formation position of the oil wheel 6 6 in the electrodeposition tool 60, and the horizontal axis is the tool tip. (Base metal) Radius (mm) and vertical length of each part from the tool tip (mm) o
図 は ワ ー ク 加工部 6 1 の 各部説明図であ り 取代 .(半径) 0.05mm . ( t ) 使用砥粒平均直径 G .22mni ( d ) ッ ノレ一イ ン グ量 (半径) · ♦ 0.055 mm ( s ) 工具先端半径差 Q .2mm ( ) 工具先端半径 (台金) ♦ · ♦ R The figure is an explanatory view of each part of the work part 61. The machining allowance. (Radius) 0.05 mm. (T) Average grain diameter used G. 0.055 mm (s) Tool tip radius difference Q .2mm () Tool tip radius (base metal) ♦ · ♦ R
と す る と  And
R部長 さ … L = R * sin i cos"1 Length of R section… L = R * sin i cos " 1
Figure imgf000018_0001
Figure imgf000018_0001
新たな用紙 R+ (d-s-t)New paper R + (dst)
A部位置… ' - (R + d) · sin cos Position of part A ... '-(R + d) · sin cos
R + d  R + d
R+ (d-s) R + (d-s)
B 部位置… ^ -(R + d) ♦ sin cos  B part position… ^-(R + d) ♦ sin cos
R + d と な る 。  It becomes R + d.
止 り 穴加工の場合、 工具抜 き 代は 1 5 m m ま で許容 さ れ る と す る と 、 工具先端半径 R は第 2 0 図 よ り 5 0 0 m m 以下を と る 必要力 あ る 。 R = 5 0 0 m m と す る と 荒加工、 中仕上げを受け持つ工具部分 は、 第 2 0 図中 の — Ji ' 曲線上の ( A ) 点か ら L 曲線上の ( B ) 点 ま での領域 と な る 。 従 っ て、 オ イ ルホ ールを設 け る 最 適位置 は工具先端力、 ら 4 〜 1 4 m m の 位置で あ る こ と がわ力、 る 。 産業上の利用可能性 In the case of blind hole machining, if the tool removal allowance is up to 15 mm, the tool tip radius R is required to be less than 500 mm as shown in Fig. 20. When R = 500 mm, the tool part responsible for roughing and semi-finishing is from the (A) point on the — Ji 'curve in Figure 20 to the (B) point on the L curve. It becomes an area. Therefore, the optimum position for setting the oil wheel is the tool tip force, which is a force of 4 to 14 mm. Industrial availability
本発明 に関わ る 電着 リ ー マ工具は、 様 々 な ワ ー ク に 精密内径穴加工を行な う 場合に 、 有効 に適用 す る こ と がで き る 。  The electrodeposition reamer tool according to the present invention can be effectively applied when precision inner diameter hole drilling is performed on various works.
新たな用紙 New paper

Claims

請 求 の 範 囲 1 . 円筒状外周面を有す る 仕上加工部 と 、  Scope of request 1. Finishing part with cylindrical outer peripheral surface,
上記仕上加工部の先端側 に設け ら れた先細形状の切 削加工部 と を有 し 、  It has a tapered cutting part provided on the tip side of the finishing part,
上記仕上加工部の外周面お よ び上記切削加工部の外 周面に そ れぞれ砥粒,を電着 し て成 る こ と を特徴 と す る 電着 リ ー マ工具  An electrodeposition reamer tool characterized in that abrasive grains are electro-deposited on the outer peripheral surface of the finishing machined portion and the outer peripheral surface of the cutting machined portion, respectively.
2 . 上記切削加工部の外周面を、 軸方向断面に お い て 直線に形成 し た こ と を特徴 と す る 請求の範囲第 1 項記 載の電着 リ ー マ工具 2. Electrodeposition reamer tool as set forth in claim 1 characterized in that the outer peripheral surface of the above-mentioned machined portion is formed in a straight line in the axial cross section.
3 . 上記切削加工部の外周面を、 軸方向断面 に お い て 湾曲 さ せて形成 し た こ と を特徴 と す る 請求の範囲第 1 項記載の電着 リ ー マ工具 3. The electrodeposition reamer tool according to claim 1, characterized in that the outer peripheral surface of the cut portion is formed by being curved in an axial cross section.
4 . 上記仕上加工部に電着 さ れた砥粒に ツ ル一イ ン グ を施 し た こ と を特徴 と す る 請求の範囲第 1 項記載の電 着 リ ー マ工具 4. The electrodeposition reamer tool according to claim 1, characterized in that the abrasive grains electrodeposited on the finishing portion are subjected to a single swing.
5 . 上記切削加工部に セ ラ ミ ッ ク コ ー テ ィ ン グを施 し た こ と を特徴 と す る 請求の範囲第 1 項記載の電着 リ ー マ エ具 5. Electrodeposition reaming tool according to claim 1, characterized in that the cutting portion is provided with ceramic coating.
6 . 上記切削加工部に お け る 外周面の少な く と も 先端 部 に 、 上記仕上加工部の外周面 に電着 さ れた砥粒 よ り も 粒径の大 き な砥粒を電着 し た こ と を特徴 と す る 請求 の範囲第 1 項記載の電着 リ ー マ工具 6 .Electrodeposited at least at the tip of the outer peripheral surface of the above-mentioned machined part, and at the tip of the outer peripheral surface of the above-mentioned machined part, with larger grain size than the electrodeposited abrasive particles. Electroplated reamer tool according to claim 1 characterized by the following:
7 . 上記仕上加工部お よ び上記切削加工部の 外周面'に 回転中心軸 に沿 っ て延び る 複数条の 切 り 欠 き を形成 し た こ と を特徴 と す る 請求の範囲第 1 項記載の電着 リ ー マエ具 7. A plurality of notches extending along the center axis of rotation is formed on the outer peripheral surface of the finishing processing portion and the cutting processing portion, and the first aspect of the present invention is characterized by the first claim. Electroplated reaming tool described in paragraph
8 . 上記回転中心軸 に沿 つ て延び る オ イ ル供給通路 と 上記オ イ ル供給通路 と 上記切削加工部の外周面 と を 連通す る オ イ ルホ ール と を有す る こ と を特徴 と す る 請 求の範囲第 1 項記載の電着 リ ー マ工具 8) It has an oil supply passage extending along the center axis of rotation and an oil wheel connecting the oil supply passage and the outer peripheral surface of the cutting portion. Scope of request to be characterized Electroplated reamer tool described in paragraph 1
9 . 上記オ イ ルホ ールを、 上記回転中心軸 に 対 し 斜 め 先端方向 に傾斜 さ せて延設 し た こ と を特徴 と す る 請求 の範囲第 8 項記載の電着 リ 一マエ具 9. The electrodeposition remanufacturer as set forth in claim 8, characterized in that the oil wheel is installed so as to be inclined with respect to the rotation center axis and inclined toward the tip end direction. Ingredient
1 0 . 上記切削加工部の外周面 に上記オ イ ル ホ ールが 開 口 し たオ イ ル溜 り を形成 し た こ と を特徴 と す る 請求 の範囲第 8 項記載の電着 リ 一マエ具 10. The electrodeposited solution according to claim 8 characterized in that an oil reservoir in which the oil holes are opened is formed on the outer peripheral surface of the cut portion. One mae tool
1 1 . 上記オ イ ル ホ ール の形成位置お よ び上記オ イ ル 溜 り の長 さ は、 ワ ー ク の下穴径、 仕上径、 工具抜 き 代 お よ び工具先端半径等の条件か ら 設定 さ れ る こ と を特 徴 と す る 特許請求の範囲第 1 0 項記載の電着 リ ー マ 1 1 .The formation position of the above-mentioned oil wheel and the length of the above-mentioned oil reservoir are the prepared hole diameter of the work, the finishing diameter, the tool removal margin. The electrodeposition reamer according to claim 10 is characterized by being set from conditions such as tool tip radius.
PCT/JP1989/000888 1988-08-30 1989-08-30 Electrodeposition reamer tool WO1990002012A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019900700872A KR0148220B1 (en) 1988-08-30 1989-08-30 Electrodeposition reamer tool
EP89909844A EP0389637B1 (en) 1988-08-30 1989-08-30 Electrodeposition reamer tool
DE68921604T DE68921604T2 (en) 1988-08-30 1989-08-30 ELECTRODEPOSITION REAMER.

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP1988113908U JPH0511931Y2 (en) 1988-08-30 1988-08-30
JP63/113908U 1988-08-30
JP63/115511U 1988-08-31
JP1988115511U JPH0235624U (en) 1988-08-31 1988-08-31
JP1988123046U JPH0243121U (en) 1988-09-20 1988-09-20
JP63/123046U 1988-09-20
JP63/291695 1988-11-18
JP63291695A JPH02139115A (en) 1988-11-18 1988-11-18 Electrodeposited reamer
JP1988150461U JPH0270924U (en) 1988-11-18 1988-11-18
JP63/150461U 1988-11-18

Publications (1)

Publication Number Publication Date
WO1990002012A1 true WO1990002012A1 (en) 1990-03-08

Family

ID=27526620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1989/000888 WO1990002012A1 (en) 1988-08-30 1989-08-30 Electrodeposition reamer tool

Country Status (5)

Country Link
US (1) US5178497A (en)
EP (1) EP0389637B1 (en)
KR (1) KR0148220B1 (en)
DE (1) DE68921604T2 (en)
WO (1) WO1990002012A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3286941B2 (en) * 1991-07-09 2002-05-27 株式会社日立製作所 Truing method of diamond grinding wheel
US5647790A (en) * 1994-12-22 1997-07-15 Sumitomo Heavy Industries, Ltd. Method for generating tooth surfaces of globoid worm wheel
US5676593A (en) * 1995-08-08 1997-10-14 Stevens; Richard B. Cutter for soft materials and method for making it
DE19905735A1 (en) * 1999-02-11 2000-08-17 Kennametal Inc Process for producing a cutting tool and cutting tool
DE10159431B4 (en) * 2001-12-04 2005-10-20 Mapal Fab Praezision Tool for finishing surfaces
DE102011086422B4 (en) * 2011-11-15 2014-04-24 Kennametal Inc. Method for producing a tool, and such a tool
CN112839763B (en) * 2018-10-18 2023-12-19 住友电工工具网株式会社 Oil hole reamer
CN109702660B (en) * 2019-01-09 2020-11-06 南京航空航天大学 Superhard abrasive material flexible tool for precisely machining micro-holes and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55101323A (en) * 1979-01-31 1980-08-02 Sanpo Seisakusho:Kk Reamer
EP0215144A1 (en) * 1985-09-16 1987-03-25 Dihart AG Reamer with cooling provision

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE237973C (en) *
USRE24769E (en) * 1960-01-19 Hole enlarging and finishing tool
US3510990A (en) * 1967-08-21 1970-05-12 Engis Equipment Co Tapered reamer
SU384660A1 (en) * 1970-05-15 1973-05-29 METHOD FOR FINISHING TREATMENT OF CYLINDRICAL DETAILS BY ABRASIVE BAR
US4757645A (en) * 1982-09-30 1988-07-19 The Boeing Company cutting tool and method of making same
DE3623408A1 (en) * 1986-07-11 1988-02-04 Birfield Trasmissioni GRINDING TOOL, ESPECIALLY GRINDING PEN
JPH0197571A (en) * 1988-01-29 1989-04-17 Nippon Engisu Kk Diamond tool
DE8804567U1 (en) * 1988-04-07 1988-05-26 Ernst Winter & Sohn (Gmbh & Co), 2000 Hamburg, De

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55101323A (en) * 1979-01-31 1980-08-02 Sanpo Seisakusho:Kk Reamer
EP0215144A1 (en) * 1985-09-16 1987-03-25 Dihart AG Reamer with cooling provision

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0389637A4 *

Also Published As

Publication number Publication date
DE68921604D1 (en) 1995-04-13
KR900701445A (en) 1990-12-03
DE68921604T2 (en) 1995-07-06
KR0148220B1 (en) 1998-10-15
EP0389637A1 (en) 1990-10-03
US5178497A (en) 1993-01-12
EP0389637A4 (en) 1991-07-24
EP0389637B1 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
US6899494B2 (en) Rotary metal cutting tool
CN104772509B (en) The polycrystalline diamond cutting tool of coating main body
US5580196A (en) Wear resistant tools
EP2121224B1 (en) Cutter for drilling and reaming
US6612786B1 (en) Cutting tool of polycrystalline hard sintered material
JP5060626B2 (en) Replaceable blade end mill
KR20080047433A (en) Cutting tool
KR102021271B1 (en) Interchangeable Blade Cutting Tools and Inserts
JPH06218613A (en) Solid ball nose tool
US20180369925A1 (en) Cutting tool
EP1008411B1 (en) Reamer
CN106573314B (en) Cutting tool and method of making a cutting tool
WO1990002012A1 (en) Electrodeposition reamer tool
KR102074650B1 (en) Interchangeable Rotary Cutting Tools and Inserts
CN110753593A (en) Turning insert for metal cutting
JP6086180B1 (en) Replaceable blade cutting tool and insert
JPH0440122B2 (en)
JP6086179B1 (en) Replaceable blade cutting tool and insert
US6152660A (en) Drilling tool for bores in solid material
JP2002521223A (en) Drill bit for shallow holes
JPH0112909Y2 (en)
JP2000190108A (en) Polycrystalline hard sintered body cutting tool
JPH079349A (en) Compound abrasive grain tool
JPH039945Y2 (en)
JP4401495B2 (en) Single blade reamer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1989909844

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1989909844

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1989909844

Country of ref document: EP