WO1989009316A1 - Multilayer system with temperature-dependent insulating property - Google Patents

Multilayer system with temperature-dependent insulating property Download PDF

Info

Publication number
WO1989009316A1
WO1989009316A1 PCT/CH1989/000056 CH8900056W WO8909316A1 WO 1989009316 A1 WO1989009316 A1 WO 1989009316A1 CH 8900056 W CH8900056 W CH 8900056W WO 8909316 A1 WO8909316 A1 WO 8909316A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer system
plastic
fiber structure
temperature
layer
Prior art date
Application number
PCT/CH1989/000056
Other languages
German (de)
French (fr)
Inventor
Ivan Heczy
Original Assignee
Agfk, Ag Für Kunststoffverarbeitung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfk, Ag Für Kunststoffverarbeitung filed Critical Agfk, Ag Für Kunststoffverarbeitung
Publication of WO1989009316A1 publication Critical patent/WO1989009316A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • B32B5/20Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material foamed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating

Definitions

  • a known multilayer system with temperature-related insulation property consists of a thermoplastic with admixed blowing agent. Since the blowing agent has a higher decomposition temperature than the processing temperature of the thermoplastic, this is only activated in the finished part by a higher temperature. At this elevated temperature, the thermoplastic softens and allows gas bubbles to form in the decomposing blowing agent. This "foaming" changes the density of the thermoplastic, and at the same time reduces its thermal conductivity in the local area of the foam. The latent insulation ability becomes the insulation property of the multi-layer system due to the temporary effect of increased temperature. This insulation effect protects the actual material covered by the multi-layer system. The disadvantage of this multi-layer system is that this protective effect is of a very limited extent and duration.
  • a multilayer system for automobile construction which consists of a thermoplastic and fiber structures integrated therein.
  • polypropylene is used as the thermoplastic and mat-like structures made of glass fibers are mainly used as the fiber structure.
  • thermosets which also offer this advantage, they are made from sheet material by punching and hot pressing into three-dimensional molded parts can.
  • the serious disadvantage of this multilayer system is the low temperature resistance of the thermoplastic. For this reason, this material can only be used in places where there are no temperature increases due to vehicle operation.
  • the object of the present invention is to alleviate the disadvantages mentioned to such an extent that the multilayer system, despite its own plastic content, enables it to be used safely up to the range of failure temperatures of the plastic. According to the invention, this object is achieved by the characterizing features of the claims. The invention is explained, for example, with the aid of the attached schematic drawing. Show it:
  • 1a shows a cross section through a multilayer system with temperature-dependent insulation properties and a cover layer made of bare and painted metal foil
  • 1b shows a cross section through a multi-layer system with temperature-dependent insulation properties and a cover layer for the purpose of decor made of plastic
  • Fig. 2 shows the cross section shown in Fig.1b
  • FIG. 3 shows a cross section through a multilayer system covered with metal foils on both sides and having a temperature-dependent insulation property
  • Fig. 4 shows the cross section shown in Fig. 3 after local exposure to increased external temperature.
  • the multilayer system shown in FIGS. 1a, 1b and 3 consists of a plastic 3, a fiber structure 4 integrated into this plastic 3 by pressing, for example calendering, and an outer layer 1, which consists of a bare metal foil 2, a lacquered metal foil 2 *, a structured metal foil 2 "or a cover layer made of plastic for the purpose of decoration.
  • the rear side 6 of the multilayer system can, for example, be covered with a metal foil 7 and how this can be coated with joining agent 8, for example self-adhesive. If these surface materials shown in FIGS.
  • the propellant gases can escape from the burst structure, it will also withstand the continued exposure to temperature.
  • the reason for this, and this is decisive for the invention, is that the relaxed fiber structure 4 'retains the newly gained, expanded volume of the structure even after the propellant gases have escaped.
  • the escape of the fission products cannot be tolerated everywhere.
  • the emergence of the fibers may also be undesirable at this point.
