WO1989001144A1 - Apparatus for measuring concentration and oxygen saturation of hemoglobin - Google Patents

Apparatus for measuring concentration and oxygen saturation of hemoglobin Download PDF

Info

Publication number
WO1989001144A1
WO1989001144A1 PCT/JP1988/000742 JP8800742W WO8901144A1 WO 1989001144 A1 WO1989001144 A1 WO 1989001144A1 JP 8800742 W JP8800742 W JP 8800742W WO 8901144 A1 WO8901144 A1 WO 8901144A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
blood
irradiating
oxygen saturation
reflected light
Prior art date
Application number
PCT/JP1988/000742
Other languages
English (en)
French (fr)
Inventor
Hiromasa Kohno
Hiroaki Honda
Masahiro Nudeshima
Original Assignee
Terumo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP62186135A external-priority patent/JPH0629850B2/ja
Priority claimed from JP62186136A external-priority patent/JPH07113604B2/ja
Application filed by Terumo Kabushiki Kaisha filed Critical Terumo Kabushiki Kaisha
Priority to EP88906126A priority Critical patent/EP0380664B1/en
Priority to DE3889733T priority patent/DE3889733T2/de
Publication of WO1989001144A1 publication Critical patent/WO1989001144A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N21/3151Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using two sources of radiation of different wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14557Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases specially adapted to extracorporeal circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3144Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths for oxymetry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/808Optical sensing apparatus

