WO1987005945A1 - Process for producing low core loss, thin, unidirectional silicon steel plate having excellent surface properties - Google Patents

Process for producing low core loss, thin, unidirectional silicon steel plate having excellent surface properties Download PDF

Info

Publication number
WO1987005945A1
WO1987005945A1 PCT/JP1986/000138 JP8600138W WO8705945A1 WO 1987005945 A1 WO1987005945 A1 WO 1987005945A1 JP 8600138 W JP8600138 W JP 8600138W WO 8705945 A1 WO8705945 A1 WO 8705945A1
Authority
WO
WIPO (PCT)
Prior art keywords
annealing
rolled
steel sheet
hot
cold rolling
Prior art date
Application number
PCT/JP1986/000138
Other languages
French (fr)
Japanese (ja)
Inventor
Yukio; Inokuti
Yoh; Ito
Original Assignee
Kawasaki Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13874402&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1987005945(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kawasaki Steel Corporation filed Critical Kawasaki Steel Corporation
Priority to DE8686902022T priority Critical patent/DE3675945D1/en
Priority to EP86902022A priority patent/EP0266422B2/en
Priority to PCT/JP1986/000138 priority patent/WO1987005945A1/en
Publication of WO1987005945A1 publication Critical patent/WO1987005945A1/en
Priority to US07/774,384 priority patent/US5203928A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1227Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest

Definitions

  • Grain oriented silicon steel sheet transformer (represented by 10 values B.)
  • the magnetic flux density that can be used as core materials of the electrical equipment ⁇ rather, iron loss (represented by W 17/5 o value.) Low is required.
  • the A1N precipitated phase is used as an inhibitor to suppress the growth of crystal grains with inappropriate orientation in the final finish annealing, and the production of unidirectional silicon steel sheet On the surface with respect to the rolling direction: By irradiating a laser beam at a right angle at a distance of several mm, an artificial grain boundary is introduced on the surface, and iron loss is reduced by this artificial grain boundary. How to
  • the proposed method of introducing an artificial grain boundary locally forms a high dislocation density region, so that a product subjected to such treatment can be used stably only at a low temperature of about 350 ° C or less. There is.
  • the improvement of the purity of the steel sheet or the improvement of the directionality of (3) has reached the point where it is considered to be the limit at present.
  • the Goss orientation of the secondary recrystallized grains of the current product is already accumulated within the average of 3 ° to 4 ° in the rolling direction, and in such a highly aggregated condition, the grain size should be further reduced. Is extremely difficult in metallurgy.
  • the present invention has been developed in view of the recent trends in the prior art described above, and is intended to industrially produce a thin unidirectional silicon steel sheet having extremely excellent surface properties and extremely small iron loss and high magnetic flux density. Providing a method that enables stable and particularly advantageous production It is intended to provide.
  • Hot rolled into a hot rolled sheet followed by primary cold rolling at a draft of 10 to 60%, followed by intermediate annealing, followed by secondary cooling at a draft of 75 to 90%
  • Cold rolled sheet finished to a final thickness of 0.1 to 0.25 mm by cold rolling, decarburized in wet hydrogen, primary recrystallization annealing, and then high-temperature finish annealing.
  • Method for producing a thin unidirectional silicon steel sheet with excellent low iron loss (first invention).
  • Acid-soluble Al 0.005-0.06wt%,.
  • Hot-rolled slabs with hot rolling to form a hot-rolled sheet subjected to primary cold rolling at a reduction rate of 10 to 60%, and then subjected to intermediate annealing, followed by secondary cold rolling at a reduction rate of 75 to 90%.
  • the surface is characterized in that a thin cold-rolled sheet that has been subjected to cold rolling and finished to a final thickness of 0.1 to 0.25 mm is decarburized in wet hydrogen, primary recrystallization annealing, and then high-temperature finish annealing.
  • Manufacturing method of low-loss thin unidirectional silicon steel sheet with excellent properties No.
  • Hot-rolled slabs containing hot-rolled slabs are subjected to primary cold rolling at a reduction rate of 10 to 60%, followed by intermediate annealing, followed by secondary cold rolling at a reduction rate of 75 to 90%.
  • Primary cold rolling at a reduction rate of 10 to 60%
  • intermediate annealing followed by secondary cold rolling at a reduction rate of 75 to 90%.
  • Rolled and finished to a final thickness of 0.1 to 0.25 mm, and the thin cold rolled sheet is decarburized in wet hydrogen.
  • Low iron loss sheet with excellent surface properties characterized by being subjected to high-temperature finish annealing in advance by applying a treatment to give formation of heterogeneous micro-domains on the steel sheet surface that has been subjected to subsequent high-temperature finish annealing.
  • Method for producing high magnetic flux density unidirectional silicon steel sheet (third invention).
  • Hot-rolled slabs containing are subjected to primary cold rolling at a reduction rate of 10 to 60%, followed by intermediate annealing, and then secondary cold rolling at a reduction rate of 75 to 90% To a final thickness of 0.1 to 0.25, and the thin cold rolled sheet is decarburized in wet hydrogen.
  • primary cold rolling at a reduction rate of 10 to 60%
  • intermediate annealing followed by intermediate annealing
  • secondary cold rolling at a reduction rate of 75 to 90%
  • the thin cold rolled sheet is decarburized in wet hydrogen.
  • a method for producing a low-iron-loss thin high-flux-density unidirectional silicon steel sheet having excellent surface properties, which is characterized by being subjected to high-temperature finish annealing (a fourth invention).
  • Hot rolled into a hot rolled sheet followed by primary cold rolling at a draft of 10 to 60%, followed by intermediate annealing, followed by secondary cold rolling at a draft of 75 to 90%
  • the cold rolled sheet which has been cold rolled to a final thickness of 0.1 to 0.25 mm, is decarburized in humid hydrogen.After primary recrystallization annealing, it is annealed at high temperature, followed by surface annealing.
  • a method for producing a low-iron-loss thin unidirectional silicon steel sheet having excellent surface properties, characterized by forming a heterogeneous microregion section on the upper surface (fifth invention)
  • Hot-rolled into a hot-rolled sheet followed by primary cold rolling at a draft of 10 to 60%, followed by intermediate annealing.
  • Reduced cold-rolled thin cold-rolled sheets that have been subjected to secondary cold rolling at 75 to 90% and finished to a final thickness of 0.1 to 0.25 ram have been decarburized in wet hydrogen.
  • primary recrystallization annealing A high-temperature finish annealing, and a method for producing a low-iron-loss thin unidirectional silicon steel sheet having excellent surface properties, characterized by forming a heterogeneous microregion on the surface of the steel sheet (Sixth invention)
  • it is practically preferable to heat or cool the intermediate annealing between 500 and 900 ° C., particularly at 5 ° C. or more per second, in both the temperature raising process and the temperature lowering process.
  • the inventors added a small amount of Mo to the material when producing thin unidirectional silicon steel sheets by using the A 1 N precipitated phase under a high silicon content of 3.1 to 4.5 wt.
  • a product with excellent surface properties can be obtained by this process, and a unidirectional silicon steel sheet with low iron loss in an extremely stable process by adopting two cold rolling methods including rapid annealing and rapid cooling intermediate annealing It was discovered that it was possible to manufacture the above, and the above inventions were completed.
  • Fig. 1 shows the relationship between the magnetic properties of the product and the reduction rate of the first and second cold rolling and the state of the surface properties
  • Fig. 2 shows the heating rate and cooling rate during intermediate annealing.
  • Figure showing the relationship between the product and the magnetic properties of the product.
  • Fig. 3 is a diagram showing the relationship between the magnetic properties of the product, the primary cold rolling and the secondary cold rolling reduction, and the surface properties.
  • intermediate annealing was performed at 1050 ° C for 3 minutes. During the intermediate annealing, the temperature was raised from 500 ° C to 900 at a rate of 10 and a rapid heat treatment of 10 / s was applied, and after the intermediate annealing, a rapid cooling treatment from 900 ′′ to 500: / s was performed.
  • the surface of the steel sheet is coated with an annealing separator containing MgQ as a main component, and the temperature is raised from 850; to U00 C at a rate of 8: / hr to perform secondary recrystallization.
  • C was subjected to high-temperature finish annealing, that is, purification annealing in dry hydrogen for 10 hours.
  • Fig. 1 shows the magnetic properties of the product and the incidence of surface defects (the incidence of surface flaws on the surface of the steel plate is expressed in%).
  • the product of test steel I containing Mo in the material has a primary cold rolling reduction of 10 to 60% (particularly 20 to 40%).
  • the magnetic properties are good and the surface defect occurrence rate of the product is 2% or less (0.5% or less when the rolling reduction of the first cold rolling is in the range of 20 to 50%). It is noted that.
  • Example steel ⁇ a steel ingot (sample steel ⁇ ) having C 0.04 ⁇ 93 ⁇ 4, Si 3.453 ⁇ 4.o 0.02%, acid-soluble / 0.028%, and S 0.026% was heated to 1410 ° C. ⁇ The solution was dissociated by heating for 5 hours. ⁇ After solid solution, it was hot rolled to form a 2.2 mm thick hot rolled sheet.
  • the intermediately annealed steel sheet is subjected to secondary cold rolling at a rolling reduction of about 83% to give a final cold-rolled sheet with a thickness of 0.23 mm, followed by decarburization in wet hydrogen at 850 and primary recrystallization annealing.
  • the temperature was raised from 850 ° C to 1100 at 10 ° C / hr to perform secondary recrystallization.
  • Time Purification annealing was performed in dry hydrogen.
  • Figure 2 shows the magnetic properties of the product at that time.
  • the heating rate from 500 to 900 ° C and the cooling rate from 900 ° C to 500 after the intermediate annealing were 10 ° C / s, especially at 5 ° C / s or more.
  • the value is longer than s, a product with remarkably excellent magnetic properties can be obtained.o
  • the reason for the property improvement by rapid heating and quenching treatment after the intermediate annealing is the same as that disclosed by the present inventors in Japanese Patent Application Laid-Open No. 59-35625 (supra). This is considered to be an advantage for preferentially developing the texture.
  • the fine precipitation treatment of MN by the quenching treatment after the homogenizing annealing is merely used for the cooling process after the intermediate annealing after the primary cold rolling.
  • excellent magnetic properties can be obtained especially when Mo is contained in combination with rapid heating during the temperature rise process of intermediate annealing.
  • Sb 0.023wt% and 0.022wt% Was heated at 1360 for 3 hours to dissociate and solid-solve the inhibitor, and then hot-rolled to form a 2.2 mm thick hot-rolled sheet.
  • an annealing separator containing MgQ as a main component is applied on the surface of the steel sheet, and then the temperature is increased from 850 ° C to 10 ° C / hr for secondary recrystallization, and then in dry hydrogen at 1200 ° C for 10 hours. Then, after annealing treatment of the insulating film, strain relief annealing was performed at 800 ° C for 3 hours.
  • Table 1 shows the magnetic properties of the products and the incidence of surface defects (the incidence of surface flaws on the steel sheet surface is expressed as a percentage).
  • the magnetic properties of the products based on the test material A containing Mo in the material B 1 Q value is 1.94T
  • W 17/50 value is 0.82W /
  • the surface defect rate of the product is 1.8, which is good with kg.
  • the magnetic properties of the product according to the conventional composition comparison B are as follows. It is 1.93T and W17 / 5Q is 0.85W / kg, which is worse than that of test steel B containing Mo in the material, and the incidence of surface defects of the product is extremely high at 8%.
  • Intermediate annealing was performed at 1100 for 3 minutes.
  • the temperature rise from 500 t: to 900 is performed by rapid heating at a heating rate of 13 C / s, and the cooling rate from 900 to 500 ° C after the intermediate annealing
  • Fig. 3 shows the magnetic properties of the product and the incidence of surface defects (the incidence of surface flaws on the surface of the steel plate is expressed as a percentage).
  • the test specimen W (added in the material) with 4 ⁇ added shows the magnetic properties when the primary cold rolling reduction is 10 to 60% (particularly 20 to 40%). It is noteworthy that the properties are good and the surface defect occurrence rate of the product is 3% or less (especially 1.0 or less when the primary cold rolling reduction is in the range of 20 to 50%).
  • the magnetic properties are extremely good at 0.72 W / kg, and the incidence of surface defects on the product is good at 1% or less.
  • the iron loss W 17/5 Q value is as good as 0.75 W / kg at the primary cold rolling reduction of 30 to 40%, but the surface defects of the product The incidence is 6 ⁇ ? % And high.
  • a final cold-rolled sheet of 0.20 mm thickness was formed by two cold rollings (intermediate annealing at 980 ° C for 3 minutes) (50% primary cold reduction, 80 secondary cold reduction). And 'In the case of this intermediate annealing, 500 to 900.
  • the temperature was raised to C by rapid heat treatment at a heating rate of 10 ° C / s, and after intermediate annealing, from 900 ° C to 500 ° C at a cooling rate of 13 ° C / s.
  • the M 2 0 3 powder as the reaction inhibiting substance with separating agent and the steel plate subscale in Si0 2, the adhesion amount of 0.5 g / m 2, substantially perpendicular to the attachment width to the rolling direction of the steel sheet 2 mtn and repeatedly, At a distance of 8 mm, attach linearly to the surface of the steel sheet, and then apply an annealing separator containing MgQ as a main component, then from 850 ° C to 1050 ° C at 10 ° C / hr. After secondary recrystallization by raising the temperature, purification treatment was performed at 1200 C for 8 hours, and then the absolutely green coating film was baked and subjected to strain relief annealing at 800 ° C for 3 hours.
  • MgO is evenly applied to steel sheet 1.94 0.84 0.4
  • the magnetic properties of the product using the comparative steel D with the same composition as before are decarburized.
  • ⁇ ⁇ ⁇ ⁇ , ⁇ is 1.93 ⁇ , and W17 / 5Q is 0.86 to 0.90 W / kg depending on the handling conditions after the primary recrystallization annealing. This is worse than the test steel C containing Mo in the material, and the incidence of surface defects on the product is extremely high at 9 to 10%.
  • the domain width can be subdivided by creating regions of different thickness in the forsterite film constituting the surface film of grain-oriented silicon steel sheets. It is useful as a method for producing a unidirectional silicon steel sheet with low iron loss.
  • the temperature was raised from 500 ° C to 900 ° C by rapid heat treatment at a heating rate of 11 ° C / s, and after the intermediate annealing, the cooling rate was 12 ° c / s from 900 ° C to 500 ° C. Processed.
  • the laser irradiation position was recovered and recrystallized at 800 for 3 hours for strain relief.
  • the product was recovered and recrystallized at 800 for 3 hours for strain relief.
  • Insulation coating treatment 1.94 0.84 0.2
  • the magnetic properties of the product using the comparative steel F of the conventional composition depend on the handling conditions after finish annealing. There 1.93T, 7/5. Is 0.85 to 0.90 W / kg, which is worse than that of test steel E containing Mo in the material, and the incidence of surface defects on the product is extremely high, 9 to 11%. No.
  • this method is to reduce the iron loss by introducing artificial grain boundaries by laser irradiation on the surface of the unidirectional silicon steel sheet after finish annealing almost perpendicular to the rolling direction.
  • this method has the disadvantage that it can be used stably only at low temperatures due to the formation of localized high dislocation density regions, but after introducing small strain locally by laser irradiation.
  • the base iron is completely exposed by pickling,
  • the c can be produced less oriented silicon steel sheet is preferably iron loss by the this to form a heterogeneous micro region partitioned by One Manzanillo with this to promote the recovery and recrystallization of the local area reacted steel sheet on the surface with warm
  • the manufacturing method is an epoch-making manufacturing method in which iron loss does not deteriorate even when subjected to high-temperature heat treatment, unlike the above-mentioned product plate irradiated with laser, and a part of this structure is disclosed in Japanese Patent Application Laid-Open No. 60-255926. Is disclosed.
  • Si is an element effective to increase the electrical resistance of the silicon steel sheet and reduce the overcurrent loss as described above. In particular, it is necessary to reduce the iron loss of thin products. is there. However, if the Si content exceeds 4.5 wt%, brittle cracks are likely to occur during cold rolling, so the Si content was set in the range of 3.1 to 4.5 wt%. Note that the Si content of a normal grain-oriented silicon steel sheet that uses conventional A 1 N as an inhibitor is about 2.8 to 3.0%. As shown in Fig. 3, the surface properties of the product deteriorated remarkably, as shown in Fig. 3, steel I and m, but in each of the first and second inventions, 0.0003 to 0.1wt% By adding Mo, surface defects can be prevented.
  • A1 combines with ⁇ contained in the steel to form fine precipitates of A1N and acts as a strong inhibitor.
  • acid-soluble A1 in the range of 0.005 0.06 wt% is necessary to develop secondary recrystallized grains that are strongly integrated in the Goss orientation.
  • S Se forms a dispersed precipitate phase of MnSe together with A1N and enhances the inhibitory effect. If the total amount of S or Se is less than 0.005 wt%, the inhibitory effect of MnS or MnSe is weak, and if the total amount exceeds 0.1 wt%, the hot and cold workability deteriorates significantly.
  • One or two types of S Se must be in the range of 0.005 0.1wt% in total. Even within such a total amount range, the inhibitory effect is insufficient when S is less than 0.005 wt% or when Se is less than 0.003 wt%, respectively, while when the content exceeds 0.05 wt%, respectively. Does hot and cold workability deteriorate? Therefore, it is desirable that S should be within the range of 0.005 to 0.05 wt% and Se should be within the range of 0.003 to 0.05 wt%.
  • Sb is particularly expected to have the function of suppressing the growth of primary recrystallized grains.However, if the content is less than 0.005 wt%, the effect is small, while if it exceeds 0.2 wt%, the magnetic flux density is reduced. In order to lower the magnetic properties by lowering the content, the content must be within the range of 0.005 to 0.2 wt%.
  • Materials suitable for the method of each invention need to contain 3.1 to 4.5% of Si and small amounts of Mo, A1, S and Se, and also Sb, as described above. It does not prevent the existence of other known elements added to ordinary silicon steel.
  • C is required to cause ⁇ transformation in a part of the sheet during hot-rolled sheet annealing, related to the fine precipitation of A1N.
  • the C content is suitably about 0.030 to 0.080w ⁇ .
  • any one or more of Sn, Cu, and B as known primary recrystallized grain growth inhibitors that may be added to ordinary silicon.
  • it is permissible to contain trace amounts of general unavoidable elements such as Cr, Ti, V, Zr, Nb, Ta, Co, Ni, P and As.
  • an LD converter As a means for melting the material used in the method of the present invention, an LD converter, an open hearth furnace, or another known manufacturing method may be used. It goes without saying that vacuum treatment and vacuum melting may be used together.
  • a continuous ingot can be suitably used in addition to a usual ingot-bulking rolling method.
  • the silicon steel slab obtained as described above is subjected to hot rolling after heating by a known method.
  • the thickness before hot rolling obtained by this hot rolling differs depending on the rolling reduction in the subsequent cold rolling process, but it is usually desirable to be about 1.5 to 3.0 mm.
  • the next intermediate annealing is performed at a temperature of 900 to 1100 ° C for about 30 seconds to 30 minutes, but in order to obtain good magnetic properties stably, raise the temperature from 500 to 900 and after the intermediate annealing. It is desirable to lower the temperature from 900 to 500 at 5: / s or more, especially 10 ° C / s or more.
  • This rapid heating and quenching treatment is performed in a normal continuous furnace or A known technique such as a switch furnace may be used.
  • the following secondary cold rolling is suitable at a reduction rate of 75 to 90%, and the final cold rolled sheet thickness is 0.1 to 0.25 (finished to MI thickness).
  • each invention is to manufacture a thin high magnetic flux density magnetic steel sheet, and the thickness of the hot-rolled sheet is about 1.5 to 3.0 mm, and the cold rolling and hot rolling shown in Figs.
  • a steel sheet with excellent properties can be obtained by finishing a thin final cold-rolled sheet with a thickness of 0.1 to 0.25 mm at each rolling reduction in the secondary cold rolling.
  • aging treatment at 50 to 600 ° C may be performed between a plurality of passes as disclosed in Japanese Patent Publication No. 54-13866.
  • the cold rolled sheet having a small thickness of 0.1 to 0.25 mm is subjected to decarburization annealing also serving as primary recrystallization in a temperature range of about 750 to 87 Q ° C.
  • This decarburization annealing may be performed for several minutes in a wet hydrogen gas atmosphere or a hydrogen / nitrogen mixed gas atmosphere at a dew point + 30 to 65 or so.
  • an annealing separator containing MgG as a main component is applied to the steel sheet after decarburization annealing, and then subjected to finish annealing to develop secondary recrystallized grains of ⁇ 110 ⁇ ⁇ 001> orientation.
  • the specific conditions of this finish annealing may be the same as those conventionally known, but usually, the temperature is raised from 1150 to 1250 ° C at a rate of 3 to 50 ° C / hr to reduce the secondary recrystallized grains.
  • the steel sheet finished to the product thickness is subjected to decarburization and primary recrystallization annealing after surface degreasing.
  • the third and fourth inventions have already been covered. So, decarburizing ⁇
  • a treatment for forming a heterogeneous micro-region is formed on the steel sheet surface that has been subjected to the subsequent high-temperature finish annealing, and then subjected to the high-temperature finish annealing.
  • a unidirectional silicon steel sheet with low iron loss can be manufactured.
  • the advance zone or the decarburization delay zone is formed on the steel sheet surface using a coating agent.
  • the method (1) prefers a decarburization accelerating region and a retardation region on the surface of the steel sheet, preferably at intervals of 1 to 50 bands and almost half the width ( 2: The area width and width are narrow. ) '.1'
  • the fine grained secondary recrystallized grains change the crystallographic structure;
  • the diameter is usually in the range of 1.5 to 25, and within 2 times the secondary particle size, ie, 3 to 50 widths, the secondary recrystallization of fine grains can be achieved by changing the primary recrystallization texture on the steel sheet surface. Crystal grains can be obtained.
  • such a surface coating is sufficiently effective even on one side of the steel sheet, but it is usually more effective to apply it on both sides of the steel sheet.
  • a method such as an injection method in which a masking plate is applied to an area where no application is required may be used.
  • Decarburization accelerator MgCl 2 ⁇ 6H 2 0, Mg (N0 3) 2 - 6H 2 0, CaC - 2H 2 0, Ca (N0 3) 2 - 4H 2 0, SrC - 2H 2 0, Sr (N0 3 ) 2 ⁇ 4H 2 0, BaC - 2H 2 0, Ba (NQ 3) 2, KC1, n0 4) 2P 2O 7, KBr, C1Q 3, Br0 3, KF, NaCi, NaI0 4, NaOH, NaHP0 4, NaH 2 P0 4 ⁇ 2H 2 0, NaF, NaHC0 3 - Na 2 0 5, Na 4 P 2 0 7 ⁇ 10H 2 0, Nal ⁇ (NH 4) 2 Cr 2 0 7, Cu (N0 3) 2, ⁇ 3H 2 0, Pe (N0 3 ) 3 * 9H 20 , Co (N0 3 ) 2 ⁇ 6H 2 0,
  • Decarburization retarder K 2 S, Na 2 S 2 0 3 ⁇ 5H 2 0, Na 2 S-9H 2 0, MgSO SrSO Al 2 (SO4) 3-18H 2 0, S 2 C1 2 , NaHS0 3 , FeS0 4 - 7H 2 0, KHSO4, Na 2 S 2 0 8l K 2 S 2 0 7, Ti (S0 4) 2 - 3H 2 0, CuSQ 4 ⁇ 5H 2 0, ZnS0 4 ⁇ 7H 2 0, CrSQ4 - 7H 2 0, (NH 4) 2 S 2 0 8, H 2SO 4, H 2 Se0 3, SeOC, Se 2 Cl 2, Se0 2, H 2 Se0 4, K 2 Se, Ha 2 Se, Na 2 Se0 3, K 2 Se0 3, Na 2 Se0 4 , 2 Se0 4, H 2 TeO, .2H 2 0, Na 2 Te0 3, K 2 Te0 3, K 2 Te0 4, K 2 Te0 4 ⁇ 3H 2 0, TeC, a 2 Te0 4, Na 2 As0 2, H 3 As 0 4 ,
  • the non-processing area is divided into the delay area in the processing using only the former, and the promotion area is formed in the non-processing area when using only the latter.
  • the method of partitioning the steel sheet surface after decarburization and primary recrystallization annealing with a secondary recrystallization accelerating and inhibiting agent may already be in accordance with the teaching of Japanese Patent Application Laid-Open No. 60-89521. Then, it becomes as follows.
  • Se Compound: H 2 Se0 3, SeOC, Se 2 Cl 2, Se0 2, H 2 Se0 4, K 2 Se,
  • Te compounds H 2 Te0 4 ⁇ 2H 2 0, Na 2 Te0 3, K 2 Te0 3, K 2 Te0 4 - 3H 2 0, TeCl 4, Na 2 Te0 4
  • Sb compounds SbOCl, SbC, SbBr 3, Sb 2 (S0 4) 3, Sb 2 0 3
  • Bi Compound BiCl 3, Bi (OH) 3, BiF 3, NaBiQ 3, Bi 2 (S0 4) 3 Sn compound: SnCl 2 ⁇ 2H 2 0, Snl 2 (b) Ce, Na, K , and Sr of secondary recrystallization inhibitor: Ce compounds: Ce0 2, Ce (N0 3 ) 2 ⁇ 6H 2 0, CeC - 7H 2 0
  • Ca compound CaCl 2, Ca (N0 3 ) 3 - 6H 2 0, CaHPO 2H 2 0 Na compound: NaOH, NaCl 'Na 2 HP0 ,, Na 2 Cr 2 0 7 ⁇ 2H 2 0,
  • K Compound KN0 2, KC1, KMn0 4 > KN0 3, C10 3
  • Mg compound MgCl 2 ⁇ 6H 2 0, g (N0 3 ) 2 * 6H 2O
  • Ba compound BaCl 2 , 2H 2 0, Ba 3 (N0 3 ) 2
  • the conditions for introducing micro-strain by laser treatment may be in accordance with the teachings of known literature (Japanese Patent Application Laid-Open No. 60-96720, etc.). It is.
  • the most suitable laser is YAG laser-pulse oscillation multi-mode.
  • Pulse interval D 0.2 to 0.6 ram Irradiation row interval in rolling direction i-4 to 15 ram
  • the conditions for introducing micro-strain by electric discharge machining may be in accordance with the teachings of a known document (Japanese Patent Publication No. 57-18810, etc.).
  • Width or diameter of discharge mark d 0.004 to 2
  • the method (3) ie, the formation of compartments for the temperature difference on the steel sheet surface by heat treatment, may follow the teachings of known literature (JP-A-60-103132, etc.). is there.
  • JP-A-59-100221, JP-A-59-1QQ222, JP-A-60-103120, etc. The methods are: local heating by flash lamp, infrared lamp, high frequency Any conventionally known method such as induction heating and pulse type heat treatment may be used.
  • a steel sheet surface is coated with an annealing separator mainly composed of MgO and then subjected to high-temperature finish annealing to make ⁇ 110 ⁇ ⁇ 001>
  • annealing separator mainly composed of MgO
  • high-temperature finish annealing to make ⁇ 110 ⁇ ⁇ 001>
  • the specific conditions of this finish annealing may be the same as those of the conventionally known annealing method, but usually, the temperature is increased from 1150 to 1250 ° C at a heating rate of 3 to 50 ° C / hr, and the secondary recrystallized grains are heated.
  • An insulating coating is applied on the forsterite coating on the steel sheet surface after finish annealing to ensure reliable insulation, but the finish annealing was applied as already described in the fifth and sixth inventions.
  • the production of unidirectional silicon steel sheet with low iron loss by forming a heterogeneous micro area section on the steel plate surface.
  • Japanese Patent Publication No. 57-2252 Japanese Patent Publication No. 57-53419, Japanese Patent Publication No. 58-5968, Japanese Patent Publication No. 58-26405, Japanese Patent Publication No. 58-26406, Japanese Patent Publication No. 58-26407 and Japanese Patent Publication No. 58-36051
  • the method of introducing an artificial grain boundary by the laser irradiation method disclosed in Japanese Patent Publication No. it is necessary to adopt a method of defining a heterogeneous region on the surface of the steel sheet according to (magnetic characteristics are not deteriorated even if subjected to high temperature annealing heterogeneous micro territory. zone forming method parcels
  • the local region is distorted, and recovery and recrystallization together with annealing are performed to form a non-uniform region. Can be used.
  • the method (a) may be in accordance with the method disclosed in Japanese Patent Application Laid-Open No. 60-92479, but the following four methods are cited just in case. a - i) in the coating fabric process of the annealing separator to the primary recrystallization annealing after the steel sheet surface, prior to coating, the substance that inhibits the reaction of the annealing separator on the steel sheet surface 1 g / m 2 or less of A method of applying locally in a range.
  • an annealing separator slurry (a suspension of water and the annealing separator) is applied to the steel sheet surface.
  • an oil-based paint varnish or the like is loosely adapted to prevent contact between the steel sheet surface and the annealing separator, thereby delaying the forsterite-forming reaction to form a reduced-thickness region. is there.
  • forsterite should be used within the range of 0.1 g / m ' 2 or less. It is necessary to control the thickness of the coating.
  • Means for attaching these water-repellent substances to the steel sheet are the same as those for the reaction inhibitor described above, such as coating, spraying, printing and the like. Electrostatic painting can be used.
  • Such methods include chemical polishing and electrolytic polishing, removal using a rotating conical grindstone, removal using an iron needle using light pressure, and optical removal such as a laser beam with appropriately adjusted output.
  • optical removal such as a laser beam with appropriately adjusted output.
  • one laser beam as an optical removal method, multiple beams from one light source are used.
  • a method of forming a different type of tension coating on the forsterite coating is disclosed in Japanese Patent Application Laid-Open No. 60-103182, which discloses a method of thermal expansion of an insulating coating.
  • JP-A-60-255926 or JP-A-60-255926 The method of c is disclosed in JP-A-60-255926 or JP-A-60-255926.
  • the steel sheet coating is peeled off by means of a laser or a scribing method that applies stress on the steel sheet surface after finish annealing
  • the steel sheet is treated with an acid such as hydrochloric acid or nitric acid.
  • an acid such as hydrochloric acid or nitric acid.
  • After removing the base iron it is immersed in an aqueous solution of a semimetal, metal or an inorganic compound containing these metals, and then filled with the removed part, and then recovered as a strain relief annealing.
  • Average—A region may be defined.
  • strain relief annealing is performed at a temperature of 600 or more, and the above-described manufacturing method of the present invention does not cause deterioration of magnetic properties even if such high temperature annealing is performed. It is special.
  • Example 1
  • a continuous slab containing 0.034% of acid-soluble Al and 0.029% of S was heated with U30: for 3 hours, and then hot-rolled into a hot-rolled sheet having a thickness of 2.2 ram. Then, after about 50% primary cold rolling, it was subjected to intermediate annealing at 1100 ° C for 3 minutes. During this intermediate annealing, a rapid heat treatment of 12 ° C / s from 500 ° C to 900 ° C and a rapid cooling treatment of 15 ° C / s from 900 ° C to 500 ° C after the intermediate annealing were performed.
  • Magnetic properties are B ,. : 1.93T, WI 7 / 5o : 0.80w / kg.
  • the surface properties were extremely good, with a 0.8% incidence of surface defects.
  • a continuous slab containing 0.029% of acid-soluble Al, 0.020% of Se and 0.022% of Sb was heated at 1420: for 4 hours and then hot-rolled to a 2.2mm thickness.
  • intermediate annealing was performed at 11001: 2 for 2 minutes.
  • a rapid heat treatment of 12 t: / s from 500 t to 900 ° C and a quenching treatment of 18 / s from 900 ° C to 500 ° C after the intermediate annealing were applied.
  • 0.23 concealed final cold rolled sheet After that, decarburization and primary recrystallization annealing were performed in wet hydrogen at 840 ° C.
  • a lump containing 0.033% of acid-soluble Al, 0.023% of S, 0.15% of Cu, and 0.11% of Sn was hot-rolled into a hot-rolled 2.0-mm thick sheet, and then subjected to primary cold rolling (cold rolling). The rate is about 40).
  • intermediate annealing was performed at 1050 ° C for 5 minutes, but the temperature rise from 500 ° C to 900 ° C was rapid heat treatment at 18 ° C / s and 900 ° C to 500 ° C after intermediate annealing. The temperature was reduced by quenching at 20 ° C / s.
  • the steel sheet (surface temperature: 70 .C) using a jig of 0.5 nun width MgS0 4 (0.01 mol / £) 5 mm intervals dilute aqueous 85 ° C in the direction of almost a right angle to the rolling direction after degreased After spraying, applying and alternately forming the coating area and the non-coating area, decarburizing in wet hydrogen at 840 ° C * First recrystallization annealing, and then annealing separator mainly composed of MgO Was applied, the temperature was gradually reduced from 850 to 1100 ° C at a rate of 10 ° C / hr, and then a purification annealing was performed at 1200 ° C for 10 hours in a hydrogen atmosphere.
  • the magnetic properties and surface properties of the obtained product were as follows.
  • a continuous mirror slab containing acid-soluble Al 0.030%, S 0.026%, Sb 0.026 Sn 0.1%, and Cu 0.1% was heated at 1430t; for 4 hours, and then hot-rolled to a 2.2mm thick hot-rolled sheet. did. After that, about 40% primary cold rolling was performed, and intermediate annealing was performed at 1050t for 5 minutes. During this intermediate annealing, the rapid heat treatment at 500'C to 900 at 15: / s and the intermediate annealing from 900: to 500: 20 A quenching treatment was performed at ° c / s.
  • cold rolling was performed at about 85% to obtain a cold rolled sheet with a thickness of 0.20 rara.
  • warm rolling was performed at 250 ° C.
  • degreased steel sheet surface after retaining the surface temperature to about 100 ° C MgS0 4 (0.01 mol / i?) And Mg ( '0 3) 2 ( 0.01 mol / ⁇ ⁇ ) mixture (90 ° C) Is applied to the steel sheet surface with a rubber roll having an uneven surface, and the coating area and the non-coating area are alternately formed, followed by decarburization in wet hydrogen at 850 ° C ⁇ First recrystallization annealing, followed by MgO After the annealing separator was applied, the temperature was gradually decreased from 850 to 1100 ° C. at 8 ° C./hr, and then, purification annealing was performed in a hydrogen atmosphere at 1200: 1 for 10 hours.
  • the magnetic properties and surface properties of the obtained product were as follows.
  • annealed mainly MgO Agent A 1 2 0 3 powder adhesion amount which is a reaction inhibitor of the annealing separator and the steel sheet subscale Si0 2 prior to applying the 0.3 g / tn 2, attached to the substantially perpendicular direction to the rolling direction of the steel sheet At a condition of width of 1.5 ram and repetition interval of 8 mm, it is adhered in a line on the steel sheet surface, and then an annealing separator mainly composed of MgO is applied.
  • a continuous slab containing 0.025% of acid-soluble M and 0.020% of Se was heated at 1420: for 4 hours and then hot-rolled to a thickness of 2.2 mm.
  • intermediate annealing was performed at 1100 for 2 minutes.
  • a rapid heat treatment of 12: / s was performed from 500 to 900 t and a rapid cooling treatment of 18 / s from 900 to 500 after the intermediate annealing.
  • a pulsed laser was used to irradiate linearly (in a line width of 0.3 mm) in the direction perpendicular to the rolling direction at intervals of 8 nun, and an SbCl 3 (0.01 rnol / £, 90 ° C) solution was applied to the laser irradiation position.
  • SbCl 3 (0.01 rnol / £, 90 ° C) solution was applied to the laser irradiation position.
  • an annealing separator containing MgG as a main component was applied on the steel sheet surface, and the temperature was raised from 850 ° C to 1100 ° C at 10 ° C / hr, followed by secondary recrystallization. Purified annealing in dry hydrogen for hours.
  • an insulating film mainly composed of phosphate and colloidal silica was baked, and then subjected to strain relief annealing at 800 ° C. for 2 hours.
  • the magnetic properties and surface properties of the product at that time were as follows: o
  • Magnetic properties are B ,. : L.94T, W 17/5 . : 0.79 w / kg, and the surface properties were very good, with a 0.8% occurrence of surface defects.
  • a steel ingot containing 0.030% of acid-soluble Al, 0.022% of S, 0.15% of Cu, and 0.10% of Sn was hot-rolled into a hot-rolled 2.0-mm-thick sheet, and then subjected to primary cold rolling (cold rolling). Rate is about 40%).
  • intermediate annealing was performed at 1050 for 5 minutes.At this time, the temperature rise from 500 to 900 ° C was quenched at 18 ° C / s and the temperature was lowered from 900 ° C to 500 after intermediate annealing.
  • a quenching treatment of 20 t / s was performed. After that, a cold rolled sheet of about 89% was applied to make a final cold rolled sheet with a thickness of 0.17 mm.
  • decarburization in wet hydrogen at 840 and primary recrystallization annealing were performed, but before this treatment, an elector beam was used in a direction perpendicular to the rolling direction. Then, scanning was performed at intervals of 12 mm over a width of 0.5 mm to form a non-uniform heat area.
  • the surface of the steel sheet was coated with an annealing separator mainly composed of MgO, then the temperature was raised from 850 ° C to 1100 ° C at 15 ° C / hr, followed by secondary recrystallization. Purified annealing in dry hydrogen for hours.
  • an annealing separator mainly composed of phosphate and colloidal silica was applied and baked, followed by strain relief annealing at 800 ° C for 5 hours.
  • the magnetic properties of the product at that time are B 10 : l.94T,
  • a continuous slab containing 0.020% of acid-soluble Al, 0.022% of Se, and 0.023% of Sb was heated to 142 (TC for 4 hours and hot-rolled to a 2.2 nun thick hot-rolled sheet.
  • an intermediate annealing was performed for 3 minutes at 1080.
  • micro-strain was introduced at intervals of 11 lines in a line (line width 0.5 width) in the direction perpendicular to the rolling direction, and then pickled, and then SbCl 3 (0.01 mo ⁇ / &, 90:) liquid Immersed in Then, after applying an insulating film mainly composed of phosphate and colloidal force, recovery and recrystallization annealing combined with strain relief annealing at 800 ° C. for 5 hours were performed.
  • the magnetic properties and surface properties of the obtained product were as follows.
  • a continuous slab containing 0.030% of acid-soluble Al, 0.020% of Se, 0.1% of Sn, and 0.1% of Cu was heated at 1430 ° C for 4 hours and then hot-rolled into a hot-rolled sheet having a thickness of 2.2 mm. After that, it was subjected to primary cold rolling of about 40 mm, followed by intermediate annealing at 1Q50 ° C for 5 minutes. During the intermediate annealing, a rapid heat treatment at 500 ° C to 900 ° C at 15 ° C / s and a rapid cooling treatment at 900 ° C to 500 ° C at 20 ° C / s after the intermediate annealing are performed.
  • B If the value is 1.92T or more, W17 / 5 . It is capable of industrially producing thin unidirectional silicon steel sheets with low iron loss of less than 0.85 K / kg (0.23 mm thick) and extremely excellent product surface properties. It has a remarkable effect that can be achieved.
  • Mo and A1 are contained in the material and the final cold-rolled sheet is formed by the cold rolling twice method, and then during decarburization and primary recrystallization annealing or By forming heterogeneous micro-domains on the surface of the steel sheet after finish annealing, it develops a non-uniform and fine-grained secondary grain recrystallization structure and has excellent iron loss characteristics and excellent surface properties. Products can be manufactured in a stable process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