  • the somewhat more complex multilayer system with an outer metal foil layer 2 "shown in FIGS. 3 and 4 is suitable for such applications. Thanks to the pre-structuring, the blowing agent and the building up of the fibers make it airtight like a bubble and bellows can nestle around the volume expansion of the fiber structure 4.
  • the insulation cushion produced in this way increases the effectiveness of the local heat protection effect in addition to the reduction in heat conduction through the reflectivity of the metal protection film.
  • the structuring of the film 2 "for the purpose of material supply can be produced, for example, by methods such as creping, pleating or knobs.
  • a further increase in the heat protection effect can be achieved by mirroring the fiber surfaces thereof, for example by metal vapor deposition.
  • Polypropylene is suitable for the proposed applications, which can be foamed, for example, with powdered organic chemical blowing agents such as azodicarbonamide.
  • the treatment of the fiber structures 4 with blowing agent powder, such as the admixing of the latter into the thermoplastic 3, is suitable.
  • blowing agent powder such as the admixing of the latter into the thermoplastic 3.
  • azodicarbonamide is available on the market in various grain sizes (from 5 to 23 micrometers) means that it can be dosed according to the process for both processing options. It is particularly advantageous that both the only with fiber structure 4 (see Fig. 1b) as a Also with metal foil 2 (cf. 1a and 3) as a semi-product, such as rolled or sheet goods, stored, transported without risk to humans and the environment and deformed by cutting, punching and hot pressing and thus ready for assembly.
  • the amount of blowing agent used in the multi-layer system is in fact so low that their gleich ⁇ momentary activation, what can onehin "is published by the confinement in the multilayer system not readily conceivable to no violent reaction lead.
  • the multi-layer system behaves at the subcritical temperatures like the thermoplastic itself: harmless and thus physiologically undifferentiated.
  • Another advantage of the multi-layer system for applications in automotive engineering is that no special measures, such as local reinforcements for the application of force, are required to fasten the components which have arisen from the multi-layer system. This is not least because the multi-layer system is self-supporting and solid in itself thanks to the sandwich-like structure. It goes without saying that the points intended for fastening do not require any special heat protection and therefore no deployment of an insulation cushion (cf.
  • FIG. 4 has to be planned in its immediate area.
  • the blowing agent activated in the insulation pad breaks down into gaseous and subliming fission products that remain as residue.
  • the gas and sublimate parts account for about 60 percent by weight.
  • Nitrogen, carbon monoxide and carbon dioxide, for example, are formed from the decomposing azo dicarbonamide.
  • the remaining decay products are mainly urazole, cyanuric acid and, in small amounts, hydrazodicarbonamide and cyamelide.
  • a forgotten, burning cigarette with core temperatures of around 600 ⁇ C will, for example, activate the chemical-physical reactions of the multi-layer system as a furniture coating, but even with polypropylene as plastic 3, according to FIG. 4, it will only lead to local changes in volume of the multi-layer system .
  • So that works proposed multi-layer system thanks to its temperature-related insulation property, as a protective layer against elevated temperatures. It also has a fire-retardant effect and is therefore suitable for some applications in everyday life, in the living and working area, in addition to planking furniture and house installations such as doors and covers of all kinds, for example as wallpaper material.
  • the multi-layer system enables applications in technical use if its temperature-dependent behavior is used to fill out superfluous volumes, for example assembly joints.
  • the multi-layer system is tailored to the spatial requirements and inserted during assembly of the parts so that after assembly and the occurrence of elevated temperature, the excess volume is filled by the expanding multi-layer system.
  • Analogous effects can be achieved for enclosing and holding parts, for example in the case of a closed channel with lines laid therein, if the lines are wound, for example, by strip-shaped multilayer systems or are surrounded by the same material with a hose.
  • the range of components allows the properties of the multi-layer system to be optimized in such a way that many previously unattainable user requests can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

