WO1987001736A1 - Ceramic protective coating - Google Patents

Ceramic protective coating Download PDF

Info

Publication number
WO1987001736A1
WO1987001736A1 PCT/DE1985/000320 DE8500320W WO8701736A1 WO 1987001736 A1 WO1987001736 A1 WO 1987001736A1 DE 8500320 W DE8500320 W DE 8500320W WO 8701736 A1 WO8701736 A1 WO 8701736A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
protective layer
base material
aluminum oxide
ceramic protective
Prior art date
Application number
PCT/DE1985/000320
Other languages
English (en)
French (fr)
Inventor
Friedrich Harbach
Andrew R. Nicoll
Original Assignee
Bbc Aktiengesellschaft Brown, Boveri & Cie.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE19843427456 priority Critical patent/DE3427456A1/de
Application filed by Bbc Aktiengesellschaft Brown, Boveri & Cie. filed Critical Bbc Aktiengesellschaft Brown, Boveri & Cie.
Priority to PCT/DE1985/000320 priority patent/WO1987001736A1/de
Priority to EP85904794A priority patent/EP0236309A1/de
Publication of WO1987001736A1 publication Critical patent/WO1987001736A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides

Definitions

  • the invention relates to a ceramic protective layer based on aluminum oxide according to the preamble of claim 1.
  • Oxidation-resistant components for hot gas turbines and jet engines which have a ceramic protective layer, which by means of flame or By applying these protective layers, the metallic components are protected against corrosive influences at high temperatures.
  • the protection consists in reducing undesired chemical attacks on the component and / or in lowering the temperature in the surface area of the component in relation to the temperature on the surface of the protective layer.
  • Replacement sheet ⁇ more or less slowly. In doing so, they go through all possible phase transformations of the ceramic material. Under certain circumstances, additional conversions even occur if the ceramic particles of the protective layer are not in the thermodynamically stable state immediately after they have solidified.
  • the aluminum oxide first forms the * * ? -Aluminium oxide, which is similar to the ⁇ * -Aluminiumoxid, because this like the ⁇ ⁇ -Aluminiumoxid has a lower surface energy than the only thermodynamically stable alumina modification, the o -Aluminiumoxid, also called Korund.
  • the invention is therefore based on the object of a ceramic protective layer based on aluminum oxide to create, which has a very high temperature change resistance and at the same time is very corrosion-resistant.
  • the base material of the ceramic protective layer consists either completely or more than 55% of aluminum oxide.
  • the aluminum oxide can be caused to preferentially form a corundum structure instead of a ** , aluminum oxide structure .
  • at least one of these chemical compounds is in an amount between 0.1 and 15 mass? admixed with the base material of the protective layer before spraying it on.
  • Magnesium oxide and metal oxides are particularly suitable for this. suitable, the metals of which are in a trivalent oxidation state and which preferably crystallize in the corundum structure.
  • Corundum structure formation can be achieved particularly well with aluminum oxide with gallium oxide, vanadium oxide, chromium oxide or iron oxide.
  • magnesium oxide With the help of magnesium oxide, the grain growth of the aluminum oxide can be reduced.
  • An addition of gallium oxide, vanadium oxide, chromium oxide or iron oxide is therefore a further addition of 0.03 to 4 mass? Magnesium oxide added.
  • the formation of the corundum structure of the aluminum oxide and the reduction in the grain growth can only be achieved by adding magnesium oxide.
  • a gas turbine component to be coated (not shown here) is made of an austenitic material, in particular a nickel superalloy. Before the coating, the component is first chemically cleaned and then roughened with a sandblast. This component is coated in air or under reduced pressure using the known plasma spraying process. If required, the component to be coated can first be coated with a NiCrAlY layer before the ceramic protective layer is applied. The protection described below
  • Spare sheet Layer has pure aluminum oxide powder as the base material.
  • this base material is chromium oxide in an amount of 0.1 to 15 mass? added.
  • magnesium oxide in an amount of 0.03 to 4 mass? added to reduce the grain growth of the aluminum oxide.
  • gallium oxide, vanadium oxide or iron oxide can of course also be used as an additive. It is of course also possible to dispense with the four metal oxides described above and to add only magnesium oxide to the base material, which at the same time promotes the formation of the round structure in the case of the aluminum oxide and reduces the grain growth thereof.
  • a protective layer composed in this way was applied to the component described at the outset and thermal shock tests were carried out during which the periodic heating of the component and the protective layer to 950 ° C. and the quenching to room temperature were carried out for more than 300 cycles was led. In an additional 12-hour slag test, no corrosion effects from vandadium pentoxide or sodium sulfate were found on the protective layer.
  • the component mentioned above made of a nickel superalloy can also be coated with a ceramic protective layer, the base material of which consists of a mixture of aluminum oxide and titanium oxide.
  • the titanium oxide content in such a protective layer is between 10 and 45% by weight.
  • Chromium oxide is added to the base material according to the invention.
  • the chromium oxide content varies between 0.1 and 15 percent by mass based on the amount of aluminum oxide contained in the base material.
  • Ersafebf or iron oxide or an additive consisting of all these oxides can be added to the base material in addition to the chromium oxide.
  • the amount of additionally added metal oxides is also dependent on the aluminum oxide content of the base material.
  • a protective layer 5 with a base material of alumina and titania predominantly comprises a mixture of the Korundmodtechnik of the alumina and the rutile modification of the Titano ⁇ on monoxide. The possible mixed phase consisting of aluminum titanate occurs only in small quantities.
  • a sol ® * - before the protective layer is after conducting the test studies described above also no Korro ⁇ sion phenomena, which nadiumpentoxid by the action of Va or sodium sulfate are caused.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

Keramische Schutzschicht
Die Erfindung bezieht sich auf eine keramische Schutz¬ schicht auf der Basis von Aluminiumoxid gemäß dem Ober¬ begriff des Patentanspruches 1.
Aus der Informationsschrift "Metall 36 (1982) Teil I, Seite 882 und ff., sowie Teil II, Seite 1082 und ff., sind oxidationsbeständige Bauelemente für Heißgasturbi¬ nen und Strahltriebwerke bekannt, die eine keramischen Schutzschicht aufweisen, welche mittels Flamm- oder Plasmaspritzen auf die metallischen Bauelemente aufge¬ tragen sind. Durch das Aufbringen dieser Schutzschichten werden die metallischen Bauelemente gegen korrodierende Einflüsse bei hohen Temperaturen geschützt. Der Schutz besteht in der Herabsetzung von unerwünschten chemischen Angriffen auf das Bauelement und/oder in der Absenkung der Temperatur im Oberflächenbereich des Bauelementes gegenüber der Temperatur an der Oberfläche der Schutz¬ schicht.
Bei diesem Flamm- oder Plasmaspritzen werden teilge¬ schmolzene bzw. weitgehend verflüssigte Keramikpartikel auf die Oberfläche des zu schützenden Bauelementes auf¬ gespritzt. Die haftenden Tropfen erstarren und kühlen weiter ab - je nach den jeweiligen Prozessbedingungen
Ersatzblatt ä mehr oder weniger langsam. Dabei durchlaufen sie alle eventuell existierenden Phasenumwandlungen des kera¬ mischen Werkstoffes. Unter Umständen treten sogar zu¬ sätzliche Umwandlungen auf, wenn die keramischen Teil¬ chen der Schutzschicht sich direkt nach ihrem Erstarren nicht im thermodynamisch stabilen Zustand befinden. So bildet sich beim Plasmaspritzen dieser Schichten ebenso wie beim Aufdampfbeschichten aus dem Aluminiumoxid zu¬ erst das •*•? -Aluminiumoxid, das dem ^* -Aluminiumoxid ähnlich ist, denn dieses hat ebenso wie das γ~ -Alumi- niumoxid eine geringer Oberflächenenergie als die einzig thermodynamisch stabile Aluminiumoxidmodifikation, das o -Aluminiumoxid, auch Korund genannt.
Eine später eintretende Umwandlung der keramischen Schicht in die stabile Korundstruktur führt wegen der damit immer verbundenen Volumenabnahme um 8 % zu inneren Spannungen, schließlich zu Rissen und gar zum Abplatzen der Schutzschicht. Entsprechenden zeigen die bis jetzt bekannten keramischen Schutzschichten auf 'der Basis von Aluminiumoxid nur eine sehr geringe Temperaturwechselbe¬ ständigkeit. Eine an das Auftragen der Schutzschicht an¬ schließende Wärmebehandlung führt zwar zu der gewün¬ schten Korundphase, erhöht jedoch nicht unbedingt die Temperaturwechselbeständigkeit und vermeidet nicht die anderen möglichen Beeinträchtigungen, die einen negati¬ ven Einfluß auf die Wirksamkeit der Schutzschicht haben, und auf einer Phasenumwandlung und einer damit verbunde¬ nen Volumenabnahme der Schutzschicht beruhen. Des weite¬ ren ist eine zusätzliche Wärmebehandlung aus wirtschaft¬ lichen Gesichtspunkten unerwünscht.
Der Erfindung liegt deshalb die Aufgabe zugrunde, eine keramische Schutzschicht auf der Basis von Aluminiumoxid zu schaffen, die eine sehr hohe Temperaturwechselbe¬ ständigkeit aufweist und gleichzeitig sehr korrosionsbe¬ ständig ist.
Diese Aufgabe wird erfindungsgemäß durch die kennzeich- nenden Merkmale des Patentanspruches 1 gelöst.
Das Basismaterial der keramischen Schutzschicht besteht entweder vollständig oder zu mehr als 55 % aus Aluminiu¬ moxid. Durch die Zugabe von wenigstens einem weiteren Metalloxid eines Metalls der Gruppe IIA, IIIA, IIIB, VB, VIB, VIIB oder VIII des Periodensystems kann das Alumi¬ niumoxid zur bevorzugten Ausbildung einer Korundstruktur anstelle einer **, -Aluminiumoxid-Struktur veranlaßt wer¬ den. Erfindungsgemäß wird wenigstens eines dieser chemi¬ schen Verbindungen in einer Menge zwischen 0,1 und 15 Masse? dem Basismaterial der Schutzschicht vor dem Auf¬ spritzen derselben beigemischt. Hierfür sind besonders Magnesiumoxid und Metalloxide. geeignet, deren Metalle in einer dreiwertigen Oxidationsstufe vorliegen und die bevorzugt in der Korundstruktur kristallisieren. Eine Korundstrukturbildung kann bei Aluminiumoxid besonders gut mit Galliuraoxid, Vanadiumoxid, Chromoxid oder Eisen¬ oxid erzielt werden. Mit Hilfe des Magnesiumoxids kann das Kornwachstum des Aluminiumoxids gemindert werden. Einem Zusatz von Galliumoxid, Vanadiumoxid, Chromoxid oder Eisenoxid wird deshalb ein weiterer Zusatz von 0,03 bis 4 Masse? Magnesiumoxid hinzugefügt. Unter gewissen Bedingungen kann die Bildung der Korundstruktur des Alu¬ miniumoxids und die Minderung des Kornwachstums einzig und allein durch die Zugabe von Magnesiumoxid erzielt werden.
Ersafzbfa t Die Tatsache, daß Galliumoxid, Vanadiumoxid, Chromoxid und Eisenoxid sowie Magnesiumoxid bei der Einwirkung von schmutzigen heißen Gasen, die eine Temperatur von 800 °C und mehr aufweisen, zur Korrosion neigen, und z.B.mit Vanadiumpentoxid reagieren, wenn dieses in dem heißen Gas enthalten ist, kann unberücksichtigt bleiben. Eine solche Reaktion ist unbedenklich, da sowohl das Galliu¬ moxid, das Vanadiumoxid, das Chromoxid und das Eisenoxid sowie das Magnesiumoxid nur in geringen Mengen in der Schutzschicht enthalten sind. Diese Zusätze können sogar bei einer Reaktion mit einem heißen Gas vollständig aus der Schutzschicht gelöst werden, ohne daß dies eine ne¬ gative Einwirkung auf den Schutzeffekt hat. Das Verhin¬ dern einer "£, -Aluminiumoxid- Bildung wird durch die erfindungsgemäßen Zusätze bereits während des Auftragens der Schutzschicht bewirkt, so daß das Vorhandensein der Metalloxide später nicht mehr erforderlich ist.
Anhand von Ausführungsbeispielen, welche, die Herstellung und Beschichtung von Gasturbinenbauteilen beschreiben, wird der Erfindung näher erläutert.
Ein zu beschichtendes Gasturbinenbauteil (hier nicht dargestellt) ist aus einem austenitischen Material, insbesondere einer Nickel-Superlegierung gefertigt. Vor der Beschichtung wird das Bauteil zunächst chemisch ge¬ reinigt und dann mit einem Sandstrahl aufgerauht. Die Beschichtung dieses Bauteils erfolgt an Luft oder unter reduziertem Druck mit Hilfe des bekannten Plasmaspritz¬ verfahrens. Falls es die Gegebenheiten erfordern, kann das zu beschichtende Bauteil vor dem Aufbringen der Ke¬ ramikschutzschicht zunächst mit einer NiCrAlY-Schicht überzogen werden. Die nachfolgend beschriebene Schutz
Ersatzblatt Schicht weist als Basismaterial reines Aluminiumoxidpul¬ ver auf. Vor dem Auftragen der Schutzschicht wird diesem Basismaterial Chromoxid in einer Menge von 0,1 bis 15 Masse? beigemischt. Als weiterer Zusatz wird Magnesiumo¬ xid in einer Menge 0,03 bis 4 Masse? zugesetzt um das Kornwachstum des Aluminiumoxids zu mindern. Anstelle des Chromoxids kann selbstverständlich auch Galliumoxid, Vanadiumoxid oder Eisenoxid als Zusatz verwendet werden. Es besteht selbstverständlich auch die Möglichkeit, auf die vier oben beschriebenen Metalloxide zu verzichten, und ausschließlich Magnesiumoxid dem Basismaterial bei¬ zumischen, wodurch gleichzeitig die Ausbildung der Ko¬ rundstruktur bei dem Aluminiumoxid gefördert und das Kornwachstum desselben gemindert wird. Eine so zusammen¬ gesetzt Schutzschicht wurde auf das eingangs beschriebe¬ ne Bauteil aufgetragen und Thermoschockversuchen ausge¬ setzt, während derer die periodische Aufheizung des Bau¬ teils und der Schutzschicht auf 950 °C und die Abschrek- kung auf Zimmertemperatur während über 300 Zyklen durch¬ geführt wurde. Bei einem zusätzlich durchgeführten 12stüdigen Schlackentest konnten an der Schutzschicht keine Korrosionseinwirkungen durch Vandadiumpentoxid oder Natriumsulfat festgestellt werden.
Das eingangs genannte Bauteil aus einer Nickel-Superle- gierung kann auch mit einer keramischen Schutzschicht überzogen werden, dessen Basismaterial aus einer Mi¬ schung aus Aluminiumoxid und Titanoxid besteht. Der Ti¬ tanoxidgehalt liegt bei einer solchen Schutzschicht zwi¬ schen 10 und 45 Masse?. Dem Basismaterial wird erfin¬ dungsgemäß Chromoxid zugesetzt. Der Gehalt an Chromoxid variiert zwischen 0,1 und 15 Massseprozent bezogen auf die im Basismaterial enthaltene Menge an Aluminiumoxid. Zusätzlich können Magnesiumoxid, Galliumoxid, Vanadium¬ oxid
Ersafebf oder Eisenoxid oder ein Zusatz bestehend aus allen diesen Oxiden dem Basismaterial neben dem Chromoxid bei¬ gemischt werden. Die Menge der zusätzlich zugegebenen Metalloxide ist ebenfalls abhängig von dem Aluminiumo¬ xidgehalt des Basismaterials. Eine Schutzschicht mit 5 einem Basismaterial aus Aluminiumoxid und Titanoxid weist überwiegend ein Gemisch aus der Korundmodifikation des Aluminiumoxids und der Rutilmodifikation des Titano¬ xids auf. Die mögliche Mischphase bestehend aus Alumi- niumtitanat tritt nur in geringen Mengen auf. Eine sol- ®-*- ehe Schutzschicht zeigt nach der Durchführung der oben beschriebenen Testuntersuchungen ebenfalls keine Korro¬ sionserscheinungen auf, die durch die Einwirkung von Va- nadiumpentoxid oder Natriumsulfat hervorgerufen werden.
5
0
5
0
5
Ersatzblatt

Claims

Patentansprüche
1. Keramische Schutzschicht auf der Basis von Alu¬ miniumoxid, insbesondere für metallische Bauelemente, dadurch gekennzeichnet, daß dem Basismaterial der Schutzschicht wenigstens ein oder mehrere Metalloxide eines Metalls der Gruppe IIA, IIIA, IIIB, VB, VIB, VIIB oder VIII des Periodensystems als Zusatz beigemischt ist.
2. Keramische Schutzschicht nach Anspruch 1, da¬ durch gekennzeichnet, daß das Basismaterial aus reinem Aluminiumoxid besteht.
3. Keramische Schutzschicht nach Anspruch 1, da¬ durch gekennzeichnet, daß das Basismaterial der Schutz¬ schicht zu mehr als 50 ? aus Aluminiumoxid bezogen auf das Gesamtgewicht des Basismaterials besteht.
4. Keramische Schutzschicht nach Anspruch 1, da¬ durch gekennzeichnet, daß das Basismaterial 0,1 bis 15 Masse? Galliumoxid, Vanadiumoxid, Chromoxid oder Eisen¬ oxid bezogen auf den Aluminiumoxidgehalt des Basismate¬ rials als Zusatz enthält.
5. Keramische Schutzschicht nach einem der Ansprü¬ che 1 bis 3> dadurch gekennzeichnet, daß das Basismate¬ rial 0,1 bis 15 Masse? eines oder mehrerer Oxide der Metalle Gallium, Vanadium, Chrom und Eisen bezogen auf das Gesamtgewicht des im Basismaterial enthaltenen Alu¬ miniumoxids als Zusätze enthält.
6. Keramische Schutzschicht nach einem der Ansprü¬ che *1 bis 3> dadurch gekennzeichnet, daß das Basismate
Ersatzblatt rial 0,03 bis 4 Masse? Magnesiumoxid bezogen auf den Aluminiumoxidgehalt des Basismaterials als Zusatz ent¬ hält.
7. Keramische Schutzschicht nach einem der Ansprü- ^ ehe 1 bis 3, dadurch gekennzeichnet, daß das Basismate¬ rial 0,1 bis 15 Masse? eines oder mehrerer Oxide der Metalle Gallium, Vanadium, Chrom und Eisen sowie 0,03 bis 4 Masse? Magnesiumoxid bezogen auf den Aluminiumo¬ xidgehalt des Basismaterials als Zusätze enthält. 10.
15
0
25
30
35
Ersatzblatt
PCT/DE1985/000320 1984-07-25 1985-09-14 Ceramic protective coating WO1987001736A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE19843427456 DE3427456A1 (de) 1984-07-25 1984-07-25 Keramische schutzschicht
PCT/DE1985/000320 WO1987001736A1 (en) 1985-09-14 1985-09-14 Ceramic protective coating
EP85904794A EP0236309A1 (de) 1985-09-14 1985-09-14 Keramische schutzschicht

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE1985/000320 WO1987001736A1 (en) 1985-09-14 1985-09-14 Ceramic protective coating

Publications (1)

Publication Number Publication Date
WO1987001736A1 true WO1987001736A1 (en) 1987-03-26

Family

ID=6776141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1985/000320 WO1987001736A1 (en) 1984-07-25 1985-09-14 Ceramic protective coating

Country Status (2)

Country Link
EP (1) EP0236309A1 (de)
WO (1) WO1987001736A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200392626A1 (en) * 2019-06-14 2020-12-17 Applied Materials, Inc. Methods for depositing sacrificial coatings on aerospace components

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1165190A (fr) * 1955-07-26 1958-10-20 Armour Res Found Procédé et composition pour pulvérisation à la flamme
FR2011820A1 (de) * 1968-04-29 1970-03-13 Avco Corp
US4077637A (en) * 1977-01-17 1978-03-07 Koppers Company, Inc. Ceramic coated piston rings
JPS57120871A (en) * 1981-01-20 1982-07-28 Toshihiko Yoshino Magnetic field measuring device
FR2528416A1 (fr) * 1982-06-11 1983-12-16 Ceskoslovenska Akademie Ved Matiere pour le revetement par pulverisation et specialement le revetement par pulverisation avec un plasma
DE3427456A1 (de) * 1984-07-25 1986-01-30 Brown, Boveri & Cie Ag, 6800 Mannheim Keramische schutzschicht

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1165190A (fr) * 1955-07-26 1958-10-20 Armour Res Found Procédé et composition pour pulvérisation à la flamme
FR2011820A1 (de) * 1968-04-29 1970-03-13 Avco Corp
US4077637A (en) * 1977-01-17 1978-03-07 Koppers Company, Inc. Ceramic coated piston rings
JPS57120871A (en) * 1981-01-20 1982-07-28 Toshihiko Yoshino Magnetic field measuring device
FR2528416A1 (fr) * 1982-06-11 1983-12-16 Ceskoslovenska Akademie Ved Matiere pour le revetement par pulverisation et specialement le revetement par pulverisation avec un plasma
DE3427456A1 (de) * 1984-07-25 1986-01-30 Brown, Boveri & Cie Ag, 6800 Mannheim Keramische schutzschicht

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENTS ABSTRACTS OF JAPAN, Vol. 6, No. 239 (C-137) (1117), 26 November 1982, & JP, A, 57120871 (Matsushita Denki Sangyo) 31 August 1982, see Abstract *
Werkstoffe and Korrosion, Vol. 11, issue 10, October 1960, Weinheim (DE), H. MEYER "Uber das Flammspritzen von Aluminiumoxyd", pages 603-615, see page 605, "Einfluss der Oberflachenspannung" and page 610, "Stabilisierung der Spritzschicht" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200392626A1 (en) * 2019-06-14 2020-12-17 Applied Materials, Inc. Methods for depositing sacrificial coatings on aerospace components
US11697879B2 (en) * 2019-06-14 2023-07-11 Applied Materials, Inc. Methods for depositing sacrificial coatings on aerospace components

Also Published As

Publication number Publication date
EP0236309A1 (de) 1987-09-16

Similar Documents

Publication Publication Date Title
DE2422851C2 (de) Katalysator und seine Verwendung bei der Behandlung von Auspuffgasen
EP0230554B1 (de) Hochtemperatur-Schutzschicht und Verfahren zu ihrer Herstellung
DE3127232C2 (de) Verfahren zum Schützen der Oberflächen von geformten Superlegierungen gegen Oxidation und Korrosion
DE60106220T2 (de) Superlegierung-hvof-pulver mit verbesserter hochtemperaturoxidation, korrosion und kriechwiderstand
DE60132144T2 (de) Hoch hitze- und oxidationsbeständige Beschichtung und hoch hitze- und oxidationsbeständiger, mehrschichtiger Werkstoff
DE69732046T2 (de) Schutzbeschichtung für hochtemperatur
DE69123631T2 (de) Beschichtung von Stahlkörpern
CH653375A5 (de) Beschichtungsmaterial.
EP0776985A1 (de) Verfahren zur Aufbringung einer metallischen Haftschicht für keramische Wärmedämmschichten auf metallische Bauteile
DE3046412A1 (de) Verfahren zur hochtemperaturbehandlung von kohlenwasserstoffhaltigen materialien
CH648603A5 (de) Verfahren zum erzeugen einer korrosionsfesten beschichtung auf einem metallenen gegenstand.
EP0075228A2 (de) Wärmedämmende, hochtemperatur- und thermoschockbeständige Beschichtung auf Keramikbasis
EP2468925A2 (de) Verfahren zur Herstellung eines Wärmedämmschichtaufbaus
CH647557A5 (de) Mit einer deckschicht versehener gegenstand aus einer superlegierung und verfahren zu seiner herstellung.
WO2005035819A1 (de) Verfahren zu lokalen alitierung, silizierung oder chromierung von metallischen bauteilen
DE2903080A1 (de) Verfahren zur ausbildung einer aluminiumueberzugsschicht auf einem eisenlegierungswerkstueck
EP1204619B1 (de) Keramischer werkstoff, verfahren, verwendung und schicht
CH616960A5 (en) Components resistant to high-temperature corrosion.
DE3442250C2 (de)
DE69125398T2 (de) Verfahren zur herstellung eines tauchteiles für schmelzbad
DE3310750A1 (de) Verfahren zum beschichten einer waermebestaendigen legierungsgrundlage
DE4015010C2 (de) Metallbauteil mit einer wärmedämmenden und titanfeuerhemmenden Schutzschicht und Herstellungsverfahren
WO2008110161A1 (de) Schichtsystem und verfahren zu dessen herstellung
WO1987001736A1 (en) Ceramic protective coating
EP0943695B1 (de) Draht auf Basis von Zink und Aluminium und seine Verwendung beim thermischen Spritzen als Korrosionsschutz

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): FR GB NL