A process for consistently producing a low core loss, thin, unidirectional silicon steel plate. The process makes it possible to produce a low core loss, unidirectional silicon steel plate having a thickness of 0.1 to 0.25 mm for use in producing transformers with advantageously avoiding deterioration of surface properties by considering chemical ingredients of steel, optimizing rolling conditions, particularly cold-rolling conditions, and forming allomeric microzones on the surface of a steel plate. The steel plate does not undergo deterioration by stress-relieving annealing.

Description

明 細 書 表面性状の優れた低鉄損薄手一方向性  Description Low iron loss with excellent surface properties
珪素鋼板の製造方法  Manufacturing method of silicon steel sheet
(技術分野) (Technical field)
低鉄損一方向性珪素鋼板、 それもとく に薄手である場合 における表面形状改善とさらに 2次再結晶集合組織の制御 による磁束密度の向上に関連してこの明細書で述べる技術 内容は、 上記珪素鋼板の安定した工程における製造を可能 ならしめることについての開発研究の成果を提案すること ϊ 60 The technical contents described in this specification in relation to the low iron loss unidirectional silicon steel sheet, especially for the improvement of the surface shape when it is thin and the improvement of the magnetic flux density by controlling the secondary recrystallization texture, are as described above. ϊ 6 to propose the results of development research about what makes it possible to manufacture in stable process of silicon steel sheet 0
(背景技術)  (Background technology)
一方向性珪素鋼板は変圧器、 電気機器の鉄心材料として 利用できるもので磁束密度 ( B10 値で代表される。 ) が髙 く、 鉄損 ( W17/5o値で代表される。 ) の低いことが要求さ れている。 Grain oriented silicon steel sheet transformer (represented by 10 values B.) The magnetic flux density that can be used as core materials of the electrical equipment髙rather, iron loss (represented by W 17/5 o value.) Low is required.
この目的の達成のために今までにおびただしい数の改善 がなされ、 今日では磁束密度 B,。 値 1.89T以上で、 鉄損 «17/5。値1.05W/kg以下の低鉄損を有する一方向性珪素鑭板 が製造されるようになった。 Numerous improvements have been made to this end, and today magnetic flux density B ,. Iron loss « 17/5 with values above 1.89T . A unidirectional silicon steel sheet having a low iron loss of 1.05 W / kg or less has been produced.
しかしながらエネルギー危機を境にしてより鉄損の低い 一方向性珪素鋼板の製造が急務の問題となり、 今曰では欧 米を中心にして超低鉄損珪素鋼板についてはボーナスを附 するという制度 ( Loss evalution system)が普及して来て いる。 このように鉄損値を著しく低く した一方向性珪素鋼板の 製造方法としては、 最近に至り次のような方法が提案され ている。 However, since the energy crisis, the production of unidirectional silicon steel sheets with lower iron loss has become an urgent issue, and now a system to provide bonuses for ultra-low iron loss silicon steel sheets mainly in Europe and the United States (Loss evalution system) is becoming popular. The following method has recently been proposed as a method for producing a grain-oriented silicon steel sheet with an extremely low iron loss value.
すなわち、 特阿昭 57-2252 号、 特公昭 57-53419号、 特公 昭 58- 5968 号、 特公昭 58-26405号、 特公昭 58- 26406号、 特 公昭 58-26407号および特公昭 58- 36051号各公報に記載され ているように、 最終仕上焼鈍における不適当な方位の結晶 粒の成長を抑制するためのィ ンヒビターとして A1 N 析出相 を利用し、 かつ製品の一方向性珪素鋼板の表面に圧延方向 に対しほ:'ほ直角にレ一ザ一ビームを数 mm 隔'で 射するこ とによって鐧扳表面に人工粒界を導入し、 この人工粒界に よって鉄損を小さ くする方法である。  No. 57-2252, No. 57-53419, No. 58-5968, No. 58-26405, No. 58-26406, No. 58-26407 and No. 58- As described in each publication of 36051, the A1N precipitated phase is used as an inhibitor to suppress the growth of crystal grains with inappropriate orientation in the final finish annealing, and the production of unidirectional silicon steel sheet On the surface with respect to the rolling direction: By irradiating a laser beam at a right angle at a distance of several mm, an artificial grain boundary is introduced on the surface, and iron loss is reduced by this artificial grain boundary. How to
しかながらこの提案の人工粒界導入方法では局部的に高 転位密度領域を形成させてあるため、 このような処理を行 つた製品は 350 °C程度以下の低温でしか安定に使用できな い問題がある。  However, the proposed method of introducing an artificial grain boundary locally forms a high dislocation density region, so that a product subjected to such treatment can be used stably only at a low temperature of about 350 ° C or less. There is.
上掲引用の如き A 1 N 析出相を利用した一方向性珪素鐧板 の製造方法においては、 ィ ンヒビターとして A 1 N と共存さ せる MnS を解離 ·固溶させるために、 熱間圧延前のスラブ 加熱を通常の鋼の場合よりも高温で行う必要があるが、 こ のような高温でのスラブ加熱を施せば、 スラブ加熱時ある いは熱間圧延時に熱間割れを生じて製品に表面欠陥が発生 し易く、 特に熱間加工性を阻害する S iの含有量が 3. 0%を越 えれば製品の表面性状が著しく劣化する。  In the method for producing a unidirectional silicon steel sheet using an A 1 N precipitated phase as cited above, MnS coexisting with A 1 N as an inhibitor is dissociated and solid-dissolved before hot rolling. Slab heating needs to be performed at a higher temperature than in the case of ordinary steel.However, if slab heating is performed at such a high temperature, hot cracking will occur during slab heating or hot rolling, and the product will have a surface Defects are likely to occur, especially if the Si content, which inhibits hot workability, exceeds 3.0%, the surface properties of the product will be significantly deteriorated.
この点、 先に発明者らが特開昭 59-85820号公報に開示し たように、 A1 N 析出相を利用した場合に S i含有量の高い S i 3. 1 〜4. 5%の珪素鋼素材が、 本質的に高磁束密度で低鉄損 の製品を得るに適した素材であることに着目し、 その場合 の欠点である表面性状の劣化を解決する手段として熱延前 の素材表面層に Moを濃化させることにより、 高 S i含有量で も表面性状を良好になし得る。 しかしこの新しい手法によ り製品の表面性状は以前に比べて大幅に改善されたが、 最 近、 低鉄損を得るためとく に 0. 23〜0. 17mm厚に薄手化した 製品に関しては、 表面性状の向上効果が少なく大きな問題 として残されている。 In this regard, as disclosed by the inventors in Japanese Patent Application Laid-Open No. 59-85820, when the A1 N precipitated phase is used, the Si content is high. Focusing on the fact that silicon steel material of 3.1 to 4.5% is essentially a material suitable for obtaining products with high magnetic flux density and low iron loss, the deterioration of surface properties which is a disadvantage in that case is considered. As a means to solve the problem, by concentrating Mo in the material surface layer before hot rolling, it is possible to obtain a good surface property even with a high Si content. However, although the surface properties of the product have been greatly improved by this new method compared to before, recently, products with a thinner thickness of 0.23 to 0.17 mm have been developed to obtain low iron loss. The effect of improving the surface properties is small and remains as a major problem.
これとは別に 析出相の利用は、 本来強冷延一回法に よっているため、 薄手化した製品を製造しょうとすると、 二次再結晶粒が極めて不安定になり、 Goss方位に強く集積 した 2次再結晶粒を発達させることが困難であるという問 Separately from this, the use of the precipitated phase is based on the single-hot-rolling method, so when manufacturing a thinner product, the secondary recrystallized grains became extremely unstable and strongly accumulated in the Goss orientation. The question that it is difficult to develop secondary recrystallized grains
¾ちめった。 I'm sorry.
ごく最近特開昭 59- 126722 号公報において、 高 S i含有量 の下が/ N 析出相を利用して薄手化した製品を安定製造す るためには、 従来の一回の強冷延法を大幅に変えた 2回の 冷間圧延をとく に/ N のほかに小量の Cuと Snとを複合添加 した組成の熱延素材に適用することが開示された。  Very recently, in Japanese Patent Application Laid-Open No. 59-126722, in order to stably produce a thin product using a high Si content / N precipitate phase, a conventional one-time strong cold rolling method was used. It has been disclosed that two cold rollings with a drastically changed Nb, particularly applied to a hot rolled material having a composition in which a small amount of Cu and Sn are added in addition to / N.
この手法は薄手化した製品の鉄損を安定して低下させる のに効果的ではあるが、 通常 S iを増量した状況下ではスラ ブの高温加熱を必要とするので、 やはり表面性状の優れた 製品を得ることが困難であること、 さらに 2次再結晶粒の 安定化のために小量の Snと Cuを添加するため製品が大幅に コス ト高となることのようにまだ解決されるべき問題が多 く残されている。 ところで一方向性珪素鋼板の鉄損を低下させる方法と し ては、 Although this method is effective for stably reducing iron loss of thinned products, it usually requires high-temperature heating of the slab under conditions where Si is increased, so it also has excellent surface properties. The problem is still to be solved, such as the difficulty of obtaining the product, and the addition of small amounts of Sn and Cu to stabilize the secondary recrystallized grains, resulting in a significant cost increase of the product Many problems remain. By the way, as a method of reducing the iron loss of a grain-oriented silicon steel sheet,
①珪素鑭中の S i含有量を高めること、  (1) Increasing the Si content in silicon (2)
②製品板厚を薄くする。  (2) Reduce the product thickness.
③鋼板の純度を高めること、  ③ to increase the purity of the steel sheet,
④製品の 2次再結晶粒の Goss方位集積度を低下させない で細粒の 2次再結晶粒を発達させることなどが基本的に考 えられている。  ④ Basically, it is considered to develop fine secondary recrystallized grains without lowering the Goss orientation accumulation of secondary recrystallized grains of the product.
まず①に関して S i含有量を通常の 3. 0%より増加したり、 ②に関して通常製品板厚 0. 35, 0. 30ramより薄い 0. 23, 0. 20 腳にすることが試みられたが、 いずれも 2次再結晶組織が 不均一となり、 G oss方位集積度が低下する問題が生じる。 加え①に従い通常よりも S i含有量を増加させた場合、 熱 間ぜぃ化が顕著となり、 スラブ加熱あるいは熱間圧延途中 で熱間割れを生じ、 製品の表面性状が著しく劣化してしま うことはすでに述べた。  Firstly, it was attempted to increase the Si content in (1) above the normal 3.0%, and in (2) to 0.23, 0.20 mm which is thinner than the normal product thickness of 0.35, 0.30 ram. In both cases, the secondary recrystallized structure becomes non-uniform, causing a problem that the integration degree of G oss orientation decreases. In addition, if the Si content is increased more than usual according to (1), hot embrittlement becomes remarkable, hot cracking occurs during slab heating or hot rolling, and the surface properties of the product deteriorate significantly. That has already been mentioned.
一方において③の鋼板の純度向上又は④の方向性の改善 に闋しては、 現在極限と考えられる所まで来ている。 例え ば現行製品の 2次再結晶粒の Goss方位はすでに圧延方向に 平均 3 ° 〜 4 ° 以内に集積していて、 このように高度に集 積した状況で結晶粒径をさらに小さ くすることは冶金学上 きわめて困難とされている。  On the other hand, the improvement of the purity of the steel sheet or the improvement of the directionality of (3) has reached the point where it is considered to be the limit at present. For example, the Goss orientation of the secondary recrystallized grains of the current product is already accumulated within the average of 3 ° to 4 ° in the rolling direction, and in such a highly aggregated condition, the grain size should be further reduced. Is extremely difficult in metallurgy.
この発明は以上の事情を背景としすでに述べた従来技術 の最近の動向に鑑み、 表面性状が極めて優れしかも鉄損が 著しく小さ く、 またさらに高磁束密度の薄手一方向性珪素 鋼板を工業的に安定してと く に有利に製造し得る方法を提 供することを目的とするものである。 In view of the above-mentioned circumstances, the present invention has been developed in view of the recent trends in the prior art described above, and is intended to industrially produce a thin unidirectional silicon steel sheet having extremely excellent surface properties and extremely small iron loss and high magnetic flux density. Providing a method that enables stable and particularly advantageous production It is intended to provide.
(発明の開示)  (Disclosure of the Invention)
上記の目的は次のように成就される。  The above objectives are achieved as follows.
Si 3.1 〜4.5wt¾,  Si 3.1 to 4.5wt¾,
Mo 0.003 〜0. lwt%、  Mo 0.003--0.lwt%,
酸可溶 Al 0. Q05〜0.06wt% 、  Acid soluble Al 0.Q05 ~ 0.06wt%,
そして Sおよび Seのいずれか 1種または 2種を合計量で And one or two of S and Se in total
0.005 ~0. lwt%、 0.005 ~ 0.lwt%,
を含有するス ラ ブを熱間圧延して熱延板とした後、 圧下率 10〜60% の 1次冷間圧延を施しついで中間焼鈍を経て、 圧 下率 75〜90% の 2次冷間圧延を施し 0.1 〜0.25删厚の最終 板厚に仕上げた薄手冷延板を、 湿水素中で脱炭 · 1次再結 晶焼鈍後、 高温仕上焼鈍するこ とを特徴とする、 表面性状 の優れた低鉄損薄手一方向性珪素鋼板の製造方法 (第 1発 明) 。 Hot rolled into a hot rolled sheet, followed by primary cold rolling at a draft of 10 to 60%, followed by intermediate annealing, followed by secondary cooling at a draft of 75 to 90% Cold rolled sheet finished to a final thickness of 0.1 to 0.25 mm by cold rolling, decarburized in wet hydrogen, primary recrystallization annealing, and then high-temperature finish annealing. Method for producing a thin unidirectional silicon steel sheet with excellent low iron loss (first invention).
Si 3.1〜4.5wt%、  Si 3.1 ~ 4.5wt%,
Mo 0.003〜0. lwt%、  Mo 0.003-0.lwt%,
Sb 0.005〜0.2wt%、  Sb 0.005-0.2wt%,
酸可溶 Al 0.005〜0.06wt% 、 .  Acid-soluble Al 0.005-0.06wt%,.
そして Sおよび Seのいずれか 1種または 2種を合計量で And one or two of S and Se in total
0.005 〜0. lwt%、 0.005-0.lwt%,
を舍有するス ラ ブを熱間圧延して熱延板と した後、 圧下率 10〜60% の 1次冷間圧延を施し、 ついで中間焼鈍を経て、 圧下率 75〜90% の 2次冷間圧延を施し 0.1 〜0.25mm厚の最 終板厚に仕上げした薄手冷延板を、 湿水素中で脱炭 · 1次 再結晶焼鈍後、 高温仕上焼鈍することを特徴とする、 表面 性状の優れた低鉄損薄手一方向性珪素鋼板の製造方法 (第Hot-rolled slabs with hot rolling to form a hot-rolled sheet, subjected to primary cold rolling at a reduction rate of 10 to 60%, and then subjected to intermediate annealing, followed by secondary cold rolling at a reduction rate of 75 to 90%. The surface is characterized in that a thin cold-rolled sheet that has been subjected to cold rolling and finished to a final thickness of 0.1 to 0.25 mm is decarburized in wet hydrogen, primary recrystallization annealing, and then high-temperature finish annealing. Manufacturing method of low-loss thin unidirectional silicon steel sheet with excellent properties (No.
2発明) 。 2 invention).
S i 3. 1〜4. 5w t S i 3.1 to 4.5w t
o 0. 003〜0. l t¾.  o 0.003 to 0. l t¾.
酸可溶 A l 0. 005〜0· 06wt¾ 、  Acid soluble A l 0.005 to 0.006wt¾,
そして Sおよび Seのいずれか 1種または 2種を合計量で And one or two of S and Se in total
0. 005 〜0. lwtj、 0.005 to 0.lwtj,
を含有するス ラブを熱間圧延して熱延板と した後、 圧下率 10〜60% の 1次冷間圧延を施しついで中間焼鈍を経て、 圧 下率 75〜90% の 2次冷間圧延を施し 0. 1 〜0. 25mm厚の最終 板厚に仕上げ、 この薄手冷延板を湿水素中で脱炭 · 1次再 結晶焼鈍するに際して、 Hot-rolled slabs containing hot-rolled slabs are subjected to primary cold rolling at a reduction rate of 10 to 60%, followed by intermediate annealing, followed by secondary cold rolling at a reduction rate of 75 to 90%. Rolled and finished to a final thickness of 0.1 to 0.25 mm, and the thin cold rolled sheet is decarburized in wet hydrogen.
引続く高温仕上焼鈍を経た鋼板表面上に異質微小領域区 画の形成をもらたす処理を予め施しておいて、 高温仕上焼 鈍に供することを特徵とする表面性状の優れた低鉄損薄手 高磁束密度一方向性珪素鋼板の製造方法 (第 3発明) 。  Low iron loss sheet with excellent surface properties characterized by being subjected to high-temperature finish annealing in advance by applying a treatment to give formation of heterogeneous micro-domains on the steel sheet surface that has been subjected to subsequent high-temperature finish annealing. Method for producing high magnetic flux density unidirectional silicon steel sheet (third invention).
S i 3. 1〜4. 5wt%、  S i 3.1 ~ 4.5wt%,
Mo 0. 003〜0. lwt%、  Mo 0.003-0.lwt%,
Sb 0. 005〜0. 2wt%、  Sb 0.005 to 0.2 wt%,
酸可溶 A l 0. 005〜0. 06wt¾ 、  Acid-soluble A l 0.005-0.006wt¾,
そして Sおよび Seのいずれか 1種または 2種を合計量で And one or two of S and Se in total
0. 005 〜0. lwt%、 0.005 to 0.lwt%,
を含有するスラブを熱間圧延して熱延板とした後、 圧下率 10〜60% の 1次冷間圧延を施しついで中間焼鈍を経て、 圧 下率 75〜90% の 2次冷間圧延を施し 0. 1 〜0. 25厚画の最終 板厚に仕上げ、 この薄手冷延板を湿水素中で脱炭♦ 1次再 結晶焼鈍するに際して、 Hot-rolled slabs containing, are subjected to primary cold rolling at a reduction rate of 10 to 60%, followed by intermediate annealing, and then secondary cold rolling at a reduction rate of 75 to 90% To a final thickness of 0.1 to 0.25, and the thin cold rolled sheet is decarburized in wet hydrogen. When performing crystal annealing,
引続く高温仕上焼鈍を経た鋼板表面上に異質微小領域区 画の形成をもらたす処理を予め施しておいて、  Preliminary treatment to give the formation of heterogeneous micro-domains on the steel sheet surface that has been subjected to subsequent high-temperature finish annealing,
高温仕上焼鈍に供することを特徵とする表面性状の優れた 低鉄損薄手高磁束密度一方向性珪素鋼板の製造方法 (第 4 発明) 。 A method for producing a low-iron-loss thin high-flux-density unidirectional silicon steel sheet having excellent surface properties, which is characterized by being subjected to high-temperature finish annealing (a fourth invention).
S i 3. 1〜4. 5 t¾  S i 3.1 to 4.5 t¾
Mo 0. 003〜0. lwt%、  Mo 0.003-0.lwt%,
酸可溶 A l 0. 005〜0. 06 t¾ 、  Acid soluble A l 0.005-0.006 t¾,
そして Sおよび Seのいずれか 1種または 2種を合計量で And one or two of S and Se in total
0. 005 〜0. lwt%、 0.005 to 0.lwt%,
を含有するス ラ ブを熱間圧延して熱延板とした後、 圧下率 10〜60% の 1次冷間圧延を施し、 ついで中間焼鈍を経て、 圧下率 75〜90% の 2次冷間圧延を施し 0. 1 〜0. 25删厚の最 終板厚に仕上げた薄手冷延板を、 湿水素中で脱炭 · 1次再 結晶焼鈍後、 高温仕上焼鈍し、 さらにこの鋼板表面上に異 質微小領域区画を形成することを特徵とする、 表面性状の 優れた低鉄損薄手一方向性珪素鋼板の製造方法 (第 5発明)Hot rolled into a hot rolled sheet, followed by primary cold rolling at a draft of 10 to 60%, followed by intermediate annealing, followed by secondary cold rolling at a draft of 75 to 90% The cold rolled sheet, which has been cold rolled to a final thickness of 0.1 to 0.25 mm, is decarburized in humid hydrogen.After primary recrystallization annealing, it is annealed at high temperature, followed by surface annealing. A method for producing a low-iron-loss thin unidirectional silicon steel sheet having excellent surface properties, characterized by forming a heterogeneous microregion section on the upper surface (fifth invention)
S i 3. 1〜4. 5wt%、 S i 3.1 ~ 4.5wt%,
Mo 0. 003〜0. lw t%、  Mo 0.003-0.lw t%,
Sb 0. 005〜0. 2wt¾.  Sb 0.005 to 0.2 wt¾.
酸可溶/ 0. 005〜0. 06wt¾ 、  Acid soluble / 0.005 ~ 0.06wt¾,
そして Sおよび Seのいずれか 1種または 2種を合計量で And one or two of S and Se in total
0. 005 〜0. lwt%、 0.005 to 0.lwt%,
を含有するス ラ ブを熱間圧延して熱延板とした後、 圧下率 10〜60% の 1次冷間圧延を施し、 ついで中間焼鈍を経て、 圧下率 ·75〜90% の 2次冷間圧延を施し 0. 1 〜0. 25ram厚の最 終板厚に仕上げた薄手冷延板を、 湿水素中で脱炭 · 1次再 結晶焼鈍後、 高温仕上焼鈍し、 さらにこの鋼板表面上に異 質微小領域区画を形成することを特徵とする、 表面性状の 優れた低鉄損薄手一方向性珪素鋼板の製造方法 (第 6発明) なお、 上記の各発明を通じて中間焼鈍については、 昇温 過程、 降温過程とも 500 〜900 °C間をとく に毎秒 5 °C以上 にて加熱又は冷却することが実施上好適である。 Hot-rolled into a hot-rolled sheet, followed by primary cold rolling at a draft of 10 to 60%, followed by intermediate annealing. Reduced cold-rolled thin cold-rolled sheets that have been subjected to secondary cold rolling at 75 to 90% and finished to a final thickness of 0.1 to 0.25 ram have been decarburized in wet hydrogen.After primary recrystallization annealing A high-temperature finish annealing, and a method for producing a low-iron-loss thin unidirectional silicon steel sheet having excellent surface properties, characterized by forming a heterogeneous microregion on the surface of the steel sheet (Sixth invention) Through the above inventions, it is practically preferable to heat or cool the intermediate annealing between 500 and 900 ° C., particularly at 5 ° C. or more per second, in both the temperature raising process and the temperature lowering process.
発明者らは、 3. 1 〜4. 5wt の高珪素含有量の下での A 1 N 析出相の利用による、 薄手一方向性珪素鋼板を製造する際、 素材中に小量の Moを添加することによつて表面性状の優れ た製品が得られまた、 急熱 · 急冷の中間焼鈍を含む 2回の 冷間圧延法の採用によってきわめて安定した工程で低鉄損 を有する一方向性珪素鋼板の製造が可能であることを発見 し、 上記各発明を完成するに至った。  The inventors added a small amount of Mo to the material when producing thin unidirectional silicon steel sheets by using the A 1 N precipitated phase under a high silicon content of 3.1 to 4.5 wt. A product with excellent surface properties can be obtained by this process, and a unidirectional silicon steel sheet with low iron loss in an extremely stable process by adopting two cold rolling methods including rapid annealing and rapid cooling intermediate annealing It was discovered that it was possible to manufacture the above, and the above inventions were completed.