A multilayer system with temperature-dependent insulating property consists of an outer layer of bare, lacquered or structured metal foil (2") and plastic (3), a fibrous material (4), an incorporated sponging agent and possibly a further metal film (7) covering the surface of the rear side (6). The local influence of temperatures above the processing temperature produces synergistic effects in the layered material which cause an increase in volume of the surface material. This results in the formation of an insulating cushion and hence an appreciable increase in the insulating property.

Description

Mehrlagensystem mit temperaturbedingter Isolationseigenschaft Multi-layer system with temperature-related insulation properties
Ein bekanntes Mehrlagensystem mit temperaturbedingter Isola¬ tionseigenschaft besteht aus einem Thermoplast mit beige¬ mischtem Treibmittel. Da das Treibmittel eine höhere Zerset¬ zungstemperatur als die Verarbeitungstemperatur des Thermo¬ plastes hat, wird dieses erst im Fertigteil durch höhere Temperatur aktiviert. Bei dieser erhöhten Temperatur er¬ weicht sich der Thermoplast und lässt die Bildung von Gasbläschen des sich zersetzenden Treibmittels zu. Durch dieses "Schäumen" verändert sich die Dichte des Thermoplas¬ tes, zugleich reduziert sich im lokalen Bereich des Schaumes seine Wärmeleitfähigkeit. Die latent vorhandene Isolations- fähigkeit wird durch die vorübergehende Einwirkung erhöhter Temperatur zur Isolationseigenschaft des Mehrlagensystems. Durch diese Isolationswirkung wird der eigentliche, durch das Mehrlagensystem bedeckte Werkstoff geschützt. Der Nachteil dieses Mehrlagensystems ist, dass diese Schutz¬ wirkung von sehr beschränktem Ausmass und Dauer ist. Denn, wenn die Zersetzungstemperatur überschritten oder von Dauer ist, wird die Wärmebeständigkeit des Thermoplastes über¬ fordert. Als Folge davon verflüchtigen sich die Treibgase aus den Gasbläschen. Mangels Füllung fallen dann die Bläs¬ chen in sich zusammen und mit ihrem Verschwinden entschwin¬ det die Isolationswirkung des Mehrlagensystems. Es ist ferner ein Mehrlagens stem für den Automobilbau be¬ kannt, dass aus einem Thermoplast und darin integrierten Fa¬ sergebilden besteht. Als Thermoplast sind beispielsweise Polypropylen und als Fasergebilde hauptsächlich mattenartige Gebilde aus Glasfasern im Gebrauch. Der Vorteil dieses Mehr¬ lagensystems ist, dass es im Gegensatz zu Stahlteilen, ohne Nachbehandlung weitgehend Wetter und somit Korrosionsbe ständig ist, und im Gegensatz zu faserarmierten Duromeren, die diesen Vorteil auch bieten, aus Tafelmaterial durch Stanzen und Warmpressen, zu dreidimensionalen Formteilen verarbeitet werden können. Der gravierende Nachteil dieses Mehrlagensystems ist allerdings die nidrige Temperatur¬ beständigkeit des Thermoplasten. Aus diesem Grunde kann dieser Werkstoff nur an solchen Stellen eingesetzt werden, wo keine durch den Fahrzeugbetrieb bedingten Temperatur¬ erhöhungen entstehen.A known multilayer system with temperature-related insulation property consists of a thermoplastic with admixed blowing agent. Since the blowing agent has a higher decomposition temperature than the processing temperature of the thermoplastic, this is only activated in the finished part by a higher temperature. At this elevated temperature, the thermoplastic softens and allows gas bubbles to form in the decomposing blowing agent. This "foaming" changes the density of the thermoplastic, and at the same time reduces its thermal conductivity in the local area of the foam. The latent insulation ability becomes the insulation property of the multi-layer system due to the temporary effect of increased temperature. This insulation effect protects the actual material covered by the multi-layer system. The disadvantage of this multi-layer system is that this protective effect is of a very limited extent and duration. Because if the decomposition temperature is exceeded or permanent, the heat resistance of the thermoplastic is overwhelmed. As a result, the propellant gases evaporate from the gas bubbles. If there is no filling, the vesicles collapse and when they disappear, the insulating effect of the multilayer system disappears. A multilayer system for automobile construction is also known which consists of a thermoplastic and fiber structures integrated therein. For example, polypropylene is used as the thermoplastic and mat-like structures made of glass fibers are mainly used as the fiber structure. The advantage of this multi-layer system is that, unlike steel parts, it is largely weatherproof and therefore resistant to corrosion without post-treatment, and in contrast to fiber-reinforced thermosets, which also offer this advantage, they are made from sheet material by punching and hot pressing into three-dimensional molded parts can. The serious disadvantage of this multilayer system, however, is the low temperature resistance of the thermoplastic. For this reason, this material can only be used in places where there are no temperature increases due to vehicle operation.