Definitions

  • the present invention relates to a device for measuring the concentration of hemoglobin in blood and the oxygen saturation of hemoglobin using the light absorption characteristics of hemoglobin in blood, and to a device for measuring the concentration of oxygen in a hemoglobin and the oxygen saturation thereof.
  • the concentration of hemoglobin in blood is measured by physically or chemically lysing the collected blood, placing it in a cube, irradiating it with light of a specific wavelength, measuring the transmitted light, and measuring the light. 'We calculate hemoglobin concentration using Beer's law.
  • light having two wavelengths ⁇ ⁇ , ⁇ ⁇ is radiated into blood to measure the reflected light intensity, and the following relational expression is obtained. I want more oxygen saturation.
  • I i and I 2 are the reflected light intensities for the light of the wavelengths; I and L 2 respectively, and B is a constant.
  • the above-described method for measuring the concentration of hemoglobin in blood has a problem that continuous measurement is difficult because the blood to be measured must be hemolyzed.
  • the physiological factors in the blood particularly the hematocrit value (the ratio of red blood cells in the blood) have a large effect.
  • the absorption (reflection) characteristics of the blood vary depending on the absorption and scattering of dyes and particles in the blood.
  • the hemoglobin binding state to oxygen and the irradiation wavelength vary.
  • the extinction coefficient changes significantly.
  • Hb 0 2 oxygenated hemoglobin H br hemoglobin is to - reducing
  • H b C 0 is the hemoglobin to carbon monoxide.
  • Hb ⁇ ⁇ 2 and Hbr intersect, indicating that the absorbances are equal.
  • This wavelength is called the isosbestic point, which indicates that the absorbance does not change due to the oxygen saturation of hemoglobin.
  • Figures 14A and 14B show the relationship between reflected light intensity and oxygen saturation at wavelengths of 660 nm and 800 ⁇ , respectively, with changes in hematocrit (HC ⁇ ) and hemoglobin (Hb) concentration. This is what was plotted. Bovine blood was used as a blood sample.
  • the absorbance of oxygenated hemoglobin is smaller than that of reduced hemoglobin, and the reflected light intensity increases as the oxygen saturation increases.
  • the wavelength of 800 nm in Fig. 14B since it is the wavelength at the isosbestic point, it can be seen that it is not much affected by the change in the oxygen saturation.
  • the reflected light intensity decreases as the hematocrit value decreases for each wavelength.
  • the measurement of the reflected light intensity is a result of calibrating each reflected light intensity to a predetermined value using a white reflector in advance.
  • FIGS. 14A and 14B it was calculated from the measured values of the reflected light intensity at the wavelengths of 660 nm and 800 nm shown in FIGS. 14A and 14B using the above relational expression.
  • Fig. 15 shows the relationship between the oxygen saturation and the oxygen saturation measured using an OSM 2 hemoximeter (manufactured by Radiometer). From this result, in the oxygen saturation calculated by the above relational expression, the effect of the hematocrit value appears remarkably in the region where the oxygen saturation is low, and the calculated oxygen saturation value has a large error. What happened. Furthermore, with the conventional device, it was not possible to continuously and accurately measure the oxygen saturation in blood without being affected by the hematocrit value.
  • an object of the present invention is to provide an oxygen saturation measuring device capable of obtaining an accurate oxygen saturation without being affected by a hematocrit value even in a region where the oxygen saturation is low.
  • Another object of the present invention is to provide an oxygen saturation measuring device capable of continuously measuring the oxygen saturation of hemoglobin without being affected by the hematocrit value.
  • Another object of the present invention is to provide a hemoglobin concentration measuring device capable of continuously measuring without the need to lyse the blood to be measured.
  • first light irradiating means for irradiating light of a first wavelength into blood, and a light of a second wavelength different from the light of the first wavelength in blood.
  • Second and third light irradiating means for irradiating, and a distance from the second light irradiating means and a distance from the third light irradiating means are respectively provided; and
  • First correction value calculating means for calculating the correction value of the first correction value, and the reflected light intensity of the light ir
  • a second correction value calculating means for calculating a second correction value by using the second correction value; anda light irradiated by a first light irradiation means continuously detected by the detecting means using the second correction value.
  • a reflected light intensity ratio correcting means for correcting a reflected light intensity ratio between the reflected light intensity of the reflected light and the reflected light intensity of the light irradiated by the second light irradiating means continuously detected by the detecting means; Corrected reflected light intensity output from reflected light intensity ratio correction means Ru oximetry apparatus der of hemoglobin to having an oxygen saturated Wado calculating means for calculating oxygen saturation in the blood by the correlation function using.
  • a first light irradiating means for irradiating light of a first wavelength into blood, and a light of a second wavelength different from the first wavelength of light are irradiated into blood.
  • Second and third light irradiating means provided so that a distance from the second light irradiating means and a distance from the third light irradiating means are different from each other; and Detecting means for detecting the respective reflected light intensities of the light radiated into the blood from the second and third light irradiating means from the blood; andthe detecting means based on a hemoglobin concentration reference value and a known hemoglobin concentration value.
  • First correction value calculation means for calculating a first correction value for correcting the ratio of the reflected light intensities of the light from the second and third light irradiation means detected by the first correction value
  • Second correction value calculation means for calculating a second correction value using the reflected light intensity of the light emitted from the third light irradiation means continuously detected by the detection means; and And the reflected light intensity of the light irradiated by the first light irradiation unit and the reflected light intensity of the light irradiated by the second light irradiation unit, which are continuously detected by the detection unit, using the correction value of A reflected light intensity ratio correcting means for correcting the ratio; an oxygen saturation calculating means for calculating the oxygen saturation in blood using the corrected reflected light intensity ratio output from the reflected light intensity ratio correcting means. It is a device for measuring the oxygen saturation of hemoglobin having the following.
  • first and second light irradiating means for irradiating blood with a specific wavelength of light, a distance from the first light irradiating means and the second light irradiating means are provided.
  • Detecting means for detecting the reflected light intensity of the light radiated into the blood from the first and second light irradiating means, the detecting means being provided at different distances from the first light irradiating means;
  • a correction coefficient calculation for calculating a correction coefficient for correcting a ratio of a reflected light intensity of the light irradiated by the first light irradiation means to a reflected light intensity of the light irradiated by the second light irradiation means.
  • Reflected light intensity ratio correction means for correcting the ratio with the reflected light intensity
  • a hemoglobin concentration measuring device having a hemoglobin concentration calculating means for calculating a hemoglobin concentration in blood by a correlation function using a corrected reflected light intensity ratio output from a reflected light intensity ratio correcting means.
  • the shape of the light irradiation means can be reduced by making the light emission source and the light irradiation part common.
  • the portion in contact with blood can be completely insulated.
  • FIG. 1 is a block diagram of an oxygen saturation measuring apparatus according to a first embodiment of the present invention
  • FIG. 2 is an end view showing an example of a sensor probe used in the oxygen saturation measuring device of this embodiment
  • Fig. 3 is a cross-sectional view of the connector to which the sensor probe shown in Fig. 2 is attached.
  • FIG. 4 is a block diagram showing a specific example of a first correction value calculating unit in the block diagram of FIG.
  • FIG. 5 is a block diagram of one embodiment of an oxygen saturation measuring device according to a second embodiment of the present invention.
  • FIG. 6 is a block diagram showing a specific example of a first correction value calculation unit in the block diagram of FIG. 4,
  • FIG. 7 is a flow chart showing an oxygen saturation measuring method using the oxygen saturation measuring apparatus of the first embodiment
  • FIG. 8 is a flow chart showing a method of measuring oxygen saturation by an oxygen saturation measuring apparatus of another embodiment
  • FIG. 9 is a flow chart showing an oxygen saturation measurement method using the oxygen saturation measurement apparatus of the second embodiment.
  • FIG. 10 shows the oxygen saturation obtained by the oxygen saturation measuring apparatus of the embodiment.
  • FIG. 11 is a diagram showing the relationship between the oxygen saturation obtained by the oxygen saturation measuring apparatus of the first embodiment and the oxygen saturation measured by a 0 S M2 hemoximeter used as a control,
  • Fig. 12 shows the relationship between the oxygen saturation obtained by the oxygen saturation measuring apparatus of one embodiment of the second invention of the present application and the oxygen saturation measured by an OSM 2 hemimeter used as a control.
  • Fig. 13 is a diagram showing the absorption characteristics of general blood
  • FIGS. 14A and 14B show the relationship between the reflected light intensity at wavelengths of about 660 nm and about 800 nm, respectively, plotted by changing the hematocrit value (HCT).
  • HCT hematocrit value
  • FIG. 15 is a diagram showing the relationship between the oxygen saturation obtained by the conventional oxygen saturation measurement method and the oxygen saturation measured by a 0 S M 2 hemimeter used as a control.
  • FIG. 16 is a block diagram of a hemoglobin concentration measuring apparatus according to another embodiment of the present invention.
  • FIG. 17 is a block diagram showing a specific example of the correction coefficient calculator in the block diagram of FIG.
  • FIG. 18 is a flow chart showing a method for measuring hemoglobin concentration by a hemoglobin concentration measuring apparatus according to one embodiment of the present invention.
  • FIG. 19 is a diagram showing the hemoglobin concentration obtained by the hemoglobin concentration measuring device according to one embodiment of the present invention and the absorption characteristics of hemoglobin measured by an OSM 2 hemometer used as a target.
  • Figures 20 and 21 are plots showing the relationship between the reflected light intensity and the hemoglobin concentration when light of about 800 nm is irradiated at different distances, and
  • the apparatus for measuring the oxygen saturation of hemoglobin of the present invention comprises a light irradiation circuit 1 and light irradiation.
  • a detection unit 2 for detecting the intensity a correction unit 3 for correcting the influence of the hematocrit value, an oxygen saturation calculation unit 4 for calculating the oxygen saturation using the output from the correction unit 3, and an oxygen saturation. It is formed by a display unit 5 that displays the output from the performance unit 3.
  • the light irradiating circuit 1 includes a first light irradiating unit that irradiates the blood with the first wavelength light, and a second light irradiating unit that irradiates the blood with a second wavelength light different from the first wavelength light. It has a light irradiating section and a third light irradiating section for irradiating the blood with light of the second wavelength.
  • the first light irradiating unit and the second light irradiating unit include a first light emitting source for emitting light of a first wavelength and a second light emitting unit for emitting light of a second wavelength.
  • a common light irradiator that irradiates the blood with light from the first luminescence source and the second luminescence source, and transmits the second wavelength light into the blood.
  • a third light irradiation unit for irradiating the light.
  • the light irradiating circuit 1 includes a light emitting source and a light irradiating unit that irradiates the blood with light from the light emitting source, and the light emitting source is composed of three light emitting diodes 11, 12, 13.
  • the light emitting diode 11 emits light having a wavelength of about 660 nm ( ⁇ 1), and the light emitting diodes 12 and 13 emit light of about 800 nm ( ⁇ 2 ).
  • the light emitting diodes 11, 12, 13 are alternately illuminated through the drive circuit 15, which inputs pulses of a predetermined time interval and a predetermined time width that do not overlap in time from the pulse generator 14. It is configured as follows.
  • the light emitted from the light emitting diode 11 and the light emitted from the light emitting diode 12 pass through the optical fiber 18 a for light emission through the optical coupler 17 and pass through the optical fiber 18 a.
  • the blood is irradiated from the light irradiation part 20 formed by the terminal.
  • the number of light irradiating sections 20 can be reduced to one, and the device can be reduced in size.
  • the light irradiating section having the wavelength from the light emitting diode 11 and the light emitting diode 12 can be used. can be a distance - a light irradiation portion of the light L 2, the relative detector to be described later; wavelength from.
  • the light emitted from the light emitting diode 13 passes through the light emitting fiber 18b and is radiated into the blood from the light irradiating portion 19 formed by the end face of the optical fiber 18b.
  • the light irradiation circuit 1 may be composed of three light sources and three light irradiation units for irradiating the blood with light from the respective light sources.
  • a light emitting source that emits light of the first wavelength
  • a light irradiator that irradiates the blood with light from the light emitting source
  • a light emitting unit that emits light of the second wavelength. It may be composed of a common light source that emits light and two light irradiation units that irradiate the blood from the light source with light from different positions.
  • the detection unit 2 is for detecting the intensity of the reflected light of the light emitted from the light irradiation circuit 1 from the blood.
  • the light detecting section 21 of the detecting section 2 is formed by the end face of the optical fiber 18c for receiving light, and the distance from the light irradiating section 19 and the light It is provided so that the distance from the irradiation unit 20 is different.
  • FIG. 2 shows an end view of a specific example of the sensor probe 50 having the light irradiation sections 19 and 20 of the light irradiation circuit 1 and the light detection section 21 of the light detection section.
  • One light-emitting optical fiber and one light-receiving fiber are linearly arranged, and the pre-irradiation part 20 formed by the end face of the light-emitting optical fiber and the light detection formed by the light-receiving fiber end face
  • the distance between the center of the part 21 and the center of the light-receiving fiber is 0.26 mm, and the light-emitting part 19 formed by the end face of the light-emitting optical fiber 1 and the light detection part 2 formed by the end face of the light-receiving fiber
  • the distance between the center and the center 1 is 0.5 O mm, and the two are provided so that the distance between them is different from each other, and is fixed by the epoxy resin adhesive 52.
  • the optical fiber As the optical fiber, a multi-component glass having a core diameter of 2 ⁇ 0 ⁇ was used.
  • the periphery of the end face of the sensor-probe 50 is polished to a smooth surface so as not to impair the light transmittance and to prevent thrombus.
  • the number of the light detection units 21 is one in order to further reduce the size of the sensor probe.
  • the number of the light detection units 21 is not limited thereto, and the plurality of light detection units 21 may be configured.
  • FIG. 3 shows a state in which the sensor probe 50 is attached to a connector 56 that can be attached to an extracorporeal circuit (not shown) such as a heart-lung machine.
  • the connector 56 has a mounting port 58 for a sensor probe 50 protruding outward in the axial direction.
  • the detection unit 2 has a photo diode 16 for receiving light detected by the light detection unit 21 and transmitted through the optical fiber 18 c for light reception, and a detection amplifier 23, and includes a photo amplifier.
  • the diode 16 generates a current according to the intensity of the optical signal, and is converted into a voltage signal by the detection amplifier 23.
  • the detection unit 2 has a signal separation circuit for separating the voltage signal of the detection amplifier 23 into signals corresponding to the emission wavelengths of the light emitting diodes 11, 12, and 13. Is composed of an analog switch 24, capacitors 25, 26, 27 and buffer amplifiers 28, 29, 30.
  • the analog switch 24 has three switches, SW 1, SW 2, and SW 3, and each switch is turned “on” and “off” by a signal from the pulse generator 14. For example, when the light emitting diode 11 emits light, the signal from the pulse generator 14 is applied to the analog switch 24, only the switch 1 is turned on, and the voltage signal of the detection amplifier 23 is changed to the capacitor 25. To generate an average signal voltage across capacitor 25. This is emitted by the light emitting diode 1 1 The wavelength irradiates the blood from 20 and is reflected in the blood and received by the photodiode 16 via the light detection unit 21; this indicates the reflected light intensity of Li. This average signal voltage is continuously output through the buffer amplifier 28 and the reflected intensity signal I!
  • the same operation is performed by a combination of the light emitting diode 12, the switch 2 of the analog switch 24, the capacitor 26, and the buffer amplifier 29, and the reflected light intensity signal of the light emitting diode 12 at the wavelength ⁇ 2 is obtained. and it outputs the I 2. Further, the same operation is performed by a combination of the light emitting diode 13, the switch 3 of the analog switch 24, the capacitor 27, and the buffer amplifier 30, and the reflected light intensity signal 13 3 of the wavelength 2 of the light emitting diode 13. Is output.
  • detector 2 the reflected light intensity signal is output from the signal separation circuit I i, 1 2, has a processing unit I 3 in the signal, the signal processing unit, the reflected light intensity signal I t, A digitized reflected light output for a specified number of times (n times) or within a specified time from an analog digital converter 31 that converts 1 2 and I 3 to digital signals and an analog digital converter 31 has an average value calculating unit 3 2 you calculating an average value by storing the intensity signals I i, 1 2, I 3 .
  • the correction unit 3 for correcting the influence of the hematocrit value has a second correction value calculation unit 40, a second correction value calculation unit 42, and a corrected reflected light intensity ratio calculation unit 44. are doing.
  • the first correction value calculating section 40 outputs one digitized reflected light intensity signal I 2, I 3 output from the average value calculating section 32 (for example, the reflected light intensity signal I 2 at the start of the measurement). , I 3) and a calculation unit for calculating a reflected light intensity ratio (I 2 ZI 3 ) from the digitalized signal.
  • the output of the reflected light intensity ratio (I 2 ZI 3) from the calculation unit is Output as a correction value of 1. Therefore, in this case, the first arithmetic unit 4
  • 0 is the reflected light intensity ratio from the digitized reflected light intensity signals I 2 and I a
  • 0 is a calculation unit for the reflected light intensity ratio (I 2 I 3 )
  • 62 is a measurement value input unit for sampling the measured blood and inputting the measured value of hemoglobin concentration
  • 63 is a previously measured measurement
  • a reference correlation function that is a higher-order correlation curve (for example, a quadratic regression curve) calculated from the data of I 2 ZI 3 obtained from several types of blood of the same animal species as the target blood and the hemoglobin concentration H b h (x)
  • 64 is an inverse function g (H b) storage unit that stores the inverse function g (H b) of the above h (X), and 65 is the above-mentioned measured value input unit using this inverse function g (H b).
  • a calculation unit for calculating the reflected light intensity ratio [I 2 I 3] s corresponding to the hemoglobin concentration input at 62, and 66 is output from the calculation unit 65 [1 2 /
  • a computing unit 60 for computing the average value calculating unit 32 is one of the digitized output from the reflected light intensity signal I 2.
  • 67 is the hemoglobin concentration reference value (Hb ') input part for inputting the hemoglobin concentration reference value
  • 68 is the Hb calibration curve
  • Calculating unit 6 Calculates the reflected light intensity ratio g (Hb ') from the Hb calibration curve from 3 and the hemoglobin concentration reference value (Hb') (for example, hemoglobin concentration 15%).