(図面の簡単な説明)  (Brief description of drawings)
第 1図は製品の磁気特性と 1次冷間圧延および 2次冷間 圧延の圧下率との関係および表面性状の状況を示す図、 第 2図は中間焼鈍の際の昇温速度および冷却速度と製品 の磁気特性との関係を示す図、  Fig. 1 shows the relationship between the magnetic properties of the product and the reduction rate of the first and second cold rolling and the state of the surface properties, and Fig. 2 shows the heating rate and cooling rate during intermediate annealing. Figure showing the relationship between the product and the magnetic properties of the product.
第 3図は製品の磁気特性と 1次冷間圧延および 2次冷間 圧延圧下率との関係および表面性状を示す図である。  Fig. 3 is a diagram showing the relationship between the magnetic properties of the product, the primary cold rolling and the secondary cold rolling reduction, and the surface properties.
(発明を実施するための最良の形態)  (Best mode for carrying out the invention)
まず、 第 1発明の完成を導いた実験的事例につき具体的 に説明する。  First, the experimental case that led to the completion of the first invention will be specifically described.
C 0. 048 t% 、 S i 3. 40wt%、 Mo 0. 025wt% 、 酸可溶 A l - 0.026wt%および S 0.025wt¾ を含有する鐧塊 (供試鋼 I ) と、 C 0.053wt% 、 Si 3.42wt¾. 酸可溶 Al 0.027wt% 、 S 0.024wt%. Sn 0. llwt および Cu 0.09wt%を含有する鐧塊 (比較鋼 I ) を何れも 1420。Cで 4時間加熱してィ ン ヒ ビタ 一を解離 · 固溶した後、 熱間圧延して 2.2 隨厚の熱延板と し C 0.048 t%, Si 3.40wt%, Mo 0.025wt%, acid soluble Al- 0.026wt% and S 0.025wt% lump (test steel I), C 0.053wt%, Si 3.42wt%. Acid soluble Al 0.027wt%, S 0.024wt%. Sn 0.llwt and Cu 0.09wt % Ingot (Comparative Steel I) was 1420. After heating at C for 4 hours to dissociate the inhibitor and form a solid solution, it is hot-rolled to form a hot-rolled sheet of 2.2 thickness.
その後 70% 以下の圧下率で 1次冷間圧延を行った後、 1050°Cで 3分間の中間焼鈍を行った。 この中間焼鈍の際に は 500 °Cから 900 でまでの昇温は 10で / sの急熱処理をほ どこ し、 また中間焼鈍後 900 " から 500 :まで / sの 急冷処理を施した。  After the first cold rolling at a rolling reduction of 70% or less, intermediate annealing was performed at 1050 ° C for 3 minutes. During the intermediate annealing, the temperature was raised from 500 ° C to 900 at a rate of 10 and a rapid heat treatment of 10 / s was applied, and after the intermediate annealing, a rapid cooling treatment from 900 ″ to 500: / s was performed.
その後 70% 〜91% の圧下率で 2次冷間圧延を施して 0.20 [ran厚の最終板厚の冷延板と してのち、 850 :の湿水素中で 脱炭 · 1次再結晶焼鈍を施した。'  After that, it is subjected to secondary cold rolling at a reduction rate of 70% to 91% to make a cold rolled sheet with a final thickness of 0.20 [ran thickness, and then decarburized in 850: wet hydrogen.Primary recrystallization annealing Was given. '
その後鋼板表面上に MgQ を主成分とする焼鈍分離剤を塗 布して、 とく に 850 ;〜 U00 Cまでの間を 8 : / hrで昇温 して 2次再結晶させた後、 1200 °Cで 10時間乾水素中で高温 仕上焼鈍つまり純化焼鈍を施した。  After that, the surface of the steel sheet is coated with an annealing separator containing MgQ as a main component, and the temperature is raised from 850; to U00 C at a rate of 8: / hr to perform secondary recrystallization. C was subjected to high-temperature finish annealing, that is, purification annealing in dry hydrogen for 10 hours.
そのときの製品の磁気特性および表面欠陥発生率 (鐧板 表面上に存在する表面キズのプロ ッ ク発生率を%で表示) を第 1図に示す。  Fig. 1 shows the magnetic properties of the product and the incidence of surface defects (the incidence of surface flaws on the surface of the steel plate is expressed in%).
第 1図の秦印に示すプロ ッ 卜から明らかなように素材中 に Moを含有する供試鋼 I による製品は 1次冷間圧延の圧下 率が 10〜60% (特に 20〜40%)において磁気特性が良好で、 しかも製品の表面欠陥発生率が 2 %以下 ( 1次冷間圧延の 圧下率が 20〜50% の範囲において 0.5%以下となる) である ことが注目される。 As is evident from the plot shown by Hata in Fig. 1, the product of test steel I containing Mo in the material has a primary cold rolling reduction of 10 to 60% (particularly 20 to 40%). The magnetic properties are good and the surface defect occurrence rate of the product is 2% or less (0.5% or less when the rolling reduction of the first cold rolling is in the range of 20 to 50%). It is noted that.
これに対して従来通りの組成の比铰鋼 I による製品の磁 気特性は同図〇印のプロ ッ 卜に明らかなように B ,。 値、 W 1 7 / 5。値共に供試鋼 I による場合よりも若干悪く、 と く に 製品の表面欠陥発生率は 6〜18% と極端に高い。 On the other hand, the magnetic properties of the product made of the conventional steel I with the same composition as in the plots marked with B and B are as apparent from the plots marked with 〇 in the same figure. Value, W17 / 5 . Both values are slightly worse than those of test steel I, and the incidence of surface defects of the product is extremely high, 6-18%.
次に C 0. 04·9¾ 、 S i 3. 45¾. o 0. 020%、 酸可溶/ 0. 028%、 S 0. 026%を舍有する鋼塊 (供試鋼 Π ) を 1410 °Cで 5時間加熱してィ ン ヒビタ一を解離 ♦ 固溶した後、 熱間圧 延して 2. 2 删厚の熱延板とした。  Next, a steel ingot (sample steel を) having C 0.04 · 9¾, Si 3.45¾.o 0.02%, acid-soluble / 0.028%, and S 0.026% was heated to 1410 ° C. ♦ The solution was dissociated by heating for 5 hours. ♦ After solid solution, it was hot rolled to form a 2.2 mm thick hot rolled sheet.
その後圧下率約 40% の 1次冷間圧延を施した後 1050 °Cで 3分間の中間焼鈍を行った。 この中間焼鈍の際に 500 でか ら 900 tまでの昇温速度、 中間焼鈍後の 900 °Cから 500 °C のでの冷却速度を何れも 1 :〜 100 °Cまでの範囲で実験を 行った。  After that, primary cold rolling was performed at a rolling reduction of about 40%, and intermediate annealing was performed at 1050 ° C for 3 minutes. Experiments were performed at a temperature increase rate of 500 to 900 t during the intermediate annealing and a cooling rate of 900 to 500 ° C after the intermediate annealing in the range of 1: to 100 ° C. .
中間焼鈍後の鋼板は圧下率約 83% の 2次冷間圧延を施し て 0. 23咖厚の最終冷延板とし、 その後 850 での湿水素中で 脱炭 · 1次再結晶焼鈍を施した後、 鐧板表面上に MgO を主 成分とする焼鈍分離剤を塗布した後 850 °Cから 1100でまで 10 °C / h rで昇温して 2次再結晶させた後、 1200でで 10時間 乾水素中で純化焼鈍を行った。 そのときの製品の磁気特性 を第 2図に示す。  The intermediately annealed steel sheet is subjected to secondary cold rolling at a rolling reduction of about 83% to give a final cold-rolled sheet with a thickness of 0.23 mm, followed by decarburization in wet hydrogen at 850 and primary recrystallization annealing. After applying an annealing separator containing MgO as the main component on the surface of the steel sheet, the temperature was raised from 850 ° C to 1100 at 10 ° C / hr to perform secondary recrystallization. Time Purification annealing was performed in dry hydrogen. Figure 2 shows the magnetic properties of the product at that time.
第 2図から明らかなように中間焼鈍時に 500 でから 900 °Cまでの昇温速度及び中間焼鈍後の 900 °Cから 500 でまで の冷却速度を 5 °C / s以上なかでも 10 °C / s以上とした場 合において著しく磁気特性の優れた製品を得ることができ る o このような中間焼鈍後の急熱、 急冷処理による特性向上 の理由は発明者らが既に特開昭 59-35625号公報 (前出) に 開示したと同じように { 110 } <001> 方位の集合組織を優 先的に発達させるのに有利なためと考えられる。 なお、 さ きに触れたように特開昭 59- 126722 号公報における冷延 2 回法の A 1 N 析出相利用による薄手一方向性珪素鋼板の製造 方法では、 従来の強冷延 1回法の際における均一化焼鈍後 の急冷処理による M N の微細析出処理を 1次冷間圧延後の 中間焼鈍後の冷却過程に援用するにすぎないのに反して、 この発明では、 中間焼鈍後の急冷のみならず、 中間焼鈍の 昇温過程における急熱との組合せにつき、 とく に Moを含有 する場合に限ってすぐれた磁気特性が得られることを新た に解明したものである。 As is evident from Fig. 2, during the intermediate annealing, the heating rate from 500 to 900 ° C and the cooling rate from 900 ° C to 500 after the intermediate annealing were 10 ° C / s, especially at 5 ° C / s or more. When the value is longer than s, a product with remarkably excellent magnetic properties can be obtained.o The reason for the property improvement by rapid heating and quenching treatment after the intermediate annealing is the same as that disclosed by the present inventors in Japanese Patent Application Laid-Open No. 59-35625 (supra). This is considered to be an advantage for preferentially developing the texture. As mentioned earlier, the method of manufacturing a thin unidirectional silicon steel sheet using the A1N precipitation phase in the double cold rolling method disclosed in Japanese Patent Application Laid-Open No. In the present invention, the fine precipitation treatment of MN by the quenching treatment after the homogenizing annealing is merely used for the cooling process after the intermediate annealing after the primary cold rolling. In addition, it has been newly clarified that excellent magnetic properties can be obtained especially when Mo is contained in combination with rapid heating during the temperature rise process of intermediate annealing.
次に第 2発明の開発経緯を下に説明する。  Next, the development history of the second invention will be described below.
C O. Q46wt%、 S i 3. 36wt%. Mo 0. 026wt% 、 Sb 0. 025wt% 、 酸可溶 A l 0. 024 t% および Se 0. 020wt% を含有する連鐃ス ラブ (供試鋼 A ) 並びに C 0. 049%. S i 3. 45%、 酸可溶 A1 0. 025 t¾. Sb 0. 023wt% および 0. 022wt% を舍有する連 鎳スラブ (比較鋼 B ) を何れも 1360 で 3時間加熱してィ ンヒビタ一を解離 · 固溶した後、 熱間圧延して 2. 2 mm厚の 熱延板とした。  A continuous slab containing C O. Q46wt%, Si 3.36wt%. Mo 0.026wt%, Sb 0.025wt%, acid-soluble Al 0.024t% and Se 0.020wt%. Test steels A) and C slabs (comparative steel B) containing 0.049%. Si 3.45%, acid soluble A1 0.025 t¾. Sb 0.023wt% and 0.022wt% Was heated at 1360 for 3 hours to dissociate and solid-solve the inhibitor, and then hot-rolled to form a 2.2 mm thick hot-rolled sheet.
その後これらの熱延板は 1050でで 2分間の均一化焼鈍後 急冷処理を行った。  After that, these hot rolled sheets were subjected to quenching after uniform annealing at 1050 for 2 minutes.
その後約 40% の圧下率で 1次冷間圧延を行った後、 1000 でで 2分間の中間焼鈍を行った。 この中間焼鈍の際には 500 でから 900 :までの昇温は 10で / sの急熱処理を施し、 ま た中間焼鈍後 900 °Cから 500 °Cまで 12 °C / sの急冷処理を 施した。 After that, primary cold rolling was performed at a rolling reduction of about 40%, and then intermediate annealing was performed at 1000 for 2 minutes. During this intermediate annealing, a rapid heat treatment of 500/900: After the intermediate annealing, a quenching treatment of 12 ° C / s was performed from 900 ° C to 500 ° C.
その後 85% の圧下率で 2次冷間圧延を施して 0. 20誦厚の 最終冷延板としたのち 830 °Cの湿水素中で脱炭を兼ねた 1 次再結晶焼鈍を施した。  Then, it was subjected to secondary cold rolling at a rolling reduction of 85% to obtain a final cold-rolled sheet having a thickness of 0.20, and then subjected to primary recrystallization annealing combined with decarburization in 830 ° C wet hydrogen.
その後鋼板表面上に MgQ を主成分とする焼鈍分離剤を塗 布した後 850 °Cから 10 °C / h rで昇温して 2次再結晶させた 後、 1200 °Cで 10時間乾水素中で純化焼鈍を施した後、 絶縁 被膜の焼付処理後 800 °Cで 3時間歪取り焼鈍を行った。  After that, an annealing separator containing MgQ as a main component is applied on the surface of the steel sheet, and then the temperature is increased from 850 ° C to 10 ° C / hr for secondary recrystallization, and then in dry hydrogen at 1200 ° C for 10 hours. Then, after annealing treatment of the insulating film, strain relief annealing was performed at 800 ° C for 3 hours.
そのときの製品の磁気特性および表面欠陥発生率 (鋼板 表面上に存在する表面キズのプロ ック発生率を%で表示) を表 1 に示す。 Table 1 shows the magnetic properties of the products and the incidence of surface defects (the incidence of surface flaws on the steel sheet surface is expressed as a percentage).
第 1 表 磁 気 特 性 Table 1 Magnetic characteristics
鋼塊成分 (wt%) Ingot composition (wt%)
B10(T) W1 7/5 o (W/kg) 表面キズのブ口 B 10 (T) W 1 7/5 o (W / kg) Surface scratch
ッ ク発生率(%)  Occurrence rate (%)
1.94 0.82 1.8 1.94 0.82 1.8
CO  CO
1.93 0.85 8 1.93 0.85 8
表 1に示す製品の磁気特性および表面形状から明らかな ように素材中に Moを含有する供試鐧 Aによる製品の磁気特 性 B1 Q 値が 1.94T 、 W17/50値が 0.82W/kgと良好で、 しかも 製品の表面欠陥発生率が 1.8 であることが注目される。 As can be seen from the magnetic properties and surface shape of the products shown in Table 1, the magnetic properties of the products based on the test material A containing Mo in the material B 1 Q value is 1.94T, W 17/50 value is 0.82W / It is noteworthy that the surface defect rate of the product is 1.8, which is good with kg.
これに対して従来通りの組成の比較鑭 Bによる製品の磁 気特性は 。 が 1.93T 、 W17/5Qが 0.85W/kgで素材中に Moを 含有する供試鋼 Bより も悪く、 と く に製品の表面欠陥発生 率は 8 %と極端に高い。 On the other hand, the magnetic properties of the product according to the conventional composition comparison B are as follows. It is 1.93T and W17 / 5Q is 0.85W / kg, which is worse than that of test steel B containing Mo in the material, and the incidence of surface defects of the product is extremely high at 8%.
次に第 3および 4の各発明の代表的開発経緯について説 明する。  Next, typical developments of the third and fourth inventions will be described.
C 0.053%、 Si 3.43%、 Mo 0.023% 、 酸可溶 Al 0.028% 、 S 0.027%を含有する鋼塊 (洪試鋼 ΠΙ ) C 0.056%、 Si 3.46 - 酸可溶 Al 0.026% 、 S 0.026%、 Sn 0.1% 、 Cu 0.1% を含有 する鋼塊 (比較鋼 Π ) 何れもを 1430Cで 3時間加熱してィ ン ヒ ビターを解離 · 固溶した後、 熱間圧延して 2.2 咖厚の 熱延板とした。  Steel ingot containing C 0.053%, Si 3.43%, Mo 0.023%, acid-soluble Al 0.028%, S 0.027% (Hot Test Steel C) C 0.056%, Si 3.46-acid-soluble Al 0.026%, S 0.026% Ingot containing 0.1% Sn, 0.1% Cu and 0.1% Cu (Comparative steel No.) were heated at 1430C for 3 hours to dissociate the inhibitor and form a solid solution. It was a rolled sheet.
その後 70% 以下の圧下率で 1次冷間圧延を行った後、  After the first cold rolling at a rolling reduction of 70% or less,
1100でで 3分間の中間焼鈍を行った。 この中間焼鈍の際に は 500 t:から 900 までの昇温は加熱速度 13C / sで急熱 処理し、 また中間焼鈍後 900 から 500 °Cまで冷却速度 Intermediate annealing was performed at 1100 for 3 minutes. During the intermediate annealing, the temperature rise from 500 t: to 900 is performed by rapid heating at a heating rate of 13 C / s, and the cooling rate from 900 to 500 ° C after the intermediate annealing
18t /s で急冷処理した。 It was quenched at 18 t / s.
その後 70% 〜91% の圧下率で 2次冷間圧延を施し 0.20画 厚の最終冷延板としたが、 冷間圧延の途中で 250 °Cの温間 圧延を施した。  After that, secondary cold rolling was performed at a rolling reduction of 70% to 91% to obtain a final cold-rolled sheet with a thickness of 0.20. During the cold rolling, warm rolling was performed at 250 ° C.
その後鐧板表面を温度 110 でにおいて脱脂した後、 MgSO. の希薄水溶液(80 tで 0. Olmol/1)をスプレーで圧延方向と 直角に 5 ,間隔に 0. 5 mm幅で塗布した。 また参考のために 鋼板表面を脱脂したままの試料 (参考例) も同時に用意し た。 Then, the surface of the plate was degreased at a temperature of 110. Then, a dilute aqueous solution of MgSO. It was applied with a width of 5 at right angles and 0.5 mm width at intervals. For reference, a sample with the steel plate surface degreased (Reference Example) was also prepared.
これらの試料は 850 °Cの湿水素中で脱炭 · 1次再結晶焼 鈍を施した後、 鋼板表面上に MgG を主成分とする焼鈍分離 剤を塗布した後 850 でから 1100 °Cまで 10 °c / hrで昇温して 2次再結晶させた後、 1200 °Cで 10時間乾水素中で純化焼鈍 を施した。  These samples were subjected to decarburization and primary recrystallization annealing in 850 ° C wet hydrogen, and then an annealing separator containing MgG as the main component was applied on the steel sheet surface.After 850 to 1100 ° C After the temperature was raised at 10 ° C / hr for secondary recrystallization, purification annealing was performed in dry hydrogen at 1200 ° C for 10 hours.
そのときの製品の磁気特性および表面欠陥発生率 (鋼板 表面上に存在する表面キズのブ口 ッ ク発生率を%で表示) を第 3図に示す。  Fig. 3 shows the magnetic properties of the product and the incidence of surface defects (the incidence of surface flaws on the surface of the steel plate is expressed as a percentage).
第 3図から明らかなように素材中に) 4οを添加した供試鐧 W (画, □印) は 1次冷間圧延の圧下率が 10から 60% (特 に 20〜40%)において磁気 性が良好で、 しかも製品の表面 欠陥発生率が 3 %以下 (と く に 1次冷間圧延圧下率が 20〜 50% の範囲において 1. 0 以下) であることが注目される。 これに対して従来組成の比較綱 Π (▲, △印) の特性は、 Β , ο 値、 W 1 7 / 5。値共に Mo添加材より も若干悪く、 かつ製品 の表面欠陥発生率は 6〜20% と極端に高い。 As can be seen from Fig. 3, the test specimen W (added in the material) with 4ο added (Fig. 3, □) shows the magnetic properties when the primary cold rolling reduction is 10 to 60% (particularly 20 to 40%). It is noteworthy that the properties are good and the surface defect occurrence rate of the product is 3% or less (especially 1.0 or less when the primary cold rolling reduction is in the range of 20 to 50%). Comparison leash conventional composition Π contrast (▲, △ mark) characteristics of, beta, o values, W 1 7/5. Both values are slightly worse than the Mo-added material, and the surface defect occurrence rate of the product is extremely high at 6 to 20%.
次に最終冷延板表面上に MgS04 の希薄水溶液をスプレー で圧延方向と直角に 5 mm間隔に 0. 5 画幅で塗布したとき磁 気特性は、 供試鋼 ΠΙの画印プロッ トのように 1次冷間圧延 圧下率 30〜40% ( 2次冷間圧延圧下率 87〜85% ) で、 Then magnetic properties when MgSO 4 in a dilute aqueous solution was coated at 0.5 picture scroll at right angles to 5 mm interval and the rolling direction by spraying a final cold-rolled sheet on the surface, as Eshirushi plot of test steels ΠΙ The primary cold rolling reduction rate is 30 to 40% (secondary cold rolling reduction rate is 87 to 85%),
7 / 5。値が 0. 72W/kgと極端に磁気特性が良好であり、 しか も製品の表面欠陥発生率も 1 %以下と良好である。 7/5. The magnetic properties are extremely good at 0.72 W / kg, and the incidence of surface defects on the product is good at 1% or less.
これに対して Moを添加しない比較鐧 Πによる塗布処理に おいても▲印プロ ッ トのように、 鉄損 W 1 7 / 5 Q値が 1次冷間 圧延圧下率 30〜40% において 0. 75W/kgと良好であるが、 製 品の表面欠陥発生率が 6〜? %と高い。 On the other hand, in the application treatment by comparison し な い し な い without adding Mo As shown in the plot, the iron loss W 17/5 Q value is as good as 0.75 W / kg at the primary cold rolling reduction of 30 to 40%, but the surface defects of the product The incidence is 6 ~? % And high.
従ってこれらの実験例から表面性状の優れた低鉄損薄手 一方向性珪素鋼板を製造するには高珪素素材中に小量の Mo の添加を行うこと、 冷延 2回法を採用すること、 そして最 終冷延板表面上に MgS04 の希薄水溶液の例で示した薬剤の 溶液や懸濁液の塗布を行うことの結合によつて達成される ことを示している。 Therefore, from these experimental examples, to produce low iron loss thin unidirectional silicon steel sheet with excellent surface properties, it is necessary to add a small amount of Mo to a high silicon material, adopt the cold rolling twice method, Then it shows that it is by connexion achieved in binding to perform a coating of a drug solution or suspension shown in the example of MgSO 4 in dilute aqueous solution the final cold-rolled sheet surface.
なおこの点はすでに特開昭 60-39124号公報にて一部触れ ^ように脱炭 · 1次再結晶焼鈍前の鋼板表面上に、 圧延方 向とほぼ直角に脱炭促進領域あるいは脱炭遅滞領域を交互 に形成して 2次再結晶粒を不均質に発達させ異質微小領域 区画を導入することによる鉄損の低い一方向性珪素鋼板の 製造方法として発明者らが提案したところであるが、 これ を最終冷延板表面塗布に先立つ急熱 ·急冷の中間焼鈍を含 む冷延 2回法にあわせ用いることにより、 とく に 2次再結 晶粒の安定成長を図ることができる。 またこのような鐧板 表面上に脱炭促進領域あるいは脱炭遅滞領域とを交互に区 画形成する方法は、 脱炭 · 1次再結晶焼鈍後に施用するこ とによつて-も有効で'おり、 この点もすで—に特開昭 '60'- 8'952丁 号公報に一部触れられている。  This point has already been partially mentioned in Japanese Patent Application Laid-Open No. 60-39124 ^ Decarburization · Decarburization promoting area or decarburization on the steel sheet surface before primary recrystallization annealing almost perpendicular to the rolling direction The inventors have just proposed a method for producing a unidirectional silicon steel sheet with low iron loss by alternately forming lagged regions, developing secondary recrystallized grains inhomogeneously, and introducing heterogeneous minute region sections. By using this in conjunction with the double cold rolling method including rapid annealing and rapid cooling intermediate annealing prior to the final cold rolled sheet surface coating, stable growth of secondary recrystallized grains can be achieved. Further, such a method of alternately forming a decarburization promoting region or a decarburization delayed region on the surface of a steel plate is also effective by applying after decarburization and primary recrystallization annealing. This point has already been partially mentioned in Japanese Patent Application Laid-Open No. '60'-8'952.