Die vorliegende Erfindung stellt sich die Aufgabe,die ge¬ nannten Nachteile soweit zu mildern, dass das Mehrlagen¬ system, trotz eigenem Kunststoffanteil, den sicheren Einsatz bis in den Bereich von Versagenstemperaturen des Kunststoff¬ es ermöglicht. Erfindungsgemäss wird diese Aufgabe durch die kennzeichnenden Merkmale der Ansprüche gelöst. Anhand der beiliegenden schematischen Zeichnung wird die Erfindung bei¬ spielsweise erläutert. Es zeigen:The object of the present invention is to alleviate the disadvantages mentioned to such an extent that the multilayer system, despite its own plastic content, enables it to be used safely up to the range of failure temperatures of the plastic. According to the invention, this object is achieved by the characterizing features of the claims. The invention is explained, for example, with the aid of the attached schematic drawing. Show it:
Fig. 1a ein Querschnitt durch ein Mehrlagensystem mit tem¬ peraturabhängiger Isolationseigenschaft und einer Deckschicht aus blanker und lackierter Metallfo¬ lie, Fig. 1b ein Querschnitt durch ein Mehrlagensystem mit tem¬ peraturabhängiger Isolationseigenschaft und einer Deckschicht zwecks Dekor aus Kunststoff,1a shows a cross section through a multilayer system with temperature-dependent insulation properties and a cover layer made of bare and painted metal foil, 1b shows a cross section through a multi-layer system with temperature-dependent insulation properties and a cover layer for the purpose of decor made of plastic,
Fig. 2 den in Fig.1b gezeigten Querschnitt durch einFig. 2 shows the cross section shown in Fig.1b
Mehrlagensystem nach örtlicher Einwirkung erhöhter äusserer Temperatur,Multilayer system after local exposure to increased external temperature,
Fig. 3 ein Querschnitt, durch ein beidseitig mit Metall¬ folien beplanktes Mehrlagensystem mit temperatur¬ abhängiger Isolationseigenschaft,3 shows a cross section through a multilayer system covered with metal foils on both sides and having a temperature-dependent insulation property,
Fig. 4 den in Fig. 3 gezeigten Querschnitt nach örtlicher Einwirkung erhöhter äusserer Temperatur.Fig. 4 shows the cross section shown in Fig. 3 after local exposure to increased external temperature.
Das in den Figuren 1a, 1b und 3 gezeigte Mehrlagensystem be¬ steht aus einem Kunststoff 3, ein in diesen Kunststoff 3 durch Verpressen, beispielsweise Kalanderieren, integriertes Fasergebilde 4 und einer äusseren Schicht 1 , die aus einer blanken Metallfolie 2, einer lackierten Metallfolie 2*, einer strukturierten Metallfolie 2" oder einer zwecks Dekor gebildeten Deckschicht aus Kunststoff besteht. Dabei kann nebst der äusseren Schicht 1 die Rückseite 6 des Mehrlagen¬ systems beispielsweise mit einer Metallfolie 7 beplankt und wie diese mit Fügemittel 8, beispielsweise Selbstklebstoff beschichtet werden. Wenn diese in den Figuren 1a, 1b und 3 gezeigten Flächen- aterialien, die jeweils ein Fasergebilde 4 und einen nicht gezeigten, in den Kunststoff 3 oder ein in das Fasergebilde 4 integriertes Treibmittel beinhalten, erhöhten, über der Verarbeitung liegenden Temperatur ausgesetzt werden, dann wird, je nach Umfang der Einwirkung, die Zurückverformung der Fasern der Fasergebilde 4 in ihre lockere ursprüngliche, vor dem Verpressen eingenommene Lage beginnen, begleitet von der Blasenbildung des sich zu Gas zersetzenden Treibmittels. Die Synergie dieser Effekte wird durch den temperaturbeding¬ ten Relax des Kunststoffes ermöglicht und unterstützt. Auf diese Art entstehende Wirkungen führen zu erheblichem Volu¬ menzuwachs der in den Figuren 2 und 4 gezeigten Zustände, wobei das in Fig.2 gezeigte Mehrlagensystem eine geplatzte und das in Fig.4 eine geschlossene Struktur aufweist. Obwohl aus der geplatzten Struktur die Treibgase entweichen können, wird auch diese der fortdauernden Einwirkung der Temperatur widerstehen. Der Grund dafür ist, und das ist ausschlagge¬ bend für die Erfindung, dass das entspannte Fasergebilde 4' auch nach dem Entweichen der Treibgase das neu gewonnene, expandierte Volumen der Struktur behält. Es versteht sich, dass je nach Anwendung, nicht überall das Entweichen der Spaltprodukte toleriert werden kann. Ebenso kann an dieser Stelle das Hervortreten der Fasern unerwünscht sein. Für solche Anwendungen eignet sich das in den Figuren 3 und 4 gezeigte etwas aufwändigere Mehrlagensystem mit einer äusse¬ ren Metallfolienschicht 2", die sich, dank Vorstrukturie- rung, durch die Blähwirkung des Treibmittels und das Aufbäu¬ men der Fasern blasen- und balgenartig dicht um die Volumen- erweiterung des Fasergebildes 4 schmiegen kann. Das auf diese Art erzeugte Isolationskissen erhöht die Wirk¬ samkeit des lokalen Wärmeschutzeffektes nebst der Reduktion der Wärmeleitung durch das Reflektionsvermögen der Metall¬ schutzfolie. Die Strukturierung der Folie 2" zwecks Materi¬ alvorrat kann beispielsweise durch Verfahren wie Kreppen, Plissieren oder Noppen erzeugt werden. Eine weitere Steige¬ rung des Wärmeschutzeffektes ist durch die Verspiegelung der Faseroberflächen derselben, beispielsweise durch Metallbe¬ dampfung, zu erreichen. Als preiswerter Massenkunststoff eignet sich für die vorgeschlagene Anwendungen Polypropylen. Dieser lässt sich beispielsweise mit pulverförmigem orga¬ nischen, chemischen Treibmittel wie Azodicarbonamid schäu¬ men. Für das Aufblähen der Fasergebilde 4 eignet sich die Behandlung des Fasergebildes 4 mit Treibmittelpulver, wie