  • 69 is a calculating unit.
  • the first correction value is obtained from A output from 66 and the reflected light intensity ratio (Hb ') from the reflected light intensity ratio (Hb') calculation unit 68.
  • the first correction value is a fixed correction value until a new first correction value is calculated.
  • the Hb calibration curve storage unit 63 the hemoglobin concentration reference value (Hb ') input unit 67, and the Hb calibration curve reference value (Hb') from the Hb calibration curve of the Hb calibration curve storage unit 63 are used.
  • the hemoglobin concentration of 15% (For example, a hemoglobin concentration of 15%) and a calculation unit 68 for calculating the reflected light intensity ratio g (Hb ') have been described, but the reference value (Hb') of the hemoglobin concentration is previously determined by, for example, the hemoglobin concentration By fixing them to 15% and using the storage unit that stores the value of the reflected light intensity ratio g (Hb ') calculated from the Hb calibration curve at that time (when the hemoglobin concentration is 15%), Alternatively, the Hb calibration curve storage 63, the hemoglobin concentration reference value input unit 67, and the calculation unit 68 for calculating the reflected light intensity ratio g (Hb ′) may be omitted.
  • the second correction value signal C i output from the second correction value calculation section 42 is a digitized reflected light intensity signal [I] [1] continuously output from the average value calculation section 32. 2 ] and input to the corrected reflected light intensity ratio calculator 44. Then, the arithmetic unit 44, from the respective signals, and calculates the following equation a compensation reflected light intensity ratio R s.
  • the signal output from the oxygen saturation calculator 4 is displayed on the display 35.
  • any known device can be used as long as the measured value can be externally reported, and a known device such as a cathode ray tube, a printer, a liquid crystal display, and a recorder can be used.
  • the oxygen saturation measuring apparatus of this embodiment includes a light irradiation circuit 1, a detection unit 2 that detects the intensity of light reflected from blood of light irradiated into blood from the light irradiation circuit 1, and a correction unit 103.
  • the oxygen saturation calculator 4 calculates the oxygen saturation using the output from the correction unit 103, and the display 5 displays the output from the oxygen saturation calculator 4.
  • the light irradiation circuit 1, the detector 2, the oxygen saturation calculator 4 and the display 5 are the same as those shown in FIGS. 1 to 3. Therefore, a different correction unit 103 will be described.
  • the correction unit 103 includes a first correction value calculation unit 140, a second correction value calculation unit 42, and a corrected reflected light intensity ratio calculation unit 44.
  • the configuration of the first correction value calculator 140 is different from that of FIG.
  • the first correction value calculation section 140 calculates I 2 / I 3 obtained from several kinds of blood of the same animal species as the blood to be measured in advance and the hemoglobin concentration H
  • the reference correlation function h (X) which is a higher-order correlation curve (for example, a quadratic regression curve) calculated from the data of b
  • Hb calibration curve storage unit 63 storing a hemoglobin concentration reference value (Hb ′) input unit 67
  • the reflected light intensity that becomes the first correction value based on the reference value (Hb ') of the hemoglobin concentration is obtained from the Hb calibration curve (reference correlation function) in the Hb calibration curve storage unit 63.
  • the power ratio calculator 68 is the same as that described in the block diagram of FIG.
  • the first correction value calculation unit 140 calculates the Hb calibration curve storage unit 63, the hemoglobin concentration reference value (Hb ′) input unit 67, and the reflected light intensity ratio g (Hb ′). As described in Fig.
  • the reference value of the hemoglobin concentration (Hb ') is fixed in advance to, for example, a hemoglobin concentration of 15%, and then (hemoglobin concentration (At 15%), the value of the reflected light intensity ratio g (Hb ') calculated from the Hb calibration curve is stored in the storage unit 63 for the Hb calibration curve storage unit 63 and the reference value for the hemoglobin concentration.
  • the input unit 67 and the calculation unit 68 can be omitted.
  • the value calculation unit 42 calculates a second correction value d by the following equation using a constant C. stored in advance.
  • the second correction value signal C i output from the second correction value calculator 42 is a digitized reflected light intensity signal [I!] [I 2 ] continuously output from the average value calculator 32. ] Is input to the corrected reflected light intensity ratio calculator 44. Then, the calculating section 44 calculates the corrected reflected light intensity ratio Rs from the above signals according to the following equation.
  • the oxygen saturation SO 2 .
  • the standard deviation of the data with respect to the reference correlation function: f (X) is shown by the standard deviation, and the value is determined so that the value is minimized.
  • the signal output from the oxygen saturation calculator 4 is displayed on the display 5.
  • step S1 a connector having the shape shown in FIG. 3 to which the sensor probe shown in FIG. 2 is attached is attached to a blood circuit.
  • step S2 the light irradiation part shown in FIG. 1 is used for the end face of the optical fiber 1 ; about 660 nm ( ⁇ ) and about 800 nm ( ⁇ 2 ) from the light irradiation part 20 formed.
  • the blood is irradiated with light of about 800 nm sequentially from the light irradiating section 19 formed by the end face of the optical fiber into the blood, and the detector 2 emits each light emitted from the light irradiating section 1 from the blood. Detect reflected light intensity n times.
  • step S3 the average value of the reflected light intensities detected n times is calculated, and the digitized reflected light intensity signals I :, I2, and I3 are output.
  • step S4 it is determined whether or not to correct the reflected light intensity ratio I i / I s as correction for preventing the influence of the hematocrit value. If correction is to be performed, the process proceeds to step S5.
  • step S6 the first correction value stored in step S5 and the digital reflected light intensity signal [I3] continuously output from step S3 are stored in advance (: In the embodiment, from 0.23), the second correction value d is obtained by the following equation.
  • step S7 the correction is performed using the second correction value C i output in step S6 and the digitized reflected light intensity signal [I] [I 2 ] continuously output from step S3.
  • the reflected light intensity ratio Rs is
  • step S9 calculated in step S8 The displayed oxygen saturation is displayed on the display 5. Then, it is determined whether or not to end the measurement in step S10, and if not, the process returns to step S2 and repeats the above-described measurement.
  • Example 2 shown in FIG. 8 the average value of the reflected light intensities detected ri times in steps S21 to S23 in the same manner as steps S1 to S3 in FIG.
  • the calculated and digitized reflected light intensity signals I 1, I 2 and I 3 are output.
  • step S24 it is determined whether or not a correction for the hemoglobin concentration is performed as a correction for preventing the influence of the hematocrit value. If the correction is performed, the process proceeds to step S25 or S26.
  • step S 2 3 First output digitized reflected light intensity signal I 2, I 3 from the reflected light intensity ratio (1 2/1 3) performs the operation of calculating the [I 2] / [I 3 ].
  • step S25 the measured blood is sampled, and the hemoglobin concentration is measured. Then, the process proceeds to step S27, where I 2 / I 3 obtained from several types of blood measured and stored in advance and hemoglobin Correlation function h (x), which is a higher-order correlation curve (for example, second-order recursive curve) calculated from the data with the
  • step S28 [I 2 ] / [I 3] output in step S 26 and [I 2 / I 3] s output in step S 27, the ratio of both is given by ⁇
  • step S29 where the reflected light intensity ratio g (Hb ') of the reference value (Hb') (in this embodiment, the hemoglobin concentration of 15%) of the hemoglobin concentration is obtained from the stored Hb calibration curve. Is calculated, and the first correction value is calculated based on A output from step S28.
  • step S 29 A first correction value stored in step S 3 0 In step S 29, a digital reflected light intensity signal [I 3] to be continuously output from the step S 23, C. stored in advance (In this embodiment, 0.26), the second correction value C! To
  • step S31 the second correction value C1 output in step S30 and the digitized reflected light intensity signals [It] and [I2] continuously output from step S23 are used. Then, the corrected reflected light intensity ratio R s is obtained by the following equation.
  • step S33 the oxygen saturation calculated in step S32 is displayed.
  • step S34 it is determined whether or not to end the measurement. If not, the process returns to step S22 to repeat the above-described measurement.
  • step S 4. 1 to step S 43 at n times the detected intensity signal is computed digitized average value of the reflected light intensities I i, iota 2.
  • step S44 it is determined whether to calculate the first correction value. If the first correction value is to be calculated, the process proceeds to step S45.
  • step S 4 previously measured and stored by the I 2 / I 3 obtained from several blood is, higher correlation curve calculated from the data of the hemoglobin concentration H b (e.g. quadratic regression curve)
  • Hb Hb
  • a first correction value step S 46 the computed in step S 45 is stored, a digital reflected light intensity signal [I 3] to be continuously output from the step S 43, C. stored in advance (In this embodiment, the second correction value d is obtained from the following equation from 0.26).
  • step S47 the second correction value C! Output in step S46. And the digitized reflected light intensity signals [I] and [I 2 ] continuously output from step S43, and the corrected reflected light intensity ratio Rs is calculated by the following equation.
  • step S48 the corrected reflected light intensity output from step S47 Based on the degree ratio R s , the correlation curve between R s (-([Id-Cd / ⁇ ]-)) and oxygen saturation for data from several types of blood measured in advance was returned for the third time.
  • Function f (X), (x R s )
  • f (x) aa ⁇ R s 3 + a 2 ⁇ R s 2 + a! ⁇ R s + a.
  • step S49 the oxygen saturation calculated in step S48 is displayed on the display 5.
  • step S50 it is determined whether to end the measurement. If not, the process returns to step S42 and repeats the measurement.
  • the absorption (reflection) characteristics of blood change due to absorption and scattering by dyes and particles in blood, but absorption depends on the binding state of hemoglobin to oxygen and the irradiation wavelength.
  • coefficients Ri Contact changes rather large, and has a H b 0 2 and H br will intersect equal absorption coefficient in particular wavelengths 8 0 0 nm around.
  • Figures 20 and 21 show the experimental results of sample blood collected from three different bodies with 800 nm light, and plotted the relationship between hemoglobin concentration and reflected light intensity. .
  • FIG. 20 shows the results when the distance between light reception and light emission is 0.25 mm
  • FIG. 21 shows the results when the distance between light reception and light emission is 0.5 mm.
  • the measurement of the reflected light intensity is a result of calibrating each reflected light intensity to a predetermined value using a white reflector in advance.
  • the reflected light intensity when the interval between light reception and light emission is 0.25 mm is I 1
  • the reflected light intensity when the interval is 0.5 mm is I 2
  • their ratio I 1 / I 2 is The relationship with the hemoglobin concentration. Referring to Figs. 2 and 21, the reflected light intensity is considerably affected by individual differences in blood.However, as shown in Fig. 22, it can be reduced by taking a ratio. Understand. However, they are still strongly affected by differences in blood scattering properties.
  • the apparatus of the present invention is capable of measuring the hemoglobin concentration of blood without being affected by individual differences in blood.
  • the hemoglobin concentration measuring device of the present invention comprises: a light irradiation circuit 100; Hemoglobin using the output from the detector 200, the corrector 300, and the output from the corrector 300. It is formed by a hemoglobin concentration calculating section 400 for calculating the density, and a display 5 for displaying an output from the hemoglobin concentration calculating section 400. Parts common to FIG. 1 are indicated by the same symbols.
  • the light irradiation circuit 100 has a first light irradiation unit and a second light irradiation unit for irradiating blood with light of a specific wavelength.
  • the first light irradiating unit and the second light irradiating unit include a first light emitting source that emits light of a specific wavelength and a second light emitting source that emits light of a specific wavelength.
  • a light irradiating unit for irradiating the blood with light from each light emitting source is provided.
  • the light irradiation circuit 100 includes a light source and a light irradiation unit that irradiates the blood with light from the light source, and the light source includes two light emitting diodes 12, 13.
  • the light emitting diodes 12 and 13 emit light of about 800 nm ( ⁇ 2), and generate pulses with predetermined intervals and predetermined time widths that do not overlap in time from the pulse generator 114.
  • the driving circuit 1 15 is set to i
  • the light emitted from the light emitting diode 12 passes through the light emitting fiber 18a for light emission and is irradiated into the blood from the light irradiation part 20 formed by the end face of the light fiber 18a. By doing so, the size of the device can be reduced.
  • Light emitted from the light emitting diode 13 passes through the light emitting fiber 18b and is formed by the end face of the optical fiber 18b. The light is irradiated into the blood from the light irradiation unit 19.
  • the detection unit 200 is for detecting the intensity of the reflected light from the blood of the light emitted from the light irradiation circuit 100. Then, in the one shown in FIG. 16, the light detecting section 21 of the detecting section 200 is formed by the end face of the light receiving optical fiber 18c, and the distance from the light irradiating section 19 and It is provided so that the distance from the light irradiation unit 20 is different.
  • a specific example of the sensor probe 50 having such a light irradiating unit 19.20 and a light detecting unit 21 is as described above with reference to FIG.
  • the detection unit 200 has a photodiode 16 that receives light detected by the light detection unit 21 and transmitted through the optical fiber 18 c for light reception, and a detection amplifier 23.
  • the photodiode 16 generates a current according to the intensity of the optical signal, and converts the current into a voltage signal by the detection amplifier 23.
  • the detection unit 200 has a signal separation circuit for separating the voltage signal of the detection amplifier 23 into signals corresponding to the emission wavelengths of the light emitting diodes 12 and 13. Is composed of an analog switch 240, capacitors 25 and 26, and buffer amplifiers 28 and 29.
  • the analog switch 240 has two switches SW i and SW 2 , and each switch is turned “on” and “off” by a signal from the pulse generator 114.
  • a signal from the pulse generator 114 For example, light emitting diode 1 2
  • the signal from the source generator 114 is applied to the analog switch 240, only SW i is turned on, and the voltage signal of the detection amplifier 23 is applied to the capacitor 25 to be applied to both ends of the capacitor 25.
  • This average signal voltage is continuously output through the buffer amplifier 28 to become a reflected light intensity signal I.
  • the same operation is performed by the combination of the light emitting diode 13, the SW 2 of the analog switch 240, the capacitor 26, and the buffer amplifier 29, and the reflected light intensity signal of the wavelength ⁇ 2 of the light emitting diode 13 is performed. and it outputs the I 2.
  • Further detector 2 0 0 has the processing means of the reflected intensity signal I 1, 1 2 of the signal output from the signal separation circuit, the signal processing means, the reflected light intensity signal I, 1 2 a digital signal converted to an analog digital converter 3 1 0, from the analog digital converter 3 1 0, Jo Tokoro number of times (n times) or a predetermined digitized output in time the reflected light intensity signal I t, 1 2 a storage And an average value calculating section 320 for calculating the average value.
  • the correction unit 300 includes a correction coefficient calculation unit 340 and a corrected reflected light intensity ratio calculation unit 344.
  • the correction coefficient calculating section 340 obtains the reflected light intensity ratio from the one digitalized reflected light intensity signal I i, I 2 output from the average value calculating section 320.
  • I i ZI 2 is calculated in advance, and a measurement value input section 36 2 that samples the measured blood and measures the hemoglobin concentration is measured in advance.
  • a reference correlation which is a higher-order correlation curve (for example, a quadratic regression curve) calculated from data on I i / I 2 obtained from several types of blood for the target animal species and the hemoglobin concentration H b
  • the function h (Rs) is a higher-order correlation curve (for example, a quadratic regression curve) calculated from data on I i / I 2 obtained from several types of blood for the target animal species and the hemoglobin concentration H b.
  • Correction coefficient A output from the correction coefficient calculation unit 340, the digitized reflected light intensity signal outputted from the average value calculating unit 32 0 continues [I i], the correction reflected light intensity with [I 2] It is input to the ratio calculator 344. Then, the calculation unit 344 calculates a corrected reflected light intensity ratio Rs A xli JZC lz] from each signal described above.
  • the correction unit 300 the ratio of (reflected light intensity ratio calculated from the reference correlation function) and (measured reflected light intensity ratio) for a sample having a known hemoglobin concentration (Reflected light intensity ratio calculated from the reference correlation function)
  • the hemoglobin concentration calculation unit 4 0 0, higher-order correlation curve of calculated from data of the I i 1 2 and hemoglobin concentration H b obtained from several blood for species to be measured are measured in advance
  • the signal output from the hemoglobin concentration calculator 400 is displayed by the display 5.
  • any known device can be used as long as it can externally report the measured value, and a known device such as a cathode ray tube, a printer, a liquid crystal display, and a recorder can be used.
  • step S61 the connector having the shape shown in FIG. 3 to which the sensor probe shown in FIG. 2 is attached >> Attach to blood circuit.
  • step S62 blood of approximately 880 nm ( ⁇ 2 ) is sequentially irradiated from the light irradiation sections 19 and 20 formed by the end faces of the optical fibers of the light irradiation sections shown in FIG. 16 into the blood.
  • the detection unit 2 0 detects the reflected high intensity from the blood of each light emitted from the light irradiation circuit 100 n times.
  • step S 63 calculates the average value of the reflected light intensity detected n times, digitized reflected light intensity signal I t, and outputs the I 2.
  • step S64 it is determined whether or not to perform correction for the hemoglobin concentration. If no correction is to be made, the process proceeds to step S69. If correction is to be performed, the process proceeds to step S65 and step S66. Step S 6 5 (which is output to the first), the one output from the step S 63 calculates digitized reflected light intensity signal I i. 1 2 than the reflection light intensity ratio (I! / I 2).
  • step S66 the test blood is sampled, and the hemoglobin concentration is measured.
  • step S 67 it is measured in advance is calculated, and the hemoglobin concentration H b F and the reflected light intensity ratio obtained from several blood (I i Bruno I 2) of the animal species to be measured is stored
  • the reference correlation function h (R s ) which is a higher-order correlation curve (for example, a quadratic regression curve) calculated from the data of
  • step S 72 step S 70 outputted correction light intensity ratio Rs than or step S 7 is calculated by previously measuring Ri by the reflected light intensity ratio R s outputted from the 1, animals to be measured is stored,
  • a reference correlation function h (Rs) which is a higher-order correlation curve (for example, a quadratic regression curve) calculated from data of IZI 2 and hemoglobin concentration Hb obtained from several types of blood for the species.
  • h (R s ) -4.55- R s 2 + 37.8 ⁇ R s +-4.91 [where R li / I 2 and h (R s ) is hereinafter referred to as the H b calibration curve] Is used to calculate the hemoglobin concentration.
  • step S73 the hemoglobin concentration output from step S72 is displayed.
  • step S74 it is determined whether or not to end the measurement. If not, the process returns to step S62 to repeatedly execute the above-described measurement.
  • the hemoglobin concentration measuring device and the oxygen saturation measuring device of the present invention are suitable for continuously measuring the hemoglobin concentration in blood and the oxygen saturation of hemoglobin.