次に C 0. 048%、 S i 3. 41%、 Mo 0. 024% 、 酸可溶 A l 0. 025% Sb 0. 025% 、 S 0. 026%を舍有する鐧塊 (供試鋼 C ) および C 0. 052%、 S i 3. 38%、 酸可溶 A 1 0. 023% 、 S 0. 025% (供試 鐧 C ) を含有する鐧塊を 1420 °Cで 3時間加熱してィ ンヒ ビ タ一を解離 · 固溶した後、 熱間圧延して 2.0 mm厚の熱延板 と した。 Next, a lump with a C 0.048%, Si 3.41%, Mo 0.024%, acid-soluble Al 0.025% Sb 0.025%, S 0.026% C) and C 0.052%, Si 3.38%, acid soluble A 10.023%, S 0.025% (test 鐧 C) containing lump heated at 1420 ° C for 3 hours And Inhibit After dissociating and solid-solving the sample, it was hot-rolled into a hot-rolled sheet with a thickness of 2.0 mm.
その後 980 °Cで 3分間の中間焼鈍をはさんで 2回の冷間圧 延 ( 1次冷間圧下率は 50% 、 2次冷間圧下率は 80 )で 0.20 mm厚の最終冷延板と した。 ' なお、 この中間焼鈍の際には 500 でから 900 。Cまでの昇 温は加熱速度 10°C / sで急熱処理し、 また中間焼鈍後 900 °Cから 500 °Cまで冷却速度 13°C / sで処理した。  After that, a final cold-rolled sheet of 0.20 mm thickness was formed by two cold rollings (intermediate annealing at 980 ° C for 3 minutes) (50% primary cold reduction, 80 secondary cold reduction). And 'In the case of this intermediate annealing, 500 to 900. The temperature was raised to C by rapid heat treatment at a heating rate of 10 ° C / s, and after intermediate annealing, from 900 ° C to 500 ° C at a cooling rate of 13 ° C / s.
その後 840 °Cの湿水素中で脱炭焼鈍を兼ねた 1次再結晶 焼鈍を施した後、 ついでこの焼鈍板表面上に MgO を主成分 とする焼鈍分離剤を塗布するに先立って、' 焼鈍分離剤と鋼 板サブスケール中 Si02との反応阻害物質である M203 粉末 を、 0.5g/m2 の付着量、 鋼板の圧延方向とほぼ直角方向に 付着幅は 2 mtn、 そして繰返し間隔は 8 mmの条件下で、 鋼板 表面に線状に付着させ、 しかるのちに MgQ を主成分とする 焼鈍分離剤を塗布してから、 850 °Cから 10°C / hrで 1050°C まで昇温して 2次再結晶させた後、 1200 Cで 8時間の純化 処理した後、 絶緑被膜を焼付処理し 800 °Cで 3時間の歪み 取り焼鈍を行った。 After performing primary recrystallization annealing combined with decarburization annealing in 840 ° C wet hydrogen, then, before applying an annealing separator containing MgO as a main component on the surface of the annealed sheet, the M 2 0 3 powder as the reaction inhibiting substance with separating agent and the steel plate subscale in Si0 2, the adhesion amount of 0.5 g / m 2, substantially perpendicular to the attachment width to the rolling direction of the steel sheet 2 mtn and repeatedly, At a distance of 8 mm, attach linearly to the surface of the steel sheet, and then apply an annealing separator containing MgQ as a main component, then from 850 ° C to 1050 ° C at 10 ° C / hr. After secondary recrystallization by raising the temperature, purification treatment was performed at 1200 C for 8 hours, and then the absolutely green coating film was baked and subjected to strain relief annealing at 800 ° C for 3 hours.
なお比較のため A 1203 粉末の付着処理を省いて常法に従 い、 MgO を主成分とする焼鈍分離剤を塗布する方法により 方向性珪素鐧板を作成し、 比較例とした。 Note follow the usual manner by omitting the deposition process of the A 1 2 0 3 powder for comparison, to create a directional silicon鐧板by a method of applying an annealing separator mainly comprised of MgO, and a comparative example.
被膜性状について調べたところ比較例では綱板前面にわ たって灰色の均質なフォルステラィ ト被膜が形成されてい たが実施した A1203 粉末を塗布した領域については、 0.7 ίπι だけ厚みの少ないフォルステラィ ト被膜が形成さてい これらの製品の磁気特性および表面形状を表 2 に比較し て示す( For space but homogeneous Forusuterai bets coating gray Tatte I to Tsunaban front had been formed was coated with A1 2 0 3 powder was conducted in the Comparative Example was examined for coating properties, 0.7 ίπι only little thickness Forusuterai DOO The coating is formed The magnetic properties and surface shapes of these products are shown in Table 2 in comparison (
> 3 > 3
表 2Table 2
O CO CocO c  O CO CocO c
脱炭 · 1次再結晶焼鈍 磁 気 特 性 面 性 状 綱塊成分 (wt%) 後の焼鈍分離剤の塗布  Decarburization · Primary recrystallization annealing Magnetic properties Surface properties Application of annealing separator after rope mass component (wt%)
方法 Β,ο(Τ) Wi 7/50(W/kg) 表面キズのブロ rr ック発生率^)Method Β, ο (Τ) Wi 7 /50 (W / kg) surface flaws of Bro rr click incidence ^)
MgO を鋼板に均一塗布 1.94 0.84 0.4MgO is evenly applied to steel sheet 1.94 0.84 0.4
A1203 を局所的に塗布 1.94 0.77 0.5 後 MgO を塗布 A1 2 0 3 coated topically applied 1.94 0.77 0.5 After MgO to
MgO を綱板に均一塗布 1.93 0.90 9
Figure imgf000021_0001
Uniform application of MgO on rope 1.93 0.90 9
Figure imgf000021_0001
A1203 を局所的に塗布 1.93 0.86 10 後 MgO を塗布 A1 2 0 3 coated topically applied 1.93 0.86 10 After MgO to
表 2に示す製品の磁気特性および表面性状から明らかな ように素材中に Moを含有する供試鋼 Cによる製品の磁気特 性は脱炭 · 1次再結晶焼鈍後の MgQ 焼鈍分離剤を常法の方 法に従い鋼板に均一塗布した場合 Β,。 が 1.94T 、 17/50が 0.84W/f(gと良好で、 しかも製品の表面欠陥発生率も 0.4%で ある。 さらに同一の供試鋼 Cを用いて脱炭 · 1次再結晶焼 鈍後 A 1203 を局所的に塗布したのち MgO を塗布して不均一 なフオルステライ ト被膜を形成させた場合 が 1.94T 、 WI 7/5Qが 0.77W/kgときわめて良好で、 しかも製品の表面欠 陥発生率も 0.5%であることが注目される。 As is evident from the magnetic properties and surface properties of the products shown in Table 2, the magnetic properties of the products made of test steel C containing Mo in the material are decarburized and the MgQ annealing separator after primary recrystallization annealing is always used. When uniformly applied to steel sheet according to the method of Β ,. Is 1.94T and 17/50 is 0.84W / f (g), and the surface defect occurrence rate of the product is 0.4%. Decarburization and primary recrystallization annealing using the same test steel C If the post a 1 2 0 3 was coated with MgO After topically applied to form a non-uniform Fuorusuterai bets coating 1.94T, W I 7 / 5Q is very good as 0.77 W / kg, yet product It is noted that the incidence of surface defects is also 0.5%.
これに対して従来通りの組成の比較鋼 Dによる製品の磁 気特性は脱炭 · 1次再結晶焼鈍後の取扱い条件によって Β, ο が 1.93Τ 、 W17/5Qが 0.86〜0.90W/kgで素材中に Moを含 有する供試鋼 Cより も悪く、 また製品の表面欠陥発生率は 9〜10% と極端に高い。 On the other hand, the magnetic properties of the product using the comparative steel D with the same composition as before are decarburized. に よ っ て, ο is 1.93Τ, and W17 / 5Q is 0.86 to 0.90 W / kg depending on the handling conditions after the primary recrystallization annealing. This is worse than the test steel C containing Mo in the material, and the incidence of surface defects on the product is extremely high at 9 to 10%.
この点もすでに特開昭 60-92479号公報に一部触れたよう に 方向性珪素鋼板の表面被膜を構成するフォルステラィ ト被膜において厚みの異なる領域をつく ることによって、 磁区幅を細分化することによる鉄損の低い一方向性珪素鋼 板の製造方法として有用である。  In this regard, as already mentioned in Japanese Patent Application Laid-Open No. 60-92479, the domain width can be subdivided by creating regions of different thickness in the forsterite film constituting the surface film of grain-oriented silicon steel sheets. It is useful as a method for producing a unidirectional silicon steel sheet with low iron loss.
次に第 5および 6の各発明の代表的開発経緯を下に説明 する。  Next, typical developments of the fifth and sixth inventions will be described below.
C 0.053% 、 Si 3.43%、 Mo 0.026% 、 酸可溶 Al 0.029% 、 Se 0.021% 、 Sb 0.020% を舍有する鋼塊 (供試鐧 E ) およ びじ 0.058%、 Si 3.49%、 酸可溶 A1 0.026% 、 S 0.026%、 Cu 0.1%、 Sn 0.05%を舍有する鐧塊 (拱試鐧 F ) を 1420 で 5 時間加熱してィ ン ヒ ビタ一を解離 · 固溶した後、 熱間圧延 して 2. Q mm厚の熱延板とした。 C. 0.053%, Si 3.43%, Mo 0.026%, acid soluble Al 0.029%, Se 0.021%, Sb 0.020% steel ingot (test E) and 0.058%, Si 3.49%, acid soluble A1 0.026%, S 0.026%, Cu 0.1%, Sn 0.05% After the inhibitor was dissociated and solid-dissolved by heating for a period of time, it was hot-rolled to obtain a hot-rolled sheet having a thickness of 2. Q mm.
その後 1080°Cで 2分間の均一化焼鈍後急冷処理を行った 後、 950 °Cで 3分間の中間焼鈍をはさんで 2回の冷間圧延 ( 1次冷間圧下率は 50% 、 2次冷間圧下率 80% ) で 0.20iMi 厚の最終冷延板と した。  Then, after quenching after homogenizing annealing at 1080 ° C for 2 minutes, cold rolling is performed twice with intermediate annealing at 950 ° C for 3 minutes (primary cold reduction is 50%, 2%). The final cold-rolled sheet was 0.20 iMi thick at the next cold reduction of 80%.
なおこの中間焼鈍の際には 500 °Cから 900 °Cまでの昇温 は加熱速度 11°C / sで急熱処理し、 また中間焼鈍後 900 °C から 500 Cまで冷却速度 12°c / sで処理した。  During the intermediate annealing, the temperature was raised from 500 ° C to 900 ° C by rapid heat treatment at a heating rate of 11 ° C / s, and after the intermediate annealing, the cooling rate was 12 ° c / s from 900 ° C to 500 ° C. Processed.
その後 850 での湿水素中で脱炭を兼ねた 1次再結晶焼鈍 を施した後、 この鋼板表面に MgQ を主成分とする焼鈍分離 剤を塗布したあと、 850 °Cから 12°C / hrの昇温速度で 1050 °Cまで昇温して 2次再結晶させた後、 1220 :で 5時間乾水 素中で純化焼鈍を行-つお。 - ·  After the first recrystallization annealing combined with decarburization in wet hydrogen at 850, the surface of this steel sheet was coated with an annealing separator mainly composed of MgQ, and then from 850 ° C to 12 ° C / hr. After the temperature was raised to 1050 ° C at the temperature rising rate and secondary recrystallization was performed, purification annealing was performed in dry hydrogen at 1220: 5 for 5 hours. -·
その後一部の鐧板にっき、 レーザ一を用いて鋼板の 圧延方向に直角方向に 8 mni間隔 ( レーザー照射条件 : パル ス間隔 D =0.4 ram. 照射列間隔^ = 6咖、 パルス周波数 fa = 8KHz、 鋼板のスポッ ト当りのエネルギー E =3.5x10— 3 J) で微小歪を導入した後、 80での H2S04(60%)液中にて酸洗処 理した後 SbCl3 中に浸漬処理を施した。 After that, a part of the steel plate was used, and a laser beam was used to apply a laser to the steel sheet in the direction perpendicular to the rolling direction at intervals of 8 mni (laser irradiation conditions: pulse interval D = 0.4 ram. Irradiation line interval ^ = 6 咖, pulse frequency f a = 8 KHz, after introducing a small distortion in the energy E = 3.5x10- 3 J) of spot per bets steel, the SbCl 3 was pickled processed C. in H 2 S0 4 (60%) solution at 80 An immersion treatment was performed.
その後リ ン酸塩とコロイ ダルシリ力を主成分とする絶縁 被膜の焼付処理を行った後、 800 でで 3時間の歪み取りを 兼ねた、 レーザー照射位置の回復 · 再結晶処理を施して最 終製品とした。  Then, after baking treatment of the insulating coating mainly composed of phosphate and colloidal force, the laser irradiation position was recovered and recrystallized at 800 for 3 hours for strain relief. The product.
なお比較のため、 仕上焼鈍を行った後絶緑被膜の焼付処 理を行った後、 800 tで 3時間の歪み取り焼鈍を行った。 これらの製品の磁気特性および表面性状を表 3に比較し て示す。For comparison, after the finish annealing was performed, the green coating was baked, and then the strain relief annealing was performed at 800 t for 3 hours. Table 3 compares the magnetic properties and surface properties of these products.
Figure imgf000024_0001
表 3
Figure imgf000024_0001
Table 3
磁 気 特 性 & [1 性 状  Magnetic properties & [1
鋼塊成分 (wt%) 仕上焼鈍後の処理方法  Steel ingot composition (wt%) Treatment method after finish annealing
B10(T) Wl 7/50(W/kg) 表面キズのブロ B 10 (T) Wl 7/50 (W / kg)
ック発生率 (%)  Occurrence rate (%)
絶縁被膜処理 1.94 0.84 0.2  Insulation coating treatment 1.94 0.84 0.2
レーザー照射—酸洗→  Laser irradiation-pickling →
SbCl3 液中に浸漬→ 1.94 0.76 0.4 Immerse in SbCl 3 solution → 1.94 0.76 0.4
絶縁被膜処理 C  Insulation coating treatment C
CO  CO
(F)C 0.058¾, Si 3.49%, 絶縁被膜処理 1.93 0.90 9  (F) C 0.058¾, Si 3.49%, insulation coating 1.93 0.90 9
Al 0.0261 S 0.0261  Al 0.0261 S 0.0261
Cu 0.1%, Sn 0.05¾ レーザ一照射→酸洗—  Cu 0.1%, Sn 0.05¾ Laser irradiation → pickling
SBC 液中に浸潰 1.93 0.85 11  Submerged in SBC liquid 1.93 0.85 11
絶縁被膜処理 Insulation coating treatment
表 3に示す製品の磁気特性および表面性状から明らかな ように素材中に Moを舍有する供試鋼 Eによる製品の磁気特 性は仕上焼鈍後常法の方法に従う絶縁被膜処理した場合 B10 が 1.94T 、 W17/5。が 0.84W/kgと良好で、 しかも製品の 表面欠陥発生率も 0.2%である。 If insulated coating treatment according magnetic characteristics and test steel magnetic characteristics are final annealing after a conventional method of how the product by E for舍有the Mo to the Filling As apparent from the surface properties of the product B 10 shown in Table 3 1.94T, W 17/5 . Is 0.84 W / kg, and the surface defect rate of the product is 0.2%.
さらに同一の供試鐧 Eを用いて仕上焼鈍後レーザー照射 した後酸洗処理、 さらに SbCl3 液中での浸漬処理した後絶 緣被膜形成後歪み取り焼鈍を兼ねた回復 * 再結晶焼鈍を施 した場合では B1 Q が 1.94T 、 WI 7/s。が 0.76W/kgときわめ て良好で、 しかも製品の表面欠陥発生率も 0.4%であること が注目される。 Further pickling after finish annealing after the laser irradiation using the same test試鐧E, facilities recovery * recrystallization annealing which further serves as a absolute緣被film formed after strain relief annealing was dipped in SbCl 3 solution If B 1 Q is 1.94T, W I 7 / s. Is 0.76 W / kg, which is remarkably good, and the surface defect occurrence rate of the product is 0.4%.
これに対して従来通りの組成の比較鋼 Fによる製品の磁 気特性は仕上焼鈍後の取扱い条件によって B,。 が 1.93T 、 7/5。が0.85〜0.90W/kgで素材中に Moを舍有する供試鋼 E よりも悪く、 また製品の表面欠陥発生率は 9 ~11% と極端 これらのうちの一部の構成は上述した特公昭 57 - 2252 号- 特公昭 57-53419号、 特公昭 58- 5968 号、 特公昭 58- 26405号- 特公昭 58- 26406号、 特公昭 58-26407号および特公昭 58 - 36051 号各公報で開示されたように仕上焼鈍後の一方向性 珪素鑭板の表面に圧延方向に対しほぼ直角にレーザー照射 により人工粒界を導入して鉄損を小さ くする方法である。 しかし、 この方法は局部的な高転位密度領域を形成してい るために、 低温でしか安定に使用できないという欠点を有 していたのに反し、 レーザー照射により局部的に微小歪み を導入した後、 酸洗により地鉄を完全に露出させて Sbと高 温で反応させその局部領域の回復 · 再結晶を促進させるこ とによつて鋼板表面上に異質微小領域区画を形成させるこ とにより鉄損の低い一方向性珪素鋼板が有利に製造できる c この製造方法は上記のレーザー照射したままの製品板とは 異なり高温熱処理を施しても鉄損が劣化しない画期的な製 造方法であり、 この一部の構成は特開昭 60- 255926 号公報 に開示されている。 On the other hand, the magnetic properties of the product using the comparative steel F of the conventional composition depend on the handling conditions after finish annealing. There 1.93T, 7/5. Is 0.85 to 0.90 W / kg, which is worse than that of test steel E containing Mo in the material, and the incidence of surface defects on the product is extremely high, 9 to 11%. No. 57-2252-JP-B-57-53419, JP-B-58-5968, JP-B-58-26405- JP-B-58-26406, JP-B-58-26407 and JP-B-58-36051 As described above, this method is to reduce the iron loss by introducing artificial grain boundaries by laser irradiation on the surface of the unidirectional silicon steel sheet after finish annealing almost perpendicular to the rolling direction. However, this method has the disadvantage that it can be used stably only at low temperatures due to the formation of localized high dislocation density regions, but after introducing small strain locally by laser irradiation. The base iron is completely exposed by pickling, The c can be produced less oriented silicon steel sheet is preferably iron loss by the this to form a heterogeneous micro region partitioned by One Manzanillo with this to promote the recovery and recrystallization of the local area reacted steel sheet on the surface with warm The manufacturing method is an epoch-making manufacturing method in which iron loss does not deteriorate even when subjected to high-temperature heat treatment, unlike the above-mentioned product plate irradiated with laser, and a part of this structure is disclosed in Japanese Patent Application Laid-Open No. 60-255926. Is disclosed.
以上のように本発明は、 素材中に Moを添加すること、 冷 延 2回法を採用すること、 と く に好ま しく は中間焼鈍にお いて昇温 · 降温速度に制限を加えること、 さらには脱炭 · 1次再結晶焼鈍の際ないしは、 仕上焼鈍後の鋼板上に異質 微小領域区画を形成させることによって、 安定した工程で 良好な鉄損と表面性状とを有する一方向性珪素鋼板の製造 が可能な点で前掲した先行技術とは発想の基本を異にし、 またそれらの工程の採用によって得られる効果も従来に比 ベてはるかにすぐれている。  As described above, in the present invention, the addition of Mo to the material, the adoption of the twice-rolling method, and particularly the limitation on the rate of temperature rise and fall in the intermediate annealing, Decarburization ・ In the first recrystallization annealing or by forming a heterogeneous micro-area section on the steel sheet after finish annealing, a unidirectional silicon steel sheet having good iron loss and surface properties can be obtained in a stable process. The idea is different from the above-mentioned prior art in that it can be manufactured, and the effects obtained by adopting these processes are far superior to those of the prior art.
各発明において、 S iは前述したとおり珪素鋼板の電気抵 抗を高めて過電流損を減少させるのに有効な元素で、 とく に薄手製品の鉄損を減少させるため 3. 上とする必要 がある。 しかし S i含有量が 4. 5w t%を越えると冷間圧延の際 の脆性割れが生じ易くなるから、 S i含有量を 3. 1 〜4. 5w t¾ の範囲とした。 なお従来の A 1 N をイ ンヒビタ一として利用 する通常の一方向性珪素鋼板の S i含有量は 2. 8 〜3. 0 %程 度であり、 また S iを増加させた場合第 1図、 第 3図に示し た比较鋼 I , mのように製品の表面性状が著しく劣化する が、 第 1 , 第 2各発明において素材中に 0. 003 〜0. lwt%の Moを添加するこ とによつて表面欠陥発生防止が可能となつ たものである。 In each invention, Si is an element effective to increase the electrical resistance of the silicon steel sheet and reduce the overcurrent loss as described above. In particular, it is necessary to reduce the iron loss of thin products. is there. However, if the Si content exceeds 4.5 wt%, brittle cracks are likely to occur during cold rolling, so the Si content was set in the range of 3.1 to 4.5 wt%. Note that the Si content of a normal grain-oriented silicon steel sheet that uses conventional A 1 N as an inhibitor is about 2.8 to 3.0%. As shown in Fig. 3, the surface properties of the product deteriorated remarkably, as shown in Fig. 3, steel I and m, but in each of the first and second inventions, 0.0003 to 0.1wt% By adding Mo, surface defects can be prevented.
この素材中に添加する Mo量は 0.003wt 未満では磁気特性 向上ならびに表面欠陥発生の防止力が弱く、 また 0.1%をこ えると脱炭時に鋼中の脱炭を .遅 Jenらせ.るた / め 0 u..0 υ0 υ3 0. lw · tι¾'" の範囲に限定すべきである。  If the amount of Mo added to this material is less than 0.003 wt%, the improvement of magnetic properties and the ability to prevent surface defects are weak, and if it exceeds 0.1%, decarburization in steel during decarburization is delayed by Jen. / U 0..0 υ0 υ3 0. lw · tι¾ '".
A1は鋼中に含まれる Νと結合して A1N の微細析出物を形 成し、 強力なィ ン ヒビタ一と して作用する。 特に薄手一方 向性珪素鋼板の製造において Goss方位に強く集積した 2次 再結晶粒を発達させるためには 0.005 0.06wt% の範囲の 酸可溶 A1が必要である。  A1 combines with Ν contained in the steel to form fine precipitates of A1N and acts as a strong inhibitor. In particular, in the production of thin unidirectional silicon steel sheets, acid-soluble A1 in the range of 0.005 0.06 wt% is necessary to develop secondary recrystallized grains that are strongly integrated in the Goss orientation.
酸可溶/ が 0.005wt 未満ではィ ン ヒ ビターとしての A1N 微細析出物の析出量が不足し { 110} <001> 方位の 2次 再結晶粒の発達が不充分となり、 一方 0.06wt%-を越えれば 再び { 110} <001> 方位の 2次再結晶粒の発達が著しく悪 \なる。  When the acid solubility / is less than 0.005 wt%, the amount of A1N fine precipitates as an inhibitor is insufficient and the development of secondary recrystallized grains of {110} <001> orientation becomes insufficient, while 0.06 wt% Beyond this, the development of secondary recrystallized grains in the {110} <001> direction is remarkably worse again.