das Beimischen desselben in den Thermoplast 3. Dadurch, dass auf dem Markt beispielsweise das Azodicarbonamid in diversen Korngrösen (von 5 bis 23 Mikrometer) angeboten wird, ist dessen verfahrensgerechte Dosierung für beide Verarbeitungs möglichkeiten gegeben. Von besonderem Vorteil ist, dass sowohl das nur mit Fasergebilde 4 (vgl.Fig. 1b) wie auch zusätzlich mit Metallfolie 2 (vgl. Fig.1a und Fig.3) als Halbprodukt, wie gerollte oder Tafelware, ohne Risiko für Mensch und Umwelt gelagert, transportiert und durch Zu¬ schneiden, Stanzen und Warmpressen verformt und somit kon- fektionirt werden kann. Die im Mehrlagensystem verwendete Treibmittelmenge ist nämlich so gering, dass deren gleich¬ zeitige Aktivierung, was onehin durch die Einschliessung in das Mehrlagensystem nicht ohne weiteres denkbar erscheint» zu keiner heftigen Reaktion führen kann. Ausserdem verhält sich das Mehrlagensystem bei den unterkri¬ tischen Temperaturen wie der Thermoplast selbst: harmlos und somit physiologisch undifferent. Ein weiterer Vorteil des Mehrlagensystems für die Anwendungen im Automobilbau besteht darin, dass für die Befestigung des aus dem Mehrlagensystem entstandenen Bauteile keine besonderen Massnahmen wie lokale Verstärkungen für die Krafteinleitung nötig sind. Dies ist nicht zuletzt deshalb so, weil das Mehrlagensystem dank sandwichartiger Struktur selbsttragend und in sich massiv ist. Dabei versteht sich, dass die für die Befestigung be¬ stimmten Stellen keinen besonderen Wärmeschutz brauchen und deshalb in ihrem unmittelbaren Bereich keine Entfaltung ei¬ nes Isolationskissens (vgl. Fig.4) geplant werden muss. Das im Isolationskissen aktivierte Treibmittel zerfällt in gasförmige und sublimierende und als Rückstand verbleibende Spaltprodukte. Die Gas- und Sublimatteile haben einen Anteil von etwa 60 Gewichtsprozent. Von dem sich zersetzenden Azo¬ dicarbonamid entstehen beispielsweise Stickstoff, Kohlen- monoxid und Kohlendioxid. Die restlichen Zerfallsprodukte sind hauptsächlich Urazol, Cyanursäure und in geringen Men¬ gen Hydrazodicarbonamid und Cyamelid.The multilayer system shown in FIGS. 1a, 1b and 3 consists of a plastic 3, a fiber structure 4 integrated into this plastic 3 by pressing, for example calendering, and an outer layer 1, which consists of a bare metal foil 2, a lacquered metal foil 2 *, a structured metal foil 2 "or a cover layer made of plastic for the purpose of decoration. In addition to the outer layer 1, the rear side 6 of the multilayer system can, for example, be covered with a metal foil 7 and how this can be coated with joining agent 8, for example self-adhesive. If these surface materials shown in FIGS. 1 a, 1 b and 3, each of which contains a fiber structure 4 and a blowing agent (not shown) which is integrated in the plastic 3 or a blowing agent integrated in the fiber structure 4, are exposed to elevated temperatures above the processing point, then Depending on the extent of the action, the deformation of the fibers of the fiber structures 4 into their loose, original, pre-compressed position will begin, accompanied by the blistering of the propellant which decomposes into gas. The synergy of these effects is made possible and supported by the temperature-related relaxation of the plastic. Effects which arise in this way lead to a considerable increase in volume of the states shown in FIGS. 2 and 4, the multilayer system shown in FIG. 2 having a burst structure and that in FIG. 4 having a closed structure. Although the propellant gases can escape from the burst structure, it will also withstand the continued exposure to temperature. The reason for this, and this is decisive for the invention, is that the relaxed fiber structure 4 'retains the newly gained, expanded volume of the structure even after the propellant gases have escaped. It goes without saying that, depending on the application, the escape of the fission products cannot be tolerated everywhere. The emergence of the fibers may also be undesirable at this point. The somewhat more complex multilayer system with an outer metal foil layer 2 "shown in FIGS. 3 and 4 is suitable for such applications. Thanks to the pre-structuring, the blowing agent and the building up of the fibers make it airtight like a bubble and bellows can nestle around the volume expansion of the fiber structure 4. The insulation cushion produced in this way increases the effectiveness of the local heat protection effect in addition to the reduction in heat conduction through the reflectivity of the metal protection film. The structuring of the film 2 "for the purpose of material supply can be produced, for example, by methods such as creping, pleating or knobs. A further increase in the heat protection effect can be achieved by mirroring the fiber surfaces thereof, for example by metal vapor deposition. As an inexpensive mass plastic Polypropylene is suitable for the proposed applications, which can be foamed, for example, with powdered organic chemical blowing agents such as azodicarbonamide. For the bloating of the fiber structures 4, the treatment of the fiber structures 4 with blowing agent powder, such as the admixing of the latter into the thermoplastic 3, is suitable The fact that azodicarbonamide is