Description

明 細 書
発明の名称
へモグロビンの濃度及びその酸素飽和度測定装置
技術分野
本発明は、 血液中のヘモグロビンの吸光特性を利用し、 血液中の へモグロビン濃度及びへモグロビンの酸素飽和度を測定するへモグ… 口ビンの濃度及びその酸素飽和度測定装置に関する。
背景技術
従来、 血液中のヘモグロビン濃度の測定は、 採血した血液を物理 的または化学的に溶血させ、 キューべッ卜中に入れて特定の波長の 光を照射し、 その透過光を測定しランパ一卜 'ベールの法則を用い てヘモグロビン濃度を算出している。 また、 血液中のヘモグロビン の酸素飽和度を測定する装置およびその方法として、 2つの波長 λ ι , λ ζ の光を血液中に照射してその反射光強度を測定し、 次の ような関係式より酸素飽和度を求めている。
S 02 =A+ B x ( I 2 /I i )
但し、 I i , I 2 は、 それぞれ波長; I および; L2 の光に対する 反射光強度、 Bは定数で ¾る。
しかし、 上述した血液中のヘモグロビン濃度の測定法では、 測定 する血液を溶血する必要があるため、 連続した測定が困難であると いう問題があった。 また、 上述したヘモグロビンの酸素飽和度を測 定する方法では、 血液中の生理学的因子、 特にへマトク リツ卜値 (血液中の赤血球の占める割合) による影響が大きく、 酸素飽和度 の測定結果に誤差をきたすという問題があった。 具体的に述べる と、 血液により吸光 (反射) 特性は、 血液中の色素および粒子によ る吸収、 散乱によって変化するが、 特に第 1 3図に示すようにへモ グロビンの酸素との結合状態および照射波長によって吸光係数が大 きく変化する。 ここで Hb 02 は酸素化ヘモグロビン、 H b rは還 元へモグロビン、 H b C 0は一酸化炭素へモグロビンである。
この図からわかるように、 波長 800 nm付近では H b〇 2 と H b rとは交差しており、 等しい吸光度であることがわかる。 この波 長を等吸収点というが、 これはへモグロビンの酸素飽和度によりそ の吸光度が変化しない波長であることを示している。
第 1 4 A図、 第 14 B図に波長がそれぞれ 660 nm, 800 η のときの反射光強度と酸素飽和度との関係を、 へマトクリヅ卜値 (H C Τ) , ヘモグロビン (Hb) 濃度を変化させてプロヅ卜した ものを示す。 血液サンプルとしては牛血を用いた。
第 1 4 A図に示した波長 660 nmの場合には、 酸素化へモグロ ビンの吸光度が還元へモグロビンに比較して小さいため、 酸素飽和 度が高くなるに従って反射光強度が増加している。 また、 第 1 4 B 図の波長 800 nmの場合には、 等吸収点の波長であるので、 酸素 飽和度の変化にあまり影響を受けていないことがわかる。 更に、 第 1 4 A図、 第 1 4 B図から、 各波長ともへマトクリツ 卜値の減少に ともない反射光強度が減少していることがわかる。
尚、 これら反射光強度の測定は、 あらかじめ白色反射物を用いて それぞれの反射光強度を所定の値に較正して行った結果である。
ここで、 第 1 4 A図、 第 1 4 B図に示した波長 660 nmと 80 0 nmの反射光強度の測定値より、 上記関係式を用いて算出された 酸素飽和度と、 O S M 2へモキシメータ (ラジオメーター社製) を 用いて測定した酸素飽和度との関係を第 1 5図に示す。 この結果よ り、 上記関係式より算出された酸素飽和度は、 酸素飽和度の低い領 域において、 へマトクリッ ト値の影響が顕著に現れ、 算出された酸 素飽和度の値に誤差が大きく生じるものであった。 また更に、 従来 のものでは、 血液中の酸素飽和度をへマトク リツ 卜値の影響を受け ることなく、 継続して正確に測定することができなかった。
発明の開示
従って、 本発明は酸素飽和度の低い領域においてもへマ トクリツ 卜値の影響を受けることなく正確な酸素飽和度を得ることができる 酸素飽和度測定装置を提供することを目的とする。
また、 本発明はへマトクリツ 卜値の影響を受けることなく、 継続 してへモグロビンの酸素飽和度を測定できる酸素飽和度測定装置を 提供することにある。
さらに、 本発明は測定する血液を溶血させる必要なく、 かつ連続 して測定できるへモグロビン濃度測定装置を提供することを目的と する。
上記本発明の目的を達成するものは、 第 1の波長の光を血液中に 照射する第 1の光照射手段と、 前記第 1の波長の光と異なる第 2の 波長の光を血液中に照射する第 2及び第 3の光照射手段と、 前記第 2の光照射手段からの距離と前記第 3の光照射手段からの距離がそ れぞれ異なるように設けられ、 かつ前記第 1の光照射手段と前記第 2の光照射手段および前記第 3の光照射手段より血液中に照射され た光の血液からのそれぞれの反射光強度を検出する検出手段と、 前 記第 2の光照射手段により照射され前記検出手段により検出された 反射光強度と、 前記第 3の光照射手段により照射され前記検出手段 により検出された反射光強度との比を補正する第 1の補正値を算出 する第 1の補正値演算手段と、 前記第 1の補正値と、 前記検出手段 により継続的に検出される第 3の光照射手段より照射された光の反 射光強度とを用いて第 2の補正値を算出する第 2の補正値演算手段 と、 前記第 2の補正値を用いて、 前記検出手段により継続的に検出 される第 1の光照射手段により照射された光の反射光強度と前記検 出手段により継続的に検出される第 2の光照射手段により照射され た光の反射光強度との反射光強度比を補正する反射光強度比補正手 段と、 該反射光強度比補正手段より出力される補正された反射光強 度比を用いて相関関数により血液中の酸素飽和度を演算する酸素飽 和度演算手段とを有するへモグロビンの酸素飽和度測定装置であ る。
さらに上記目的を達成するものは、 第 1の波長の光を血液中に照 射する第 1の光照射手段と、 該第 1の波長の光と異なる第 2の波長 の光を血液中に照射する第 2及び第 3の光照射手段と、 前記第 2の 光照射手段からの距離と前記第 3の光照射手段からの距離が異なる ように設けられ、 かつ前記第 1の光照射手段と前記第 2及び第 3の 光照射手段より血液中に照射された光の血液からのそれぞれの反射 光強度を検出する検出手段と、 へモグロビン濃度基準値及び既知の へモグロビン濃度値より、 前記検出手段により検出された前記第 2 及び第 3の光照射手段よりの光の反射光強度の比を補正する第 1の 補正値を演算する第 1の補正値演算手段と、 前記第 1の補正値と、 前記検出手段により継続的に検出される第 3の光照射手段より照射 された光の反射光強度とを用いて第 2の補正値を演算する第 2の補 正値演算手段と、 前記第 2の補正値を用いて、 前記検出手段により 継続的に検出される第 1の光照射手段により照射された光の反射光 強度と第 2の光照射手段により照射された光の反射光強度との比を 補正する反射光強度比補正手段と、 該反射光強度比補正手段より出 力される補正された反射光強度比を用いて血液中の酸素飽和度を演 算する酸素飽和度演算手段とを有するへモグロビンの酸素飽和度測 定装置である。
また更に上記目的を達成するものは、 特定の波長の光を血液中に 照射する第 1及び第 2の光照射手段と、 前記第 1の光照射手段から の距離と前記第 2の光照射手段からの距離が異なるように設けら れ、 かつ前記第 1及び第 2の光照射手段より血液中に照射された光 の血液からの反射光強度を検出する検出手段と、 該検出手段により 検出された、 前記第 1の光照射手段により照射された光の反射光強 度と前記第 2の光照射手段により照射された光の反射光強度との比 を補正する補正係数を演算する補正係数演算手段と、 前記補正係数 を用いて、 前記検出手段により継続的に検出される第 1の光照射手 段により照射された光の反射光強度と、 第 2の光照射手段により照 射された光の反射光強度との比を補正する反射光強度比補正手段 と、 該反射光強度比補正手段より出力される補正された反射光強度 比を用い、 相関関数により血液中のへモグロビン濃度を演算するへ モグロビン濃度演算手段とを有するへモグロビン濃度測定装置であ る。 またこの発明によれば、 光照射手段は発光源と光照射部とを共通 にすることにより、 形状を小さくできる。
またこの発明によれば、 発光源と光照射部とを光ファイバで接続 することにより、 血液に接触する部分を完全に絶縁できる。
図面の簡単な説明
第 1図はこの発明の第 1の実施例の酸素飽和度測定装置のブロヅ ク図、
第 2図はこの実施例の酸素飽和度測定装置に用いられるセンサー プローブの一例を示す端面図、
第 3図は第 2図に示したセンサープローブを取り付けたコネク ターの断面図、
第 4図は第 1図のブロック図における第 1の補正値演算部の具体 例を示すブロック図、 '
第 5図はこの発明の第 2の実施例の酸素飽和度測定装置の一実施 例のブロック図、
第 6図は第 4図のブロック図における第 1の補正値演算部の具体 例を示すブロック図、
第 7図は第 1の実施例の酸素飽和度測定装置による酸素飽和度測 定方法を示すフローチヤ一卜、
第 8図は他の実施例の酸素飽和度測定装置による酸素飽和度測定 方法を示すフローチヤ一卜、
第 9図は第 2の実施例の酸素飽和度測定装置による酸素飽和度測 定方法を示すフローチヤ一卜、
第 1 0図は実施例の酸素飽和度測定装置により得られた酸素飽和 度と対照として用いた 0 S M 2へモキシメータ一で測定した酸素飽 和度との関係を示す図、
第 1 1図は第 1の実施例の酸素飽和度測定装置により得られた酸 素飽和度と対照として用いた 0 S M 2へモキシメーターで測定した 酸素飽和度との関係を示す図、
第 1 2図は本願第 2の発明の一実施例の酸素飽和度測定装置によ り得られた酸素飽和度と対照と して用いた O S M 2へモキシメー ターで測定した酸素飽和度との関係を示す図、
第 1 3図は一般的な血液の吸光特性を示す図、
第 1 4 A図および第 1 4 B図はそれぞれ波長約 6 6 0 n mおよび 約 8 0 0 n mの反射光強度との関係をへマトク リツ 卜値 ( H C T ) を変化させてプロヅ 卜 して示した図、
第 1 5図は従来の酸素飽和度測定方法により得られた酸素飽和度 と対照として用いた 0 S M 2へモキシメータ一で測定した酸素飽和 度との関係を示す図である。
第 1 6図は本発明の他の実施例のへモグロビン濃度測定装置のブ ロック図、 、
第 1 7図は第 1 6図のブロ ク図における補正係数演算部の具体 例を示すプロック図、
第 1 8図は本発明の一実施例のへモグロビン濃度測定装置による へモグロビン濃度測定方法を示すフローチヤ一卜、
第 1 9図は本発明の一実施例のへモグロビン濃度測定装置により 得られたへモグロ ビン濃度と対象と して用いた O S M 2へモキシ メータで測定したヘモグロビンの吸光特性を示す図、 第 2 0図および第 2 1図は波長約 8 0 0 n mの光を距離を変えて 照射したときの反射光強度とへモグロビン濃度との関係をプロッ卜 して示した図、 そして
第 2 2図はそれぞれ受光と発光との間隔が 0 . 2 5 m mのときの 反射光強度を I t 、 0 . 5 O m mのときの反射光強度を I 2 とし、 それらの比 I i ノ I 2 とへモグロビン濃度との関係を示す図であ る。
発明を実施するための最良の形態
以下、 添付図面を参照して本発明の最良の実施形態を詳細に説明 する。 - 第 1図に示されたように、 本発明のへモグロビンの酸素飽和度測 定装置は、 光照射回路 1 と、 光照射.回路 1より血液中に照射された 光の血液からの反射光強度を検出する検出部 2と、 へマトクリット 値の影響を補正する補正部 3と、 補正部 3からの出-力を用いて酸素 飽和度を演算する酸素飽和度演算部 4と、 酸素飽和度演 *部 3から の出力を表示する表示器 5により形成されている。
光照射回路 1は、 第 1の波長の光を血液中に照射する第 1の光照 射部と、 第 1の波長の光と異なる第 2の波長の光を血液中に照射す る第 2の光照射部と、 第 2の波長の光を血液中に照射する第 3の光 照射部を有している。
そして、 第 1図に示すものでは、 第 1の光照射部と前記第 2の光 照射部は、 第 1の波長の光を発する第 1の発光源と第 2の波長の光 を発する第 2の発光源と、 第 1の発光源および第 2の発光源からの 光を血液中に照射する共通の光照射部と、 第 2の波長の光を血液中 に照射する第 3の光照射部とにより構成されている。
具体的に説明すると、 光照射回路 1 は、 発光源と発光源からの光 を血液中に照射する光照射部とからなり、 発光源は 3つの発光ダイ オード 1 1 , 1 2 , 1 3からなり、 発光ダイオード 1 1 は約 6 6 0 n m ( λ 1 ) の波長の光を発光し、 発光ダイォ一ド 1 2 , 1 3は約 8 0 0 n m ( λ 2 ) の光を発光している。 そして、 パルス発生器 1 4よりの時間的に重ならない所定の間隔および所定の時間幅のパル スを入力する駆動回路 1 5を通して、 発光ダイオード 1 1 , 1 2 , 1 3は交互に発光されるように構成されている。 そして、 発光ダイ オード 1 1 より発せられる光および発光ダイォード 1 2より発せら れる光は、 光結合器 1 7を介して発光用の光ファイバ一 1 8 aを通 り光ファイバ一 1 8 aの端 ¾により形成される光照射部 2 0より血 液中に照射される。 このようにすることにより、 光照射部 2 0を 1 つにすることができ、 装置を小型化することができるとともに、 発 光ダイオード 1 1からの波長 の光の照射部と、 発光ダイオード 1 2からの波長; L 2 の光の光照射部を、 後述する検出部に対して同 —距離とすることができる。
また、 発光ダイォード 1 3より発せられる光は発光用の光フアイ バー 1 8 bを通り光ファイバ一 1 8 bの端面により形成される光照 射部 1 9より血液中に照射される。
そして、 第 1 図に示したものに限らず、 光照射回路 1 は、 3つの 発光源とそれぞれの発光源からの光を血液中に照射する 3つの光照 射部と してもよく、 さらに、 第 1の波長の光を発する発光源とその 発光源からの光を血液中に照射する光照射部と、 第 2の波長の光を 発する共通の発光源と、 この発光源からの光を異なった位置より血 液中に照射する 2つの光照射部とにより構成してもよい。
検出部 2は、 光照射回路 1より発せられた光の、 血液から反射光 強度を検出するためのものである。 そして、 第 1図に示すもので は、 検出部 2の光検出部 2 1は、 受光用の光ファイバ一 1 8 cの端 面により形成されており、 光照射部 1 9からの距離と光照射部 2 0 からの距離とが異なるように設けられている。
第 2図に、 光照射回路 1の光照射部 1 9 , 2 0および光検出部の 光検岀部 2 1を有するセンサープローブ 5 0の具体例の端面図を示 す。
発光用光ファイバ一 2本、 受光用ファイバー 1本が直線的に配置 され、 発光用の光ファイバ一の端面により形成される先照射部 2 0 と受光用のファイバーの端面により形成される光検出部 2 1 との中 心間の距離は 0 . 2 6 m m , 発光用の光ファイバ一の端面により形 成される光照射部 1 9と受光用のファイバーの端面により形成され る光検出部 2 1 との中心間の距離は 0 . 5 O m mであり、 両者間の 距離が異なるように設けられており、 エポキシ樹脂系接着材 5 2に て固定されている。 光ファイバ一としては、 多成分ガラス、 コア径 2 〇 0 μ ηιのものを用いた。 センサ一プローブ 5 0の端面の周縁部 は、 光透過性を損なわないように、 さらには血栓防止のために平滑 面に研磨されている。 上記のセンサ一プローブでは、 センサープ ローブをより小型化するために光検出部 2 1 を 1つのものとして いるがこれに限らず、 光検出部 2 1 を複数のもので構成してもよ い。 そして第 3図に、 センサープローブ 5 0を例えば人工心肺などの 体外循環回路 (図示しない) 中に取り付け可能なコネクター 5 6に 取付けた状態を示す。 コネクター 5 6は、 その軸方向の途中に外方 に突出するセンサープローブ 5 0の取り付け用ポート 5 8を有して いる。 そして、 センサ一プローブ 5 0の端面は、 コネクター 5 6内 ' を流れる血流に乱れを与えないように、 コネクター 5 6に取り付け たときにコネクタ一 5 6の内壁面とセンサ一プローブ 5 0の端面と がほぼ同一面となるように加工されている。
そして検出部 2は、 光検出部 2 1 により検出され、 受光用の光フ アイバー 1 8 cを伝達した光を受光するフォ卜ダイォード 1 6 と検 出増幅器 2 3を有しており、 フォ卜ダイオード 1 6は光信号の強度 に応じた電流^発生し、 検出増幅器 2 3によ り電圧信号に変換す る。 さらに、 検出部 2は、 検出増幅器 2 3の電圧信号を発光ダイ オード 1 1 , 1 2 , 1 3の発光波長に対応した信号に分離するため の信号分離回路を有しており、 信号分離回路は、 アナログスイッチ 2 4、 コンデンサ 2 5 , 2 6 , 2 7および緩衝増幅器 2 8 , 2 9 , 3 0より構成されている。
アナログスィッチ 2 4は、 S W 1 , S W 2 , S W 3の 3個のスィ ツチを有し、 パルス発生器 1 4からの信号により各スィツチが "ォ ン" "オフ " される。 例えば、 発光ダイオード 1 1 が発光するとき パルス発生器 1 4からの信号がアナログスィヅチ 2 4に加えられ、 S W 1 のみが "オン" 状態となり、 検出増幅器 2 3の電圧信号はコ ンデンサ 2 5に加えられ、 コンデンサ 2 5の両端に平均信号電圧を 発生する。 これは、 発光ダイォード 1 1 により発光され、 光照射部 2 0より血液中に照射され、 血液中にて反射されて光検出部 2 1を 介してフォトダイオード 1 6で受光した波長; L i の反射光強度を示 すものである。 この平均信号電圧は、 緩衝増幅器 2 8を通して連続 的に出力され反射先強度信号 I ! となる。 また同様に、 発光ダイ オード 1 2、 アナログスィヅチ 2 4の S W 2、 コンデンサ 2 6、 緩 衝増幅器 2 9の組み合わせで同様な動作を行い、 発光ダイオード 1 2の波長 λ 2 の反射光強度信号 I 2 を出力する。 さらに、 発光ダイ オード 1 3、 アナ口グスィヅチ 2 4の S W 3、 コンデンサ 2 7、 緩 衝増幅器 3 0の組み合わせで同様な動作を行い、 発光ダイオード 1 3の波長ん 2 の反射光強度信号 1 3 を出力する。
さらに、 検出部 2は、 信号分離回路より出力される反射光強度信 号 I i , 1 2 , I 3 の信号の処理部を有しており、 信号処理部は、 反射光強度信号 I t , 1 2 , I 3 をデジタル信号に変換するアナ口 グデジタルコンバー夕 3 1 と、 アナログデジタルコンバータ 3 1よ り、 所定回数分 (n回) または所定時間内に出力されたデジタル化 された反射光強度信号 I i , 1 2 , I 3 を記憶して平均値を演算す る平均値演算部 3 2を有している。 そして、 へマトクリツ 卜値の影 響を補正する補正部 3は、 第 の補正値演算部 4 0と、 第 2の補正 値演算部 4 2と、 補正反射光強度比演算部 4 4とを有している。
第 1の補正値演算部 4 0は、 平均値演算部 3 2より出力された 1 つのデジタル化された反射光強度信号 I 2 , I 3 (例えば、 測定閧 始時における反射光強度信号 I 2 , I 3 のデジタル化された信号) より反射光強度比 ( I 2 Z I 3 ) を演算する演算部を有している。 そして、 この反射光強度比 ( I 2 Z I 3 ) の演算部からの出力を第 1の補正値として出力する。 よって、 この場合は、 第 1の演算部 4
0は、 デジタルされた反射光強度信号 I 2 , I a より反射光強度比
( I 2 / I 3 ) を演算する演算部となり、 新たに第 1の補正値を演 算するまでは、 第 1の補正値は、 固定された補正値となる。
第 4図に示された第 1の補正値演算部 40の構成を説明する。 6
0は反射光強度比 ( I 2 I 3 ) の演算部、 62は測定血液をサン プリングし、 そのへモグロビン濃度を測定した測定値を入力する測 定値入力部、 63は予め測定してある測定対象血液と同じ動物種に ついての数種の血液から得た I 2 Z I 3 と、 へモグロビン濃度 H b とのデータより算出した高次の相関曲線 (例えば 2次回帰曲線) で ある基準相関関数 h (x)
h ( x) = b a · x 2 + b i · x + b o
[但し、 x = I2/I3 とし、 以下、 h (x) を H b検量線と呼ぶ] を記憶している H b検量線記録部である。 64は上記 h ( X ) の逆 関数 g (H b) を記憶している逆関数 g (H b) 記憶部、 65はこ の逆関数 g (H b) を用いて上記の測定値入力部 62により入力さ れたへモグロビン濃度に対応する反射光強度比 [ I 2 I 3 ] s を 算出する演算部、 6 6はこの演算部 6 5よ り出力される [ 12 /
I 3 ] s と、 平均値演算部 32より出力された 1つのデジタル化さ れた反射光強度信号 I 2 . I 3 より反射光強度比 ( I 2 ノ I 3 ) を 演算する演算部 60より出力される ( I 2 / I 3 ) より
( I 2 ノ I 3 ) / [ I 2 Z I 3 ] s ( = A)
を演算する演算部である。 67はへモグロビン濃度基準値を入力す るへモグロビン濃度基準値 (H b ' ) 入力部、 68は H b検量線記 憶部 6 3よりの H b検量線とへモグロビン濃度基準値 (H b ' ) (例えばヘモグロビン濃度 1 5%) より反射光強度比 g (H b ' ) を演算する演算部、 69は演算部 66より出力される Aと、 反射光 強度比 (H b ' ) 演算部 68よりの反射光強度比 g (H b ' ) よ り、 第 1の補正値
X = [ I 2 / I 3 ] Hb = Ht ' = AX g (H b ' )
を演算する演算部である。 なお、 この場合においても、 新たに第 1 の補正値を演算するまでは、 第 1の補正値は、 固定された補正値で ある。
また上記説明では、 Hb検量線記憶部 63と、 ヘモグロビン濃度 基準値 ( H b ' ) 入力部 67と、 H b検量線記憶部 63の H b検量 線よりへモグロビン濃度の基準値 (H b ' ) (例えばへモグロビン 濃度 1 5 %) より反射光強度比 g (Hb ' ) を演算する演算部 68 とを設けた場合について説明したが、 予めヘモグロビン濃度の基準 値 (Hb ' ) を例えばヘモグロビン濃度 1 5%に固定し、 そのとき (ヘモグロビン濃度 1 5%のとき) の H b検量線より算出される反 射光強度比 g (Hb ' ) の値を記憶する記憶部でこれらを代用する ことにより、 H b検量線記憶 63とへモグロビン濃度基準値入力 部 67と反射光強度比 g (Hb ' ) を演算する演算部 68とを省略 しても良い。
上記の第 1の補正値演算部 40より出力される第 1の補正値信号 X (= [ I 2 X I 3 ] Hb = Hb は、 継続して平均値演算部 32より 出力されるデジタル化された反射光強度信号 [ 13 ] とともに第 2 の補正値演算部 42に入力される。 第 2の補正値演算部 42では、 あらかじめ記憶している定数 C:。 を用いて、 第 2の補正値 を下 式を基に算出する。 第 2の補正値演算部 4 2 よ り出力される第 2の補正値信号 C i は、 継続的に平均値演算部 3 2より出力されるデジタル化された反 射光強度信号 [ I ] [ 12 ] とともに補正反射光強度比演算部 4 4に入力される。 そして、 この演算部 44は、 上記各信号より、 補 正反射光強度比 Rs を下式により演算する。
R s = ( [ I 1 ] - C 1 ) / ( [ I 2 ] - C 1 )
そして、 酸素飽和度演算部 4は、 予め測定されているある数種の 血液からのデータの補正反射光強度比 Rs (=([I d-d)/ ([I2]-d)) とそのときの酸素飽和度との相関曲線を 3次回帰した基準相関関数 f ( X ) 、 X = R s
f ( x ) = a 3.Rs3+ a 2.Rs2+ a 1.Rs + a 0 · ( = S02 ) を記憶しており、 補正反射光強度比演算部 44より出力される補正 反射光強度比信号 Rs より、 酸素飽和度 S O 2 を演算している。 な お、 第 2の補正値 d の定数 (:。 は、 基準相関関数: ( X) に対す るデータのバラツキを標準偏差で示し、 その値が最少になるように して決定している。
そして酸素飽和度演算部 4より出力される信号は、 表示器 3 5に より表示される。 表示器 3 5としては、 外部に測定値を報知するこ とができればよく、 ブラウン管、 プリ ン夕、 液晶表示器、 レコー ダ一等公知のものが使用できる。 次に、 本願発明の第 2の実施例を第 5図を用いて説明する。
この実施例の酸素飽和度測定装置は、 光照射回路 1 と、 光照射回 路 1より血液中に照射された光の血液からの反射光強度を検出する 検出部 2と、 補正部 1 03と、 補正部 1 03からの出力を用いて酸 素飽和度を演算する酸素飽和度演算部 4と、 酸素飽和度演算部 4か らの出力を表示する表示器 5により形成されている。
光照射回路 1、 検出部 2、 酸素飽和度演算部 4および表示器 5に ついては、 第 1図ないし第 3図に示すものと同じである。 そこで、 相違する補正部 1 03について説明する。
補正部 1 03は、 第 1の補正値演算部 140と、 第 2の補正値演 算部 42と、 補正反射光強度比演算部 44とを有している。 ここで 第 1の補正値演算部 1 40の構成が第 1図と異なっている。
第 1の補正値演算部 1 40は、 第 6図に示すように、 予め測定し てある測定対象血液と同じ動物種の数種の血液から得た I 2 / I 3 とそのへモグロビン濃度 H bとのデータより算出した高次の相関曲 線 (例えば 2次回帰曲線) である基準相関関数 h ( X )
h (x) = b 2 · χ2 + b i - x + b o
[但し、 x-I2/I3とし、 以下、 h (x) を Hb検量線と呼ぶ] を記憶している Hb検量線記憶部 63と、 ヘモグロビン濃度基準値 (H b ' ) 入力部 67と、 H b検量線記憶部 63の H b検量線 (基 準相関関数) によりヘモグロビン濃度の基準値 (H b ' ) (例えば ヘモグロビン濃度 1 5 %) を基に第 1の補正値となる反射光強度比 g (H b ' ) を演算する演算部 68とからなる。 なお、 これら Hb 検量線記憶部 63 , ヘモグロビン濃度基準値入力部 67 , 反射光強 度比演算部 68は前述した第 4図のプロック図で説明したのと同じ である。 また、 第 1の補正値演算部 1 40は、 H b検量線記憶部 6 3とへモグロビン濃度基準値 (H b ' ) 入力部 67と反射光強度比 g (H b ' ) を演算する演算部 68とを設けた場合について説明し たが、 第 1 図の場合と同様に予めヘモグロ ビン濃度の基準値 (H b ' ) を、 例えばヘモグロビン濃度 1 5 %に固定し、 そのとき (ヘモグロビン濃度 1 5%のとき) の H b検量線より算出される反 射光強度比 g (H b ' ) の値を記憶する記憶部とすることにより、 H b検量線記憶部 63とへモグロビン濃度基準値入力部 67と演算 部 68とを省略することができる。
第 1の補正値演算部 1 40の反射光強度比 g (H b ' ) を演算す る演算部 68より出力される反射光強度比 g (H b ' ) (= [ I 2 / I 3 ] H¾ = Ht, は、 継続的に平均値演算部 32より出力されるデ ジタル化された反射光強度信号 [ 13 ] とともに第 2の補正値演算 部 42に入力される。 第 2の補正値演算部 42では、 あらかじめ記 憶している定数 C。 を用いて、 第 2の補正値 d を下記の式により 算出する。
C i = Co X [ I 3 ] x L I 2 // I 3 ]
第 2の補正値演算部 4 2より出力される第 2の補正値信号 C i は、 継続的に平均値演算部 32より出力されるデジタル化された反 射光強度信号 [ I ! ] [ 12 ] とともに補正反射光強度比演算部 4 4に入力される。 そして、 この演算部 44では、 上記各信号により 補正反射光強度比 Rs を下式により演算する。
Rs = ( [ I 1 ] - C, ) / ( [ I 2 ] - C 1 ) そして、 酸素飽和度演算部 4は、 あらかじめ測定したある数種の 血液からのデータについての Rs
Figure imgf000020_0001
[I2]-Ci)) と酸素飽 和度との相関曲線を 3次回帰した基準相関関数: e (x) , (x=Rs) f (x) = a3-Rs3+ a2-Rs2+ a i«Rs + a 0 (=S02 ) の記憶部を有しており、 補正反射光強度比演算部 44より出力され る補正反射光強度比信号 Rs より、 酸素飽和度 S O 2 を演算する。 なお、 第 2の補正値 d の定数 C。 は、 基準相関関数: f ( X ) に対 するデータのバラツキを標準偏差で示し、 その値が最小になるよう に決めた。 そして酸素飽和度演算部 4より出力される信号は、 表示 器 5により表示される。
次に、 本発明の酸素飽和度測定装置による酸素飽和度測定方法を 実施例を用いて第 7図ないし第 9図のフローチヤ一トを参照して説 明する。
[実施例 1 ]
第 7図に示す実施例では、 まずステップ S 1で第 2図に示したセ ンサープローブを取り付けた第 3図に示した形状のコネクターを血 液回路に取り付ける。 次にステップ S 2で、 第 1図に示した光照射 部の光ファイバ一の端面により ;形成された光照射部 2 0より約 66 0 n m ( λ ι ) および約 800 nm ( λ 2 ) の光を、 光ファイバ一 端面により形成される光照射部 1 9より約 800 n mの光を順次血 液中に照射し、 検出部 2により光照射部 1より発せられた各光の血 液からの反射光強度を n回検出する。 そしてステップ S 3で、 n回 検出した各反射光強度の平均値を演算しデジタル化された反射光強 度信号 I : , I 2 , I 3 を出力する。 ステップ S 4では、 へマトクリツ 卜値による影響を防止するため の補正として、 反射光強度比 I i /I s の補正を行うかを判断し、 補正を行う場合はステップ S 5に進む。
ステップ S 5でステップ S 3より出力された 1つの (最初に出力 された) デジタル化された反射光強度信号 I 2 / I 3 より反射光強 度比 ( I 2 / I 3 ) の演算を行い、 第 1の補正値 [ I 2 I 3 ] Hb = Hb ,として記憶する。
ステップ S 6では、 ステップ S 5により記憶された第 1の補正値 と、 ステップ S 3より継続的に出力されるデジタル反射光強度信号 [ I 3 ] と、 あらかじめ記憶している(:。 (この実施例では、 0. 2 3 ) より、 第 2の補正値 d を下式により求める。
C i = Co X C l 3 3 [ I 2 / I 3 ] H b = H t '
ステップ S 7では、 ステップ S 6で出力される第 2の補正値 C i と、 ステップ S 3より継続的に出力されるデジタル化された反射光 強度信号 [ I ] [ I 2 ] とにより、 補正反射光強度比 Rs を、
Rs = ( [ I 1 ] - C1 ) / ( [ I 2 ] - C 1 )
により求める。 ステップ S 8では、 ステップ S 7より出力された補 正反射光強度比 Rs より、 予め測定したある数種の血液からのデー 夕についての補正反射光強度比 Rs (-([Id-C / ld-d))と、 酸 素飽和度との相関曲線を 3次回帰した基準相関関数 f (x), (x = Rs) f (x) = a 3 ♦ R s3+ a 2 - R s 2+ a i - R s + a。 (=S02) (この実施例では、
f (x) =-4.165Rs 3 + 38.08 R s 2 -136.0 R s + 180.0 ) より酸素 飽和度を算出する。 そしてステップ S 9で、 ステップ S 8で算出さ れた酸素飽和度を表示器 5に表示する。 そして、 ステップ S 1 0で 測定を終了するか判断し、 終了しない場合はステップ S 2に戻り前 述した測定を繰り返す。
この実施例 1の方法を用いて、 データ数 (η = 7 9 ) について行 つた酸素飽和度と、 対照させるために用いた◦ S M 2へモキシメー ター (ラジオメーター社製) で測定した酸素飽和度との関係を第 1 0図に示す。 この結果より、 0 S M 2へモキシメーターにより酸素 飽和度の値 (y ) に対し、 この実施例により得られた酸素飽和度の 値 (X ) は、 相関係数 = 1 ( y = x ) に近く、 誤差 (S . D . ) も
+分小さく正確な測定を行えるものであることが確認できた。
[実施例 2 ]
第 8図に示す実施例 2では、 第 7図のステップ S 1〜ステップ S 3と同様にして、 ステップ S 2 1〜ステップ S 2 3で、 ri回検出し た各反射光強度の平均値を演算しデジタル化された反射光強度信号 I 1 , I 2 , I 3 を出力する。
ステップ S 2 4ではへマトクリツ卜値による影響を防止するため の補正として、 ヘモグロビン濃度に対する補正を行うか判断し、 補 正する場合はステップ S 2 5或いはステップ S 2 6に進む。 ステツ プ S 2 6では、 ステップ S 2 3で出力された 1つの (最初に出力さ れた) デジタル化された反射光強度信号 I 2 , I 3 より反射光強度比 (12/13) の演算を行い、 [ I 2 ] / [ I 3 ] を算出する。
—方、 ステップ S 2 5では、 測定血液をサンプリングし、 そのへ モグロビン濃度を測定する。 そしてステップ S 2 7に進み、 予め測 定し記憶されている数種の血液から得た I 2 / I 3 と、 へモグロビ ン濃度 H bとのデータより算出した高次の相関曲線 (例えば 2次回 帰曲線) である基準相関関数 h (x)
Figure imgf000023_0001
ここでは、 h (x) =-21.51 x 2 + 53.02 x-7.912
[但し、 x = I2/I3 とし、 以下、 h (x) を H b検量線と呼ぶ] とともに、 記憶されている H b検量線 h (x) の逆関数
g (H b) = 1.232 - J 1.151 - 0.04649 " X h (~x )
より測定されたヘモグロビン濃度に対応する反射光強度比 [ 12 ノ I 3 ] s を演算する。
ステップ S 28では、 ステップ S 26により出力される [ 12 ] ノ [ I 3 ] と、 ステップ S 27により出力される [ I 2 / I 3 ] s とより、 両者の比 -
( [ I 2 ] Z Π 3 ] ) / [ I 2 ] S ( = A)
を算出する。 そしてステップ S 29に進み、 記憶されている H b検 量線よりヘモグロビン濃度の基準値 (H b ' ) (この実施例ではへ モグロビン濃度 1 5 %) の反射光強度比 g (H b ' ) を算出し、 上 記ステップ S 28より出力された Aとにより、 第 1の補正値
X = [ I 2 / I 3 ] Hb = Hb - = A x g (H b ' ) を算出する。
ステップ S 3 0ではステップ S 29により記憶された第 1の補正 値と、 ステップ S 23より継続的に出力されるデジタル反射光強度 信号 [ I 3 ] と、 あらかじめ記憶している C。 (この実施例では、 0. 2 6 ) とにより、 第 2の補正値 C! を
C ^ Co X t l s J x E / I s j H b = H b
により求める。 ステップ S 3 1ではステップ S 30で出力される第 2の補正値 C 1 と、 ステップ S 23より継続的に出力されるデジタル化された 反射光強度信号 [ I t ] , [ I 2 ] とにより、 補正反射光強度比 R s を下式により求める。
Rs = ( [ I i ] -C1 ) / ( [ I 2 ] -C1 )
ステップ S 32ではステップ S 3 1より出力された補正反射光強 度比 Rs より、 あらかじめ測定したある数種の血液からのデータに ついての補正反射光強度比 Rs (-([Id-C /U ]- ))と酸素飽和 度との相関曲線を 3次回帰した、 基準相関関数 f ( x) , (x=Rs) f (x) = a 3 . R s 3+ a 2 ♦ R s2+ a i ♦ Rs + a。 (=S02) (この実施例では、 :f (x) =-4.165Rs 3 + 38.08 R s 2 -136.0 Rs + 180.0 ) より酸素飽和度を算出する。 そして、 ステップ S 3 3では ステップ S 3 2で算出された酸素飽和度を表示する。 ステップ S 3 4で測定を終了するか判断し、 終了しない場合はステップ S 2 2に 戻り前述した測定を繰り返す。
この実施例 2により得られた酸素飽和度と、 比較すべき対照とし て用いた 0 SM 2へモキシメーター (ラジオメーター社製) で測定 した酸素飽和度との関係を第 1図に示す。 この結果より、 O SM 2へモキシメーターにより酸素飽和度の値 (y ) に対し、 この実施 例の方法により得られた酸素飽和度の値 ( X ) は、 相関係数 = 1 ( = x) に極めて近く、 誤差 (S . D . ) も十分小さく正確な測 定を行えるものであることが確認できた。
[実施例 3 ]
第 9図に示す実施例 3では、 第 7図のステップ S 1〜ステップ S 3と同様に、 ステップ S 4 1〜ステップ S 43で n回検出した各反 射光強度の平均値を演算しデジタル化された強度信号 I i , ι 2 .
I 3 を出力する。 そしてステップ S 44で、 第 1の補正値を演算す るか判断し、 補正する場合はステップ S 45に進む。 ステップ S 4 5では、 あらかじめ測定し記憶されている数種の血液から得た I 2 / I 3 と、 ヘモグロビン濃度 H bとのデータより算出した高次の相 関曲線 (例えば 2次回帰曲線) である基準相関関数 h (x)
h ( x ) = b 2 - x2 + b i · x + b o
ここでは、 h (x) =-69.60 x 2 + 100.1 x- 15.18
[但し、 x = I 2 ZI 3 、 以下、 h (x) を H b検量線と呼ぶ] よりへモグロビン濃度の基準値 (H b ' ) (この実施例ではへモグ ロビン濃度 1 5 %) の反射光強度比 g (Hb ' ) を算出し、 第 1の 補正値となる [ I 2 Z I 3 ] Hb = Hb,を算出する。
ステップ S 46ではステップ S 45で演算され記憶された第 1の 補正値と、 ステップ S 43より継続的に出力されるデジタル反射光 強度信号 [ I 3 ] と、 予め記憶している C。 (この実施例では、 0. 2 6) より第 2の補正値 d を下式により求める。
C 1 = C 0 X [ I 3 ] X [ I 2 / I 3 ]
次にステップ S 47でステップ S 46で出力される第 2の補正値 C! と、 ステップ S 43より継続的に出力されるデジタル化された 反射光強度信号 [ I ] , [ I 2 ] とにより補正反射光強度比 Rs を下式により演算する。
Rs = ( [ I i ] - C 1 ) / ( [ I 2 ] - C 1 )
ステップ S 48ではステップ S 47より出力された補正反射光強 度比 Rs より、 予め測定したある数種の血液からのデータについて の Rs (-([Id-Cd/^ ]- ))と酸素飽和度との相関曲線を 3次回 帰した、 基準相関関数 f ( X ) , (x=Rs)
f (x) = a a ♦ R s 3+ a 2 ♦ R s2+ a! ♦ R s + a。 ( = S02 ) (この実施例では、 f (x) =-4.165· Rs 3 + 38.08 -Rs 2-136.0· R s + 180. 0 ) より酸素飽和度を算出する。
そして、 ステップ S 49では、 ステップ S 48で算出された酸素 飽和度を表示器 5に表示する。 ステップ S 50では、 測定を終了す るかを判断し、 終了しない場合はステップ S 42に戻り測定を繰り 返す。
この実施例 3により得られた酸素飽和度と対照として用いた 0 S M2へモキシメーター (ラジオメーター社製) で測定した酸素飽和 度との関係を第 1 2図に示す。 この結果より、 0 SM2へモキシ メーターよりの酸素飽和度の値 (y ) に対し、 この実施例の方法に より得られた酸素飽和度の値 (X ) は、 相関係数 = 1 ( y = x) に 極めて近く、 誤差 (S. D. ) も十分小さく正確な測定を行えるも のであることが確認できた。
(以下余白)
次に本発明の他の実施例であるへモグロビン濃度測定について説 明する。
第 1 3図耷基に前述したように、 血液による吸光 (反射) 特性は 血液中の色素および粒子による吸収、 散乱によって変化するが、 へ モグロビンの酸素との結合状態および照射波長によつて吸光係数が 大き く変化してお り 、 特に波長 8 0 0 n m付近では H b 0 2 と H b rは交差しており等しい吸光係数となっている。
第 2 0図および第 2 1図には、 8 0 0 n mの光による異なる 3個 体から採血したサンプル血液についての実験結果であり、 へモグロ ビン濃度と反射光強度との関係をプロッ トした。 第 2 0図は、 受光 と発光との間隔が 0 . 2 5 m m、 第 2 1図は受光と発光との間隔が 0 . 5 0 m mのときの結果である。 尚、 これら反射光強度の測定 は、 あらかじめ白色反射物を用いてそれぞれの反射光強度を所定の 値に較正して行った結果である。
また、 受光と発光との間隔が 0 . 2 5 m mのときの反射光強度を I 1 、 0 . 5 0 m mのときの反射光強度を I 2 と し、 それらの比 I 1 / I 2 とヘモグロビン濃度との関係を第 2 2図に示す。 第 2 〇 図および第 2 1 図を見ると、 反射光強度には、 血液の個体差によ る影響がかなり表れているが、 第 2 2図に示すように比をとること により軽減できることがわかる。 しかしながら、 まだ血液の散乱特 性の違いによる影響を強く うけている。
そこで、 本発明の装置では、 血液の個体差の影響を受けることな く血液のへモグロビン濃度を測定できる測定となっている。
本発明のヘモグロビン濃度測定装置は、 光照射回路 1 0 0 と、 光 照射回路 1 0 0より血液中に照射された光の血液からの反射光強度 を検出する検出部 2 0 0と、 補正部 3 0 0と、 補正部 3 0 0からの 出力を用いてへモグロビン濃度を演算するへモグロビン濃度演算部 4 0 0と、 へモグロビン濃度演算部 4 0 0からの出力を表示する表 示器 5により形成されている。 なお、 第 1図と共通する部分は同一 記号で示している。
光照射回路 1 0 0は、 特定の波長の光を血液中に照射する第 1の 光照射部と第 2の光照射部とを有している。
そして、 第 1 6図に示すものでは、 第 1の光照射部と前記第 2の 光照射部は、 特定の波長の光を発する第 1の発光源と特定の波長の 光を発する第 2の発光源それぞれの発光源からの光を血液中に照射 する光照射部とにより構成されている。
具体的に説明すると、 光照射回路 1 0 0は、 発光源と発光源から の光を血液中に照射する光照射部とからなり、 発光源は 2つの発光 ダイオード 1 2, 1 3からなり、 発光ダイオード 1 2 , 1 3は約 8 0 0 n m ( λ 2 ) の光を発光するものであり、 パルス発生器 1 1 4 より時間的に重ならない所定の間隔および所定の時間幅のパルスを 発生させ、 駆動回路 1 1 5を i|して発光ダイオード 1 2 , 1 3は交 互に発光するように構成されている。 そして、 発光ダイオード 1 2 より発せられる光は発光用の光フアイバー 1 8 aを通り光フアイ バー 1 8 aの端面により形成される光照射部 2 0より血液中に照射 される。 このようにすることにより、 装置を小型化することができ る。 また、 発光ダイォード 1 3より発せられる光は、 発光用の光フ アイバー 1 8 bを通り光ファイバ一 1 8 bの端面により形成される 光照射部 1 9より血液中に照射される。
そして、 第 1 6図に示したものに限らず、 特定の波長の光を発す る共通の発光源とこの発光源からの光を異なった位置より血液中に 照射する 2つの光照射部とからなるもので構成してもよい。
検出部 2 0 0は、 光照射回路 1 0 0より発せられた光の血液から 反射光強度を検出するためのものである。 そして、 第 1 6図に示す ものでは、 検出部 2 0 0の光検出部 2 1は、 受光用の光ファイバ一 1 8 cの端面により形成されており、 光照射部 1 9からの距離と光 照射部 2 0からの距離とが異なるように設けられている。
このような光照射部 1 9 . 2 0および光検出部 2 1を有するセン サーブローブ 5 0の具体例は、 第 2図を参照して前述した通りであ る。
そして、 検出部 2 0 0は、 光検出部 2 1により検出され受光用の 光ファイバ一 1 8 cを伝達した光を受光するフ才卜ダイオード 1 6 と検出増幅器 2 3を有しており、 フォトダイオード 1 6は光信号の 強度に応じた電流を発生し、 検出増幅器 2 3により電圧信号に変換 する。 さらに、 検出部 2 0 0は、 検出増幅器 2 3の電圧信号を発光 ダイォ一ド 1 2 , 1 3の発光波長に対応した信号に分離するための 信号分離回路を有しており、 信号分離回路はアナログスィッチ 2 4 0、 コンデンサ 2 5 , 2 6および緩衝増幅器 2 8 , 2 9により構成 されている。
アナログスィッチ 2 4 0は、 S W i , S W 2 の 2個のスィッチを 有し、 パルス発生器 1 1 4からの信号により各スィツチが "オン" "オフ " される。 例えば、 発光ダイオード 1 2は発光するときパル ス発生器 1 1 4からの信号がアナログスイッチ 2 4 0に加えられ、 S W i のみが "オン" 状態となり、 検出増幅器 2 3の電圧信号はコ ンデンサ 2 5に加えられコンデンサ 2 5の両端に平均信号電圧を発 生する。 これは、 発光ダイオード 1 2により発光され光照射部 2 0 より血液中に照射され血液中にて反射されて光検出部 2 1を介して フォ卜ダイォード 1 6で受光した波長 2 の反射光強度を示すもの である。 この平均信号電圧は、 緩衝増幅器 2 8を通して連続的に出 力され反射光強度信号 I となる。 また同様に、 発光ダイオード 1 3、 アナログスイッチ 2 4 0の S W 2 、 コンデンサ 2 6、 緩衝増幅 器 2 9の組み合わせで同様な動作を行い、 発光ダイオード 1 3の波 長 λ 2 の反射光強度信号 I 2 を出力する。
更に検出部 2 0 0は、 信号分離回路より出力される反射光度信号 I 1 , 1 2 の信号の処理手段を有しており、 信号処理手段は、 反射 光強度信号 I , 1 2 をデジタル信号に変換するアナログデジタル コンバータ 3 1 0と、 アナログデジタルコンバータ 3 1 0より、 所 定回数分 (n回) または所定時間内に出力されたデジタル化された 反射光強度信号 I t , 1 2 を記憶し平均値を演算する平均値演算部 3 2 0を有している。
そして、 補正部 3 0 0は、 補正係数演算部 3 4 0と、 補正反射光 強度比演算部 3 4 4とを有している。 補正係数演算部 3 4 0は第 1 7図に示すように、 平均値演算部 3 2 0より出力された 1つのデジ タル化された反射光強度信号 I i , I 2 より反射光強度比 ( I i Z I 2 ) を演算する演算部 3 6 0と、 測定血液をサンプリングし、 そ のヘモグロビン濃度を測定した測定値入力部 3 6 2 と、 予め測定し てある測定対象の動物種についての数種の血液から得た I i / I 2 と、 へモグロビン濃度 H bとのデータより算出した高次の相関曲線 (例えば 2次回帰曲線) である基準相関関数 h (Rs ) を、
h (Rs ) = b 2 ♦ R s2+ b i · R s + b。
とする。 ここでは、 例えば、
h (Rs ) = -4.55· Rs2 + 37.8- Rs -4.91
[ 但し、 Rs = 1 12 とし、 以下、 h (Rs ) を H b検量線と 呼ぶ] の逆関数 g (H b)
g ( H b ) =4.15-716.18-0.22 X h (Rs)
を記憶している g (H b ) 記憶部 364と、 この逆関数 g ( H b ) を用いて測定値入力部 362により入力されたへモグロビン濃度に 対応する反射光強度比 [ I Z I 2 ] s を演算する演算部 365 と、 この演算部 365より出力される [ I i I 2 ] s と、 演算部 360より出力される ( I / I 2 ) より補正係数 Aを下式により 求める演算部 366とからなることが好ましい。
[ I ! / I 2 ] S / ( I 1 / I 2 ) ( = A)
補正係数演算部 340より出力される補正係数 Aは、 継続して平 均値演算部 32 0より出力されるデジタル化された反射光強度信号 [ I i], [I 2 ] とともに補正反射光強度比演算部 344に入力され る。 そして、 この演算部 344は、 上述した各信号より補正反射光 強度比 Rs A x l i J Z C l z ] を演算する。
つまり、 この補正部 300では、 既知のヘモグロビン濃度のもの について (基準相関関数から算出した反射光強度比) と (測定した 反射光強度比) の比 (基準相関関数から算出した反射光強度比)
(測定した反射光強度比)
の値を求めておき、 以後遂次測定される反射光強度比にこの比の値 を補正係数として掛算するという補正部であり、 いわゆるスパンキ ヤリブレーションを既知のへモグロビン濃度で行うものである。
そして、 ヘモグロビン濃度演算部 4 0 0は、 あらかじめ測定して ある測定対象の動物種についての数種の血液から得た I i 1 2 と ヘモグロビン濃度 H bとのデータより算出した高次の相関曲線 (例 えば 2次回帰曲線) である基準相関関数 h ( R s ) 、
h ( R s ) = b 2 ♦ R s 2 + b i - R s + b o
ここでは、 h ( R s ) = — 4. 55· R s 2 + 37. 8 - R s - 4. 91
[ 但し、 Rs = I i Z I 2 とし、 以下、 h ( R s ) を H b検量線と呼 ぶ] を記憶しており、 演算部 3 4 4より出力される補正反射光強度 比 R s より、 上述した H b検量線の式を用いてヘモグロビン濃度を 演算する。
そしてへモグロビン濃度演算部 4 0 0より出力される信号は、 表 示器 5により表示される。 表示器 5としては、 外部に測定値を報知 することができればよく、 ブラウン管、 プリンタ、 液晶表示器、 レ コーダ等公知のものが使用できる。
次に、 本発明のへモグロビン濃度装置によるへモグロビン濃度測 定方法を実施例を用いて第 1 8図に示すフローチヤ一卜参照して説 明する。
第 1 8図に示す実施例では、 まずステップ S 6 1で、 第 2図に示 したセンサプローブを取り付けた第 3図に示した形状のコネクタ》 血液回路に取り付ける。 そして、 ステップ S 62で第 1 6図に示し た光照射部の光ファイバの端面により形成された光照射部 1 9 , 2 0より約 880 nm (ん2 ) の光を順次血液中に照射し、 検出部 2 〇 0により、 光照射回路 1 00より発せられた各光の血液から反射 高強度を n回検出する。 そしてステップ S 63に進み、 n回検出し た各反射光強度の平均値を演算し、 デジタル化された反射光強度信 号 I t , I 2 を出力する。
ステップ S 64では、 へモグロビン濃度に対する補正を行うか判 断し、 補正を行わないときはステップ S 69に進むが、 補正を行う 場合はステップ S 65およびステヅプ S 66に進む。 ステップ S 6 5ではステップ S 63より出力された 1つの (最初に出力された) デジタル化された反射光強度信号 I i . 1 2 より反射光強度比 ( I ! / I 2 ) を演算する。
—方、 ステップ S 66では判定血液をサンプリングし、 そのへモ グロビン濃度を測定する。 そしてステップ S 67に進み、 予め測定 し算出され、 記憶されている測定対象の動物種についての数種の血 液から得た反射光強度比 ( I i ノ I 2 ) とへモグロビン濃度 H bと のデータより算出した高次の相関曲線 (例えば 2次回帰曲線) であ る基準相関関数 h (Rs ) 、
h ( R s ) = b 2 - R s 2+ b ! · R s + b o
ここでは、 h (Rs ) =—4.55· R s 2 + 37.8· R s 一 4.91
[ 但し、 Rs - I i ZI z とし、 以下、 h (Rs ) を H b検量線と 呼ぶ] の逆関数 g (H b ) である
g (H b) = 4.15- 16.175-0.2198 X h ( R s) より測定されたヘモグロビン濃度に対応する反射光強度比 [ I Z
I 2 ] S を演算する。
こうして反射光強度比 ( I i/I 2 ) を求めるとステップ S 68に 進み、 ステップ S 65により出力される ( I i 12 ) とステップ S 66により出力される [ I ノ I 2 ] s より、 両者の比である補 正係数 [ I i I 2 ] s / ( I 12 ) ( = A) を算出する。
ステップ S 69ではステップ S 68にて算出された補正係数 Aを 用いるか判断する。 補正係数 Aを用いると判断した場合はステヅプ S 70に進み、 ステヅプ S 63より継続的に出力されるデジタル化 された反射光強度信号 [ I i ] [ 12 ] とにより、 補正反射光強度 比 Rs を、 Rs = AX [ I i ] / [ I 2 ] により求める。
また、 ステップ S 68にて算出された補正係数 Aを用いない場合 はステップ S 7 1に進み、 ステップ S 63より継続的に出力される デジタル化された反射光強度信号 [ I i ] [ I 2 ] ·とにより、 反射 光強度比 Rを、 R = [ I ] [ I 2 ] により演算する。
ステップ S 72では、 ステップ S 70より出力された補正光強度 比 Rs 、 またはステップ S 7 1より出力される反射光強度比 Rs よ り予め測定して算出し、 記憶されている測定対象の動物種について の数種の血液から得た I Z I 2 とへモグロビン濃度 H bとのデー タより算出した高次の相関曲線 (例えば 2次回帰曲線) である基準 相関関数 h (Rs),
Figure imgf000034_0001
ここでは、 h (Rs ) = -4.55- R s 2 + 37.8♦ R s + - 4.91 [ 但し、 R li/ I2とし、 以下 h ( Rs)を H b検量線と呼ぶ] を用いて、 ヘモグロビン濃度を演算する。
ステップ S 73ではステップ S 72より出力されるヘモグロビン 濃度を表示し、 ステップ S 74として、 測定を終了するか判断し、 終了しない場合は、 ステップ S 62に戻り前述した測定を繰り返し 実行する。
この実施例により得られたへモグロビン濃度と、 比較対照として 用いた 0 SM2へモキシメータ (ラジオメータ社製) で測定したへ モグロビン濃度との関係を第 1 9図に示す。 この結果より、 O SM 2へモキシメータによりヘモグロビン濃度の値 (y) に対し、 この 実施例の方法により得られたヘモグロビン濃度の値 ( X ) は、 相関 関数 = 1 (y = x) に極めて近く、 誤差 (S. D . ) も十分小さく 正確な測定を行えるものであることが確認できた。 、
' 産業上の利用可能性
以上のように、 本発明のへモグロビン濃度測定装置及びその酸素 飽和度測定装置は、 血液中のへモグ ΰビン濃度やへモグロビンの酸 素飽和度を連続して測定するのに適している。

Claims

請求の範囲
( 1 ) 第 1の波長の光を血液中に照射する第 1の光照射手段と、 前記第 1の波長の光と異なる第 2の波長の光を血液中に照射する 第 2及び第 3の光照射手段と、
前記第 2の光照射手段の光照射部からの距離と前記第 3の光照射 手段の光照射部からの距離がそれぞれ異なるように設けられ、 かつ 前記第 1の光照射手段と前記第 2の光照射手段および前記第 3の光 照射手段の各光照射部より血液中に照射された先の血液からのそれ ぞれの反射光強度を検出する検出手段と、
前記第 2の光照射手段により照射され前記検出手段により検出さ れた反射光強度と、 前記第 3の光照射手段により照射され前記検出 丰段により検出された反射光強度との比を補正する第 1の補正値を 算出する第 1の補正値演算手段と、
前記第 1の補正値と、 前記検出手段により継続的に検出される第 3の光照射手段より照射された光の反射光強度とを用いて第 2の補 正値を算出する第 2の補正値演算手段と、
前記第 2の補正値を用いて、 前記検出手段により継続的に検出さ れる第 1の光照射手段により瑪射された光の反射光強度と前記検出 手段により継続的に検出される第 2の光照射手段により照射された 光の反射光強度との反射光強度比を補正する反射光強度比補正手段 と、
該反射光強度比補正手段より出力される補正された反射光強度比 を用いて相関関数により血液中の酸素飽和度を演算する酸素鉋和度 演算手段とを有することを特徵とする酸素飽和度測定装置。
( 2 ) 前記第 1の補正値演算手段はへモグロビン濃度基準値に対応 した反射光強度比を算出する演算手段を備え、 前記検出手段により 検出された反射光強度の比を、 前記反射光強度比を基に補正するよ うにしたことを特徴とする請求項第 1項に記載の酸素飽和度測定装 置。
( 3 ) 前記第 1の光照射手段は、 前記第 1の波長の光を発する発光 源と該発光源からの光を血液中に照射する光照射部とからなり、 前 記第 2及び前記第 3の光照射手段は、 前記第 2の波長の光を発する 共通の発光源と該発光源からの光を異なった位置より血液中に照射 する 2つの光照射部とからなるものである特許請求の範囲第 1項に 記載の酸素飽和度測定装置。
( 4 ) 前記第 1及び第 2の光照身f手段は、 前記第 1の波長の光を発 する第 1の発光源と前記第 2の波長の光を発する第 2の発光源とを 有し、 該第 1及び第 2の発光源からの光を血液中に照射する共通の 光照射部とからなるものである特許請求の範囲第 1項に記載の酸素 飽和度測定装置。
( 5 ) 前記第 1及び第 2及び第 3の光照射手段は、 前記第 1の波長 の光を発する第 1の発光源と前記第 2の波長の光を発する第 2の発 光源と、 該第 1の発光源および第 2の発光源からの光を血液中に照 射する共通の第 1の光照射部と、 前記第 2の発光源からの光を血液 中に照射する第 2の光照射部とからなるものである特許請求の範囲 第 1項に記載の酸素飽和度測定装置。
( 6 ) 前記検出手段は前記第 1及び第 2及び第 3の光照射手段より 血液中に照射された光の血液からのそれぞれの反射光強度を検出す る 1つの検出手段よりなるものである特許請求の範囲第 1項に記載 の酸素飽和度測定装置。
( 7 ) 前記検出手段の光検出部は、 前記第 1の光照射部からの距離 と前記第 2の光照射部からの距離とが同じになる位置に設けられて いることを特徴とする特許請求の範囲第 5項に記載の酸素飽和度測
( 8 ) 前記光照射手段は発光源と、 該発光源から先照射部に光を伝 達する光ファイバ一とを備え、 前記光照射部は前記光ファイバ一の 端面により構成されているものである特許請求の範囲第 1項に記載 の酸素飽和度測定装置。
( 9 ) 前記検出手段は光検出器と、 光検出部より前記光検出器に光 を伝達する光伝達部とを有し、 前記光検出部は光伝達部を構成する 光ファイバ一の端面により構成されているものである特許請求の範 囲第 1項に記載の酸素飽和度測定装置。
( 1 0 ) 第 1の波長の光を血液中に照射する第 1の光照射手段と、 該第 1の波長の光と異なる第 2の波長の先を血液中に照射する第
2及び第 3の光照射手段と、
前記第 2の光照射手段の光 射部からの距離と前記第 3の光照射 手段の光照射部からの距離が異なるように設けられ、 かつ前記第 1 の光照射手段と前記第 2及び第 3の光照射手段の各光照射部より血 液中に照射された光の血液からのそれぞれの反射光強度を検出する 検出手段と、
へモグロビン濃度基準値及び既知のへモグロビン濃度値より、 前 記検出手段により検出された前記第 2及び第 3の光照射手段よりの 光の反射光強度の比を補正する第 1の補正値を演算する第 1の補正 値演算手段と、
前記第 1の補正値と、 前記検出手段により継続的に検出される第 3の光照射手段より照射された光の反射光強度とを用いて第 2の補 正値を演算する第 2の補正値演算手段と、
前記第 2の補正値を用いて、 前記検出手段により継続的に検出さ れる第 1の光照射手段により照射された光の反射光強度と第 2の光 照射手段により照射された光の反射光強度との比を補正する反射光 強度比補正手段と、
該反射光強度比補正手段より出力される補正された反射光強度比 を用いて血液中の酸素飽和度を演算する酸素飽和度演算手段とを有 することを特徴とする酸素飽和度測定装置。
( 1 1 ) 前記第 1の光照射手段は、 前記第 1の波長の光を発する発 光源と該発光源からの光を血液中に照射する光照射部とからなり、 前記第 2及び第 3の光照射手段は、 前記第 2の波長の光を発する共 通の発光源と該発光源からの光を異なった位置より血液中に照射す る 2つの光照射部とからなるものである特許請求の範囲第 1 0項に 記載の酸素飽和度測定装置。 .
( 1 2 ) 前記第 1及び第 2の光照射手段は、 前記第 1の波長の光を 発する第 1の発光源と、 前記第 2の波長の光を発する第 2の発光源 と、 該第 1及び第 2の発光源からの光を血液中に照射する共通の光 照射部とからなるものである特許請求の範囲第 1 0項に記載の酸素 飽和度測定装置。
( 1 3 ) 前記第 1及び第 2の光照射手段及び前記第 3の光照射手段 は、 前記第 1の発光源と前記第 2の発光源と、 前記第 1の発光源お よび第 2の発光源からの光を血液中に照射する共通の第 1の光照射 部と、 前記第 2の波長の光を発する発光源からの光を血液中に照射 する第 2の光照射部とからなるものである特許請求の範囲第 1 0項 に記載の酸素飽和度測定装置。
( 1 4 ) 前記検出手段は、 前記第 1及び第 2及び第 3の光照射手段 より血液中に照射された光の血液からそれぞれの反射光強度を検出 する 1つの検出手段よりなるものである特許請求の範囲第 1 0項に 記載の酸素飽和度測定装置。
( 1 5 ) 前記検出手段の光検出部は、 前記第 1の光照射部からの距 離と前記第 2の光照射部からの距離とが同じになる位置に設けられ ていることを特徴とする請求項第 1 3項に記載の酸素飽和度測定装 置。
( 1 6 ) 前記光照射手段は発光源と、 該発光源からの先を光照射部 に伝達する光ファイバ一と、 前記光照射部は前記光ファイバ一の端 面により構成されているものである特許請求の範囲第 1 1項に記載 の酸素飽和度測定装置。
( 1 7 ) 前記検出手段は光検 器と、 光検出部より前記光検出器に 光を伝達する光伝達部とを有し、 前記光検出部は先伝達部を構成す る光ファイバ一の端面により構成されているものである特許請求の 範囲第 1 0項に記載の酸素飽和度測定装置。
( 1 8 ) 特定の波長の光を血液中に照射する第 1及び第 2の光照射 手段と、
前記第 1の光照射手段の光照射部からの距離と前記第 2の光照射 手段の光照射部からの距離が異なるように設けられ、 かつ前記第 1 及び第 2の光照射手段の各光照射部より血液中に照射された光の血 液からの反射光強度を検出する検出手段と、
該検出手段により検出された、 前記第 1の光照射手段により照射 された光の反射光強度と前記第 2の光照射手段により照射された光 の反射光強度との比を補正する補正係数を演算する補正係数演算手 段と、
前記補正係数を用いて、 前記検出手段により継続的に検出される 第 1の光照射手段により照射された光の反射光強度と、 第 2の光照 射手段により照射された光の反射光強度との比を補正する反射光強 度比補正手段と、
該反射光強度比補正手段より出力される補正された反射光強度比 を用い、 相関関数により血液中のへモグロビン濃度を演算するへモ グロビン濃度演算手段とを有することを特徴とするへモグロビン濃 度測定装置。
( 1 9 ) 前記光照射手段は発光源と該発光源からの光を血液中に照 射する光照射部とからなるものである特許請求の範囲第 1 8項に記 載のへモグロビン濃度測定装寧。
( 2 0 ) 前記第 1及び第 2の光照射手段は、 前記特定の波長の光を 発する共通の発光源と、 該発光源からの光を異なった位置より血液 中に照射する 2つの光照射部とからなるものである特許請求の範囲 第 1 8項に記載のへモグロビン濃度測定装置。
( 2 1 ) 前記検出手段は、 前記第 1および第 2の光照射手段より血 液中に照射された光の該血液からのそれぞれの反射光強度を検出す る 1つの光検出器よりなるものである特許請求の範囲第 1 8項に記 載のへモグロビン濃度測定装置。
( 2 2 ) 前記光照射手段は発光源と、 該発光源からの光を光照射部 に伝達する光ファイバ一と、 前記先照射部は前記光フアイバ一の端 面により構成されているものである特許請求の範囲第 1 8項に記載 のへモグロビン濃度測定装置。
( 2 3 ) 前記検岀手段は光検出器と、 光検出部より前記光検出器に 光を伝達する光伝達部とを有し、 前記光検出部は光伝達部を構成す る光ファイバ一の端面により構成されているものである特許請求の 範囲第 1 8項に記載のヘモグロビン濃度測定装置。
PCT/JP1988/000742 1987-07-24 1988-07-22 Apparatus for measuring concentration and oxygen saturation of hemoglobin WO1989001144A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP88906126A EP0380664B1 (en) 1987-07-24 1988-07-22 Apparatus for measuring concentration and oxygen saturation of hemoglobin
DE3889733T DE3889733T2 (de) 1987-07-24 1988-07-22 Vorrichtung zur messung der konzentration und sauerstoffsättigung von hämoglobin.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP62186135A JPH0629850B2 (ja) 1987-07-24 1987-07-24 酸素飽和度測定装置
JP62186136A JPH07113604B2 (ja) 1987-07-24 1987-07-24 ヘモグロビン濃度測定装置
JP62/186136 1987-07-24
JP62/186135 1987-07-24