S Seは A1N とともに もしく は MnSeの分散析出相を 形成してィ ン ヒ ビタ一効果を増進させる。 Sまたは Seは合 計量で 0.005wt%よりも少なければ MnS または MnSeによるィ ン ヒ ビタ 効果が弱く、 一方合計量で 0. lwt%を越えれば熱 間および冷間加工性が著しく劣化するから、 S Seの 1種 または 2種は合計量で 0.005 0. lwt%の範囲 Λとする必要 がある。 なおこのような合計量範囲内においても、 Sが 0.005wt%より少ない場合もしく は Seが 0.003wt%より少ない 場合にはそれぞれィ ンヒ ビタ 効果が不足し、 一方それぞ れ 0.05wt¾ を越えれば熱間および冷間加工性が劣化するか ら、 Sは 0.005 〜0.05wt% の範囲内、 Seは 0.003 〜0.05wt % の範囲内とすることが望ま しい。 S Se forms a dispersed precipitate phase of MnSe together with A1N and enhances the inhibitory effect. If the total amount of S or Se is less than 0.005 wt%, the inhibitory effect of MnS or MnSe is weak, and if the total amount exceeds 0.1 wt%, the hot and cold workability deteriorates significantly. One or two types of S Se must be in the range of 0.005 0.1wt% in total. Even within such a total amount range, the inhibitory effect is insufficient when S is less than 0.005 wt% or when Se is less than 0.003 wt%, respectively, while when the content exceeds 0.05 wt%, respectively. Does hot and cold workability deteriorate? Therefore, it is desirable that S should be within the range of 0.005 to 0.05 wt% and Se should be within the range of 0.003 to 0.05 wt%.
また第 2 , 4および 6各発明において Sbは 1次再結晶粒 成長を抑制する機能をと く に期待するが、 0.005wt%未満で はその効果が少なく、 一方 0.2wt を越えれば磁束密度を低 下させて磁気特性を劣化させるため、 0.005 〜0.2wt%の範 囲内とする必要がある。  In each of the second, fourth and sixth inventions, Sb is particularly expected to have the function of suppressing the growth of primary recrystallized grains.However, if the content is less than 0.005 wt%, the effect is small, while if it exceeds 0.2 wt%, the magnetic flux density is reduced. In order to lower the magnetic properties by lowering the content, the content must be within the range of 0.005 to 0.2 wt%.
各発明の方法に適合する素材としては、 上述のように 3.1 〜4.5%の Siを含有しかつ小量の Moと A1と Sおよび Seを さらには Sbをも含有している必要があるが、 その他通常の 珪素鋼中に添加される公知の元素の存在を妨げるものでは ない。  Materials suitable for the method of each invention need to contain 3.1 to 4.5% of Si and small amounts of Mo, A1, S and Se, and also Sb, as described above. It does not prevent the existence of other known elements added to ordinary silicon steel.
例えば は 0.02〜2wt%程度含有されていることが好まし い。 . -- また Cは A1N の微細析出に関連して、 熱延板焼鈍中に鐧 板の一部に τ変態を生ぜしめるために必要であり、 この発 明の Si含有量 3.1 〜4.5wt%の範囲では C含有量は 0.030 〜 0.080w ^程度が適当である。  For example, it is preferable that about 0.02 to 2% by weight be contained. -Also, C is required to cause τ transformation in a part of the sheet during hot-rolled sheet annealing, related to the fine precipitation of A1N. In the range, the C content is suitably about 0.030 to 0.080w ^.
さらに通常の珪素鐧中に添加されることのある公知の一 次再結晶粒成長抑制剤としての Sn, Cu, B のいずれか 1種 または 2種以上を合計量で 0.5wt%以下含有しても良く、 そ の他 Cr, Ti, V, Zr, Nb, Ta, Co, Ni, P, As等の一般的な 不可避的元素が微量含有されることは許容される。  Further, it contains 0.5% by weight or less in total of any one or more of Sn, Cu, and B as known primary recrystallized grain growth inhibitors that may be added to ordinary silicon. In addition, it is permissible to contain trace amounts of general unavoidable elements such as Cr, Ti, V, Zr, Nb, Ta, Co, Ni, P and As.
次にこの発明に従う一連の製造工程について説明する。 先ずこの発明の方法に使用される素材を溶製する手段と しては、 LD転炉、 平炉その他の公知の製鐧方法を用いるこ とができ、 また真空処理、 真空溶解を併用しても良いこと は勿論である。 Next, a series of manufacturing steps according to the present invention will be described. First, as a means for melting the material used in the method of the present invention, an LD converter, an open hearth furnace, or another known manufacturing method may be used. It goes without saying that vacuum treatment and vacuum melting may be used together.
またスラブ作成の手段としても、 通常の造塊 -分塊圧延 法のほか、 連続篛造も好適に用いることができる。  In addition, as a means for preparing a slab, a continuous ingot can be suitably used in addition to a usual ingot-bulking rolling method.
上述のようにして得られた珪素鋼スラブは公知の方法に より加熱後、 熱間圧延に附される。 この熱間圧延によって 得られる熱延前の厚みは後続の冷延工程における圧下率に よっても異なるが、 通常 1. 5 〜3. 0 咖程度が望ま しい。  The silicon steel slab obtained as described above is subjected to hot rolling after heating by a known method. The thickness before hot rolling obtained by this hot rolling differs depending on the rolling reduction in the subsequent cold rolling process, but it is usually desirable to be about 1.5 to 3.0 mm.
この発明では表面性状の良好な珪素鋼板を得るために素 材中に少量の Moを添加することを必要条件とするが、 その 他発明者らが特開昭 59 - 85820号公報で開示したように熱延 終了後までに表面に Mo化合物を塗布する等の手段によつて 鋼板表面層に Moを濃化させる手段の併用も勿論可能である。 熱間圧延を終了した熱延板には、 次に 1次冷間圧延が施 されるが、 1次冷延の前に場合によっては熱延板中の Cの 微細均一化分散を図るため 900 〜 1200 °Cの温度範囲で均一 化焼鈍を行った後急冷処理も施される。  In the present invention, in order to obtain a silicon steel sheet having good surface properties, it is necessary to add a small amount of Mo to the material, but as disclosed in Japanese Patent Application Laid-Open No. 59-85820. Of course, it is also possible to use a means for concentrating Mo on the steel sheet surface layer by means such as applying a Mo compound to the surface by the end of hot rolling. After the hot rolling, the hot-rolled sheet is subjected to primary cold rolling.Before the primary cold-rolling, in some cases, 900% of the C in the hot-rolled sheet is dispersed in order to achieve a fine uniform dispersion. After uniform annealing in the temperature range of ~ 1200 ° C, quenching is also applied.
1次冷間圧延の際の圧下率は、 製品板厚によって若干異 なるが、 この発明で良好な特性を有する薄手製品を得るに は第 1図、 第 3図からも明らかなように 10〜60% (望まし く は 20〜50% ) に限定される。  Although the rolling reduction during the primary cold rolling slightly varies depending on the product sheet thickness, in order to obtain a thin product having good characteristics in the present invention, as shown in FIGS. Limited to 60% (preferably 20-50%).
次の中間焼鈍は 900 〜1100 °Cの温度で 30秒〜 30分間程度 の焼鈍を施すが、 良好な磁気特性を安定して得るためには、 500 でから 900 での昇温そして中間焼鈍後の 900 から 500 での降温を 5 : / s以上なかでも 10 °C / s以上にすること が望ま しい。 この急熱急冷処理は通常の連続炉あるいはバ ッチ炉等公知の手法を用いて良い。 The next intermediate annealing is performed at a temperature of 900 to 1100 ° C for about 30 seconds to 30 minutes, but in order to obtain good magnetic properties stably, raise the temperature from 500 to 900 and after the intermediate annealing. It is desirable to lower the temperature from 900 to 500 at 5: / s or more, especially 10 ° C / s or more. This rapid heating and quenching treatment is performed in a normal continuous furnace or A known technique such as a switch furnace may be used.
次の 2次冷間圧延は第 1図、 第 3図から明らかなように 75〜90% の圧下率で適合し、 最終冷延板厚 0. 1 〜0. 25(MI厚 に仕上げる。  As shown in Fig. 1 and Fig. 3, the following secondary cold rolling is suitable at a reduction rate of 75 to 90%, and the final cold rolled sheet thickness is 0.1 to 0.25 (finished to MI thickness).
各発明では薄手高磁束密度電磁鋼板の製造を目的とした ものであり、 熱延板の板厚 1. 5 〜3. 0 mm厚程度で、 第 1図、 第 3図に示す冷間圧延および 2次冷間圧延の各圧下率にお いて 0. 1 〜0. 25mm厚の薄手最終冷延板に仕上げることによ り、 特性の良好な鋼板が得られる。  The purpose of each invention is to manufacture a thin high magnetic flux density magnetic steel sheet, and the thickness of the hot-rolled sheet is about 1.5 to 3.0 mm, and the cold rolling and hot rolling shown in Figs. A steel sheet with excellent properties can be obtained by finishing a thin final cold-rolled sheet with a thickness of 0.1 to 0.25 mm at each rolling reduction in the secondary cold rolling.
この時、 特公昭 54- 13866号公報に開示されているように 複数パス間に 50〜 600 °Cの時効処理を行ってもよい。  At this time, aging treatment at 50 to 600 ° C may be performed between a plurality of passes as disclosed in Japanese Patent Publication No. 54-13866.
このようにして 0. 1 〜0. 25mmの薄手の板厚とされた冷延 板に対しては、 750 〜87Q °C程度の温度範囲において一次 再結晶を兼ねる脱炭焼鈍を施す。 この脱炭焼鈍は通常は露' 点 + 30〜 65で程度の湿水素ガス雰囲気あるいは水素 · 窒素 混合ガス雰囲気中で数分間行えば良い。  The cold rolled sheet having a small thickness of 0.1 to 0.25 mm is subjected to decarburization annealing also serving as primary recrystallization in a temperature range of about 750 to 87 Q ° C. This decarburization annealing may be performed for several minutes in a wet hydrogen gas atmosphere or a hydrogen / nitrogen mixed gas atmosphere at a dew point + 30 to 65 or so.
次いで脱炭焼鈍後の鋼板に対し M g G を主成分とする焼鈍 分離剤を塗布し、 仕上焼鈍を施して { 110 } <001> 方位の 2次再結晶粒を発達させる。 この仕上焼鈍の具体的条件は 従来公知のものと同様であれば良いが、 通常は 1150〜1250 °Cまで 3〜50 °C / h rの昇温速度で昇温して 2次再結晶粒を 発達させた後、 乾水素中で 5〜20時間の純化焼鈍を行うこ とが望ま しい。  Next, an annealing separator containing MgG as a main component is applied to the steel sheet after decarburization annealing, and then subjected to finish annealing to develop secondary recrystallized grains of {110} <001> orientation. The specific conditions of this finish annealing may be the same as those conventionally known, but usually, the temperature is raised from 1150 to 1250 ° C at a rate of 3 to 50 ° C / hr to reduce the secondary recrystallized grains. After development, it is desirable to perform purification annealing in dry hydrogen for 5 to 20 hours.
ついで最終冷延を終えて、 製品板厚に仕上げた綱板につ き、 表面脱脂後、 脱炭 · 1次再結晶焼鈍処理が施されるが. 第 3および第 4発明についてすでにのベたように、 脱炭 · 1次再結晶焼鈍の際つまりこの焼鈍処理の前又は後に、 引 続く高温仕上焼鈍を経た鋼板表面上に異質微小領域区画の 形成をもたらす処理を予め施しておいてから高温仕上焼鈍 に供するか、 第 5および第 6発明に関し同じく レーザ照射 を行う例について述べたようにして、 低鉄損の一方向性珪 素鋼板を製造することができる。 Then, after the final cold rolling, the steel sheet finished to the product thickness is subjected to decarburization and primary recrystallization annealing after surface degreasing. The third and fourth inventions have already been covered. So, decarburizing · At the time of the primary recrystallization annealing, that is, before or after this annealing treatment, a treatment for forming a heterogeneous micro-region is formed on the steel sheet surface that has been subjected to the subsequent high-temperature finish annealing, and then subjected to the high-temperature finish annealing. As described in the fifth and sixth aspects of the invention in which laser irradiation is also performed, a unidirectional silicon steel sheet with low iron loss can be manufactured.
この異質微小領域区画の形成をもたらす処理はすでに触 れたように、  The process leading to the formation of this heterogeneous microregion compartment, as already mentioned,
①脱炭 · 1次再結晶焼鈍の際 3圧延方向とほぼ直角に脱炭促 o  ① Decarburization · During primary recrystallization annealing 3 Decarburization is promoted almost perpendicular to the rolling direction o
進領域あるいは脱炭遅滞領域を塗布剤を用いて鋼板表面上 に区画形成する。 The advance zone or the decarburization delay zone is formed on the steel sheet surface using a coating agent.
②高温仕上焼鈍を経た鐧板表面上にレーザ—、 放電加工、 ケガキあるいはボールべ ン状の小球による局所位置に微小 歪を導入—するか又は異張力の働く領域を形成する。  (2) After high-temperature finish annealing (2) On the plate surface, laser, electric discharge machining, marking or micro-strain is introduced at a local position by a ball-shaped ball or a region where different tension acts.
③鐧板表面上の局所位置に熱処理による鋼板表面上で温度 ムラを作る。  3) Temperature unevenness is created on the steel sheet surface by heat treatment at local positions on the sheet surface.
などの手法を用いることができる。 Such a technique can be used.
①の方法はすでに特開昭 60-39124号公報に開示してある ように、 鋼板表面に脱炭促進領域および遅滞領域を好まし く は、 1〜50匪間隔にて、 そのほぼ半幅にて区画形成する ( 二 :' 領域幅 ·ま 、狭 ほ' '.1 ; '晶集き'組織を Ί ; く変えるため、 細粒の 2次再結晶粒となるが 製品の 2次 再結晶粒径は通常 1. 5 〜25謹の範囲であり、 2次粒径の 2 倍以内すなわち 3〜50薩幅で鋼板表面の 1次再結晶集合組 織を変化させれば細粒の 2次再結晶粒を得ることが可能と なる。 またこのような表面塗布は鋼板の片面でも充分効果を発 揮するが、 通常は鋼板の両面に塗布する方がより効果的で あり、 その鋼板表面への塗布方法は、 通常溝付きあるいは 凸凹のゴムロールを用いて塗布する方が最適と考えられる が、 塗布不要領域にマスキ ングプレー トをあてがう噴射に よる方法の如きを用いても良い。 The method (1), as already disclosed in Japanese Patent Application Laid-Open No. 60-39124, prefers a decarburization accelerating region and a retardation region on the surface of the steel sheet, preferably at intervals of 1 to 50 bands and almost half the width ( 2: The area width and width are narrow. ) '.1' The fine grained secondary recrystallized grains change the crystallographic structure; The diameter is usually in the range of 1.5 to 25, and within 2 times the secondary particle size, ie, 3 to 50 widths, the secondary recrystallization of fine grains can be achieved by changing the primary recrystallization texture on the steel sheet surface. Crystal grains can be obtained. In addition, such a surface coating is sufficiently effective even on one side of the steel sheet, but it is usually more effective to apply it on both sides of the steel sheet. Although it is considered optimal to apply using a rubber roll, a method such as an injection method in which a masking plate is applied to an area where no application is required may be used.
また脱炭促進領域および遅滞領域を鋼板表面上に作るた めの塗布液については、 発明者らの文献 ( Y. inokuti :Trans. ISIJ, Vol.15 (1975), P.324)の教示に従えばよいが、 念のた めに引用すると、 次のとおりである。  Regarding the coating liquid for forming the decarburization promoting region and the retardation region on the steel sheet surface, refer to the teachings of the inventors (Y. inokuti: Trans. ISIJ, Vol. 15 (1975), P. 324). It is advisable to follow, but here are some quotes just in case:
脱炭促進剤 : MgCl2 · 6H20, Mg(N03)2 - 6H20, CaC - 2H20, Ca(N03) 2 - 4H20, SrC - 2H20, Sr (N03) 2 · 4H20, BaC - 2H20, Ba(NQ3) 2, KC1, n04) 2P 2O 7, KBr, C1Q3, Br03, KF, NaCi, NaI04, NaOH, NaHP04, NaH2P04 · 2H20, NaF, NaHC03 - Na 205, Na4P 207 · 10H20, Nal · (NH4) 2Cr 207, Cu(N03) 2, · 3H20, Pe(N03) 3 * 9H20, Co (N03) 2♦ 6H20, Decarburization accelerator: MgCl 2 · 6H 2 0, Mg (N0 3) 2 - 6H 2 0, CaC - 2H 2 0, Ca (N0 3) 2 - 4H 2 0, SrC - 2H 2 0, Sr (N0 3 ) 2 · 4H 2 0, BaC - 2H 2 0, Ba (NQ 3) 2, KC1, n0 4) 2P 2O 7, KBr, C1Q 3, Br0 3, KF, NaCi, NaI0 4, NaOH, NaHP0 4, NaH 2 P0 4 · 2H 2 0, NaF, NaHC0 3 - Na 2 0 5, Na 4 P 2 0 7 · 10H 2 0, Nal · (NH 4) 2 Cr 2 0 7, Cu (N0 3) 2, · 3H 2 0, Pe (N0 3 ) 3 * 9H 20 , Co (N0 3 ) 2 ♦ 6H 2 0,
Ni (N03) 2 · 6H20, Pd(N03) 2, Zn(CH3C00), Zn(N03) 2 - 6H20など。 Ni (N0 3) 2 · 6H 2 0, Pd (N0 3) 2, Zn (CH 3 C00), Zn (N0 3) 2 - 6H 2 0 like.
脱炭遅延剤 : K2S, Na2S 203♦ 5H20, Na2S - 9H20, MgSO SrSO Al2 (SO4) 3 - 18H20, S2C12, NaHS03, FeS04 - 7H20, KHSO4, Na2S 208l K2S 207, Ti (S04) 2 - 3H20, CuSQ4♦ 5H20, ZnS04 · 7H20, CrSQ4 - 7H20, (NH4)2S 208, H 2SO 4, H2Se03, SeOC , Se2Cl2, Se02, H2Se04, K2Se, Ha2Se, Na2Se03, K2Se03, Na2Se042Se04, H2TeO, .2H20, Na2Te03, K2Te03, K2Te04 ♦ 3H20, TeC , a2Te04, Na2As02, H3As 04, AsC , (NH 3As04, KH2As04, SbOCl, SbC , SbBr3, Sb2 (S04) 3, Sb 203, BiCl3, Bi (OH) 3, BiF3, aBi03, Decarburization retarder: K 2 S, Na 2 S 2 0 3 ♦ 5H 2 0, Na 2 S-9H 2 0, MgSO SrSO Al 2 (SO4) 3-18H 2 0, S 2 C1 2 , NaHS0 3 , FeS0 4 - 7H 2 0, KHSO4, Na 2 S 2 0 8l K 2 S 2 0 7, Ti (S0 4) 2 - 3H 2 0, CuSQ 4 ♦ 5H 2 0, ZnS0 4 · 7H 2 0, CrSQ4 - 7H 2 0, (NH 4) 2 S 2 0 8, H 2SO 4, H 2 Se0 3, SeOC, Se 2 Cl 2, Se0 2, H 2 Se0 4, K 2 Se, Ha 2 Se, Na 2 Se0 3, K 2 Se0 3, Na 2 Se0 4 , 2 Se0 4, H 2 TeO, .2H 2 0, Na 2 Te0 3, K 2 Te0 3, K 2 Te0 4 ♦ 3H 2 0, TeC, a 2 Te0 4, Na 2 As0 2, H 3 As 0 4 , AsC, (NH 3 As0 4, KH 2 As0 4, SbOCl, SbC, SbBr 3, Sb 2 (S0 4) 3, Sb 2 0 3, BiCl 3, Bi (OH) 3, BiF 3, aBi0 3,
Bi2 (S04) 3, SnCl2 * 2H20, Snl2, PbC , PbO(OH) 2, Pb(N03) など。 Bi 2 (S0 4) 3, SnCl 2 * 2H 2 0, Snl 2, PbC, PbO (OH) 2, Pb (N0 3) , etc..
従って前者のみを用いる処理では非処理域が遅延領域また 後者のみを用いると非処理域に促進領域がそれぞれ区画形 成されるのは明らかである。 Therefore, it is clear that the non-processing area is divided into the delay area in the processing using only the former, and the promotion area is formed in the non-processing area when using only the latter.
また、 脱炭 · 1次再結晶焼鈍後の鋼板表面上に 2次再結 晶促進および抑制剤により区画する方法はすでに特開昭 60 -89521号公報の教示に従うもよいが、 念のため引用すると 次のようになる。  The method of partitioning the steel sheet surface after decarburization and primary recrystallization annealing with a secondary recrystallization accelerating and inhibiting agent may already be in accordance with the teaching of Japanese Patent Application Laid-Open No. 60-89521. Then, it becomes as follows.
(a)S, Se, Te, As, Sb, Bi, Sn および Pbの 2次再結晶促進 剤 :  (a) Secondary recrystallization accelerator for S, Se, Te, As, Sb, Bi, Sn and Pb:
S化合物 : K2S, a2S 203 · 5H20, Na2S - 9H20, MgSO S compounds: K 2 S, a 2 S 2 0 3 · 5H 2 0, Na 2 S - 9H 2 0, MgSO
SrSO Al2 (S04) 3 · 18H20, S2C12, aHS03, FeS · 7H20, HSO4, Na2S208, K2S 207 SrSO Al 2 (S0 4) 3 · 18H 2 0, S 2 C1 2, aHS0 3, FeS · 7H 2 0, HSO4, Na 2 S 2 0 8, K 2 S 2 0 7,
Ti (S04) 2 · 3H20, CuS04 · 5H20, ZnS04 · Ti (S0 4) 2 · 3H 2 0, CuS0 4 · 5H 2 0, ZnS0 4 ·
7H20, CrS04 · 7H20, (NH4) 2S 208, H2SQ4 7H 2 0, CrS0 4 · 7H 2 0, (NH 4) 2 S 2 0 8, H 2 SQ 4
Se化合物: H2Se03, SeOC , Se2Cl2, Se02, H2Se04, K2Se, Se Compound: H 2 Se0 3, SeOC, Se 2 Cl 2, Se0 2, H 2 Se0 4, K 2 Se,
Na2Se, Na2Se03, K2Se03, Na2Se04, K2Se04 Na 2 Se, Na 2 Se0 3 , K 2 Se0 3, Na 2 Se0 4, K 2 Se0 4
Te化合物: H2Te04 · 2H20, Na2Te03, K2Te03, K2Te04 - 3H20, TeCl4, Na2Te04 Te compounds: H 2 Te0 4 · 2H 2 0, Na 2 Te0 3, K 2 Te0 3, K 2 Te0 4 - 3H 2 0, TeCl 4, Na 2 Te0 4
As化合物: Na2As02, H3As04, AsC , (MA) 3AS04, H2AS As Compound: Na 2 As0 2, H 3 As0 4, AsC, (MA) 3 AS0 4, H 2 AS
O 4  O 4
Sb化合物: SbOCl, SbC , SbBr3, Sb2(S04) 3, Sb203 Sb compounds: SbOCl, SbC, SbBr 3, Sb 2 (S0 4) 3, Sb 2 0 3
Bi化合物: BiCl3, Bi (OH) 3, BiF3, NaBiQ3, Bi2 (S04) 3 Sn化合物: SnCl2 · 2H20, Snl2 (b)Ce, Na, K, および Srの 2次再結晶抑制剤 : Ce化合物: Ce02, Ce(N03) 2 · 6H20, CeC - 7H20 Bi Compound: BiCl 3, Bi (OH) 3, BiF 3, NaBiQ 3, Bi 2 (S0 4) 3 Sn compound: SnCl 2 · 2H 2 0, Snl 2 (b) Ce, Na, K , and Sr of secondary recrystallization inhibitor: Ce compounds: Ce0 2, Ce (N0 3 ) 2 · 6H 2 0, CeC - 7H 2 0
Ca化合物: CaCl2, Ca(N03)3 - 6H20, CaHPO 2H20 Na化合物: NaOH, NaCl' Na2HP0,, Na2Cr207 · 2H20,Ca compound: CaCl 2, Ca (N0 3 ) 3 - 6H 2 0, CaHPO 2H 2 0 Na compound: NaOH, NaCl 'Na 2 HP0 ,, Na 2 Cr 2 0 7 · 2H 2 0,
a4P207 · 10H20, NaHC03, ^a[Q4 a 4 P 2 0 7 · 10H 2 0, NaHC0 3, ^ a [Q 4
K 化合物: KN02, KC1, KMn04> KN03, C103 K Compound: KN0 2, KC1, KMn0 4 > KN0 3, C10 3
Mg化合物: MgCl2 · 6H20, g(N03) 2 * 6H 2O Mg compound: MgCl 2 · 6H 2 0, g (N0 3 ) 2 * 6H 2O
Sr化合物: SrCl2 · 2H20, Sr(N03)2 · 4H20 Sr compound: SrCl 2 · 2H 2 0, Sr (N0 3) 2 · 4H 2 0
3  Three
Ba化合物 :BaCl2 , 2H20, Ba 3(N03) 2 Ba compound: BaCl 2 , 2H 2 0, Ba 3 (N0 3 ) 2
次に②の手法については例えばレーザー処理による微小 歪み導入条件は公知の文献 (特開昭 60- 96720号公報など) の教示に従えばよいが念のために好適実施条件をあげると 次のようである。  Next, for the technique (2), for example, the conditions for introducing micro-strain by laser treatment may be in accordance with the teachings of known literature (Japanese Patent Application Laid-Open No. 60-96720, etc.). It is.
レーザーとして、 YAG レーザ一 . パルス発振マルチモー ドが最適である。 次にレーザー処理の鐧扳表面の好適照射 条件は  The most suitable laser is YAG laser-pulse oscillation multi-mode. Next, the preferred irradiation conditions for the surface of laser treatment
パルス間隔 D = 0.2 〜0.6 ram 照射列の圧延方向の間隔 i - 4 ~ 15 ram  Pulse interval D = 0.2 to 0.6 ram Irradiation row interval in rolling direction i-4 to 15 ram
パルス周波数 f a = ΙΟΚΗζ 以下 鋼表面積当りのエネルギー U = 1.0 〜3. OmJ/mm2 め O 0 Pulse frequency f a = ΙΟΚΗζ or less Energy per steel surface area U = 1.0 to 3. OmJ / mm 2nd O 0
また放電加工処理による微小歪み導入条件は公知文献 (特公昭 57- 18810号公報など) の教示に従えばよいが念の ために好適条件は次のようである。  The conditions for introducing micro-strain by electric discharge machining may be in accordance with the teachings of a known document (Japanese Patent Publication No. 57-18810, etc.).
放電痕の幅あるいは直径 d = 0.004 〜 2誦  Width or diameter of discharge mark d = 0.004 to 2
鋼板の放電痕の間隔 D = 0.1 〜0.8 咖 放電列の圧延方向の間隔 = 〜15πιπι Distance between discharge marks on steel sheet D = 0.1 to 0.8 咖 Spacing in rolling direction of discharge train = ~ 15πιπι
またケガキ (押圧) あるいはボールペ ン状の小球による 局所位置の微小歪み導入条件は公知の文献 (特公昭 58-5968 号公報) の教示に従えばよいが念のために好適条件は次の ょゥであな。  The conditions for introducing micro-strain at the local position by marking (pressing) or a ballpoint pen-shaped ball may be in accordance with the teaching of a known document (Japanese Patent Publication No. 58-5968).ゥ
鋼板表面上でのへこみ間の間隙 1 〜15rain  Gap between dents on steel plate surface 1 to 15rain
鋼板表面からのへこみ深さ 5 m以下  5 m or less dent depth from steel plate surface
鋼板表面上のへこみ幅 10〜100 jum  Dent width 10 to 100 jum on steel plate surface
③の手法つまり熱処理による鋼板表面上での温度差の区画 形成は公知の文献 (特開昭 60-103132 号公報など) の教示 に従えばよいが、 念のために好適条件は次のようである。  The method (3), ie, the formation of compartments for the temperature difference on the steel sheet surface by heat treatment, may follow the teachings of known literature (JP-A-60-103132, etc.). is there.
鋼板上の高温度処理される温度  High temperature treated temperature on steel plate
と通常の鋼板焼鈍温度の差 15〜: LOO "C  Between normal and normal steel sheet annealing temperature 15 ~: LOO "C
鋼板表面上の高温度領域 2〜25mmの幅 通常の焼鈍温度で処理される領域 2〜25IMIの幅  High temperature area on steel plate surface 2 to 25 mm width Area processed at normal annealing temperature 2 to 25 IMI width
これらの繰返しの焼鈍処理により行い、 その不均一熱処理 Performed by these repeated annealing treatments, the non-uniform heat treatment
(例えば特開昭 59- 100221 号公報, 特開昭 59- 1QQ222 号公報, 特開昭 60 - 103120 号公報など) 方法は、 フ ラ ッ シュ ラ ンプに よる局部加熱、 赤外線ラ ンプ、 高周波数誘導加熱、 パルス型 熱処理等従来公知のいずれの方法を用いてよい。  (For example, JP-A-59-100221, JP-A-59-1QQ222, JP-A-60-103120, etc.) The methods are: local heating by flash lamp, infrared lamp, high frequency Any conventionally known method such as induction heating and pulse type heat treatment may be used.
上に述べた手法のうちとく に①の場合はその処理をした 後、 鋼板表面上には MgO を主成分とする焼鈍分離剤を塗布 してから高温仕上焼鈍を施して { 110} <001> 方位に強く 集積した 2次再結晶粒を発達させる。 この仕上焼鈍の具体 的条件は従来公知の焼鈍方法と同様であれば良いが、 通常 は 1150~ 1250°Cまで 3〜50°C/hr の昇温速度で昇温して 2 次再結晶粒を発達させた後、 乾水素中 5〜20hrの純化焼鈍 を行う ことが望ま しい。 In particular, in case (1) of the above-mentioned methods, after the treatment, a steel sheet surface is coated with an annealing separator mainly composed of MgO and then subjected to high-temperature finish annealing to make {110} <001> Develop secondary recrystallized grains that are strongly integrated in the orientation. The specific conditions of this finish annealing may be the same as those of the conventionally known annealing method, but usually, the temperature is increased from 1150 to 1250 ° C at a heating rate of 3 to 50 ° C / hr, and the secondary recrystallized grains are heated. After developing, annealing in dry hydrogen for 5-20 hours It is desirable to perform
仕上焼鈍後の鋼板表面上のフォルステラィ ト質被膜上に は確実な絶緣を保証するため絶緣被膜が施されるが、 第 5 および第 6発明ですでにのベたように、 仕上焼鈍を施した 綱板表面上に異質微小領域区画を形成することによって低 鉄損の一方向性珪素鋼板を製造する。  An insulating coating is applied on the forsterite coating on the steel sheet surface after finish annealing to ensure reliable insulation, but the finish annealing was applied as already described in the fifth and sixth inventions. The production of unidirectional silicon steel sheet with low iron loss by forming a heterogeneous micro area section on the steel plate surface.
この場合特公昭 57- 2252 号、 特公昭 57- 53419号、 特公昭 58-5968 号、 特公昭 58- 26405号、 待公昭 58- 26406号、 特公 昭 58-26407号および特公昭 58- 36051号公報で開示されたレ 一ザ一照射法による人工粒界導入法では低温でしか安定使 用できないという欠点を有しているため、 高温の歪み取り 焼鈍を行っても磁気特性を劣化しない方法による鋼板表面 上に不均質領域を区画形成する方法を採用する必要がある ( 高温焼鈍を施しても磁気特性が劣化しない異質微小領.域 区画を形成方法は In this case, Japanese Patent Publication No. 57-2252, Japanese Patent Publication No. 57-53419, Japanese Patent Publication No. 58-5968, Japanese Patent Publication No. 58-26405, Japanese Patent Publication No. 58-26406, Japanese Patent Publication No. 58-26407 and Japanese Patent Publication No. 58-36051 However, the method of introducing an artificial grain boundary by the laser irradiation method disclosed in Japanese Patent Publication No. it is necessary to adopt a method of defining a heterogeneous region on the surface of the steel sheet according to (magnetic characteristics are not deteriorated even if subjected to high temperature annealing heterogeneous micro territory. zone forming method parcels
a鋼板表面上のフォルステラィ ト被膜の厚みの異なる領域 を区画形成する、 aPartitioning the regions with different thicknesses of the forsterite coating on the steel sheet surface,
b フォルステラィ ト被膜の上に異種の張力コ一ティ ングを 区画形成する、 b Compartments of different types of tension coating on the forsterite coating,
c上述したよ、うにレーザー等を用いてフォルステラィ ト被 膜を局部的に除去した後、 その局所領域を歪み取り焼鈍 を兼ねた回復 · 再結晶させて不均一領域を区画形成する < 手法などを用いることができる。  c As described above, after the forsterite film is locally removed using a laser or the like, the local region is distorted, and recovery and recrystallization together with annealing are performed to form a non-uniform region. Can be used.
aの手法についてはすでに特開昭 60- 92479号に開示した 方法に従えばよいが、 念のため引用すると次の 4つの方法 か'ある。 a - i ) 1次再結晶焼鈍後の鋼板表面への焼鈍分離剤の塗 布工程において、 該塗布に先立ち、 鋼板表面に焼鈍分離剤 との反応を阻害する物質を 1 g/m 2以下の範囲で局所的に付 着させる方法。 The method (a) may be in accordance with the method disclosed in Japanese Patent Application Laid-Open No. 60-92479, but the following four methods are cited just in case. a - i) in the coating fabric process of the annealing separator to the primary recrystallization annealing after the steel sheet surface, prior to coating, the substance that inhibits the reaction of the annealing separator on the steel sheet surface 1 g / m 2 or less of A method of applying locally in a range.
この方法において反応阻害物質としては S i 02, Α 1 203, Zr 02などの酸化物や、 Z n, A l, S n, ΝΊ , F eなどの金属が挙 げられる。 かかる反応阻害物質は、 1 g/m 2を超えて付着さ せると、 反応阻害効果が過剰となり、 フォルステラィ ト被 膜が形成されなくなる。 従ってあくまでも、 l g/m 2以下の 範囲でフォルステラィ ト被膜の減厚量を抑制する必要があ る。 なお、 これらの反応阻害物質の鋼板への付着手段とし ては、 塗布、 吹付け、 メ ツキ、 印刷および静電塗装などが いずれも利用できる。 S i 0 2 as a reaction inhibitor in this method, and Alpha 1 2 0 3, oxides such as Zr 0 2, Z n, A l, S n, ΝΊ, metals such as F e can be mentioned up. If such a reaction inhibitor is attached in excess of 1 g / m 2 , the reaction inhibitory effect will be excessive and a forsterite coating will not be formed. Therefore, the thickness of the forsterite film must be suppressed within the range of lg / m 2 or less. As a means for attaching these reaction-inhibiting substances to the steel sheet, any of coating, spraying, plating, printing and electrostatic coating can be used.
a - ii ) 1次再結晶焼鈍後の鋼板表面への焼鈍分離剤の塗 布工程において、 該塗布に先立ち鋼板表面に焼鈍分離剤ス ラ リ ー (水と焼鈍分離剤との懸濁液) に対する撥水性物質 を 0. lg/m 2 以下の範囲で局所的に付着させる方法。 a-ii) In the process of applying the annealing separator to the steel sheet surface after the first recrystallization annealing, prior to the application, an annealing separator slurry (a suspension of water and the annealing separator) is applied to the steel sheet surface. A method of locally adhering a water-repellent substance to water in a range of 0.1 lg / m 2 or less.
かかる撥水性物質としては、 油性ペイ ン トゃワニスなど が遊離に適合し、 鋼板表面と焼鈍分離剤との接触を妨げて- フォルステラィ ト生成反応を遅滞させて減厚領域を形成さ せるわけである。 ただし、 0. 1g/m 2 を超えて付着させた場 合は、 反応遅滞効果が過剰となってフォルステラィ ト被膜 が全く形成されなくなるので、 あくまでも 0. 1g/m'2—以下の 範囲でフオルステライ ト被膜の減厚量を制御する必要があ る。 なおこれらの撥水性物質の鋼板への付着手段としては- 前掲した反応阻害物質と同様、 塗布、 吹付け、 印刷および 静電塗装などが利用できる。 As such a water-repellent substance, an oil-based paint varnish or the like is loosely adapted to prevent contact between the steel sheet surface and the annealing separator, thereby delaying the forsterite-forming reaction to form a reduced-thickness region. is there. However, if it exceeds 0.1 g / m 2 , the reaction delay effect will be excessive and no forsterite film will be formed at all. Therefore, forsterite should be used within the range of 0.1 g / m ' 2 or less. It is necessary to control the thickness of the coating. Means for attaching these water-repellent substances to the steel sheet are the same as those for the reaction inhibitor described above, such as coating, spraying, printing and the like. Electrostatic painting can be used.
a - iii ) 1次再結晶焼鈍後の鋼板表面への焼鈍分離剤の塗 布工程において、 その塗布に先立ち、 鋼板表面に鋼中の Si の酸化剤となるような物質を 2 g/m2以下の範囲で局所的に 付着させる方法。 a-iii) In the process of applying the annealing separator to the steel sheet surface after the primary recrystallization annealing, prior to the application, 2 g / m 2 of a substance that becomes an oxidizing agent for Si in the steel is applied to the steel sheet surface. A method to adhere locally within the following range.
これらの物質はその後の最終仕上焼鈍において高温で鋼 中の Siを酸化させ、 鋼板表面サブスケール中の Si02粒子の 量を増加させることによって、 最終仕上焼鈍後のフォルス テライ ト被膜の厚みを増加させるので、 鑭扳表面に局所的 に過厚被膜を形成させることができるわけである。 かかる 酸化剤と しては、 FeO, Fe2(]3, Ti02などの酸化物、 Fe2SiO. などの還元され易い珪酸塩、 Mg(0H) 2 などの水酸化物など が遊離に適合するが、 これらの酸化剤の付着量が 2 g/m2を 超えと、 被膜の厚みが大き く なり過ぎて、 鋼板への接着力 を失い、 被膜がはく落してしまつて所期した目的を達成す ることができない。 These substances are oxidized subsequent final finish Si in the steel at a high temperature in annealing, by increasing the amount of Si0 2 particles in the steel sheet surface subscale, increasing the thickness of the false Terai bets film after final annealing Therefore, it is possible to locally form an over-thick film on the surface. Is a such an oxidation agent adapted, FeO, Fe 2 (] 3 , Ti0 2 oxide such as Fe 2 SiO. Reduced easily silicates such as, etc. are free hydroxide such as Mg (0H) 2 Suruga, and beyond the amount of deposition of these oxidizing agents is 2 g / m 2, past Nari thickness of the coating is rather large, loses adhesion to the steel sheet, the coating is flaked off want connexion intended purpose Cannot be achieved.
a - iv ) 2次再結晶後の鋼板表面に被成したフォルステラ ィ ト被膜を、 地鉄鋼板表面に塑性歪を加えないようにして 除去することにより減厚領域を形成する方法。 a-iv) A method of forming a reduced thickness region by removing the forsterite film formed on the steel sheet surface after secondary recrystallization without applying plastic strain to the steel sheet surface.
かような方法としては、 化学研磨や電解研磨の他、 回転 する円錐状の砥石による除去、 軽圧力による鉄針での除去 さらには出力を適切に調整したレーザービームなどの光学 的除去などの方法がある。 とく に光学的除去法としてレー ザ一ビームを利用する場合は、 1つの光源から複数本のビ Such methods include chemical polishing and electrolytic polishing, removal using a rotating conical grindstone, removal using an iron needle using light pressure, and optical removal such as a laser beam with appropriately adjusted output. There is. In particular, when using one laser beam as an optical removal method, multiple beams from one light source are used.
—ムを取出したり、 また適当なマスキングの存在の下に全 面照射を行う ことによって、 1回の操作で効率よく複数本 の異厚領域を形成させることができる利点がある。 -Efficiently perform multiple operations in a single operation by removing the memory and irradiating the entire surface in the presence of appropriate masking. This is advantageous in that a different thickness region can be formed.
bの手法にて、 フォルステラィ ト被膜の上に異種の張力 コーティ ングを区画形成する方法は、 特開昭 60- 103182 号 公報に開示しているように、 絶縁コ一ティ ング被膜の熱膨 張係数が 8. 5 X 10 - 6 1 / °C以下で、 かつ異種のコ ーティ ン グ被膜間の係数が 1. 1 以上であればよく、 従来公知の異種 のコーティ ング液を交互に 1 〜30mmの間隔で塗布焼付すれ ばよい。 According to the method (b), a method of forming a different type of tension coating on the forsterite coating is disclosed in Japanese Patent Application Laid-Open No. 60-103182, which discloses a method of thermal expansion of an insulating coating. factor 8. 5 X 10 - 6 1 / ° C or less, and as long coefficient between different types of co-Ti in g coating 1.1 or more, 1 Koti ring solution known heterologous alternately ~ It may be applied and baked at intervals of 30 mm.
cの手法は特開昭 60- 255926 号公報あるいは特開昭 60 - The method of c is disclosed in JP-A-60-255926 or JP-A-60-255926.
3 Three
8  8
89545 号公報に開示してあるように、 仕上焼鈍後の鋼板表 面上にレーザ一あるいは応力を付加するケガキのような手 段により、 鋼板被膜を剥離した後、 塩酸、 硝酸などの酸で 鋼板地鉄を除去した後、 半金属、 金属あるいはこれらを含 む無機化合物の水溶液に浸漬しで、 そ ¾>除去部に充塡した のち歪み取り焼鈍を兼ねた回復♦再結晶焼鈍を施して不均 —領域を区画形成すればよい。 As disclosed in Japanese Patent No. 89545, after the steel sheet coating is peeled off by means of a laser or a scribing method that applies stress on the steel sheet surface after finish annealing, the steel sheet is treated with an acid such as hydrochloric acid or nitric acid. After removing the base iron, it is immersed in an aqueous solution of a semimetal, metal or an inorganic compound containing these metals, and then filled with the removed part, and then recovered as a strain relief annealing. Average—A region may be defined.
さらにこのような処理した上に確実な絶縁性を保証する ためにりん酸塩とコロイ ダルシリ力を主成分とする絶縁被 膜の塗布焼付を行うことが、 100 万 KVA にも上る大容量ト ラ ンスの使途において当然に必要であり、 この絶緣性塗布 焼付層の形成の如きは従来公知の方法をそのまま用いて良 い。  In addition, in order to guarantee reliable insulation after such treatment, coating and baking of an insulating coating mainly composed of phosphate and colloidal silicide force is required. Naturally, it is necessary for the use of the sensor. For the formation of the insulated coating baking layer, a conventionally known method may be used as it is.
このような絶縁被膜を形成させた後、 600 で以上の温度 で歪み取り焼鈍が施され、 本発明の上記の製造方法はこの ような高温焼鈍を施しても磁気特性の劣化が起こらないの が特徵である。 実施例 1 After such an insulating film is formed, strain relief annealing is performed at a temperature of 600 or more, and the above-described manufacturing method of the present invention does not cause deterioration of magnetic properties even if such high temperature annealing is performed. It is special. Example 1
C 0.059 %, Si 3.49 % , Mo 0.024 %,  C 0.059%, Si 3.49%, Mo 0.024%,
酸可溶 Al 0.034 % , S 0.029 %を含有する連鍩スラブを U30 :で 3時間加熱後、 熱間圧延して 2.2 ram厚の熱延板と した。 その後約 50% の 1次冷間圧延を施して後、 1100°Cで 3分間の中間焼鈍を施した。 この中間焼鈍の際には 500 °C から 900 °Cまでを 12°C/sの急熱処理および中間焼鈍後 900 °Cから 500 °Cまでを 15°C/sで急冷処理を施した。  A continuous slab containing 0.034% of acid-soluble Al and 0.029% of S was heated with U30: for 3 hours, and then hot-rolled into a hot-rolled sheet having a thickness of 2.2 ram. Then, after about 50% primary cold rolling, it was subjected to intermediate annealing at 1100 ° C for 3 minutes. During this intermediate annealing, a rapid heat treatment of 12 ° C / s from 500 ° C to 900 ° C and a rapid cooling treatment of 15 ° C / s from 900 ° C to 500 ° C after the intermediate annealing were performed.
その後約 80% の冷間圧延を施して 0.20ram厚の最終冷延板 に仕上げた後、 830 °Cの湿水素中で脱炭を兼ねる 1次再結 晶焼鈍を施した。  Then, it was cold rolled by about 80% to finish the final cold rolled sheet with a thickness of 0.20 ram, and then subjected to primary recrystallization annealing combined with decarburization in 830 ° C wet hydrogen.
その後 850 でから 10°C/hr で llOOt:まで昇温して 2次再 結晶させた後、 1200°Cで 10時間乾水素中で純化焼鈍を行つ た。 そのときの製'品の磁気特性および表面性状は次のよう After that, the temperature was raised to llOOt: at 850 ° C at 10 ° C / hr, and secondary recrystallization was performed. Then, purification annealing was performed in dry hydrogen at 1200 ° C for 10 hours. The magnetic properties and surface properties of the product at that time are as follows:
。、めった ο . Seldom ο
磁気特性は B,。 :l.93T, WI 7/5o:0.80w/kg. 表面性状は表 面欠陥のプロ ッ ク発生率で 0.8%と、 きわめて良好であった < 実施例 2 Magnetic properties are B ,. : 1.93T, WI 7 / 5o : 0.80w / kg. The surface properties were extremely good, with a 0.8% incidence of surface defects. <Example 2>
C 0.064 %, Si 3.39 ¾ , Mo 0.019 %,  C 0.064%, Si 3.39 ¾, Mo 0.019%,
酸可溶 Al 0.029 % , Se 0.020 %, Sb 0. Q22% を含有す る連錄スラブを 1420 :で 4時間加熱後、 熱間圧延して 2.2 删厚に仕上げた。 その後約 40% の 1次冷間圧延を施した後, 11001:で 2分間の中間焼鈍を行った。 この中間焼鈍の際に は 500 tから 900 °Cまでを 12t:/sの急熱処理および中間焼 鈍後 900 °Cから 500 °Cまでを 18 / sの急冷処理を施した < その後約 83% の 2次冷延を施して 0.23隱厚の最終冷延板 としたのち、 840 °Cの湿水素中で脱炭 · 1次再結晶焼鈍を 施した。 A continuous slab containing 0.029% of acid-soluble Al, 0.020% of Se and 0.022% of Sb was heated at 1420: for 4 hours and then hot-rolled to a 2.2mm thickness. After about 40% primary cold rolling, intermediate annealing was performed at 11001: 2 for 2 minutes. During the intermediate annealing, a rapid heat treatment of 12 t: / s from 500 t to 900 ° C and a quenching treatment of 18 / s from 900 ° C to 500 ° C after the intermediate annealing were applied. 0.23 concealed final cold rolled sheet After that, decarburization and primary recrystallization annealing were performed in wet hydrogen at 840 ° C.
その後鋼板表面上に MgQ を主成分とする焼鈍分離剤を塗 布した後 850 °Cから 10°C/hr で 1100°Cまで昇温して 2次再 結晶させた後、 1200 °cで 15時間乾水素中で純化焼鈍を行つ た。 そのときの製品の磁気特性および表面性状は次のよう C:、め つ 7 "こ。  After that, an annealing separator containing MgQ as a main component was applied on the steel sheet surface, and the temperature was raised from 850 ° C to 1100 ° C at 10 ° C / hr, followed by secondary recrystallization. Purification annealing was performed in dry hydrogen for hours. The magnetic properties and surface properties of the product at that time are as follows: C:
磁気特性は B,Q : 1.93T, WI 7 /5 o : 0.80w/kg表面性状は 表面欠陥のブロ ッ ク発生率で 0.6 と非常に良好であつた。 実施例 3 The magnetic properties were as good as B, Q : 1.93 T, W I 7/5 o: 0.80 w / kg, and the surface texture was 0.6, the rate of occurrence of surface defect blocks. Example 3
C 0.058 %, Si 3.59 % , o 0.035 %,  C 0.058%, Si 3.59%, o 0.035%,
酸可溶 Al 0.033 % , S 0.023 %, Cu 0.15%, Sn 0.11%を 含有する鐧塊を熱延して 2.0 删厚の熱延板としたのち、 1 次冷間圧延を施した (冷延率は約 40 )。 その後 1050°Cで 5 分間の中間焼鈍を施したが、 このときの 500 °Cから 900 °C までの昇温は 18°C/sの急熱処理および中間焼鈍後の 900 °C 〜500 までの降温は 20°C/sの急冷処理を施した。  A lump containing 0.033% of acid-soluble Al, 0.023% of S, 0.15% of Cu, and 0.11% of Sn was hot-rolled into a hot-rolled 2.0-mm thick sheet, and then subjected to primary cold rolling (cold rolling). The rate is about 40). After that, intermediate annealing was performed at 1050 ° C for 5 minutes, but the temperature rise from 500 ° C to 900 ° C was rapid heat treatment at 18 ° C / s and 900 ° C to 500 ° C after intermediate annealing. The temperature was reduced by quenching at 20 ° C / s.
その後約 89% の強冷延を施して 0.17™厚の最終冷延板と したが、 冷延途中で 300 の温間圧延を施した。 その後 840 °Cの湿水素中で脱炭 · 1次再結晶焼鈍後 850 °Cから 15 /hr で 1100°Cまで昇温して 2次再結晶させた後、 12001:で 15時 間乾水素中で純化焼鈍を施した。 そのときの製品の磁気特 性は B1Q : 1.93T, W. 7/50 : 0.76w/kg、 表面性状の表面欠 陥のブロッ ク発生率は 0.9%と良好であつた。 After that, a cold rolled sheet of about 89% was applied to make a final cold rolled sheet of 0.17 thickness, but 300 was warm rolled during the cold rolling. Decarburization in 840 ° C wet hydrogen · After primary recrystallization annealing, the temperature was raised from 850 ° C to 1100 ° C at 15 / hr and secondary recrystallized. The inside was subjected to purification annealing. Products of the magnetic characteristics are B 1Q of that time: 1.93T, W. 7/50: 0.76w / kg, blocked the incidence of Recessed Surface discontinuities of surface texture is been made as good as 0.9%.
実施例 4 Example 4
C 0.064 %, Si 3.45 % , Mo 0.025 %, 酸可溶 Al 0.025 % , S 0.028 %を含有する連祷ス ラ ブを 1420°Cで 4時間加熱後、 熱延して 2.2 mm厚の熱延板と した c その後約 30% の 1次冷間圧延を施した後、 1080°Cで 3分間 の中間焼鈍を施した。 この中間焼鈍の際には 500 でから 900 °Cまでを 13°C/sで急熱処理および中間焼鈍後 900 でか ら 500 °Cまでを 18°C/sで急冷処理を施した。 C 0.064%, Si 3.45%, Mo 0.025%, After heating the joint slab containing 0.025% of acid-soluble Al and 0.028% of S at 1420 ° C for 4 hours, it was hot-rolled to a 2.2-mm thick hot-rolled sheet. After cold rolling, intermediate annealing was performed at 1080 ° C for 3 minutes. During the intermediate annealing, a rapid heat treatment at 13 ° C / s from 500 to 900 ° C and a quenching treatment at 18 ° C / s from 900 to 500 ° C after the intermediate annealing were performed.
その後約 85% の冷間圧延を施して 0.23ratn厚の最終冷延板 に仕上げた。 その後鋼板( 表面温度: 70 。C) を脱脂した後 MgS04(0.01 mol/£ ) の 85°Cの希薄水溶液を圧延方向にほ ぼ直角の方向に 5 mm間隔で 0.5 nun幅のジグを用いてスプレ —塗布し、 塗布領域と未塗布領域を交互に区画形成したの ち、 、 840 °Cの湿水素中で脱炭 * 1次再結晶焼鈍を施し、 ついで MgO を主体とする焼鈍分離剤を塗布したのち、 850 でから 1100°Cまで 10°C/hr で徐熱したのち、 水素雰'囲気中 で 1200°Cで 10時間の純化焼鈍を施した。 得られた製品の磁 気特性および表面性状は次のようであった。 After that, it was cold rolled by about 85% to finish 0.23ratn final cold rolled sheet. Then the steel sheet (surface temperature: 70 .C) using a jig of 0.5 nun width MgS0 4 (0.01 mol / £) 5 mm intervals dilute aqueous 85 ° C in the direction of almost a right angle to the rolling direction after degreased After spraying, applying and alternately forming the coating area and the non-coating area, decarburizing in wet hydrogen at 840 ° C * First recrystallization annealing, and then annealing separator mainly composed of MgO Was applied, the temperature was gradually reduced from 850 to 1100 ° C at a rate of 10 ° C / hr, and then a purification annealing was performed at 1200 ° C for 10 hours in a hydrogen atmosphere. The magnetic properties and surface properties of the obtained product were as follows.
磁気特性は B,。:l.93T, WI7/5O:0.82w/kg. 表面性状は表 面欠陥のフ口 ッ ク発生率が 1.2%できわめて良好であった。 実施例 5 Magnetic properties are B ,. : L.93T, W I7 / 5O: . 0.82w / kg surface texture is off-locking incidence table surface defects was very good at 1.2%. Example 5
C 0.066 %, Si 3.51 % , Mo 0.035 %,  C 0.066%, Si 3.51%, Mo 0.035%,
酸可溶 Al 0.030 % , S 0.026 %, Sb 0.026 Sn 0.1%、 Cu 0.1 %を舍有する連鏡ス ラ ブを 1430t;で 4時間加熱後、 熱間圧延して 2.2 删厚の熱延板とした。 その後約 40% の 1 次冷間圧延を施して後、 1050tで 5分間の中間焼鈍を行つ た。 この中間焼鈍の際には 500 'Cから 900 でまでを 15 :/s で急熱処理および中間焼鈍後 900 :から 500 :までを 20 °c/sで急冷処理を施した。 A continuous mirror slab containing acid-soluble Al 0.030%, S 0.026%, Sb 0.026 Sn 0.1%, and Cu 0.1% was heated at 1430t; for 4 hours, and then hot-rolled to a 2.2mm thick hot-rolled sheet. did. After that, about 40% primary cold rolling was performed, and intermediate annealing was performed at 1050t for 5 minutes. During this intermediate annealing, the rapid heat treatment at 500'C to 900 at 15: / s and the intermediate annealing from 900: to 500: 20 A quenching treatment was performed at ° c / s.
次に約 85% の冷間圧延を施して 0.20rara厚の冷延板とした が、 この冷間圧延の際には 250 °Cで温間圧延を施した。  Next, cold rolling was performed at about 85% to obtain a cold rolled sheet with a thickness of 0.20 rara. During this cold rolling, warm rolling was performed at 250 ° C.
次に鋼板表面を脱脂後、 表面温度を約 100 °Cに保定した 後 MgS04(0.01 mol/i? ) と Mg ('03) 2 (0.01 mol/ ·δ ) 混合液 (90 °C) を凹凸表面を有するゴムロールにより鋼板表面に 塗布し、 塗布領域と未塗布領域を交互に区画形成したのち、 850 °Cの湿水素中で脱炭♦ 1次再結晶焼鈍を施し、 次いで MgO を主体とする焼鈍分離剤を塗布してから 850 でから 1100°Cまで 8 °C / hrで徐熱したのち、 水素雰囲気中で 1200 :、 10時間の純化焼鈍を施した。 得られた製品の磁気特性 および表面性状は次のようであった。 Then degreased steel sheet surface, after retaining the surface temperature to about 100 ° C MgS0 4 (0.01 mol / i?) And Mg ( '0 3) 2 ( 0.01 mol / · δ) mixture (90 ° C) Is applied to the steel sheet surface with a rubber roll having an uneven surface, and the coating area and the non-coating area are alternately formed, followed by decarburization in wet hydrogen at 850 ° C ♦ First recrystallization annealing, followed by MgO After the annealing separator was applied, the temperature was gradually decreased from 850 to 1100 ° C. at 8 ° C./hr, and then, purification annealing was performed in a hydrogen atmosphere at 1200: 1 for 10 hours. The magnetic properties and surface properties of the obtained product were as follows.
磁気特性は B10:l.94T, W, 7/5O:0.73w/kg. 表面性状の表 面欠陥のブロ ック発生率は 1.2%で極めて良好であつた。 Magnetic properties B 10: l.94T, W, 7/5 O:. 0.73w / kg blocks incidence of the front surface defect surface texture was filed extremely good at 1.2%.
実施例 6 Example 6
C 0.058 %, Si 3.40 % , Mo 0.026 %, Se 0.021 % 酸可溶 Al 0.030 % , Sb 0.025 % を含有する連鍚スラブ を 1430。Cで 3時間加熱後、 熱間圧延して 2.2 漏厚の熱延板 とした。 その後約 50% の 1次冷間圧延を施して後、 110(TC で 3分間の中間焼鈍を施した。 この中間焼鈍の際には 500 °Cから 900 °Cまでを 12t/sの急熱処理および中間焼鈍後 900 °Cから 500 °Cまでを 15°C/sで急冷処理を施した。  1430 continuous slab containing 0.058% C, 3.40% Si, 0.026% Mo, 0.021% acid soluble Al 0.030% and Sb 0.025%. After heating at C for 3 hours, it was hot-rolled into a hot-rolled sheet with 2.2 thickness. After about 50% primary cold rolling, intermediate annealing was performed at 110 (TC for 3 minutes. During this intermediate annealing, a rapid heat treatment of 12 t / s from 500 ° C to 900 ° C was performed. After the intermediate annealing, quenching was performed from 900 ° C to 500 ° C at 15 ° C / s.
その後約 80% の冷間圧延を施して 0.20麵厚の最終冷延板 に仕上げた後、 830 °Cの湿水素中で脱炭を兼ねる 1次再結 晶焼鈍を施した。  After that, it was cold-rolled by about 80% to finish the final cold-rolled sheet with a thickness of 0.20 mm, and then subjected to primary recrystallization annealing combined with decarburization in 830 ° C wet hydrogen.
ついでこの焼鈍板表面上に MgO を主成分とする焼鈍分離 剤を塗布するに先立って焼鈍分離剤と鋼板サブスケール中 Si02との反応阻害物質である A 1203 粉末を付着量 = 0.3 g/tn2 、 鋼板の圧延方向にほぼ直角方向に付着幅 1. 5ram、 そして繰返し間隔 8 mmの条件下で鋼板表面に線状で付着さ せ、 しかるのちに MgO を主成分とする焼鈍分離剤を塗布し o Next, on the surface of the annealed plate, annealed mainly MgO Agent A 1 2 0 3 powder adhesion amount which is a reaction inhibitor of the annealing separator and the steel sheet subscale Si0 2 prior to applying the = 0.3 g / tn 2, attached to the substantially perpendicular direction to the rolling direction of the steel sheet At a condition of width of 1.5 ram and repetition interval of 8 mm, it is adhered in a line on the steel sheet surface, and then an annealing separator mainly composed of MgO is applied.
その後 850 °Cから 10°C/hr で llOO :まで昇温して 2次再 結晶させた後、 i200°cで 10時間乾水素中で純化焼鈍を行つ た。 仕上焼鈍後の綱板表面は A 1203 粉末を塗布した領域に ついては 0.6 厚だけ少ないフ オ ルステ ラ イ ト被膜が形 成されていた。 Thereafter, the temperature was raised from 850 ° C to 10 ° C / hr to llOO: to perform secondary recrystallization, and then purification annealing was performed at 200 ° C in dry hydrogen for 10 hours. Steel plate surface after final annealing is A 1 2 0 3 powder only 0.6 thickness For a coated area less nonwoven Rusute La wells film had been made form.
このよ う に形成されたフ オ ルステ ラ イ ト質被膜上にりん 酸塩とコ口ィ ダルシリ 力を主成分とする絶緣被膜焼付処 した後 800 °Cで 3時間の歪み取付り焼鈍を行なった。 その ときの製品の磁気特性および表面性状は次のようであった。 磁気特性は B1 Q:1.94T, W17/5。:0.78w/kg、 表面性状は表 面欠陥のフロ ッ ク発生率で 0.9%と、 きわめて良好であつた。 実施例 7 On the thus-formed forsterite coating, an insulated coating consisting mainly of phosphate and cobalt-dialsilicide was baked, and then strain-attached annealing was performed at 800 ° C for 3 hours. Was. The magnetic properties and surface properties of the product at that time were as follows. Magnetic properties: B 1 Q : 1.94T, W 17/5 . : 0.78 w / kg, surface texture was extremely good, with a flocculation rate of surface defects of 0.9%. Example 7
C 0.054 %, Si 3.36 % , Mo 0.024 %,  C 0.054%, Si 3.36%, Mo 0.024%,
酸可溶 M 0.025 % , Se 0.020 % を含有する連鋅ス ラ ブ を 1420 :で 4時間加熱後、 熱間圧延して 2.2 mm厚に仕上げ た。 その^約 40% の 1次冷間圧延を施した後、 1100でで 2 分間の中間焼鈍を行った。 この中間焼鈍の際には 500 でか ら 900 tまでを 12 :/sの急熱処理および中間焼鈍後 900 から 500 でまでを 18で / sの急冷処理を施した。  A continuous slab containing 0.025% of acid-soluble M and 0.020% of Se was heated at 1420: for 4 hours and then hot-rolled to a thickness of 2.2 mm. After about 40% of the first cold rolling, intermediate annealing was performed at 1100 for 2 minutes. During the intermediate annealing, a rapid heat treatment of 12: / s was performed from 500 to 900 t and a rapid cooling treatment of 18 / s from 900 to 500 after the intermediate annealing.
その後約 83% の 2次冷延を施して 0.23關厚の最終冷延板 と したのち、 840 °Cの湿水素中で脱炭 · 1次再結晶焼鈍を 施した。 After that, about 83% of secondary cold rolling is performed and the final cold rolled sheet of 0.23 After that, decarburization and primary recrystallization annealing were performed in wet hydrogen at 840 ° C.
この後パルス レーザ一を用いて圧延方向に直角方向に線 状 (線幅 0.3mm幅) に 8 nun間隔で照射した後このレーザ一 照射位置に SbCl3(0.01 rnol/£ , 90 °C ) 溶液を塗布した。 After that, a pulsed laser was used to irradiate linearly (in a line width of 0.3 mm) in the direction perpendicular to the rolling direction at intervals of 8 nun, and an SbCl 3 (0.01 rnol / £, 90 ° C) solution was applied to the laser irradiation position. Was applied.
その後鋼板表面上に MgG を主成分とする焼鈍分離剤を塗 布した後 850 °Cから 10°C/hr で 1100°Cまで昇温して 2次再 結晶させた後、 1200°Cで 15時間乾水素中で純化焼鈍した。  After that, an annealing separator containing MgG as a main component was applied on the steel sheet surface, and the temperature was raised from 850 ° C to 1100 ° C at 10 ° C / hr, followed by secondary recrystallization. Purified annealing in dry hydrogen for hours.
その後りん酸塩とコロイ ダルシリカを主成分とする絶緣 被膜を焼付処理した後、 800 °Cで 2時間の歪み取り焼鈍を 施した。 そのときの製品の磁気特性および表面性状は次の よつであった o  After that, an insulating film mainly composed of phosphate and colloidal silica was baked, and then subjected to strain relief annealing at 800 ° C. for 2 hours. The magnetic properties and surface properties of the product at that time were as follows: o
磁気特性は B,。:l.94T, W17/5。:0.79w/kg、 表面性状は表 面欠陥のプロ ッ ク発生率で 0.8 と非常に良好であった。 実施例 8 Magnetic properties are B ,. : L.94T, W 17/5 . : 0.79 w / kg, and the surface properties were very good, with a 0.8% occurrence of surface defects. Example 8
C 0.054 %, Si 3.49 ¾ , Mo 0.025 %,  C 0.054%, Si 3.49 ¾, Mo 0.025%,
酸可溶 Al 0.030 % , S 0.022 % , Cu 0.15%, Sn 0.10% を含有する鋼塊を熱延して 2.0 咖厚の熱延板としたのち、 1次冷間圧延を施した (冷延率は約 40%)。 その後 1050でで 5分間の中間焼鈍を施したが、 このときの 500 から 900 °Cまでの昇温は 18 °C/sの急冷処理および中間焼鈍後の 900 °Cから 500 でまでの降温は 20 t/sの急冷処理を施した。 その後約 89% の強冷延を施して 0.17mm厚の最終冷延板と したが、 冷延途中で 300 °Cの温間圧延を施した。 その後 840 での湿水素中で脱炭 · 1次再結晶焼鈍を行ったが、 こ の処理前に圧延方向に直角方向にェレク ト口 ンビームを用 いて 0.5 mm幅にわたつて間隔 12删ごとに走査し熱の不均一 領域を形成した。 A steel ingot containing 0.030% of acid-soluble Al, 0.022% of S, 0.15% of Cu, and 0.10% of Sn was hot-rolled into a hot-rolled 2.0-mm-thick sheet, and then subjected to primary cold rolling (cold rolling). Rate is about 40%). After that, intermediate annealing was performed at 1050 for 5 minutes.At this time, the temperature rise from 500 to 900 ° C was quenched at 18 ° C / s and the temperature was lowered from 900 ° C to 500 after intermediate annealing. A quenching treatment of 20 t / s was performed. After that, a cold rolled sheet of about 89% was applied to make a final cold rolled sheet with a thickness of 0.17 mm. After that, decarburization in wet hydrogen at 840 and primary recrystallization annealing were performed, but before this treatment, an elector beam was used in a direction perpendicular to the rolling direction. Then, scanning was performed at intervals of 12 mm over a width of 0.5 mm to form a non-uniform heat area.
その後鋼板表面上に MgO を主成分とする焼鈍分離剤を塗 布した後 850 °Cから 15°C/hr で 1100°Cまで昇温して 2次再 結晶させた後、 1200 °Cで 15時間乾水素中で純化焼鈍した。  After that, the surface of the steel sheet was coated with an annealing separator mainly composed of MgO, then the temperature was raised from 850 ° C to 1100 ° C at 15 ° C / hr, followed by secondary recrystallization. Purified annealing in dry hydrogen for hours.
その後りん酸塩とコロイ ダルシ リ カを主成分とする焼鈍 分離剤を塗布焼付処理した後、 800 °Cで 5時間の歪み取り 焼鈍を施した。 そのときの製品の磁気特性は B10:l.94T, After that, an annealing separator mainly composed of phosphate and colloidal silica was applied and baked, followed by strain relief annealing at 800 ° C for 5 hours. The magnetic properties of the product at that time are B 10 : l.94T,
7/5 o:0.77w/ kg、 表面性状は表面欠陥のブロ ッ ク発生率 で 1.2%と 常に良好であつた。 7/5 o: 0.77w / kg , the surface texture is always been made as good as 1.2% in the block incidence of surface defects.
実施例 9 Example 9
C 0.057 %, Si 3.35 ¾ , o 0.025 %,  C 0.057%, Si 3.35 ¾, o 0.025%,
酸可溶 Al 0.020 % , Se 0.022 %, Sb 0.023 % を舍有す る連鐯スラブ-を 142(TCで 4時間加熱後熱延して 2.2 nun厚の 熱延板とした。 その後約 30% の 1次冷間圧延を施した後、 1080でで 3分間の中間焼鈍を施した。 この中間焼鈍の際に は 500 でから 900 でまでを 13 / sで急熱処理および中間焼 鈍後 900 :から 500 :までを 18で / sの急冷処理を施した ( その後約 85% の冷間圧延を施して 0.23删厚の最終冷延板 に仕上げた。 その後 840 での湿水素中で脱炭 · 1次再結晶 焼鈍を施し、 次いで MgD を主体とする焼鈍分離剤を塗布し たのち、 850 °Cから 1100でまで 10 :/hr で徐熱したのち、 水素雰囲気中で 1200°Cで 10時間の純化焼鈍を施した。 A continuous slab containing 0.020% of acid-soluble Al, 0.022% of Se, and 0.023% of Sb was heated to 142 (TC for 4 hours and hot-rolled to a 2.2 nun thick hot-rolled sheet. After the first cold rolling of, an intermediate annealing was performed for 3 minutes at 1080. During the intermediate annealing, a rapid heat treatment at 500 to 900 at 13 / s and an intermediate annealing after 900: From 500 to 500: was quenched at 18 / s ( after that, it was cold-rolled by about 85% to finish 0.23 mm thick cold-rolled sheet. Then decarburized in wet hydrogen at 840 Primary recrystallization Annealing, then applying an annealing separator mainly composed of MgD, gradual heating from 850 ° C to 1100 at 10: / hr, and then in a hydrogen atmosphere at 1200 ° C for 10 hours Was subjected to purification annealing.
その後パルスレーザーを用いて圧延方向に直角方向に線 状 (線幅 0.5画幅) に 11讓間隔に微小歪みを導入後、 酸洗 処理し、 さらに SbCl3(0.01 mo\ /& , 90 : ) 液中に浸漬し その後りん酸塩とコ ロイ ダルシリ力を主成分とする絶緣 被膜を塗布した後、 800 °Cで 5時間の歪み取り焼.鈍を兼ね た回復 · 再結晶焼鈍を行った。 得られた製品の磁気特性お よび表面性状は次のようであった。 After that, using a pulsed laser, micro-strain was introduced at intervals of 11 lines in a line (line width 0.5 width) in the direction perpendicular to the rolling direction, and then pickled, and then SbCl 3 (0.01 mo \ / &, 90:) liquid Immersed in Then, after applying an insulating film mainly composed of phosphate and colloidal force, recovery and recrystallization annealing combined with strain relief annealing at 800 ° C. for 5 hours were performed. The magnetic properties and surface properties of the obtained product were as follows.
磁気特性 B10:l.94T, W,7/sO:0.78 /kg. 表面性状の表面 欠陥のプロ ッ ク発生率で 1.1%できわめて良好であった。 実施例 10 Magnetic properties B 10 : l.94T, W, 7 / s O : 0.78 / kg. The rate of occurrence of surface defect surface defects was 1.1%, which was very good. Example 10
C 0.056 %, Si 3.41 % , Mo 0.025 %,  C 0.056%, Si 3.41%, Mo 0.025%,
酸可溶 Al 0.030 % , Se 0.020 %, Sn 0.1%, Cu 0.1 %を 舍有する連鋅スラブを 1430°Cで 4時間加熱後熱間圧延して 2.2 mm厚の熱延板とした。 その後約 40¾ の 1次冷延を施し た後、 1Q50°Cで 5分間の中間焼鈍を行った。 この中間焼鈍 の際には 500 °Cから 900 °Cまでを 15°C/sで急熱処理および 中間焼鈍後 900 °Cから 500 °Cまでを 20°C/sで急冷処理を施 し 7 0  A continuous slab containing 0.030% of acid-soluble Al, 0.020% of Se, 0.1% of Sn, and 0.1% of Cu was heated at 1430 ° C for 4 hours and then hot-rolled into a hot-rolled sheet having a thickness of 2.2 mm. After that, it was subjected to primary cold rolling of about 40 mm, followed by intermediate annealing at 1Q50 ° C for 5 minutes. During the intermediate annealing, a rapid heat treatment at 500 ° C to 900 ° C at 15 ° C / s and a rapid cooling treatment at 900 ° C to 500 ° C at 20 ° C / s after the intermediate annealing are performed.
次に約 85% の 2次冷延を施して 0.20mm厚の冷延板とした が、 この冷間圧延の擦には 250 °Cで温間圧延を施した。 そ の後 850 °Cの湿水素中で脱炭♦ 1次再結晶焼鈍を施し、 次 いで MgG を主体とする焼鈍分離剤を塗布してから、 850 t から 1100 まで 8 °C/hr で徐熱したのち、 水素雰囲気中で 1200で、 10時間の純化焼鈍を施した。  Next, about 85% of secondary cold rolling was performed to obtain a cold-rolled sheet having a thickness of 0.20 mm. The rubbing of the cold rolling was performed by warm rolling at 250 ° C. After that, decarburize in wet hydrogen at 850 ° C ♦ Perform primary recrystallization annealing, then apply an annealing separator mainly composed of MgG, and gradually reduce the temperature from 850 t to 1100 at 8 ° C / hr. After the heating, the sample was subjected to purification annealing at 1200 in a hydrogen atmosphere for 10 hours.
その後鋼板表面上に圧延方向に直角方向に 0.5 画幅、 8 fflin間隔にケガキを導入した後、 りん酸塩とコロイダルシリ 力を主成分とする絶縁被膜を焼付処理し、 800 でで 5時間 の歪み取り焼鈍を兼ねた回復 ·再結晶焼鈍を施した。 得ら れた製品の磁気特性および表面性状は次のようであった。 磁気特性 B,。:l.94T, W17/s。:0.76w/kg、 表面性状の表面 欠陥のプロ ッ ク発生率は 1.1%できわめて良好であった。 After that, a marking was introduced on the steel sheet surface in the direction perpendicular to the rolling direction in a direction perpendicular to the rolling direction at 0.5 strokes and an interval of 8 fflin, and then an insulating coating mainly composed of phosphate and colloidal silicide was baked, and strained at 800 for 5 hours. Recovery combined with removal annealing · Recrystallization annealing was performed. Get The magnetic properties and surface properties of the obtained product were as follows. Magnetic properties B ,. : L.94T, W17 / s . : 0.76w / kg, the rate of occurrence of surface defects was 1.1%, which was extremely good.
Figure imgf000049_0001
(産業上の利用可能性)
Figure imgf000049_0001
(Industrial applicability)
以上の説明で明らかなように B ,。 値が 1. 92T 以上で、 W 1 7 / 5。値が 0. 85 K/kg (0. 23 删厚) 以下の低鉄損で、 しか も製品の表面性状が極めて優れた薄手一方向性けい素鋼板 を工業的に安定して製造することができる顕著な効果を有 するものであり、 とく に素材中に Moと A 1とを含有させて冷 延 2回法で最終冷延板と した後、 脱炭 · 1次再結晶焼鈍の 際又は仕上げ焼鈍後の鋼板表面上に異質な微小領域区画を 形成することにより不均一で而も細粒の G oss方位 2次再結 晶組織を発達させて鉄損特性、 表面性状がともに優れた製 品が安定した工程で製造できる。 As is clear from the above description, B,. If the value is 1.92T or more, W17 / 5 . It is capable of industrially producing thin unidirectional silicon steel sheets with low iron loss of less than 0.85 K / kg (0.23 mm thick) and extremely excellent product surface properties. It has a remarkable effect that can be achieved.Especially when Mo and A1 are contained in the material and the final cold-rolled sheet is formed by the cold rolling twice method, and then during decarburization and primary recrystallization annealing or By forming heterogeneous micro-domains on the surface of the steel sheet after finish annealing, it develops a non-uniform and fine-grained secondary grain recrystallization structure and has excellent iron loss characteristics and excellent surface properties. Products can be manufactured in a stable process.

Claims

δ冃 求 の δ 冃
1. S i 3.ト 4. 5 wt %、1.S i 3.g 4.5 wt%,
o 0. 〜 0. 1 wt %、  o 0.1 to 0.1 wt%,
酸可溶 Μ 0. 005〜0. 06 w t%、  Acid soluble Μ 0.005 to 0.06 wt%,
そして Sおよび S eのいずれか 1種または 2種を合計量 で 0. 005 〜0. 1 w t% 、  And one or two of S and Se in a total amount of 0.005 to 0.1 wt%,
を含有するス ラ ブを熱間圧延して熱延板とした後、 圧下 率 10〜60% の 1 次冷間圧延を施し、 ついで中間焼鈍を経 て、 圧下率 75〜90% の 2次冷間圧延を施し 0. 1 〜0. 25 i ! 厚の最終板厚に仕上げた薄手冷延板を、 湿水素中で脱炭 * 1 次再結晶焼鈍後、 高温仕上焼鈍することを特徵とす る、 表面性状の優れた低鉄損薄手一方向性珪素鋼板の製 造方法。  Hot rolled into a hot rolled sheet, followed by primary cold rolling at a draft of 10 to 60%, followed by intermediate annealing, followed by secondary rolling at a draft of 75 to 90% The thin cold-rolled sheet, which has been cold-rolled to a final thickness of 0.1 to 0.25 i !, is decarburized in wet hydrogen. * It is characterized by high-temperature finish annealing after primary recrystallization annealing. A method for producing low-iron-loss thin unidirectional silicon steel sheets with excellent surface properties.
2. S i 3. 1〜4. 5 w t 2. S i 3. 1 to 4.5 w t
Mo 0. 003〜0. 1 wt %、  Mo 0.003 to 0.1 wt%,
Sb 0. 005〜0. 2 wt  Sb 0.005 to 0.2 wt
酸可溶/ Q. 005〜0. 06 w 、  Acid soluble / Q. 005 ~ 0.06 w,
そして Sおよび Seのいずれか 1種または 2種を合計量 で 0. 005 〜0. 1 wt% 、  Then, one or two of S and Se in a total amount of 0.005 to 0.1 wt%,
を舍有するス ラ ブを熱閜圧延して熱延板と.した後、 圧下 率 10〜60% の 1次冷間圧延を施し、 ついで中間焼鈍を経 て、 圧下率 75〜90% の 2次冷閜圧延を施し 0. 1 〜0. 25誦 厚の最終板厚に仕上げた薄手冷延板を、 湿水素中で脱炭 • 1 次再結晶焼鈍後、 高温仕上焼鈍することを特徵とす る、 表面性状の優れた低鉄損薄手一方向性珪素鋼板の製 造方法。 After hot-rolling a slab with a hot rolled sheet, it is subjected to primary cold rolling at a reduction rate of 10 to 60%, followed by intermediate annealing, and a reduction rate of 75 to 90%. The thin cold-rolled sheet that has been subjected to the next cold rolling and finished to a thickness of 0.1 to 0.25 is decarburized in wet hydrogen. • It is characterized by high-temperature finish annealing after primary recrystallization annealing. You A method for producing low iron loss thin unidirectional silicon steel sheet with excellent surface properties.
3. S i 3. 1〜4· 5 t %、 3.S i 3. 1 ~ 4.5t%,
Mo 0. 003〜0. 1 t %、  Mo 0.003-0.1 t%,
酸可溶 A l 0. Q05〜0. 06 w t%、  Acid soluble A l 0.Q05 ~ 0.06 wt%,
そして Sおよび S eのいずれか 1種または 2種を合計量 で 0. 005 〜0. 1 wt% 、  Then, one or two of S and Se in a total amount of 0.005 to 0.1 wt%,
を含有するスラブを熱間圧延して熱延板とした後、 圧下 率 10〜60% の 1次冷間圧延を施し、 ついで中間焼鈍を経 て、 圧下率 75〜90% の 2次冷間圧延を施し 0. 1 〜0. 25咖 厚の最終板厚に仕上げ、 この薄手冷延板を湿水素中で脱 炭 · 1次再結晶焼鈍するに際して、 引続く高温仕上焼鈍 を経た鋼板表面上に異質微小領域区画の形成をもたらす 処理を予め施しておいて高温仕上焼鈍に供することを特 徵とする、 表面性状の優れた低鉄損薄手高磁束密度一方 向性けい素鋼板の製造方法。  Hot-rolled slabs containing hot rolled steel are subjected to primary cold rolling at a draft of 10 to 60%, and then subjected to intermediate annealing, and then to secondary cold rolling at a draft of 75 to 90%. Rolled and finished to a final thickness of 0.1 to 0.25 mm thick, and then decarburize this cold rolled sheet in wet hydrogen. ・ During primary recrystallization annealing, on the steel sheet surface that has been subjected to successive high-temperature finish annealing. A method for producing a unidirectional silicon steel sheet having excellent surface properties and a low iron loss and a high magnetic flux density, which is characterized in that a treatment for forming a heterogeneous micro-region is formed in advance and subjected to high-temperature finish annealing.
4. S i 3. 1〜4. 5 wt %、 - Mo 0. 003〜0. 1 wt %、 4.S i 3.1 to 4.5 wt%,-Mo 0.003 to 0.1 wt%,
Sb 0. 005〜0. 2 wt %、  Sb 0.005 to 0.2 wt%,
酸可溶 A l 0. 005〜0. 06 wt%、  Acid soluble A l 0.005-0.006 wt%,
そして Sおよび Seのいずれか 1種または 2種を合計量 で 0. 005 〜0. 1 wt% 、  Then, one or two of S and Se in a total amount of 0.005 to 0.1 wt%,
を含有するスラブを熱間圧延して熱延板とした後、 圧下 率 10〜60% の 1次冷間圧延を施し、 ついで中間焼鈍を経 て、 圧下率 75〜90% の 2次冷間圧延を施し 0. 1 〜0. 25mni 厚の最終板厚に仕上げ、 この薄手冷延板を湿水素中で脱 炭 · 1次再結晶焼鈍するに際して、 引続く高温仕上焼鈍 を経た鋼板表面上に異質微小領域区画の形成をもたらす 処理を予め施しておいて高温仕上焼鈍に供することを特 徴とする、 表面性状の優れた低鉄損薄手高磁束密度一方 向性けい素鋼板の製造方法。 Hot-rolled slabs containing slabs are subjected to primary cold rolling at a draft of 10 to 60%, followed by intermediate annealing. Secondary cold rolling with a reduction rate of 75 to 90% to a final thickness of 0.1 to 0.25 mni, and decarburize the thin cold rolled sheet in wet hydrogen.Primary recrystallization annealing In this case, the steel surface has been subjected to high-temperature finish annealing after preliminarily applying a treatment that causes the formation of heterogeneous micro-regions on the steel sheet surface that has undergone high-temperature finish annealing. Manufacturing method for magnetic flux density unidirectional silicon steel sheet.
5. S i 3. 1〜4. 5 w t I 5. S i 3.1 to 4.5 w t I
Mo 0. 003〜0. 1 w t ヽ  Mo 0.003 to 0.1 w t ヽ
酸可溶 A 1 0. 005〜0, 06 wt%、  Acid soluble A 1 0.005 to 0,06 wt%,
そして Sおよび Seのいずれか 1種または 2種を合計量 で 0. 005 〜0. 1 wt% 、  Then, one or two of S and Se in a total amount of 0.005 to 0.1 wt%,
を舍有するス ラブを熱間圧延して熱延板とした後、 圧下 率 10〜60% の 1次冷間圧延を施し、 ついで中間焼鈍を柽 て、 圧下率 75〜90% の 2次冷間圧延を施し 0. 1 〜0. 25咖 厚の最終板厚に仕上げた薄手冷延板を、 湿水素中で脱炭 • 1次再結晶焼鈍後、 高温仕上焼鈍し、 さらにこの鋼板 表面上に異質微小領域区画を形成することを特徴とする. 表面性状の優れた低鉄損薄手一方向性けい素鋼板の製造 方法。  Hot-rolled slabs with hot rolling are subjected to primary cold rolling at a draft of 10 to 60%, followed by intermediate annealing, and secondary cold rolling at a draft of 75 to 90%. The cold rolled sheet finished to a final thickness of 0.1 to 0.25 mm by cold rolling is decarburized in wet hydrogen. • After the first recrystallization annealing, it is annealed at high temperature, and then on the surface of this steel sheet. A method for producing a low-iron-loss thin unidirectional silicon steel sheet having excellent surface properties.
4. S i 3. 1〜4. 5 wt ヽ4. S i 3.1 to 4.5 wt ヽ
o 0. 003- 0. 1 wt 、  o 0.003-0.1 wt,
Sb 0. 005〜0. 2 wt %、  Sb 0.005 to 0.2 wt%,
酸可溶 A l 0. 005〜0. 06 wt%、 そして Sおよび Seのいずれか 1種または 2種を合計量 で 0. 005 〜0. 1 w t¾ 、 Acid soluble A l 0.005-0.006 wt%, And one or two of S and Se in a total amount of 0.005 to 0.1 w t¾,
を含有するスラブを熱間圧延して熱延板とした後、 圧下 率 10〜60% の 1次冷間圧延を施し、 ついで中間焼鈍を経 て、 圧下率 75〜90% の 2次冷間圧延を施し 0. 1 〜0. 25删 厚の最終板厚に仕上げた薄手冷延板を、 湿水素中で脱炭 • 1次再結晶焼鈍後、 高温仕上焼鈍し、 さらにこの鋼板 表面上に異質微小領域区画を形成することを特徵とする, 表面性状の優れた低鉄損薄手一方向性けい素鋼板の製造 方法。  Hot-rolled slabs containing slabs are subjected to primary cold rolling at a draft of 10 to 60%, and then subjected to intermediate annealing, followed by secondary cold rolling at a draft of 75 to 90%. Rolled thin cold rolled sheet finished to 0.1 to 0.25 mm final thickness is decarburized in wet hydrogen. • After primary recrystallization annealing, high-temperature finish annealing, and then on the steel sheet surface A method for producing a low-iron-loss thin unidirectional silicon steel sheet having excellent surface properties, characterized by forming a heterogeneous micro-region section.
7. 中間焼鈍が、 500 °Cから 900 °Cまでの温度範囲の昇温 過程における加熱速度毎秒 5 °c以上、 900 でから 500 °c までの温度範囲の降温過程における冷却速度毎秒 5 °c以 上の条件である 1〜 6項に記載の方法。 7. Intermediate annealing is performed at a heating rate of 5 ° c / sec or more in the temperature range of 500 ° C to 900 ° C, and a cooling rate of 5 ° c / sec in the temperature decreasing process of 900 to 500 ° C. The method according to any one of the above items 1 to 6 under the above conditions.
PCT/JP1986/000138 1986-03-25 1986-03-25 Process for producing low core loss, thin, unidirectional silicon steel plate having excellent surface properties WO1987005945A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE8686902022T DE3675945D1 (en) 1986-03-25 1986-03-25 METHOD FOR PRODUCING THIN SILICON STEEL SHEETS WITH GOSS TEXTURE WITH LOW WATER LOSS AND EXCELLENT SURFACE PROPERTIES.
EP86902022A EP0266422B2 (en) 1986-03-25 1986-03-25 Process for producing low core loss, thin, unidirectional silicon steel plate having excellent surface properties
PCT/JP1986/000138 WO1987005945A1 (en) 1986-03-25 1986-03-25 Process for producing low core loss, thin, unidirectional silicon steel plate having excellent surface properties
US07/774,384 US5203928A (en) 1986-03-25 1991-10-11 Method of producing low iron loss grain oriented silicon steel thin sheets having excellent surface properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1986/000138 WO1987005945A1 (en) 1986-03-25 1986-03-25 Process for producing low core loss, thin, unidirectional silicon steel plate having excellent surface properties

Publications (1)

Publication Number Publication Date
WO1987005945A1 true WO1987005945A1 (en) 1987-10-08

Family

ID=13874402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1986/000138 WO1987005945A1 (en) 1986-03-25 1986-03-25 Process for producing low core loss, thin, unidirectional silicon steel plate having excellent surface properties

Country Status (3)

Country Link
EP (1) EP0266422B2 (en)
DE (1) DE3675945D1 (en)
WO (1) WO1987005945A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0784615B2 (en) * 1990-07-27 1995-09-13 川崎製鉄株式会社 Method for producing grain-oriented silicon steel sheet with excellent magnetic flux density
DE19628137C1 (en) * 1996-07-12 1997-04-10 Thyssen Stahl Ag Grain-oriented electrical steel sheet prodn.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126722A (en) * 1983-01-11 1984-07-21 Nippon Steel Corp Manufacture of grain oriented electrical steel sheet with small iron loss and high magnetic flux density
JPS59173218A (en) * 1983-03-24 1984-10-01 Kawasaki Steel Corp Manufacture of single-oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH06134118A (en) * 1992-10-21 1994-05-17 Newgin Kk Japanese pinball game @(3754/24)pachinko) machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2007129A1 (en) * 1968-04-27 1970-01-02 Yawata Iron & Steel Co
JPS5423647B2 (en) * 1974-04-25 1979-08-15
JPS5832214B2 (en) * 1979-12-28 1983-07-12 川崎製鉄株式会社 Method for manufacturing unidirectional silicon steel sheet with extremely high magnetic flux density and low iron loss
US4545828A (en) * 1982-11-08 1985-10-08 Armco Inc. Local annealing treatment for cube-on-edge grain oriented silicon steel
JPS6151803A (en) * 1984-08-21 1986-03-14 Kawasaki Steel Corp Unidirectional si steel of low iron loss

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126722A (en) * 1983-01-11 1984-07-21 Nippon Steel Corp Manufacture of grain oriented electrical steel sheet with small iron loss and high magnetic flux density
JPS59173218A (en) * 1983-03-24 1984-10-01 Kawasaki Steel Corp Manufacture of single-oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH06134118A (en) * 1992-10-21 1994-05-17 Newgin Kk Japanese pinball game @(3754/24)pachinko) machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0266422A4 *

Also Published As

Publication number Publication date
DE3675945D1 (en) 1991-01-10
EP0266422A4 (en) 1988-11-02
EP0266422B1 (en) 1990-11-28
EP0266422A1 (en) 1988-05-11
EP0266422B2 (en) 1996-06-26

Similar Documents

Publication Publication Date Title
KR930001332B1 (en) Process for preparation of grain-oriented electrical steel sheet
JP3470475B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss and its manufacturing method
EP3396022B1 (en) Grain-oriented electrical steel sheet and method for manufacturing grain-oriented electrical steel sheet
KR101062127B1 (en) Method for manufacturing directional electromagnetic steel sheet with high magnetic flux density
WO1986004929A1 (en) Process for producing unidirectional silicon steel plate with extraordinarily low iron loss
JP3539028B2 (en) Forsterite coating on high magnetic flux density unidirectional silicon steel sheet and its forming method.
RU2771318C1 (en) Method for producing electrical steel sheet with oriented grain structure
JP2000063950A (en) Grain oriented silicon steel sheet excellent in magnetic property and film characteristic and its production
JP7235058B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5923879B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP7269505B2 (en) Manufacturing method of grain-oriented electrical steel sheet
US5203928A (en) Method of producing low iron loss grain oriented silicon steel thin sheets having excellent surface properties
JPS60197883A (en) Formation of insulating forsterite film on grain-oriented silicon steel sheet
WO1987005945A1 (en) Process for producing low core loss, thin, unidirectional silicon steel plate having excellent surface properties
JPS6335684B2 (en)
KR102576546B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7265187B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP2663229B2 (en) Method for producing grain-oriented electrical steel sheet having a uniform glass film and extremely excellent magnetic properties
JP2671084B2 (en) High magnetic flux density grain-oriented electrical steel sheet having excellent iron loss characteristics and method for producing the same
WO2024096082A1 (en) Grain-oriented electromagnetic steel sheet
JPH0617132A (en) Ultralow iron loss grain-oriented silicon steel sheet having extremely high magnetic flux density and its production
WO2023112421A1 (en) Grain-oriented electromagnetic steel sheet and method for producing same
JPS6331527B2 (en)
WO2024111637A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
JP4374108B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1986902022

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT

WWP Wipo information: published in national office

Ref document number: 1986902022

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1986902022

Country of ref document: EP