available on the market in various grain sizes (from 5 to 23 micrometers) means that it can be dosed according to the process for both processing options. It is particularly advantageous that both the only with fiber structure 4 (see Fig. 1b) as a Also with metal foil 2 (cf. 1a and 3) as a semi-product, such as rolled or sheet goods, stored, transported without risk to humans and the environment and deformed by cutting, punching and hot pressing and thus ready for assembly. The amount of blowing agent used in the multi-layer system is in fact so low that their gleich¬ momentary activation, what can onehin "is published by the confinement in the multilayer system not readily conceivable to no violent reaction lead. In addition, the multi-layer system behaves at the subcritical temperatures like the thermoplastic itself: harmless and thus physiologically undifferentiated. Another advantage of the multi-layer system for applications in automotive engineering is that no special measures, such as local reinforcements for the application of force, are required to fasten the components which have arisen from the multi-layer system. This is not least because the multi-layer system is self-supporting and solid in itself thanks to the sandwich-like structure. It goes without saying that the points intended for fastening do not require any special heat protection and therefore no deployment of an insulation cushion (cf. FIG. 4) has to be planned in its immediate area. The blowing agent activated in the insulation pad breaks down into gaseous and subliming fission products that remain as residue. The gas and sublimate parts account for about 60 percent by weight. Nitrogen, carbon monoxide and carbon dioxide, for example, are formed from the decomposing azo dicarbonamide. The remaining decay products are mainly urazole, cyanuric acid and, in small amounts, hydrazodicarbonamide and cyamelide.
Eine vergessene, brennende Zigarette, mit Kerntemperaturen von rund 600 βC wird beispielsweise die chemischphysikali¬ schen Reaktionen des Mehrlagensystems als Möbelbeschichtung aktivieren, aber selbst beim Polypropylen als Kunststoff 3 wird sie gemäss Fig.4 nur zu lokalen, volumenmässigen Ver¬ änderungen des Mehrlagensystems führen. Somit wirkt das vorgeschlagene Mehrlagensystem, dank seiner temperaturbe¬ dingten Isolationseigenschaft, als Schutzschicht gegen er¬ höhte Temperaturen. Es wirkt auch feuerhemmend und eignet sich daher für manche Anwendungen des täglichen Lebens, im Wohn- und Arbeitsbereich nebst zur Beplankung von Möbeln und Hausinstallationen wie Türen und Abdeckungen jeder Art, bei¬ spielsweise auch als Tapetenmaterial.A forgotten, burning cigarette with core temperatures of around 600 β C will, for example, activate the chemical-physical reactions of the multi-layer system as a furniture coating, but even with polypropylene as plastic 3, according to FIG. 4, it will only lead to local changes in volume of the multi-layer system . So that works proposed multi-layer system, thanks to its temperature-related insulation property, as a protective layer against elevated temperatures. It also has a fire-retardant effect and is therefore suitable for some applications in everyday life, in the living and working area, in addition to planking furniture and house installations such as doors and covers of all kinds, for example as wallpaper material.
Das Mehrlagensystem ermöglicht Anwendungen des technischen Gebrauches wenn sein temperaturabhängiges Verhalten zum Aus¬ füllen von überflüssigem Volumen, beispielsweise von Monta¬ gefugen, genützt wird. Dabei wird das Mehrlagensystem, den räumlichen Anforderungen entsprechend, zugeschnitten und beim Zusammenbau der Teile so eingelegt, dass nach erfolgtem Zusammenbau und Eintreten erhöhter Temperatur das überflüs¬ sige Volumen durch das sich erweiternde Mehrlagensystem ausgefüllt wird. Analoge Effekte lassen sich zum Um- schliessen und Festhalten von Teilen, beispielsweise bei einem geschlossenen Kanal mit darin verlegten Leitungen erzielen, wenn die Leitungen beispielsweise von streifen- för ige Mehrlagensystem bewickelt oder durch einen Schlauch vom demselben Material umgeben sind. Die der Palette der Komponenten erlaubt es ge äss dem Stand der Technik, die Eigenschaften des Mehrlagensystems so zu optimieren, dass dabei viele bislang unerfüllbare Anwenderwünsche ver¬ wirklicht werden können. The multi-layer system enables applications in technical use if its temperature-dependent behavior is used to fill out superfluous volumes, for example assembly joints. The multi-layer system is tailored to the spatial requirements and inserted during assembly of the parts so that after assembly and the occurrence of elevated temperature, the excess volume is filled by the expanding multi-layer system. Analogous effects can be achieved for enclosing and holding parts, for example in the case of a closed channel with lines laid therein, if the lines are wound, for example, by strip-shaped multilayer systems or are surrounded by the same material with a hose. According to the state of the art, the range of components allows the properties of the multi-layer system to be optimized in such a way that many previously unattainable user requests can be realized.