Publications (1)

Publication Number Publication Date
WO1989001144A1 true WO1989001144A1 (en) 1989-02-09

Family

ID=26503561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1988/000742 WO1989001144A1 (en) 1987-07-24 1988-07-22 Apparatus for measuring concentration and oxygen saturation of hemoglobin

Country Status (4)

Country Link
US (1) US5149503A (ja)
EP (1) EP0380664B1 (ja)
DE (1) DE3889733T2 (ja)
WO (1) WO1989001144A1 (ja)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5379774A (en) * 1990-10-23 1995-01-10 Sankyo Company Limited Measurement of arterial elasticity and the frequency characteristic of the compliance of an artery
DE69227545T2 (de) * 1991-07-12 1999-04-29 Mark R Robinson Oximeter zur zuverlässigen klinischen Bestimmung der Blutsauerstoffsättigung in einem Fötus
FR2679337B1 (fr) * 1991-07-17 1994-08-12 Effets Biologiques Exercice Procede non invasif de determination in vivo du taux de saturation en oxygene du sang arteriel, et dispositif mettant en óoeuvre le procede.
US5371020A (en) * 1991-09-19 1994-12-06 Radiometer A/S Method of photometric in vitro determination of the content of an analyte in a sample
US5282466A (en) * 1991-10-03 1994-02-01 Medtronic, Inc. System for disabling oximeter in presence of ambient light
AU2800892A (en) * 1991-10-03 1993-05-03 Medtronic, Inc. Method and apparatus for determining oxygen saturation
US5284139A (en) * 1991-12-30 1994-02-08 Abbot Laboratories Hemometrix temperature compensation
US5331958A (en) * 1992-03-31 1994-07-26 University Of Manitoba Spectrophotometric blood analysis
JP3116252B2 (ja) * 1992-07-09 2000-12-11 日本光電工業株式会社 パルスオキシメータ
US5287853A (en) * 1992-12-11 1994-02-22 Hewlett-Packard Company Adapter cable for connecting a pulsoximetry sensor unit to a medical measuring device
US5422720A (en) * 1993-07-21 1995-06-06 Becton Dickinson And Company Blood culture sensor station utilizing two distinct light sources
US5958782A (en) * 1993-10-21 1999-09-28 Minnesota Mining And Manufacturing Company Cation-sensing composite structure and compounds for use therein
WO1995012349A1 (en) * 1993-11-05 1995-05-11 Aarnoudse, Jan, Gerard Optical, noninvasive, in-vivo measurement of properties of a constituent of a human or animal body
US5560355A (en) * 1993-12-17 1996-10-01 Nellcor Puritan Bennett Incorporated Medical sensor with amplitude independent output
US5575284A (en) * 1994-04-01 1996-11-19 University Of South Florida Portable pulse oximeter
US5601080A (en) * 1994-12-28 1997-02-11 Coretech Medical Technologies Corporation Spectrophotometric blood analysis
US5983120A (en) * 1995-10-23 1999-11-09 Cytometrics, Inc. Method and apparatus for reflected imaging analysis
US5686309A (en) * 1996-01-19 1997-11-11 Coulter International Corp. Method and apparatus for determination of hemoglobin content of individual red blood cells
US5830137A (en) * 1996-11-18 1998-11-03 University Of South Florida Green light pulse oximeter
US5997818A (en) * 1997-02-27 1999-12-07 Minnesota Mining And Manufacturing Company Cassette for tonometric calibration
US6009339A (en) * 1997-02-27 1999-12-28 Terumo Cardiovascular Systems Corporation Blood parameter measurement device
DE69734401T2 (de) * 1997-02-27 2006-07-27 Terumo Cardiovascular Systems Corp. Kassette zur messung von blut-parametern
US5954644A (en) * 1997-03-24 1999-09-21 Ohmeda Inc. Method for ambient light subtraction in a photoplethysmographic measurement instrument
US5891024A (en) * 1997-04-09 1999-04-06 Ohmeda Inc. Two stage calibration and analyte measurement scheme for spectrophotomeric analysis
US6718190B2 (en) * 1997-10-14 2004-04-06 Transonic Systems, Inc. Sensor calibration and blood volume determination
US6041246A (en) * 1997-10-14 2000-03-21 Transonic Systems, Inc. Single light sensor optical probe for monitoring blood parameters and cardiovascular measurements
US6144444A (en) * 1998-11-06 2000-11-07 Medtronic Avecor Cardiovascular, Inc. Apparatus and method to determine blood parameters
US7011761B2 (en) * 1999-09-03 2006-03-14 Baxter International Inc. Red blood cell processing systems and methods which control red blood cell hematocrit
US6294094B1 (en) 1999-09-03 2001-09-25 Baxter International Inc. Systems and methods for sensing red blood cell hematocrit
US6348156B1 (en) 1999-09-03 2002-02-19 Baxter International Inc. Blood processing systems and methods with sensors to detect contamination due to presence of cellular components or dilution due to presence of plasma
US6284142B1 (en) 1999-09-03 2001-09-04 Baxter International Inc. Sensing systems and methods for differentiating between different cellular blood species during extracorporeal blood separation or processing
US6611320B1 (en) * 1999-09-08 2003-08-26 Optoq Ab Method and apparatus
US6878105B2 (en) * 2001-08-16 2005-04-12 Baxter International Inc. Red blood cell processing systems and methods with deliberate under spill of red blood cells
US7382985B2 (en) * 2002-12-02 2008-06-03 Nortel Networks Limited Electrical domain mitigation of polarization dependent effects in an optical communications system
GB2397375A (en) * 2003-01-14 2004-07-21 Hypoguard Ltd Measuring analyte concentration in a fluid sample by illuminating the sample at two wavelengths
DE102004035948A1 (de) * 2004-07-23 2006-03-16 Basf Ag Verfahren zur Bestimmung der Identität oder Nicht-Identität mindestens einer in einem Medium homogen verteilten chemischen Verbindung
US8251907B2 (en) 2005-02-14 2012-08-28 Optiscan Biomedical Corporation System and method for determining a treatment dose for a patient
JP2007135106A (ja) * 2005-11-11 2007-05-31 Matsushita Electric Ind Co Ltd 光電流増幅回路、及び光ピックアップ装置
DE102006052125A1 (de) * 2005-11-15 2007-05-16 Weinmann G Geraete Med Vorrichtung zur Bestimmung physiologischer Variablen
DE102007043669A1 (de) * 2007-03-30 2008-10-02 Weinmann Geräte für Medizin GmbH + Co. KG Verfahren und Vorrichtung zur Bestimmung von Blutparametern
US8412293B2 (en) * 2007-07-16 2013-04-02 Optiscan Biomedical Corporation Systems and methods for determining physiological parameters using measured analyte values
US8175668B1 (en) 2007-10-23 2012-05-08 Pacesetter, Inc. Implantable multi-wavelength venous oxygen saturation and hematocrit sensor and method
US10475529B2 (en) 2011-07-19 2019-11-12 Optiscan Biomedical Corporation Method and apparatus for analyte measurements using calibration sets
EP2580589B1 (en) 2010-06-09 2016-08-31 Optiscan Biomedical Corporation Measuring analytes in a fluid sample drawn from a patient
WO2012032536A2 (en) * 2010-09-06 2012-03-15 Abhishek Sen System and method for non-invasive determination of hemoglobin concentration in blood
US9188531B2 (en) * 2011-07-14 2015-11-17 Kendall Technology Inc. Method and apparatus for gold detection
DE102013205346A1 (de) 2013-03-26 2014-10-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Lanthanoidkomplexbasierte spektroskopische Hämoglobinbestimmung in einem flüssigen biologischen Medium
US10039489B2 (en) * 2013-11-06 2018-08-07 Carestream Dental Technology Topco Limited Periodontal disease detection system and method
US9833557B2 (en) 2014-12-19 2017-12-05 Fenwal, Inc. Systems and methods for determining free plasma hemoglobin
JP2016123713A (ja) * 2015-01-05 2016-07-11 セイコーエプソン株式会社 生体情報測定モジュール、および生体情報測定機器
JP2016123714A (ja) * 2015-01-05 2016-07-11 セイコーエプソン株式会社 生体情報測定モジュール、および生体情報測定機器
US11006865B2 (en) 2015-12-08 2021-05-18 Anthony Filice Determining viability for resuscitation
EP3850338B1 (en) * 2018-09-11 2023-06-07 Koninklijke Philips N.V. Optical method for gingivitis detection

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4114604A (en) * 1976-10-18 1978-09-19 Shaw Robert F Catheter oximeter apparatus and method
US4295470A (en) * 1976-10-18 1981-10-20 Oximetrix, Inc. Optical catheters and method for making same
US4651741A (en) * 1985-05-30 1987-03-24 Baxter Travenol Laboratories, Inc. Method and apparatus for determining oxygen saturation in vivo
DK116387A (da) * 1986-03-07 1987-09-08 Terumo Corp Apparat til maaling af maetningsgraden af oxygen i blod og fremgangsmaade til gennemfoerelsen af maalingen
US4760250A (en) * 1986-09-29 1988-07-26 Spectramed, Inc. Optoelectronics system for measuring environmental properties having plural feedback detectors
JPS63252239A (ja) * 1987-04-09 1988-10-19 Sumitomo Electric Ind Ltd 反射型オキシメ−タ
JP2717572B2 (ja) * 1989-03-17 1998-02-18 株式会社バルダン 刺繍ミシン用帽子枠
JP2756577B2 (ja) * 1989-03-20 1998-05-25 株式会社バルダン 刺繍ミシン用曲布張枠

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0380664A4 *

Also Published As

Publication number Publication date
EP0380664A1 (en) 1990-08-08
DE3889733T2 (de) 1994-09-08
DE3889733D1 (de) 1994-06-30
EP0380664B1 (en) 1994-05-25
EP0380664A4 (en) 1991-08-07
US5149503A (en) 1992-09-22

Similar Documents

Publication Publication Date Title
WO1989001144A1 (en) Apparatus for measuring concentration and oxygen saturation of hemoglobin
US5773301A (en) Method for optically determining total hemoglobin concentration
CN106290220B (zh) 基于红外光声光谱的水果成熟度无损检测系统及方法
US8271063B2 (en) System and method for a non-invasive medical sensor
CN1113225C (zh) 用于光电血色计的波长可调节光源
US4050450A (en) Reflection standard for fiber optic probe
US7124048B2 (en) System and method for a self-calibrating non-invasive sensor
US5297548A (en) Arterial blood monitoring probe
US4867557A (en) Reflection type oximeter for applying light pulses to a body tissue to measure oxygen saturation
CN102920464B (zh) 血红蛋白浓度和血氧饱和度测定仪及测定方法
JP2003194714A (ja) 生体組織血液量測定装置
EP0897692A2 (en) Fast-turnoff photodiodes with switched-gain preamplifiers in photoplethysmographic measurement instruments
JPS63277039A (ja) 診断装置
US9632031B2 (en) System for in vitro detection and/or quantification by fluorometry
US5103829A (en) Examination apparatus for measuring oxygenation in body organs
JP5249777B2 (ja) サンプルの蛍光発光を測定するための方法および装置ならびにその使用
EP0240742A2 (en) Apparatus and method for measuring amount of oxygen in blood
EP2502567A1 (en) Organism light measuring device and method for displaying information relating to necessity/unnecessity of replacement of light-emitting part
JP3336261B2 (ja) 半導体レーザを用いた同位体の分光分析方法
EP2124038A1 (en) Liquid immersion type absorbance sensor element and absorption spectrometer using same
JPH09503856A (ja) 血中の物質濃度を測定するための装置
JPH07113604B2 (ja) ヘモグロビン濃度測定装置
JPH0629850B2 (ja) 酸素飽和度測定装置
US4162851A (en) Simultaneous photometering method and assembly for multi-dimensional measurements concerning biologically related materials
JPS6324143A (ja) ヘモグロビン濃度測定装置とその測定方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL SE

WWE Wipo information: entry into national phase

Ref document number: 1988906126

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1988906126

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1988906126

Country of ref document: EP