JP2000190108A - Polycrystalline hard sintered body cutting tool - Google Patents

Polycrystalline hard sintered body cutting tool

Info

Publication number
JP2000190108A
JP2000190108A JP29677499A JP29677499A JP2000190108A JP 2000190108 A JP2000190108 A JP 2000190108A JP 29677499 A JP29677499 A JP 29677499A JP 29677499 A JP29677499 A JP 29677499A JP 2000190108 A JP2000190108 A JP 2000190108A
Authority
JP
Japan
Prior art keywords
cutting
cutting edge
flank
sintered body
negative land
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29677499A
Other languages
Japanese (ja)
Inventor
Yasuyuki Kaneda
泰幸 金田
Toshiyuki Sahashi
稔之 佐橋
Kunihiro Tomita
邦洋 富田
Tetsuo Nakai
哲男 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP29677499A priority Critical patent/JP2000190108A/en
Publication of JP2000190108A publication Critical patent/JP2000190108A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To attain high machining accuracy and excellent machined surface roughness by specifying the radius of curvature of a curve produced in the intersection point part of a flank and a cutting face or a flank and a negative land face by cutting edge attaching operation. SOLUTION: A stepped support seat is provided in a corner part of a cemented carbide-made tool base material 2, a cBN polycrystalline sintered body 3 containing 20 vol.% or more of cBN particles having the particle diameter ranging from 0.01 μm to 5 μm is joined to the support seat by brazing, and then the sintered body 3 is subjected to cutting edge attaching operation to make a cutting tool. Cutting edge operation is performed by grinding using a diamond grinding wheel, and an intended cutting edge 6 is formed in an intersection part of a cutting face 4 and a flank 5. The cutting edge 6 is shaped like a section having a negative land 7 for strengthening the knife edge or like a section without a negative land, and the flank 5 and the cutting face 4 or the flank 5 and the negative land face 7 are connected to each other through a curve 8 with a radius of curvature of 0.1 μm to 5 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、立方晶窒化硼素
を含有する多結晶焼結体工具で切れ味の優れた切れ刃を
形成して高硬度材の高精度かつ高面粗度切削を可能なら
しめた多結晶焼結体工具に関する。
BACKGROUND OF THE INVENTION The present invention relates to a polycrystalline sintered tool containing cubic boron nitride, which is capable of forming a cutting edge with excellent sharpness and enabling high-precision and high-surface roughness cutting of a hard material. The present invention relates to a compacted polycrystalline sintered tool.

【0002】[0002]

【従来の技術と課題】微細なcBN(立方晶窒化硼素)
を種種の結合材を用いて焼結した材料、即ち、多結晶c
BN焼結体は、高硬度の鉄族金属や鋳鉄の切削に対して
優れた性能を示す。特に、硬度の高い焼入鋼の加工に利
用すると、高加工精度と優れた仕上げ面粗さが得られる
ことから、焼入鋼については、これまでの研削加工から
cBN焼結体工具を用いた切削加工に置き換えられてい
る。
2. Description of the Related Art Fine cBN (cubic boron nitride)
Is sintered by using various kinds of binders, that is, polycrystalline c
The BN sintered body shows excellent performance for cutting a high hardness iron group metal or cast iron. In particular, when used for machining hardened steel with high hardness, high machining accuracy and excellent finished surface roughness can be obtained. For hardened steel, a cBN sintered body tool was used from the previous grinding process. It has been replaced by cutting.

【0003】ところが、高硬度材の加工において優れた
性能を示すこのcBN焼結体も、高硬度材の加工で非常
に高い加工精度や極めて優れた仕上げ面粗さが要求され
る場合にはその要求に答えることができず、そのため、
加工精度、仕上げ面粗さについての要求が厳しいときの
加工は、未だにコストの高い研削に頼らざるを得ないの
が実情である。
[0003] However, this cBN sintered body, which exhibits excellent performance in the processing of a high-hardness material, is also required when extremely high processing accuracy and extremely excellent finished surface roughness are required in the processing of a high-hardness material. Unable to answer the request,
When the demands on processing accuracy and finished surface roughness are severe, processing has still to rely on costly grinding.

【0004】そこで、この発明は、多結晶cBN焼結体
切削工具の切れ刃部に工夫を施して、これまで以上に高
い加工精度と優れた仕上げ面粗さが得られるようにする
ことを課題としている。
[0004] Therefore, an object of the present invention is to devise a cutting edge portion of a polycrystalline cBN sintered compact cutting tool so as to obtain higher machining accuracy and superior finished surface roughness than ever before. And

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
め、この発明においては、cBNを20容量%以上含有
する多結晶硬質焼結体で切れ刃を形成した切削工具にお
いて、工具の逃げ面とすくい面、又は逃げ面と刃先強化
用のネガランド(ネガティブランド)面とが断面視にお
いて曲線で接続され、その曲線の曲率半径が0.1μm
〜5μmの範囲にあるようにしたのである。
According to the present invention, there is provided a cutting tool having a cutting edge formed of a polycrystalline hard sintered body containing 20% by volume or more of cBN. And a rake face or a flank face and a negative land (negative brand) face for strengthening the cutting edge are connected by a curve in a sectional view, and the radius of curvature of the curve is 0.1 μm.
That is, it was in the range of 5 μm.

【0006】この工具は、多結晶焼結体に含まれるcB
N粒子の粒径を0.01μm〜5μmの範囲に制限する
のが好ましい。
This tool uses cB contained in a polycrystalline sintered body.
It is preferable to limit the particle size of the N particles to a range of 0.01 μm to 5 μm.

【0007】また、この工具の刃先のくさび角は、ネガ
ランド有りの場合には90°〜125°、ネガランド無
しの場合には65°〜125°の範囲にあるようにして
おくのがよい。
The wedge angle of the cutting edge of the tool is preferably in the range of 90 ° to 125 ° when there is a negative land, and 65 ° to 125 ° when there is no negative land.

【0008】さらに、多結晶焼結体を異材質の工具母材
に接合して構成される切削工具は、超硬合金製の工具母
材を用いるのが好ましい。
[0008] Further, it is preferable that the cutting tool constituted by joining the polycrystalline sintered body to a tool base material of a different material uses a tool base material made of cemented carbide.

【0009】なお、5μm以下の曲率半径の曲線は、♯
3,000〜♯14,000程度のダイヤモンド砥石を
用いて刃付け加工を行う方法で形成することができる。
Note that a curve having a radius of curvature of 5 μm or less is represented by ♯
It can be formed by a method of performing blade processing using a diamond grindstone of about 3,000 to $ 14,000.

【0010】[0010]

【作用】図1、図2に、cBNを含有する多結晶焼結体
切削工具の切れ刃近傍の模式図を示す。この種切削工具
の従来品は、♯800程度のダイヤモンド砥石を用いて
切れ刃の刃付け加工がなされている。こうして仕上げら
れる刃先は、工具の逃げ面5とすくい面4、又は逃げ面
5と刃先強化用ネガランド面7とが曲線8(加工上生じ
る丸味)を介して接続されたものになる。この際の切れ
刃長手直角断面における曲線8の曲率半径Rは、10μ
m程度であり、これまで通りの加工法ではそれ以下の曲
率半径は得られない。
1 and 2 are schematic views showing the vicinity of the cutting edge of a polycrystalline sintered compact cutting tool containing cBN. A conventional cutting tool of this type has a cutting edge provided with a diamond grindstone of about $ 800. The finished cutting edge is such that the flank 5 and the rake face 4 of the tool, or the flank 5 and the negative land surface 7 for strengthening the cutting edge are connected via a curve 8 (roundness generated in processing). The radius of curvature R of the curve 8 in the section perpendicular to the longitudinal direction of the cutting edge at this time is 10 μm.
m, and a radius of curvature smaller than that cannot be obtained by the conventional processing method.

【0011】発明者は、このように小さな曲率半径であ
っても、この曲線8が切れ刃の実質すくい角を鈍らせて
高硬度材加工での加工精度、仕上げ面粗さの厳しい要求
に応えきれない原因となっていることを突きとめた。
The inventor of the present invention has found that even with such a small radius of curvature, the curve 8 obstructs the substantial rake angle of the cutting edge to meet the strict requirements for processing accuracy in high-hardness material processing and finished surface roughness. I found out what was causing the failure.

【0012】加工精度、仕上げ面粗さに対しては、切削
抵抗、中でも背分力が大きな影響を及ぼし、曲線8の曲
率半径Rが10μm程度の従来の切れ刃では刃先の鋭利
さが不足して切れ味の低下による背分力の増加、切削抵
抗が大きいことによる刃先摩耗の早期進行を招き、その
結果、加工精度や仕上げ面粗さに限界が生じていること
が判った。
The cutting force, especially the backing force, has a great effect on the processing accuracy and the finished surface roughness. The sharpness of the cutting edge of the conventional cutting edge having a curvature radius R of the curve 8 of about 10 μm is insufficient. It was found that the back force increased due to the decrease in sharpness, and that the cutting edge abrasion occurred early due to the large cutting force. As a result, it was found that there was a limit to the processing accuracy and the finished surface roughness.

【0013】高硬度材の切削加工では、特に背分力が高
く、また、その背分力の変動量も大きくなるため、刃先
の鋭利さの程度が加工精度や仕上げ面粗さを大きく左右
することになる。発明者等はかかる結論を得て曲率半径
Rが10μm以下の曲線8を得るための方法を先ず検討
し、ダイヤモンド砥粒の粒径が極めて小さい♯3,00
0〜♯14,000程度のダイヤモンド砥石で研磨して
刃付けすると、その目的を達成し得ることを見い出し
た。
In the cutting of a high-hardness material, since the back force is particularly high and the fluctuation amount of the back force is large, the degree of sharpness of the blade greatly affects the processing accuracy and the finished surface roughness. Will be. The inventors have obtained such a conclusion and first studied a method for obtaining a curve 8 having a radius of curvature R of 10 μm or less.
It has been found that the purpose can be achieved by grinding with a diamond grindstone of about 0 to $ 14,000.

【0014】次に、試作品による切削実験を行って曲線
8の曲率半径Rの適正値を調べたところ、その値は0.
1μm〜5μm、より好ましくは0.1μm〜1μmの
範囲にあることが判った。切れ味の面では上記の曲率半
径Rは小さいほどよいが、研磨による刃付け加工で0.
1μm以下の曲率半径を得るのは現実には難しいのでR
の下限は0.1μmとした。
Next, when an appropriate value of the radius of curvature R of the curve 8 was examined by performing a cutting experiment with a prototype, the value was found to be 0.1.
It was found to be in the range of 1 μm to 5 μm, more preferably 0.1 μm to 1 μm. In terms of sharpness, the smaller the radius of curvature R is, the better.
It is actually difficult to obtain a radius of curvature of 1 μm or less.
Was set to 0.1 μm.

【0015】このようにして、逃げ面とすくい面或いは
逃げ面とネガランド面の交点に生じる曲線の曲率半径を
0.1μm〜5μmの範囲、工具の実質すくい角が小さ
くなって切れ刃の切れ味が向上し、切削抵抗、中でも背
分力が低下して高硬度材の加工において従来に勝る加工
精度、仕上げ面粗さが得られる。
In this manner, the radius of curvature of the curve generated at the intersection between the flank and the rake face or the intersection between the flank and the negative land is in the range of 0.1 μm to 5 μm, the actual rake angle of the tool is reduced, and the sharpness of the cutting edge is reduced. The cutting force, especially the backing force, is reduced, and the processing accuracy and the finished surface roughness are superior to those in the conventional processing of hardened materials.

【0016】なお、高硬度材を加工する場合には、工具
材料にも高い硬度が要求されるので、この発明で用いる
焼結体はcBN含有量が20容量%以上あるものとし
た。また、多結晶焼結体は単結晶cBNに見られる劈開
による欠けが発生し難いので、使用する焼結体は多結晶
品とした。
In the case of processing a high-hardness material, a high hardness is also required for the tool material. Therefore, the sintered body used in the present invention has a cBN content of 20% by volume or more. In addition, since the polycrystalline sintered body is unlikely to cause chipping due to cleavage observed in single-crystal cBN, the sintered body used was a polycrystalline product.

【0017】このほか、多結晶焼結体に含まれるcBN
粒子の粒径が0.01μm未満であると焼結体中に刃先
の欠けの原因となる微粒子の凝集部が発生し易くなり、
一方、cBN粒子が5μmより大きいとその粒子の脱落
によりエッジ部の曲率半径を目的の範囲に制御すること
が難しくなる。従って、含有cBN粒子の粒径は、0.
01μm〜5μmの範囲にあるのが好ましい。
In addition, cBN contained in the polycrystalline sintered body
When the particle size of the particles is less than 0.01 μm, agglomerated portions of fine particles that cause chipping of the cutting edge in the sintered body are easily generated,
On the other hand, if the cBN particle is larger than 5 μm, it becomes difficult to control the radius of curvature of the edge portion to a target range due to the dropout of the particle. Therefore, the particle size of the contained cBN particles is 0.
It is preferably in the range of from 01 μm to 5 μm.

【0018】また、逃げ面とすくい面の交差角が65°
未満では刃先のくさび角が小さ過ぎて切削初期に刃部の
欠けが生じ易くなる。また、逃げ面とすくい面又は逃げ
面とネガランド面の交差角が125°を超えると切削抵
抗の増加が顕著になり、要求加工精度が得られない。従
って、その交差角度は65°〜125°の範囲に制限す
るのが好ましい。
The intersection angle between the flank and the rake face is 65 °.
If it is less than 1, the wedge angle of the cutting edge is too small, and the chipping of the cutting portion is likely to occur at the beginning of cutting. Further, if the intersection angle between the flank and the rake face or the flank and the negative land face exceeds 125 °, the increase in cutting resistance becomes remarkable, and the required processing accuracy cannot be obtained. Therefore, the intersection angle is preferably limited to a range of 65 ° to 125 °.

【0019】さらに、硬質焼結体を接合する工具母材
は、鋼材料なども考えられるが、高硬度材の高精度加工
では工具母材にも高い剛性が求められるので、工具母材
は超硬合金が最適である。
Further, a steel base material can be considered as a tool base material for joining the hard sintered body, but a high rigidity is also required for the tool base material in high-precision processing of a high-hardness material. Hard alloys are best.

【0020】[0020]

【発明の実施の形態】図3(a)、(b)、(c)に、
この発明の切削工具の実施形態を示す。これは、スロー
アウェイチップへの適用例である。このスローアウェイ
チップ1は、いずれも、超硬合金製工具母材2のコーナ
部に段落ちした支持座を設けてその支持座に、粒径が
0.01μm〜5μmの範囲にあるcBN粒子を20容
量%以上含有するcBN多結晶焼結体3(図3(c)の
それは台金付き)を鑞付け接合し、その後、その焼結体
3に刃付け加工を施して作られている。刃付け加工は、
♯3,000〜♯14,000のダイヤモンド砥石によ
る研磨によってなされ、すくい面4と逃げ面5の交差部
に目的の切れ刃6が形成されている。その切れ刃6は、
刃先強化用のネガランド7を有する図1の如き断面形
状、又は、ネガランドの無い図2の如き断面形状をな
し、逃げ面5とすくい面4との間、又は逃げ面5とネガ
ランド面7との間が、0.1μm〜5μmの曲率半径の
曲線8を介して結ばれている。
DETAILED DESCRIPTION OF THE INVENTION FIGS. 3 (a), 3 (b) and 3 (c)
1 shows an embodiment of a cutting tool according to the present invention. This is an example of application to a throw away tip. Each of the indexable inserts 1 is provided with a stepped support seat at the corner portion of the cemented carbide tool base material 2, and cBN particles having a particle size in the range of 0.01 μm to 5 μm are provided on the support seat. It is made by brazing and joining a cBN polycrystalline sintered body 3 containing at least 20% by volume (in FIG. 3 (c), with a base metal), and then subjecting the sintered body 3 to a blade process. The blade processing is
The target cutting edge 6 is formed at the intersection of the rake face 4 and the flank face 5 by polishing with a diamond grindstone of $ 3,000 to $ 14,000. The cutting edge 6
It has a cross-sectional shape as shown in FIG. 1 having a negative land 7 for strengthening the cutting edge, or a cross-sectional shape as shown in FIG. 2 having no negative land, and is formed between the flank 5 and the rake surface 4 or between the flank 5 and the negative land 7. The intervals are connected via a curve 8 having a radius of curvature of 0.1 μm to 5 μm.

【0021】図1、図2のγは、工具のすくい角、αは
逃げ角、図1のδはネガランド角(ネガランド面7と逃
げ面5の交差角)、図1、図2のβは刃先のくさび角を
表し、図3のスローアウェイチップの場合、図1の刃先
構造を有するものについてはβが90°〜125°、図
2の刃先構造を有するものについてはβが65°〜12
5°の好ましい範囲の数値に設定されている。
1 and 2 are the rake angle of the tool, α is the clearance angle, δ in FIG. 1 is the negative land angle (the intersection angle between the negative land surface 7 and the flank 5), and β in FIGS. The wedge angle of the cutting edge is shown. In the case of the indexable insert of FIG. 3, β is 90 ° to 125 ° for the one having the cutting edge structure of FIG. 1, and β is 65 ° to 12 ° for the one having the cutting edge structure of FIG.
It is set to a numerical value in a preferable range of 5 °.

【0022】なお、この発明を適用するスローアウェイ
チップは図3の形状に限定されない。また、この発明の
適用対象はスローアウェイチップに限定されない。
The shape of the indexable insert to which the present invention is applied is not limited to the shape shown in FIG. The application of the present invention is not limited to a throw-away tip.

【0023】以下、この発明の詳細な実施例について述
べる。
Hereinafter, detailed embodiments of the present invention will be described.

【0024】−実施例1− 粒径が約0.5μmのcBN粒子を50容量%含有する
cBN多結晶焼結体の小片を超硬合金製工具母材のコー
ナ部に鑞付け接合してスローアウェイチップを得た。そ
の試作スローアウェイチップは、表1に示す4種であ
り、いずれも、図1の断面形状の刃先部を有する。な
お、比較品Aは、♯800のダイヤモンド砥石による研
磨によって、発明品B、C、Dは♯3,000以上のダ
イヤモンド砥石による研磨によって各々刃付け加工がな
されており、そのため、逃げ面5とネガランド面7との
間にできる曲線8の曲率半径が表1に示すように異なっ
ている。
Example 1 A small piece of a cBN polycrystalline sintered body containing 50 volume% of cBN particles having a particle size of about 0.5 μm is brazed to a corner portion of a cemented carbide tool base material and thrown. I got away chips. The prototype throwaway inserts are the four types shown in Table 1, and all have a cutting edge having a cross-sectional shape shown in FIG. In addition, the comparative product A has been subjected to cutting with a diamond grindstone of $ 800, and the inventive products B, C and D have been subjected to cutting with a diamond grindstone of $ 3,000 or more. The radius of curvature of the curve 8 formed between the negative land surface 7 and the negative land surface 7 is different as shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】これ等4つの試料A〜Dの切削性能を、以
下の切削条件による切削試験を行って評価した。その結
果を表2に示す。
The cutting performance of these four samples A to D was evaluated by performing a cutting test under the following cutting conditions. Table 2 shows the results.

【0027】・切削条件 加工方法 : 外径旋削 被削材 : 円筒状浸炭焼入材(SCM415) 被削材硬度: HRC62 被削材外周面部の回転速度:100m/min 切込み : 0.2mm 送り : 0.05mm/rev 切削時間 : 5分 要求仕上り外径寸法:30mm±10μm 要求真円度: 誤差3μm以下[0027] Cutting Conditions working method: outer径旋cutting Workpiece: cylindrical carburized Irizai (SCM415) Workpiece Hardness: rotational speed of H RC 62 Workpiece outer peripheral surface: 100 m / min cut: 0.2 mm Feed: 0.05 mm / rev Cutting time: 5 minutes Required finished outer diameter: 30 mm ± 10 μm Required roundness: Error 3 μm or less

【0028】[0028]

【表2】 [Table 2]

【0029】この表2から判るように、比較品Aは、要
求される仕上り径と真円度が得られていない。これに対
し、発明品B、C、Dはいずれも要求精度が満たされて
おり、図1、2の曲線8の曲率半径Rを5μm以下にす
ることの有効性が確認された。
As can be seen from Table 2, comparative product A does not have the required finished diameter and roundness required. On the other hand, the required accuracy was satisfied for all of the inventions B, C, and D, and the effectiveness of setting the radius of curvature R of the curve 8 in FIGS.

【0030】−実施例2− 硬質焼結体に含まれるcBN粒子の粒径が上記曲線8の
曲率半径や加工精度に及ぼす影響を調べるために、表3
に示すcBN粒子を各々65容量%含有する多結晶硬質
焼結体を製造し、その焼結体を直径5mmの超硬合金製
円柱状シャンクの先端部に鑞付け接合して比較品E、J
及び発明品F〜Iの中ぐりバイトを作成した。
Example 2 In order to investigate the effect of the particle size of the cBN particles contained in the hard sintered body on the radius of curvature of the curve 8 and the processing accuracy, Table 3 was used.
Comparative Examples E and J were prepared by producing a polycrystalline hard sintered body containing 65% by volume of each of the cBN particles shown in (1), and brazing the sintered body to the tip of a 5 mm-diameter cemented carbide columnar shank.
In addition, boring tools for Inventions F to I were prepared.

【0031】この試料E〜Jは、いずれも刃付け加工を
♯10,000のダイヤモンド砥石を用いて行った。
In all of the samples E to J, the cutting was performed using a diamond grindstone of $ 10,000.

【0032】その刃付け加工によって切れ刃の逃げ面と
ネガランド面の交点部に生じた曲線の曲率半径を表3に
示す。
Table 3 shows the radius of curvature of the curve formed at the intersection of the flank of the cutting edge and the negative land surface by the cutting process.

【0033】[0033]

【表3】 [Table 3]

【0034】なお、比較品Eは、cBN粒子の凝集によ
り組織が不均一になっており、そのため、刃付け加工中
に刃部に欠けが生じた。
The comparative product E had a non-uniform structure due to agglomeration of cBN particles, so that the blade portion was chipped during the blade processing.

【0035】次に、刃先がうまく形成できなかった比較
品Eを除いた他の試料F〜Jの切削性能を評価するた
め、下記の条件による切削を行った。
Next, in order to evaluate the cutting performance of the other samples F to J except the comparative product E in which the cutting edge could not be formed well, cutting was performed under the following conditions.

【0036】・切削条件 加工方法 : 内径ボーリング 被削材 : 円筒状軸受鋼(SUJ2) 被削材硬度: HRC60 被削材内径面の回転速度:80m/min 切込み : 0.05mm 送り : 0.04mm/rev 切削時間 : 3分 要求仕上り内径:5.5mm±5μm 要求真円度: 誤差2μm以下 この切削試験の結果を表4に示す。[0036] Cutting Conditions working method: inner diameter boring Workpiece: cylindrical bearing steel (SUJ2) Workpiece Hardness: rotational speed of H RC 60 Workpiece diameter surface: 80 m / min cut: 0.05 mm Feed: 0 .04 mm / rev Cutting time: 3 minutes Required finished inner diameter: 5.5 mm ± 5 μm Required roundness: Error 2 μm or less Table 4 shows the results of this cutting test.

【0037】[0037]

【表4】 [Table 4]

【0038】含有cBN粒子の粒径が大きく、そのため
に、逃げ面とネガランド面間に生じる曲線の曲率半径が
10μm前後となった比較品Jは、切削抵抗とその抵抗
の変動が大きく、切削中にいわゆるビビリが生じて加工
の継続が不可能であった。これに対し、発明品F〜I
は、いずれも要求精度が満たされており、含有cBN粒
子の粒径も発明の効果に大きな影響を及ぼすことが判っ
た。
The comparative product J, in which the cBN particles contained had a large particle size and the radius of curvature of the curve generated between the flank and the negative land surface was about 10 μm, had a large cutting resistance and a large fluctuation in the resistance. In such a case, so-called chattering occurred, and it was impossible to continue processing. On the other hand, invention products F to I
It was found that the required accuracy was satisfied in each case, and that the particle size of the contained cBN particles had a great effect on the effect of the invention.

【0039】−実施例3− 工具の逃げ面とすくい面、又は逃げ面とネガランド面の
交差角や刃先のくさび角が加工性能や加工精度にどのよ
うな影響を及ぼすかを調べた。
Example 3 It was investigated how the flank and rake face of the tool, or the intersection angle between the flank face and the negative land face and the wedge angle of the cutting edge affect machining performance and machining accuracy.

【0040】その調査のために、粒径0.7μmのcB
N粒子を63容量%含有するcBN多結晶焼結体を超硬
合金製工具母材のコーナ部に鑞付け接合した構造のスロ
ーアウェイチップK〜Sを作った。これ等の試料は、い
ずれも刃付けを♯8,000のダイヤモンド砥石を用い
て行っており、刃先の曲線の曲率半径はいずれも1μm
程度であって殆ど差がない。各試料の逃げ角(図1の
α)、ネガランド角(図1のδ)、及び刃先のくさび角
(図1のβ)を表5に示す。
For the investigation, a 0.7 μm particle size cB
Indexable chips K to S having a structure in which a cBN polycrystalline sintered body containing 63% by volume of N particles was brazed and joined to a corner portion of a cemented carbide tool base material. In all of these samples, the cutting was performed using a diamond grindstone of $ 8,000, and the radius of curvature of the curve of the cutting edge was 1 μm.
There is almost no difference. Table 5 shows the relief angle (α in FIG. 1), negative land angle (δ in FIG. 1), and wedge angle of the cutting edge (β in FIG. 1) for each sample.

【0041】[0041]

【表5】 [Table 5]

【0042】この表5の試料の評価結果を表6に示す。
その評価のための切削条件は次の通りである。
Table 6 shows the evaluation results of the samples shown in Table 5.
The cutting conditions for the evaluation are as follows.

【0043】・切削条件 加工方法 : 外径旋削 被削材 : 円筒状ダイス鋼(SKDII) 被削材硬度: HRC65 被削材外周面の回転速度:100m/min 切込み : 0.1mm 送り : 0.1mm/rev 要求仕上り外径:15mm±8μm 要求真円度: 誤差3μm以下[0043] Cutting Conditions working method: outer径旋cutting Workpiece: cylindrical die steel (SKDII) Workpiece Hardness: rotational speed of H RC 65 Workpiece peripheral surface: 100 m / min cut: 0.1 mm Feed: 0.1mm / rev Required finish outer diameter: 15mm ± 8μm Required roundness: Error 3μm or less

【0044】[0044]

【表6】 [Table 6]

【0045】この試験では、刃先のくさび角が小さい試
料Kは、刃先強度が不足して切削初期に刃部が欠損し、
継続加工が不可能であった。
In this test, the specimen K having a small wedge angle at the cutting edge lacked the cutting edge strength, and the cutting portion was lost at the beginning of cutting.
Continuous processing was not possible.

【0046】また、そのくさび角が125°を超えてい
る試料Sは、切削抵抗とその抵抗の変動量が大きく、切
削中にビビリが発生して継続切削による評価ができなか
った。これに対し、試料L〜Rは、いずれも要求精度を
満たしている。
The sample S having a wedge angle exceeding 125 ° had a large cutting resistance and a large variation in the resistance, and chatter occurred during the cutting, so that the evaluation by continuous cutting could not be performed. On the other hand, the samples L to R all satisfy the required accuracy.

【0047】以上の実験結果からも判るように、逃げ面
とすくい面又は逃げ面とネガランド面の交点部に生じる
曲線の曲率半径を5μm以下にした上で、刃先のくさび
角を適切に設定すると、従来に勝る高硬度材の高精度加
工が可能になる。
As can be seen from the above experimental results, when the radius of curvature of the curve generated at the intersection between the flank and the rake face or the intersection of the flank and the negative land is set to 5 μm or less, and the wedge angle of the cutting edge is appropriately set. Thus, high-precision processing of a high-hardness material can be performed as compared with the related art.

【0048】[0048]

【発明の効果】以上述べたように、この発明の多結晶硬
質焼結体工具は、刃付け加工によって逃げ面とすくい面
又は逃げ面とネガランド面の交点部に生じる曲線の曲率
半径を、硬質焼結体中に含まれるcBN粒子の粒径調整
と砥粒粒径の極く小さい♯3,000以上のダイヤモン
ド砥石の使用によって従来は得られなかった5μm以下
の大きさにして切れ刃の切味をより一層高めたので、高
硬度材の切削加工において従来に勝る加工精度と仕上げ
面粗さが得られ、非常に高い加工精度、極めて優れた仕
上げ面粗さが要求されるときの加工も研削から切削に置
き換えて加工コストを低減することが可能になる。
As described above, the polycrystalline hard sintered tool of the present invention has a hard radius of curvature of a curve generated at the intersection between a flank and a rake face or an intersection between a flank and a negative land face by cutting. By adjusting the particle size of the cBN particles contained in the sintered body and using a diamond grindstone with an extremely small grain size of 3,000 or more, the cutting edge is cut to a size of 5 μm or less, which was not obtained conventionally. As the taste has been further enhanced, machining accuracy and finished surface roughness are higher than in the past when cutting hardened materials.Even when extremely high machining accuracy and extremely excellent finished surface roughness are required. The processing cost can be reduced by replacing the grinding with the cutting.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の工具の刃先の断面の一例を示す模式
FIG. 1 is a schematic view showing an example of a cross section of a cutting edge of a tool according to the present invention.

【図2】刃先の断面の他の例を示す模式図FIG. 2 is a schematic view showing another example of the cross section of the cutting edge.

【図3】(a)この発明の工具の一例(三角形スローア
ウェイチップ)を示す斜視図 (b)この発明の工具の他の例(四角形スローアウェイ
チップ)を示す斜視図 (c)この発明の工具の他の例(菱形スローアウェイチ
ップ)を示す斜視図
FIG. 3 (a) is a perspective view showing an example of the tool of the present invention (triangular throwaway tip). FIG. 3b is a perspective view showing another example of the tool of the present invention (quadrangular throwaway tip). Perspective view showing another example of a tool (rhombic indexable insert)

【符号の説明】[Explanation of symbols]

1 スローアウェイチップ 2 工具母材 3 cBN多結晶焼結体 4 すくい面 5 逃げ面 6 切れ刃 7 ネガランド面 8 曲線 R 曲線8の曲率半径 α 逃げ角 β くさび角 γ すくい角 δ ネガランド角 REFERENCE SIGNS LIST 1 indexable insert 2 tool base material 3 cBN polycrystalline sintered body 4 rake face 5 flank face 6 cutting edge 7 negative land face 8 curve R Curvature radius of curve 8 α relief angle β wedge angle γ rake angle δ negative land angle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 富田 邦洋 伊丹市昆陽北一丁目1番1号 住友電気工 業株式会社伊丹製作所内 (72)発明者 中井 哲男 伊丹市昆陽北一丁目1番1号 住友電気工 業株式会社伊丹製作所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kunihiro Tomita 1-1-1, Koyokita, Itami-shi In Itami Works, Sumitomo Electric Industries, Ltd. (72) Tetsuo Nakai 1-1-1, Koyokita, Itami-shi Sumitomo Electric Industries, Ltd. Itami Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 立方晶窒化硼素を20容量%以上含有す
る多結晶硬質焼結体で切れ刃を形成した切削工具におい
て、工具の逃げ面とすくい面、又は逃げ面と刃先強化用
のネガランド面とが断面視において曲線で接続され、そ
の曲線の曲率半径が0.1μm〜5μmの範囲にあるこ
とを特徴とする多結晶硬質焼結体切削工具。
1. A cutting tool in which a cutting edge is formed by a polycrystalline hard sintered body containing cubic boron nitride in an amount of 20% by volume or more, a flank and a rake face of the tool, or a flank and a negative land face for strengthening a cutting edge. Are connected by a curve in a sectional view, and the radius of curvature of the curve is in the range of 0.1 μm to 5 μm.
【請求項2】 多結晶焼結体に含まれる立方晶窒化硼素
粒子の粒径を0.01μm〜5μmの範囲に制限した請
求項1記載の多結晶硬質焼結体切削工具。
2. The cutting tool according to claim 1, wherein the particle diameter of the cubic boron nitride particles contained in the polycrystalline sintered body is limited to a range of 0.01 μm to 5 μm.
【請求項3】 刃先のくさび角を、ネガランドの有る工
具については90°〜125°、ネガランドの無い工具
については65°〜125°の範囲に設定した請求項1
又は2記載の多結晶硬質焼結体切削工具。
3. The wedge angle of the cutting edge is set in the range of 90 ° to 125 ° for a tool having a negative land, and 65 ° to 125 ° for a tool without a negative land.
Or a polycrystalline hard sintered compact cutting tool according to 2 above.
【請求項4】 前記多結晶焼結体が超硬合金製の工具母
材に接合されている請求項1乃至3のいずれかに記載の
多結晶焼結体切削工具。
4. The polycrystalline sintered compact cutting tool according to claim 1, wherein the polycrystalline sintered compact is joined to a cemented carbide tool base material.
JP29677499A 1998-10-22 1999-10-19 Polycrystalline hard sintered body cutting tool Pending JP2000190108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29677499A JP2000190108A (en) 1998-10-22 1999-10-19 Polycrystalline hard sintered body cutting tool

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30113298 1998-10-22
JP10-301132 1998-10-22
JP29677499A JP2000190108A (en) 1998-10-22 1999-10-19 Polycrystalline hard sintered body cutting tool

Publications (1)

Publication Number Publication Date
JP2000190108A true JP2000190108A (en) 2000-07-11

Family

ID=26560843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29677499A Pending JP2000190108A (en) 1998-10-22 1999-10-19 Polycrystalline hard sintered body cutting tool

Country Status (1)

Country Link
JP (1) JP2000190108A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006001158A (en) * 2004-06-18 2006-01-05 Toppan Printing Co Ltd Scratch card releasing device
JP2008512252A (en) * 2004-09-06 2008-04-24 サンドビック インテレクチュアル プロパティー アクティエボラーグ Turning tools, turning inserts for turning tools, and integrated turning tools
WO2008088034A1 (en) * 2007-01-19 2008-07-24 Sumitomo Electric Industries, Ltd. Cutting tool
US7556456B2 (en) 2004-06-30 2009-07-07 A.L.M.T. Corp. Mono crystalline diamond cutting tool for ultra precision machining
WO2016043127A1 (en) * 2014-09-16 2016-03-24 住友電気工業株式会社 Cutting insert and manufacturing method therefor
WO2018123133A1 (en) * 2016-12-26 2018-07-05 住友電工ハードメタル株式会社 Cutting tool and method for manufacturing same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006001158A (en) * 2004-06-18 2006-01-05 Toppan Printing Co Ltd Scratch card releasing device
JP4576897B2 (en) * 2004-06-18 2010-11-10 凸版印刷株式会社 Scratch card peeling device
US7556456B2 (en) 2004-06-30 2009-07-07 A.L.M.T. Corp. Mono crystalline diamond cutting tool for ultra precision machining
JP2008512252A (en) * 2004-09-06 2008-04-24 サンドビック インテレクチュアル プロパティー アクティエボラーグ Turning tools, turning inserts for turning tools, and integrated turning tools
WO2008088034A1 (en) * 2007-01-19 2008-07-24 Sumitomo Electric Industries, Ltd. Cutting tool
JP5197383B2 (en) * 2007-01-19 2013-05-15 住友電気工業株式会社 Cutting tools
WO2016043127A1 (en) * 2014-09-16 2016-03-24 住友電気工業株式会社 Cutting insert and manufacturing method therefor
CN105873701A (en) * 2014-09-16 2016-08-17 住友电气工业株式会社 Cutting insert and manufacturing method therefor
JPWO2016043127A1 (en) * 2014-09-16 2017-06-29 住友電気工業株式会社 Cutting insert and manufacturing method thereof
US10245644B2 (en) 2014-09-16 2019-04-02 Sumitomo Electric Industries, Ltd. Cutting insert and method of manufacturing the same
WO2018123133A1 (en) * 2016-12-26 2018-07-05 住友電工ハードメタル株式会社 Cutting tool and method for manufacturing same
CN108513549A (en) * 2016-12-26 2018-09-07 住友电工硬质合金株式会社 Cutting element and its manufacturing method
JPWO2018123133A1 (en) * 2016-12-26 2018-12-27 住友電工ハードメタル株式会社 Cutting tool and manufacturing method thereof
EP3375550A4 (en) * 2016-12-26 2019-09-04 Sumitomo Electric Hardmetal Corp. Cutting tool and method for manufacturing same
US11052466B2 (en) 2016-12-26 2021-07-06 Sumitomo Electric Hardmetal Corp. Cutting tool and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6652201B2 (en) Ball end mill
US5580196A (en) Wear resistant tools
Elbestawi et al. High-speed milling of dies and molds in their hardened state
JP2751873B2 (en) Indexable insert for milling and milling cutter using the same
US6612786B1 (en) Cutting tool of polycrystalline hard sintered material
US4539875A (en) High-speed metal cutting method and self-sharpening tool constructions and arrangements implementing same
US20100129165A1 (en) Ball nose end mill and insert
KR20140020952A (en) Edge replaceable ball end mill
JP2000513659A (en) Inserts with lands of varying width
US6883412B1 (en) Method of fabricating circular saw blades with cutting teeth composed of ultrahard tool material
Ezugwu et al. Failure modes and wear mechanisms of M35 high-speed steel drills when machining inconel 901
JP3476951B2 (en) Cutting tool for CVD diamond
Davim Turning particulate metal matrix composites: experimental study of the evolution of the cutting forces, tool wear and workpiece surface roughness with the cutting time
JP2001212703A (en) Polycrystalline hard sintered cutting tool
JP2000190108A (en) Polycrystalline hard sintered body cutting tool
JP2003175408A (en) Polycrystal hard sintered body throw-away tip
Coelho et al. Conventional machining of an aluminium based SiC reinforced metal matrix composite (MMC) alloy
JPH08336716A (en) Rotary cutting tool
JP2949973B2 (en) Indexable tip
US6152660A (en) Drilling tool for bores in solid material
EP1093875B1 (en) Cutting insert with polycrystalline hard sintered material
KR102316725B1 (en) End mill Having Cutting Tooth Made of Polycrystalline Diamond
EP1029624A2 (en) Circular saw blades with cutting teeth composed of ultrahard tool material, and method for its production
JPH08192305A (en) Throwaway tip and manufacture thereof
JP3043782B2 (en) Tools for drilling hard and brittle materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060222

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Effective date: 20060308

Free format text: JAPANESE INTERMEDIATE CODE: A712

A977 Report on retrieval

Effective date: 20071116

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080318