Claims

G für Kunststoffverarbeitung 9475 SevelenPatentansprüche G for plastics processing 9475 Sevelen patent claims
Mehrlagensystem bestehend aus einer äusseren Schicht (1), die entweder aus einer blanken (2) oder lackierten Me¬ tallfolie (2") und/oder einer Deckschicht (31), und Kunststoff (3) sowie einem Fasergebilde (4) besteht, dessen Temperaturbeständigkeit höher als der des Kunst¬ stoffes (3) ist, und aus Blähmitteln, die dem KunststoffMulti-layer system consisting of an outer layer (1), which consists either of a bare (2) or lacquered metal foil (2 ") and / or a cover layer (3 1 ), and plastic (3) and a fiber structure (4), whose temperature resistance is higher than that of the plastic (3), and of blowing agents that the plastic
(3) beigemischt oder als Vorbehandlung dem Fasergebilde(3) added or as a pretreatment to the fiber structure
(4) zugeführt werden und dessen Blähwirkung oberhalb der Verarbeitungstemperatur des Kunststoffes einsetzt.(4) are supplied and the expansion effect begins above the processing temperature of the plastic.
2. Mehrlagensystem nach Patentanspruch 1, dadurch gekenn¬ zeichnet, dass die Folie (2, 2") zwecks Materialvorrat durch Kreppen, Plissieren oder Noppen strukturiert wird,2. Multi-layer system according to claim 1, characterized gekenn¬ characterized in that the film (2, 2 ") is structured for the supply of material by creping, pleating or knobs
3. Mehrlagensystem nach Patentanspruch 1, dadurch gekenn¬ zeichnet, dass das Fasergebilde (4) aus organischen Fa¬ sern, beispielsweise aus Kohle- oder Aramidfasern be¬ steht.3. Multi-layer system according to claim 1, characterized in that the fiber structure (4) consists of organic fibers, for example of carbon or aramid fibers.
4. Mehrlagensystem nach Patentanspruch 1, dadurch gekenn- zeichnet, dass das Fasergebilde (4) aus anorganischen Fa¬ sern, beispielsweise aus Glas oder Keramik, besteht.4. Multi-layer system according to claim 1, characterized is characterized in that the fiber structure (4) consists of inorganic fibers, for example of glass or ceramic.
5. Mehrlagensystem nach Patentanspruch 1, dadurch gekenn¬ zeichnet, dass das Fasergebilde (4), bespielsweise durch Bedampfen, reflektierend ausgebildet wird.5. Multi-layer system according to claim 1, characterized gekenn¬ characterized in that the fiber structure (4), for example by vapor deposition, is formed reflective.
6. Mehrlagensystem nach Patentanspruch 1, dadurch gekenn¬ zeichnet, dass als Blähmittel pasten- oder pulverförmige, chemische Treibmittel verwendet werden.6. Multi-layer system according to claim 1, characterized gekenn¬ characterized in that paste-like or powdery, chemical blowing agents are used as blowing agents.
7. Mehrlagensystem nach Patentanspruch 1, dadurch gekenn¬ zeichnet, dass die Rückseite (6) des Mehrlagensystems aus einer Metallfolie 7 besteht.7. Multi-layer system according to claim 1, characterized gekenn¬ characterized in that the back (6) of the multi-layer system consists of a metal foil 7.
8. Mehrlagensystem nach Patentanspruch 1, dadurch gekenn¬ zeichnet, dass die Rückseite (6) des Mehrlagensystems für das Fügen mit einem anderen Stoff, durch Aufrauhen vorbe¬ reitet ist.8. Multi-layer system according to claim 1, characterized gekenn¬ characterized in that the back (6) of the multi-layer system is prepared for joining with another material by roughening.
9. Mehrlagensystems nach Patentanspruch 1, dadurch gekenn¬ zeichnet, dass bereits bei der Herstellung auf die Rück¬ seite (6) des Mehrlagensystems, ein Fügemittel (8) aufge¬ tragen wird. 9. Multi-layer system according to claim 1, characterized gekenn¬ characterized in that a joining agent (8) is already applied during manufacture on the back (6) of the multi-layer system.
PCT/CH1989/000056 1988-03-21 1989-03-17 Multilayer system with temperature-dependent insulating property WO1989009316A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH107388 1988-03-21
CH1073/88-5 1988-03-21
CH1192/88-2 1988-03-29
CH119288 1988-03-29

Publications (1)

Publication Number Publication Date
WO1989009316A1 true WO1989009316A1 (en) 1989-10-05

Family

ID=25686570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1989/000056 WO1989009316A1 (en) 1988-03-21 1989-03-17 Multilayer system with temperature-dependent insulating property

Country Status (1)

Country Link
WO (1) WO1989009316A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0543349A1 (en) * 1991-11-19 1993-05-26 H.B. FULLER LICENSING & FINANCING, INC. Intumescent composite material
WO1993023245A1 (en) * 1992-05-12 1993-11-25 Minnesota Mining And Manufacturing Company Fire protective flexible composite, system including same method of making the composite, and method of fire-proofing
EP0854251A2 (en) * 1997-01-16 1998-07-22 Grünzweig + Hartmann AG Mineral wool roof insulating slab for flat roofs
GB2571695A (en) * 2017-07-05 2019-09-11 Intumescent Systems Ltd Fire Barriers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2207803A1 (en) * 1972-11-24 1974-06-21 Hirigoyen Bernard Building panels of partially expanded phenolic resin - to obtain insulation plus fire resistance without corrosion
US3934066A (en) * 1973-07-18 1976-01-20 W. R. Grace & Co. Fire-resistant intumescent laminates
EP0123255A1 (en) * 1983-04-18 1984-10-31 American Vamag Company, Incorporated Fire protective structural component
EP0208227A1 (en) * 1985-07-08 1987-01-14 BASF Aktiengesellschaft Fire-resistant panel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2207803A1 (en) * 1972-11-24 1974-06-21 Hirigoyen Bernard Building panels of partially expanded phenolic resin - to obtain insulation plus fire resistance without corrosion
US3934066A (en) * 1973-07-18 1976-01-20 W. R. Grace & Co. Fire-resistant intumescent laminates
EP0123255A1 (en) * 1983-04-18 1984-10-31 American Vamag Company, Incorporated Fire protective structural component
EP0208227A1 (en) * 1985-07-08 1987-01-14 BASF Aktiengesellschaft Fire-resistant panel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0543349A1 (en) * 1991-11-19 1993-05-26 H.B. FULLER LICENSING & FINANCING, INC. Intumescent composite material
WO1993023245A1 (en) * 1992-05-12 1993-11-25 Minnesota Mining And Manufacturing Company Fire protective flexible composite, system including same method of making the composite, and method of fire-proofing
US5502937A (en) * 1992-05-12 1996-04-02 Minnesota Mining And Manufacturing Company Fire protective flexible composite insulating system
EP0854251A2 (en) * 1997-01-16 1998-07-22 Grünzweig + Hartmann AG Mineral wool roof insulating slab for flat roofs
EP0854251A3 (en) * 1997-01-16 1999-06-16 Grünzweig + Hartmann AG Mineral wool roof insulating slab for flat roofs
GB2571695A (en) * 2017-07-05 2019-09-11 Intumescent Systems Ltd Fire Barriers

Similar Documents

Publication Publication Date Title
US4839223A (en) Fire-protective sealing element
EP1530553B1 (en) Insulating component for insulating heat and/or sound, provided with a fire-retardant coating
US8318304B2 (en) Intumescent rod
EP3493293B1 (en) Insulating facing for housing
EP0711188A1 (en) Pipe shut-off device with a sheet metal casing that may be bent around a pipe
CH640040A5 (en) HEAT-INSULATED PIPE FOR THE HOUSE INSTALLATION AND METHOD FOR THE PRODUCTION THEREOF.
CH684206A5 (en) Disposable heat shield.
EP2259847A1 (en) Arrangement for providing active fire protection in aircraft
DE102005049570B3 (en) Sound absorbing material e.g. melamine resin foam, for e.g. carriage wall of rail vehicle, has surface with portion coated with flame retardant powder or sprinkled with retardant solution, where material is covered by sound transparent film
DE102011082911A1 (en) Fire protection element
WO1989009316A1 (en) Multilayer system with temperature-dependent insulating property
DE10003856B4 (en) Fire protection mat, its manufacture and use
DE102016013199A1 (en) Thermal insulation panel
DE102005022414B4 (en) Filling device for hollow bodies
DE3227509A1 (en) Composite profile, especially for frames of windows, doors and facade elements
DE102016111689B4 (en) FIRE PROTECTION COVER
DE4211762A1 (en) Poorly or non-combustible foam material - contg. insulating layer former that swells in the event of fire, useful as sealant to inhibit ingress of fire, smoke and heat
DE10205477A1 (en) Ring-like packaging profile containing polyethylene foam, a plate slot and an antislip layer useful for packaging glass plates and other similar items
EP0325239A1 (en) Covering element
CH676576A5 (en)
EP3686002A1 (en) Composite material for implementing thermal and / or acoustic insulation
EP2708668B1 (en) Method for producing a flame retardant insulating element, insulating element and use of an insulating element
EP1394478B1 (en) Profiled sealing strip for foam filled casing
JP2001037045A (en) Fire-proof treatment element for outlet box and fire- proof outlet box
DE3817841C1 (en)

Legal Events

Date Code Title Description
AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE