WO1986000640A1 - Recombinant dna and its use - Google Patents
Recombinant dna and its use Download PDFInfo
- Publication number
- WO1986000640A1 WO1986000640A1 PCT/JP1984/000356 JP8400356W WO8600640A1 WO 1986000640 A1 WO1986000640 A1 WO 1986000640A1 JP 8400356 W JP8400356 W JP 8400356W WO 8600640 A1 WO8600640 A1 WO 8600640A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dna
- reference example
- plasmid
- reaction solution
- conditions described
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
- C12N15/81—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2730/00—Reverse transcribing DNA viruses
- C12N2730/00011—Details
- C12N2730/10011—Hepadnaviridae
- C12N2730/10111—Orthohepadnavirus, e.g. hepatitis B virus
- C12N2730/10122—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
Definitions
- the present invention relates to a novel recombinant DNA and its use. More specifically, a recombinant DNA comprising the DNA encoding hepatitis B virus surface antigen P31 inserted at the end 3 and the end of the promoter region, the recombinant]: a transformant containing NA, and a transformant
- the present invention relates to a method for producing a hepatitis B virus-less surface antigen P31, which comprises culturing, producing and accumulating hepatitis B virus surface antigen P31 in a culture, and collecting it.
- Hepatitis B is a frequent viral disease, especially in tropical Africa, Southeast Asia, and the Arctic.] 9, Epidemiologically suggested that hepatitis B may cause hepatitis, cirrhosis, and even primary liver cancer. ing.
- the etiology is the hepatitis B virus (HBV), a type of DNA virus, which is a spherical particle with a diameter of 42 nm and named after the discoverer, Dane particle. Called.
- the outer layer contains the HBV surface antigen (hereinafter abbreviated as HBsAg)]), which are divided into subtypes such as adr, adw.ayr, and ay according to their antigenicity. What is done is the adw and adr types.
- HBsAg In addition to den particles, small particles and tubular particles are detected in the blood of hepatitis B patients, and these particles have the same type of HBsAg as den particles. It is also known for other viruses that antibodies against the virus's superficial antigen protect against the infection of Vinoles.], In any case of HB, a vaccine against hepatitis B based on HBsAg is conceivable. . Where HB replacement V can only infect human chimpanzees and attempts to infect cultured cells have been unsuccessful. Therefore HBsAg is limited to obtain from human infected patients blood Contact] like ?, resulting small particles only fully 3 ⁇ 4 plus the demand for materials diagnostic reagents, to turn the vaccine production not It is possible.
- HBsAg gene HBsAg structural gene
- the present invention is a.
- a transformant containing the recombinant DNA obtained by inserting the DNA encoding the hepatitis B virus surface antigen P31 into the 3 'end of the promoter region is cultured, and the hepatitis B is added to the culture. It is intended to provide a method for producing a hepatitis B virus surface antigen P31, which comprises producing, accumulating, and collecting the virus surface antigen P31.
- NA can be of any subtype (adr, adw, ayr, ayw), for example, they can be prepared by the following method. Plasmid FpBR322-EcoRlZHBV933 (abbreviated as pHBY933) in which a 3.2 kb adw-type HBV DNA described in Japanese Patent Application Laid-Open No. 58-1947987 or Nucleic Acids Res., 1_1, 1747 (1983) is incorporated. Can be digested with Hpal and EcoRI to obtain a 961 bp DNA fragment containing a part of the pre-S region. This fragment
- DNA encoding P31 can be prepared by binding an appropriate adapter containing the sequence. Also, a plasmid pBR322-BamHI / HBr330 in which a 3dr19 kb adr-type HBV DNA described in JP-A-59-74985 or Nucleic Acids Res., 11, 1747 (1983) is incorporated. Double digestion of pHBr330 with the restriction enzymes EIcoRI and BamHI yields a 138 bp DNA fragment containing part of the pre-S region. A DNA encoding P31 can be prepared by binding the above-mentioned adapter to this fragment.
- the DNA represented by the base sequence order of 28 to 873 is the DNA encoding adr ⁇ HBs Ag P31.
- the NA includes, among the DNA sequences shown in FIG. 2, the DNA sequences shown in the base sequence order of 10 to 855.
- the DNA encoding P31 may be derived from Winores or may be chemically synthesized.
- DNA encoding ayr-type and ayw-type HBsAgP31 is also substituted as described above. It can be prepared according to the method.
- the promoter region may be of any type as long as it contains a site necessary for initiating mRNA synthesis by binding of the RNA polymerase.
- recombinant DNA capable of expressing P31-encoding DNA can be constructed by inserting DNA encoding P31 into the 3 ′ end of a promoter region capable of functioning in Escherichia coli.
- the expression vector pTRP described in JP-A-58-210796 is disclosed.
- E. coli eg, C600 strain, 2904 strain, W3110 strain, RR1 strain, PR13 strain, etc.
- E. coli was purified by a known method [Cohen, SN et al., Proc. Natl. Acad- Sci. USA, 69,
- the promoter to be used does not need to be limited to the trp promoter (trp-P).
- a recA promoter Japanese Patent Laid-Open No. 59-65099
- a lac promoter a ⁇ promoter and the like
- Transformants harboring the novel recombinant plasmid DNA containing D31 encoding ⁇ 31 ⁇ obtained as described above may be, for example, ampicillin-resistant, tetracycline-resistant or both. Drug resistance can be selected as a phenotype.
- the 294 strains are known bacteria [Backmari, K. et al.
- the transformant thus selected is cultured in a medium known per se.
- the medium include L-9 broth, Penassay, Ross and glucose, and M-9 medium containing casamino acid [Miller, J., Experi-merits in Molecular Genetics, 431-433 (Cold Spring).
- an agent such as 3-indolinoleacrinoleic acid can be added to make the promoter work efficiently.
- Culture of the transformant is usually performed at 15 to 43 ° C, preferably at 28 to 40 ° C, for 2 to 24 hours, preferably for 4 to 16 hours. You can also.
- a yeast transformant can be prepared as follows. Escherichia coli—Yeast shuttle vector YE pi 3 [Brach, JR et al., Gene, 8, 121 (1979)], pSHl5 and pSH19 [Harashima, S. et al., Mol. Cell. BioL, 4, 771 (1984) )) Replacement
- one region of the yeast promoter for example, the region of the inhibitory acid phosphatase gene promoter [Meyhack. B. et al., EMBO J., 6, 675 (1982)], the promoter of glyceraldehyde 3-phosphate dehydrogenase gene. Region [Holland, J ".
- Plasmid DA was extracted from the transformants selected in this manner and isolated by BirTLboim, HC and Doly, J., Nucleic Acids Res. ,, 1513 (1979).
- Saccharomyces cerevisiae Saccharomyces cerevisiae
- AH 2 2R— leu2 his4 can 1 Cir + po80
- K 3 3-7 B ptio80-AH22, ph. 8-2
- K 3 3-8 D pho80- AH22, pho8 ⁇ 2 trpl
- the host yeast is not limited to these, but Saccharomyces-replacement Serepice is preferred.
- the obtained yeast transformant is cultured in a medium known per se.
- a medium for example, Burkholder top / j, medium [: Bostian, KL, et al., 3 ⁇ 4 Proc. Natl. Aca Sci. U SA,, 4505 (1980)].
- the culture of yeast transformants is usually 15 to 4 hours, preferably 24! ⁇
- the cells After culturing, the cells are collected by a known method, suspended in a buffer, and then treated with lysozyme or sonication in the case of a transformant of Escherichia coli, or with Zymolyase (in the case of a transformant of yeast).
- the cells are destroyed by mechanical destruction using green beer or glass beads, etc.
- surfactants such as Triton X-100, deoxycolate, or hydrochloric acid
- P31 can be advantageously extracted.9 Isolation of P31 from the supernatant obtained by centrifugation is generally known.
- the purification method of the hydrophobic protein may be used.
- the P31 activity of the product can be determined, for example, by binding the sample to bromocyan-activated senorelose.paper, and then to the Auslia] I- 125 (Dynabot) 1251-anti-HBsAg antibody. React with direct
- P31 should be used at the end and 3 of the promoter region that can function in Bacillus subtilis and Bacillus subtilis and animal cells.
- the generated P31 may be dalycosylated or may be glycosylated.
- FIG. 1 shows the DNA sequence encoding adr-type HBsAgP31 (upper row) and the corresponding amino acid sequence (lower row).
- FIG. 2 shows the DNA sequence encoding adw-type HBsAgP31 (upper) and the corresponding amino acid sequence (lower).
- Figure 3 shows the construction diagram of plasmid PPH017-1, where the symbols E, S, B, H and X represent EcoRI, Sail, BamH, Hindi! And X hoi, respectively.
- FIG. 4 shows a construction diagram of the plasmid PPKT700-1, where the symbols E, S, B, H, and X represent EeoRI, Sail, BamHI, HindlE, and Xhoi, respectively.
- FIG. 5 shows a construction diagram of plasmid pGLD906-1, where S, B, H and X represent EcoRI. Sall, BamHI, ⁇ ⁇ and ho I, respectively.
- Figure 6 shows the expression plasmid pTRP for adr-type HBsAg P31 for E. coli.
- FIG. 7 shows a construction diagram of the expression plasmid pTRP P31 -W2 for adw-type HBsAg P31 for Escherichia coli, where the symbols E, B, C and P are EcoRI, BamHI, Clal and Pst, respectively. Represents I.
- Fig. 8 shows an expression plasmid for adr-type HBsAg P31 for yeast pGLD P31 -R, pPHO 1> 31-1
- the construction diagram of 1 ⁇ P31-R is shown, where the symbols E, B, S, H, X and C represent EcoRI, BamHI, SalI, HindlT, Xiio and ClaI, respectively.
- Fig. 9 shows the expression plasmid of adw-type HBsHg P31 for yeast pPHO P31 1 shows a construction diagram of W, where symbols E, P, B, C, S and H are respectively
- E. coli plasmid (pJAl) containing a 7.9 kb DNA fragment containing H03)
- reaction solution 10 mM Tris-HCl (pH 8.0), 7 mM Mg
- the gel fragment containing the 0.63 D ⁇ A fragment was sealed in a dialysis tube, submerged in a buffer for electrophoresis, and the DNA fragment was eluted from the gel.
- Transformation was performed according to the method of Cohen et al. Plasmid DNA was isolated from the transformants selected using ampicillin resistance as an indicator by the above-mentioned extraction method, and the molecular weight and the degradation pattern by restriction enzymes were examined. the site, 0.6 3 kt> DNA fragments were separated Burasumi de PPHO 12 which is ⁇ (see FIG. 3) 0 3?
- 4-unit restriction enzyme XhoI (Takara Shuzo) was added to the plasmid pPHO17,2 in 20 reaction solution (6 mM Tris-HCl (pH 7.9), 150 mM NaCl, 6 mM MgCl2). 6 mM 2-menole force. After working at 37 ° C for 2 hours in ethanol, the proteins were deproteinized with phenol and the DNA was precipitated with cold ethanol.
- the DNA was treated with 5 units of DNA Polymerase I Large-Fragment (New England BioLabs) in 30 reactions and a solution [40 mM potassium phosphate buffer (pH 7.5), 6.6 mM). MgClo, 1 mM 2-menolecuff. Triethanol, 33 MM dATP, 33 ⁇ dGTP, 33
- the mixture was subjected to electrophoresis using 1% agarose slab genole under the conditions described in Reference Example 1.
- the NA fragments were separated into 1 to 10 fractions in the order of size by dividing the agarose gel.
- Each agarose gel piece of each fraction was sealed in a dialysis tube, and the c- eluate obtained by electrically eluting DNA from the gel piece under the conditions described in Reference Example 1 was subjected to phenolic treatment, and then cold ethanol was added. In addition, the DNA was precipitated.
- electrophoresis of DNA 0.5 from each fraction using 1% agarose slab gel under the conditions described in Reference Example 1 the nitrocell
- oligonucleotide 1 has 10 Ci r-t 32 P] ATP ( Amers am) and 4 units of 4 nucleotide kinases in a 30 ⁇ l reaction mixture [50 mM Tris-HCl (pH 7.6), 10 mM MgCl, 10 mM M2- 3 in mercaptoethanol]. C, acted for 30 minutes and labeled the 5 'end with 32P .
- Plasmid PPKT3 was isolated from the transformants in which strong radioactivity was observed in the autoradiography, and the plasmid PPKT3 was isolated by the above-mentioned extraction method. According to the Southern method, it was confirmed that the insert was hybridized with the probe. 2 Isolation of PGK promoter fragment
- E-Sail digestion of plasmid pBR322, and T4 DNA was mixed under the conditions described in Reference Example 1. It was bound by the action of ligase. Escherichia coli DH1 was transformed using the reaction solution to obtain a desired plasmid pPKT101 from a transformant resistant to ampicillin (see FIG. 4).
- a mixture of 50 ng of phosphorylated Xiiol phosphorylase described in Reference Example 1 and 0.2 ⁇ -9 of BAL-digested pPTKlOl was prepared by the action of ⁇ 4D ⁇ ligase under the conditions described in Reference Example 1. Combined. Then, the reaction solution was used for E. coli! H1 was transformed to obtain a plasmid pPKT567 from the transformant showing ampicillin resistance, in which 0.69 k was removed from the pPTIO OSal I site in the direction of the promoter region. .
- the DNA 1 was treated with DNA polymerase I large 'fragment under the conditions described in Reference Example 1 to change the cohesive end of Sail to a blunt end.
- the DNA fragment 500 was mixed with 50 ng of the Xyl phosphate Xhol linker described in Reference Example 1 and bound by the action of T4 DNA ligase under the conditions described in Reference Example 1.
- Escherichia coli DH1 was transformed with the reaction solution, and a transformant having plasmid PSH19-1 in which the Sail site of pSH19 was converted to an Xhol site was obtained from ampicillin-resistant transformants. (See Fig. 4)
- a reaction solution (10 mM Tris-HCl (pH 7.5), 7 mM gCl 2 , 60 mM NaCl) was added to the plasmid pSH 19-1 DNA (15 ⁇ 9) in a mixture of 24 units of Hindffi (10 mM) in 15 ⁇ 9.
- the reaction was stopped by adding 10 ⁇ M of 0.2 M EDTA.
- the reaction mixture was subjected to electrophoresis using 0.7% agarose slab genole under the conditions described in Reference Example 1, and the 8.3 kb A fragment cut at one site with HindIII was separated from the gel by the method described in Reference Example 1. I took it.
- C electrophoresis was performed under the conditions described in Reference Example 1 using ⁇ , 1.2% agarose slab genole that was allowed to act for 2 hours, and a 1.0 kb DNA fragment was separated from the gel (see FIG. 4).
- Escherichia coli DH1 was transformed with the reaction solution, and a transformant having the desired plasmid PPKT700 was obtained from ampicillin-resistant transformants.
- a plasmid pPKT700-1 in which the Xhol site of the plasmid PPKT700 was converted to a Sail site was prepared according to the method described in Reference Example 1 (see FIG. 4).
- Glycephalealdehyde 3-phosphate dehydrogenase gene (GLD)
- Escherichia coli DH1 was transformed by the method described in 1, and about 1200 tetracycline-resistant transformants were obtained, and were strongly hybridized with a 32- sense probe by colony hybridization. Transformants were isolated. Plasmid pGLD9 was isolated from this transformant by the alkali extraction method described above, and digested with Hindi [.], And a 2.2 kb insert DNA was detected. Hybridized with the probe (see FIG. 5).
- the 0.336 kt> DNA fragment was reacted with DNA polymerase I large 'fragment under the conditions described in Reference Example 1 to change the cohesive end of aql to a blunt end.
- this fragment 1 and 50 ng of the phosphorylated Xhol linker described in Reference Example 1 were mixed and allowed to bind by the action of T4DNA ligase under the conditions described in Reference Example 1.
- excess ft of Xhol was added and the mixture was allowed to work at 37 ° C for 4 hours.
- the linker was bound using a Separose 4B column. k DNA fragment was isolated.
- a reaction solution (10 mM Tris-HCl (pH 7) containing 50 units of the restriction enzyme BamHI and Xliol in each 1 ⁇ 9 of the plasmid pSH 19—1 ⁇ ⁇ A described in 3 of Reference Example 2 .5), 7 mM gCl ? ,, 100 mM NaCl, 7 mM 2-mercaptoethanol] at 37 ° C for 2 hours and described in Reference Example 1 using 1.0% agarose-slab gel. Electrophoresis was performed under the following conditions. After the electrophoresis, the 8.0 DNA fragment was separated from Genore by the method described in Reference Example 1.
- the 8.0 kb DNA fragment (500 ng), the 0,36 kb DNA fragment (200 ng) described in Reference Example 3, and the 0.75 kb DNA fragment (200 ng) were mixed. 9] under the conditions described, due to the action of T 4 D ⁇ ligase.
- the reaction solution was used to transform Escherichia coli DH1, and a recombinant carrying the plasmid pGLD906 to which three DNA fragments were bound was isolated from the ampicillin-resistant transformants.
- the filter was used.
- a plasmid PGLD906-1 converted into a hol site ⁇ Sail site of the rasmid PGLD906 was produced (see FIG. 5).
- Example 1 Construction of a recombinant DNA molecule expressing the adr-type hepatitis B virus surface antigen P31 gene and Escherichia coli of E. coli using the DNA molecule disclosed in JP-A-59-74985 and Nucleic Acids Res. , 1 747 (1983), plasmid pBR 322—BamHI / HBr330 DNA (abbreviated as pHBr330) was prepared by the method of Reference Example 1 described in JP-A-58-210796.
- the plasmid pHBr33050 was mixed with 20 units of restriction enzyme EcoRI (Takara Shuzo (ladder)) and BamHI at a reaction ratio of 100 / "!: 100 mM Tris-HC1 (pH 7.5 ), 7 mM MgCl ⁇ . 50 mM NaCl, 7 mM 2-mercaptoethanol), and then react at 37 ° C for 3 hours, and then described in Reference Example 1 using 1.0% agarose-slab gel. After the electrophoresis, a 1.4 kb DNA fragment was separated from Genore by the method described in Reference Example 1 (see FIG. 6).
- the DNA fragment and the 5 ′ end were phosphorylated by the method described in Reference Example 1, and the mouse was c ° CGAT AC AATGCAGTGG 3 .
- HI was placed in a 20 Af reaction solution [10 mM Tris-HCl (H 8.0), 7 mM MgCl 2 , 100 mM NaCl, 2 mM 2 -mercaptoethanol] for 373 ⁇ 4, After 2 hours of action, the proteins were deproteinized with phenol, and cold ethanol was added to precipitate the DNA (BamHI digested pHBr P31).
- the strain (Escherichia coli 294 / pTRP P31-R) was deposited with the Fermentation Research Institute as IF 0-144 355, and from July 10, 1980 Deposited with the National Institute of Advanced Industrial Science and Technology (FRI) under the accession number FERMP — 7709.
- Example 2 Construction of recombinant DNA molecule expressing adw-type hepatitis B virus surface antigen P3 P gene and Escherichia coli using the DNA molecule JP-A-58-94897, JP-A-5-94897 No. 8,210,796 and Nucleic Acids Res "11, 11, 747 (1983).
- Rasmid pBR—E CORI / HBV933 DNA (abbreviated as pHBV933) is disclosed in Prepared according to the method of Reference Example 1 described in Japanese Patent Publication No. 201 796. 2 ⁇ ⁇ of the plasmid was added with 2 units of restriction enzyme Hpa I manufactured by Takara Shuzo Co., Ltd.
- the plasmid pHBV 933 of 500 ⁇ 9 was mixed with 500 units of restriction enzyme Pstl in 5 DN DN of a reaction solution of 800 (20 mM Tris-HC1 (pH 7.5), 10 mM after MgCl 2, 5 0 mM (NH 4) 2 S_ ⁇ 4] 3 7 ° C in, 2 for 0 min work, and it deproteinized immediately phenol.
- the reaction solution was subjected to electrophoresis using 1.0% agarose 'slab gel under the conditions described in Reference Example 1. After electrophoresis, a 1.7 kb DNA fragment partially degraded by Pstl was fractionated from the gel by the method described in Reference Example 1 (see FIG. 7).
- the 1.7 kb D of ⁇ was ligated to a reaction mixture of 6 units of restriction enzyme EcoRI and 20 ⁇ with 100 mM Tris-HCl (pH 7.5), 7 m mgCl 2 , 50 mM NaCl, 7 mM 2
- the reaction was carried out at 37 ° C for 1 hour in an aqueous solution of lactoethanol, followed by electrophoresis using a 1.0% agarose-slab slab gel under the conditions described in Reference Example 1. After the electrophoresis, a 0.97 kb DNA fragment was fractionated from the gel by the method described in Reference Example 1 (see FIG. 7).
- reaction solution After reacting for 3 hours in NaCl, 2 mM 2-methylene glycol, the reaction solution is subjected to electrophoresis using 1.0% agarose 'slab gel under the conditions described in Reference Example 1. . After the electrophoresis, the 1.42 kb DNA fragment is separated from the gel by the method described in Reference Example 1.
- a strain (29P31-R) containing a plasmid ⁇ 31-R in which a 1.3 kb DNA fragment was inserted in the forward direction with the PG promoter was isolated, and the yeast host ⁇ 33- Transform 8D to obtain a yeast transformant (# 33-8DZpPKT P31-R) (see Fig. 8).
- a plasmid in which the DNA fragment is inserted in the forward direction with the CAP promoter is inserted in the forward direction with the CAP promoter.
- a strain carrying pGLD P31-R (294ZpGLD P31-R) was isolated, and the plasmid was used to transform a yeast host K33-7B.
- Example 4 Enzyme which expresses adw-type hepatitis B winnowless surface antigen P31 gene
- This transformant can be cultured by a usual method to obtain the desired P31.
- Each of the transformants containing the P31 gene expression plasmid obtained in Examples 1 and 2 was cultured in M-9 medium containing 1.0% glucose and 1.0% casamino acid at 37 ° C. for 6 hours. The cells were collected and washed with a buffer [30 niM Tris-HC1 (pH 8.0), 50 mM NaCl, 5 mM ⁇ DTA]. The cells were suspended and lysed in a lysate consisting of 10 Tris-HCl (pH 8.0), 5 mM ⁇ DA ⁇ A, ImM phenylmethinoresorephore-fluoride, and 5 W lysozyme.
- Escherichia coli 294 / pTRP P31- 2 300 HBsAg 1 unit on c industry is ⁇ force Unto number of 1 ng Osuria H one 1 2 5 attached to the kit of the 125 1-HBsAg antibodies which bind to the HB s small particles Availability
- the recombinant DNA and the transformant containing the recombinant DNA provided by the present invention are useful for producing HBsAg P31 and provided by the present invention.
- HBsAg P 31 is useful as a useful vaccine to prevent infection of HB zone c
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Virology (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
B-type hepatitis virus surface antigen P31 can be prepared by culturing transformant containing a recombinant DNA prepared by introducing P31-coding DNA into the promoter region at 3'-terminal.
Description
明 細 書 Specification
組み換え D N Aおよびその用途 技術分野 Recombinant DNA and its applications
本発明は新規な組み換え D N Aおよびその用途に関する。 さらに詳し くは B型肝炎ウィルス表面抗原 P 3 1をコードする D N Aをプロモータ 一領域の 3,末端に挿入してなる組み換え D N A ,該組み換え]: N Aを 含有する形質転換体および該形質転換体を培養し、 培養物中に B型肝炎 ウィルス表面抗原 P 3 1を生成蓄積させ、 それを採取することを特徵と する B型肝炎ウイノレス表面抗原 P 3 1の製造法に関する。 The present invention relates to a novel recombinant DNA and its use. More specifically, a recombinant DNA comprising the DNA encoding hepatitis B virus surface antigen P31 inserted at the end 3 and the end of the promoter region, the recombinant]: a transformant containing NA, and a transformant The present invention relates to a method for producing a hepatitis B virus-less surface antigen P31, which comprises culturing, producing and accumulating hepatitis B virus surface antigen P31 in a culture, and collecting it.
背景技術 Background art
B型肝炎は、特に熱帯アフ リ カ ,東南アジアおよび極 mにおいて多発 するウィルス性疾患であ ]9、 谩性肝炎や肝硬変、 さらには原発性肝ガン の原因にもなることが疫学的に示唆されている。 病因は、 D N Aウイノレ スの 1種である B型肝炎ウィルス ( Hepatitis B virus; 下、 H B Vと略称する)で、 それは直径 42 nmの球状粒子で発見者の名を冠し てデン ( Dane )粒子と呼ばれる。 その外層には、 H B V表面抗原(以 下、 HBsAg と略称する)があ])、 その抗原性の違いによって adr, adw.ayr ,ay などのサブタイプに分けられているが、 日本で見いだ されるのは adw型および adr型である。 Hepatitis B is a frequent viral disease, especially in tropical Africa, Southeast Asia, and the Arctic.] 9, Epidemiologically suggested that hepatitis B may cause hepatitis, cirrhosis, and even primary liver cancer. ing. The etiology is the hepatitis B virus (HBV), a type of DNA virus, which is a spherical particle with a diameter of 42 nm and named after the discoverer, Dane particle. Called. The outer layer contains the HBV surface antigen (hereinafter abbreviated as HBsAg)]), which are divided into subtypes such as adr, adw.ayr, and ay according to their antigenicity. What is done is the adw and adr types.
B型肝炎患者の血中には、 デン粒子のほかに小型粒子や管状粒子が検 出され、 これらの粒子にはデン粒子と同じ型の HBsAgが認められてい る。 ウィルスの表在性抗原に対する抗体がそのウイノレスの感染を防御す ることは他のウィルスでも知られてお]?、 H Bどの場合にも HBsAgを もとに B型肝炎に対するワクチンの製造が考えられる。 ところカ^ H B 差換え
Vはヒトゃチンパンジーにしか感染せず、 培養細胞への感染の試みは成 功してい い。 そのため HBsAgはヒト感染者血中からの入手に限定さ れてお]?、 得られた小型粒子などは診断用試薬の材料としての需要を満 ¾ たすだけで、 ワクチン製造にまわすことは不可能の状態である。 , 分子生物学の最近の進歩によ!)非細菌性の蛋白質をコードする D N A を細菌に導入し、 形質転換させることが可能に ¾つてきた。 この遺伝子 組み換えの技術を応用し、 HBsAg構造遺伝子( 下、 HBsAg遺伝子 と略称する)を細菌内で発現させることができれば、 H B V感染の危険 性の ¾い HBsAgを大量に調製することが可能に 、 B型肝炎ワクチ ンの実用化への道が開かれる。 In addition to den particles, small particles and tubular particles are detected in the blood of hepatitis B patients, and these particles have the same type of HBsAg as den particles. It is also known for other viruses that antibodies against the virus's superficial antigen protect against the infection of Vinoles.], In any case of HB, a vaccine against hepatitis B based on HBsAg is conceivable. . Where HB replacement V can only infect human chimpanzees and attempts to infect cultured cells have been unsuccessful. Therefore HBsAg is limited to obtain from human infected patients blood Contact] like ?, resulting small particles only fully ¾ plus the demand for materials diagnostic reagents, to turn the vaccine production not It is possible. , Due to recent advances in molecular biology! ) DNA encoding non-bacterial proteins can be introduced into bacteria and transformed. If this gene recombination technology can be used to express the HBsAg structural gene (hereinafter abbreviated as the HBsAg gene) in bacteria, it would be possible to prepare large quantities of HBsAg, which has a high risk of HBV infection. The path to practical use of hepatitis B vaccine is opened.
現在知られている 4種のサブタィプすなわち adw ,adr, ayw,ayr のうち、 欧米に多い ayw^については HBsAg遺伝子の存在部位および
Galibert, F.ら, Nature, 28J, , 646 Of the four subtypes currently known, namely, adw, adr, ayw, and ayr, ayw ^, which is common in Europe and the United States, has the HBsAg gene location and Galibert, F. et al., Nature, 28J,, 646
( 1979 ) Charnay, P. ら, Nucleic Acids Res. , 7, 335 (1979) 〕 ,雑種蛋白質として大腸菌内での発現が報告されている〔Charnay, (1979) Charnay, P. et al., Nucleic Acids Res., 7, 335 (1979)], and expression in E. coli as a hybrid protein has been reported [Charnay, P. et al.
P. ら, Nature . 286 , 893 ( 1980); Edman,;]". C.ら , Nature, P. et al., Nature. 286, 893 (1980); Edman,;] ". C. et al., Nature,
291 , 503 ( 1981)〕。 291 and 503 (1981)].
また、 日本で多く見出されている adw型および adr型については、 本 発明者らの一部は HBsAg遺伝子を含む D N Aの創製に成功し、 当該遺 伝子の D N A塩基配列ならびにゲノム上の位置を決定し、 さらにこの組 み換え D N Aを含有する形質転換体を培養して HBsAgを大量生産する ' 途を開いた(特開昭 5 8 - 1 9 4 8 9 7号公報,特開昭 5 8 - 2 0 1 7 9 6号公報,特開昭 5 9 - 7 49 8 5号公報)。 In addition, for the adw type and adr type found in Japan, some of the present inventors have succeeded in creating DNA containing the HBsAg gene, and have determined the DNA base sequence of the gene and the location on the genome. And the possibility of mass-producing HBsAg by culturing a transformant containing this recombinant DNA was opened (Japanese Patent Application Laid-Open Nos. 58-194,978 and 1993). Japanese Patent Application Laid-Open No. 8-201976 and Japanese Patent Application Laid-Open No. 59-79485).
最近、 Mac ida, A. ら〔 Gastroenterology, 85 , 268 ( 1983 )〕 によって示されたように、 B型肝炎ウイノレス e抗原陽性の息者血漿から 左 、 ΟΜΡΙ ヽ
得られた HBsAg小型粒子中には、 従来同定されていた P -ェ (分子量 2 2〜 2 4キロ ' ダルト ン ) , P— H (分子量 2 5〜2 9.5キロ · ダル ト ン ) ¾どの主要ペプチドに加えて〔 Peterson, D. L. ら, Proc. Recently, as shown by Mac ida, A. et al. [Gastroenterology, 85, 268 (1983)], left, ΟΜΡΙ 者 In the obtained HBsAg small particles, P-e (molecular weight of 22 to 24 kg 'Dalton) and P-H (molecular weight of 25 to 29.5 kg · dalton), which were previously identified, are In addition to peptides [Peterson, DL et al., Proc.
Natl. Acad. Sci. U SA, 74 , 1530( 1977)〕 , ? :!^蛋白 分子 量 3 1 キロ .ダノレト ン )と P 3 5蛋白( P 3 1に糖が結合した複合蛋白 で分子量 3 5キロ ' ダルト ン )が存在していることが証明された。P31 は P— Iの N末端に pre— S領域の 5 5個のァミノ酸残基が付加したも ので、 この領域中に重合ヒトアルブミ ン ( poly — H S A )の受容体が 存在していることも明らかにされている。 一方、 肝細胞表面にもこの受 容体があることから、 poly — H S Aを介してデン粒子が肝細胞に付着 し増殖がおこると考えられている。 従って、 デン粒子上の poly -H S A受容体が P 3 1に対する抗体でマスクされれば、 該粒子は肝細胞と結 合できなくな]? H B V感染がよ!)有効に予防できると期待されている。 . 発明の開示 Natl. Acad. Sci. USA, 74, 1530 (1977)],? :! ^ Protein molecular weight 31 kilograms / danoletone) and P35 protein (a molecular weight of 35 kilograms' dalton, a complex protein with a sugar linked to P31) were proved. Since P31 has 55 amino acid residues in the pre-S region added to the N-terminus of P-I, the presence of polymerized human albumin (poly-HSA) receptor may be present in this region. It has been revealed. On the other hand, since this receptor is also present on the surface of hepatocytes, it is thought that den particles adhere to hepatocytes via poly-HSA and proliferate. Therefore, if the poly-HSA receptor on den particles is masked with an antibody against P31, the particles will not be able to bind to hepatocytes.] HBV infection! ) It is expected that it can be effectively prevented. . DISCLOSURE OF THE INVENTION
本発明は The present invention
(1) B型肝炎ゥィルス表面抗原 P 3 1をコ—ドする D N Aをプロモータ —領域の 3' 末端に挿入してなる組み換え D N A , (1) Recombinant DNA, which inserts DNA encoding hepatitis B virus surface antigen P31 at the 3 'end of the promoter region,
(2) B型肝炎ウィルス表面抗原 P 3 1をコ-ドする! N Aをプロモータ 一領域の 3' 末端に挿入してるる組み換え D N Aを含有する形質転換体 および (2) Code hepatitis B virus surface antigen P31! A transformant containing recombinant DNA, wherein NA is inserted at the 3 'end of one region of the promoter; and
(3) B型肝炎ウィルス表面抗原 P 3 1をコ—ドする D N Aをプロモータ 一領域の 3' 末端に挿入してなる組み換え D N Aを含有する形質転換体 を培養し、 培養物中に B型肝炎ウィルス表面抗原 P 3 1を生成蓄積させ、 それを採取することを特徵とする B型肝炎ウィルス表面抗原 P 3 1の製 造法を提供するものである。 (3) A transformant containing the recombinant DNA obtained by inserting the DNA encoding the hepatitis B virus surface antigen P31 into the 3 'end of the promoter region is cultured, and the hepatitis B is added to the culture. It is intended to provide a method for producing a hepatitis B virus surface antigen P31, which comprises producing, accumulating, and collecting the virus surface antigen P31.
差換え
本発明で用いられる B型肝炎ウィルス表面抗原 P 3 1をコードする DReplacement D encoding hepatitis B virus surface antigen P31 used in the present invention
N Aはいずれのサブタイプ( adr , adw,ayr , ayw ) のものであって もよく、 たとえばそれらは下記の方法によつて調製することができる。 特開昭 5 8 - 1 9 4 8 9 7号公報あるいは Nucleic Acids Res., 1_1 , 1747 ( 1983 ) に記載されている 3.2 kbの adw型 H B V D N A が 組み込まれたプラスミ FpBR322—EcoRlZHBV933 (pHBY933 と略称)を制限酵素 Hpal と EcoRI で 2重消化すると、 pre— S領 域の一部を含む 9 6 1 bpの D N A断片を得ることができる。 この断片 〕のNA can be of any subtype (adr, adw, ayr, ayw), for example, they can be prepared by the following method. Plasmid FpBR322-EcoRlZHBV933 (abbreviated as pHBY933) in which a 3.2 kb adw-type HBV DNA described in Japanese Patent Application Laid-Open No. 58-1947987 or Nucleic Acids Res., 1_1, 1747 (1983) is incorporated. Can be digested with Hpal and EcoRI to obtain a 961 bp DNA fragment containing a part of the pre-S region. This fragment
配列を含む適当なアダプターを結合 させることによって P 3 1をコードする D N Aを作製することができる。 また、 特開昭 5 9 - 749 8 5号公報または Nucleic Acids Res., 11 , 1747 (1983 )に記載されている 3· 1 9 kbの adr型 H B V D N Aが組み込まれたプラスミド pBR322 - BamHI/HBr 330 (pHBr 3 3 0と略称)を、 制限酵素 EIcoRIと BamHIで 2重消化すると、 pre- S領域の一部を含む 1 3 9 8 bpの D N A断片を得ることができ る。 この断片に上記のアダプタ—を結合させることによつて P 3 1をコ ―ドする D N Aを調製することができる。 DNA encoding P31 can be prepared by binding an appropriate adapter containing the sequence. Also, a plasmid pBR322-BamHI / HBr330 in which a 3dr19 kb adr-type HBV DNA described in JP-A-59-74985 or Nucleic Acids Res., 11, 1747 (1983) is incorporated. Double digestion of pHBr330 with the restriction enzymes EIcoRI and BamHI yields a 138 bp DNA fragment containing part of the pre-S region. A DNA encoding P31 can be prepared by binding the above-mentioned adapter to this fragment.
adw型 HBsAg P 3 1をコ—ドする D N Aとしては第 1図に示される D N A配列のうち、 塩基配列順序 2 8〜 8 7 3で示される D N Aが、 adr^HBs Ag P 3 1をコ—ドする!) N Aとしては第 2図で示される D N A配列のうち、 塩基配列順序 1 0〜 8 5 5で示される D N Aがあげら れる。 As the DNA encoding adw-type HBsAg P31, of the DNA sequence shown in FIG. 1, the DNA represented by the base sequence order of 28 to 873 is the DNA encoding adr ^ HBs Ag P31. Do it! The NA includes, among the DNA sequences shown in FIG. 2, the DNA sequences shown in the base sequence order of 10 to 855.
また、 P 3 1をコ—ドする D N Aはウイノレス由来のものでも、 化学合 成したものでもよい。 The DNA encoding P31 may be derived from Winores or may be chemically synthesized.
ayr型および ayw型 HBs Ag P 3 1をコ—ドする D N Aも上記した方 差換
法に準じて調製することができる。 DNA encoding ayr-type and ayw-type HBsAgP31 is also substituted as described above. It can be prepared according to the method.
この P 3 1をコードする D N Aを各種宿主(例、 大腸菌,枯草菌,酵 母,動物細胞)で機能するプロモーター領域の 3' 末端に挿入すること によ]?、 P 3 1をコードする!) N Aを発現させうる組み換え!) N Aを搆 築することができる。 By inserting this DNA encoding P31 into the 3 'end of the promoter region that functions in various hosts (eg, Escherichia coli, Bacillus subtilis, yeast, and animal cells), it encodes P31! ) Recombination that can express NA!) NA can be constructed.
プロモーター領域は、 R N Aポリ メ ラーゼが結合することによって mRN A 合成を開始させるのに必要る部位を含む領域であれば、 いかな るものであってもよい。 たとえば大腸菌を宿主として用いる場合、 P 3 1をコードする D N A を大腸菌で機能しうるプロモーター領域の 3' 末端に挿入すれば、 P 31 をコードする D N Aを発現しうる組み換え D N Aが構築できる。 たとえ ば、 特開昭 5 8 - 2 0 1 79 6号公報に記載の発現用ベク ター pTRP The promoter region may be of any type as long as it contains a site necessary for initiating mRNA synthesis by binding of the RNA polymerase. For example, when Escherichia coli is used as a host, recombinant DNA capable of expressing P31-encoding DNA can be constructed by inserting DNA encoding P31 into the 3 ′ end of a promoter region capable of functioning in Escherichia coli. For example, the expression vector pTRP described in JP-A-58-210796 is disclosed.
601 , pTRP771¾どに、 P 3 1をコードする D N Aを T 4 D N Aリ ガーゼの作用によ!)挿入する。 この反応液を用いて、 大腸菌(例、 C 6 0 0株, 2 9 4株, W 3 1 1 0株, R R 1株, P R 1 3株など)を 公知の方法〔 Cohen ,S. N.ら, Proc. Natl. Acad- Sci. U S A , 69 , 601, pTRP771 and others, the DNA encoding P31 is transformed by the action of T4DNA ligase! )insert. Using this reaction mixture, E. coli (eg, C600 strain, 2904 strain, W3110 strain, RR1 strain, PR13 strain, etc.) was purified by a known method [Cohen, SN et al., Proc. Natl. Acad- Sci. USA, 69,
2110 ( 1972) 〕もしくはそれに準ずる方法によって形質転換する。 2110 (1972)] or a method analogous thereto.
使用するプロモーターは、 trpプロモーター ( trp— P )に限定する 必要はなく、 たとえば recAプロモータ—〔特開昭 5 9 - 6 5 099号〕 , lacプロモーター , λρしプロモーター どを使用してもよい。 上記のようにして得られた Ρ 3 1をコ—ドする D Ν Αを含む新規な組 み換えプラスミ ド D N Aを保持する形質転換体は、 たとえばア ンピシリ ン耐性, テ トラサイクリン耐性あるいはこれら両薬剤耐性を表現形とし て選ぶことができる。 お、 29 4株は公知の菌〔 Backmari,K. ら, The promoter to be used does not need to be limited to the trp promoter (trp-P). For example, a recA promoter [Japanese Patent Laid-Open No. 59-65099], a lac promoter, a λρ promoter and the like may be used. Transformants harboring the novel recombinant plasmid DNA containing D31 encoding {31} obtained as described above may be, for example, ampicillin-resistant, tetracycline-resistant or both. Drug resistance can be selected as a phenotype. The 294 strains are known bacteria [Backmari, K. et al.
Proc. Natl. Acad. Sci. U SA , 73, 4174(1974)〕であ j9財団法人 全. ¾ { OMP! - 差
発酵研究所 ( Institute for Fermentation, Osaka) 〕 (ェ F 0 と略称することもある)に、 I F 0— 1 4 1 7 1として寄託もされてい る。 これらの耐性株の中から P 3 1をコードする!) N Aを含有する新規 な組み換えプラスミ ド D N Aを保持する菌株を探し出すには、 たとえば 次の手法が用いられる。 前述したアダプターの一方の鎖, AATTC C ACTGCATTGTAT3' を T 4ポリヌク レオチド · キナーゼによって r _ 32p _ A T p を用いて放射性同位元素で標識し、 これを探針 (プ ローブ)として、 それ自体公知のコロニー · ハイブリダィゼーション法 〔 Grunstein, M. and Hogness ,D. S. , Proc. Natl. Acad. Sci. USA, , 3961 (1975) 〕によって、 すでに得た薬剤耐性の形質転換体の 中から陽性を示すク口一ンを確実に探し出すことができる。 Proc. Natl. Acad. Sci. USA, 73, 4174 (1974)], and all j9 Foundations. ¾ {OMP!-Difference It has also been deposited with the Institute for Fermentation (Osaka)] (sometimes abbreviated as F0) as IF0-141171. Encode P31 from among these resistant strains! For example, the following method is used to search for a strain that contains a new recombinant plasmid DNA containing NA. One strand of the above-described adapter, labeled with a radioactive isotope using r _ 32 p _ AT p by T 4 polynucleotide kinase to AATTC C ACTGCATTGTAT 3 ', this as a probe (probe), itself A known colony hybridization method [Grunstein, M. and Hogness, DS, Proc. Natl. Acad. Sci. USA, 3961 (1975)] is positive among drug-resistant transformants already obtained. Can reliably be found.
このようにして選択された形質転換体をそれ自体公知の培地で培養す る。 培地としては、 例えば Lブロス , ペナセィ ( Penassay )プ、ロスお よびグルコース , カザミ ノ酸を含む M— 9培地〔 Miller,J., Experi - merits in Molecular Genetics, 431— 433 ( Cold Spring The transformant thus selected is cultured in a medium known per se. Examples of the medium include L-9 broth, Penassay, Ross and glucose, and M-9 medium containing casamino acid [Miller, J., Experi-merits in Molecular Genetics, 431-433 (Cold Spring).
Harbor Laboratory, New York, 1972 )〕カ挙げられる。 ここに、 必要によ]?プロモーターを効率よく働かせるために、 たとえば 3 ーィ ンドリノレアクリノレ酸のような薬剤を加えることができる。 Harbor Laboratory, New York, 1972)]. Here, if necessary, an agent such as 3-indolinoleacrinoleic acid can be added to make the promoter work efficiently.
該形質転換体の培養は通常 1 5〜 4 3 °C ,好ましくは 2 8. 〜 4 0 で 2〜2 4時間,好ましくは 4〜1 6時間行い、 必要によ]?通気や攪拌 を加えることもできる。 Culture of the transformant is usually performed at 15 to 43 ° C, preferably at 28 to 40 ° C, for 2 to 24 hours, preferably for 4 to 16 hours. You can also.
宿主として、 たとえば酵母を利用するときには、 酵母形質転換体を次 のように作製することができる。 大腸菌—酵母シャ トル ·ベクタ一 YE pi 3 〔 Broach, J. R. ら, Gene, 8, 121 ( 1979)〕 , pSHl 5 と pSH 19〔 Harashima,S. ら, Mol. Cell. BioL, 4 , 771 ( 1984)〕 差換え
に、 酵母プロモータ一領域,たとえば抑制性酸性ホスファターゼ遺伝子 プロモータ一領域〔 Meyhack.B. ら, EM BO J., 6 , 675 ( 1982)〕 , グリセルァルデヒ ド 3— リ ン酸デヒ ドロゲナーゼ遺伝子のプロモータ 一領域〔 Holland, J". P. and Holland, M. J., J. Biol. Chem., 255, 2596 (1980) 〕 ,あるいは 3—ホスホダリ セ口リ ン酸キナーゼ遺伝 子のプロモーター領域〔 Do son, . J. ら, Nucleic Acids Res., 10 , 2625 ( 1982 ) 〕を揷入したのち、 その直後に Ρ 3 1をコードす る D N Aを T 4 D N Aリガーゼの作用によって結合させる。 この反応液 を用いて、 前述の宿主大腸菌を前述の Cohenらの方法によって形質転換 する。 このようにして得られtP 3 1をコードする D N Aを含む新規な 組み換え D N Aを保持する形質転換体は、 たとえばアンピシ リ ン耐性を 表現型として選ぶことができる。 この耐性株の中から P 3 1をコードす る D N Aをもつ新規 ¾組み換えプラスミ ド D N Aを保持する菌株を探し 出すには、 前述の方法が同様に用いられる。 When, for example, yeast is used as a host, a yeast transformant can be prepared as follows. Escherichia coli—Yeast shuttle vector YE pi 3 [Brach, JR et al., Gene, 8, 121 (1979)], pSHl5 and pSH19 [Harashima, S. et al., Mol. Cell. BioL, 4, 771 (1984) )) Replacement In addition, one region of the yeast promoter, for example, the region of the inhibitory acid phosphatase gene promoter [Meyhack. B. et al., EMBO J., 6, 675 (1982)], the promoter of glyceraldehyde 3-phosphate dehydrogenase gene. Region [Holland, J ". P. and Holland, MJ, J. Biol. Chem., 255, 2596 (1980)], or the promoter region of the 3-phosphodariscephalin phosphate kinase gene [Doson, J. Et al., Nucleic Acids Res., 10, 2625 (1982)], and immediately thereafter, the DNA encoding Ρ31 is bound by the action of T4 DNA ligase. The above-mentioned host Escherichia coli is transformed by the above-mentioned method of Cohen et al .. The transformant thus obtained, which carries the novel recombinant DNA containing the DNA encoding tP31, expresses, for example, ampicillin resistance. You can choose as a type. To begin looking for a strain to hold the new ¾ recombinant plasmid DNA having a DNA that encoding a P 3 1 from the resistant strains, are used similarly aforementioned method.
このようにして選択された形質転換体からプラスミ ド D Aをアル力 リ抽出 し BirTLboim,H. C. and Doly , J., Nucleic Ac ids Res., , 1513( 1979 )〕によって単離し、 これを用いて酵母、 たとえば口 ィ シン要求'性のサ.ッ カロ ミセス ' セ レビシェ ( Saccharomyces cerevisiae ) ,たとえば A H 2 2 R— ( leu2 his4 can 1 Cir+ p o80 ) C Proc. Natl. Acad Sci. U SA 80 , 1('1983)〕 あるいは A H 2 2 R~ よ 誘導された K 3 3— 7 B ( ptio80—AH22, ph。8— 2 )または K 3 3 - 8 D ( pho80— AH22, pho8~2 trpl )を、 公 知の方法 C Hinnen , A. ら, Proc. NatL Acad. Sci. USA , 75, 1927 ( 1978 ) :]またはそれに準ずる方法によって形質転換する。 宿 主としての酵母はこれらに限定されることはないが、 サッカロ ミセス - 差換え
セ レピシェが好ましい。 Plasmid DA was extracted from the transformants selected in this manner and isolated by BirTLboim, HC and Doly, J., Nucleic Acids Res. ,, 1513 (1979). For example, Saccharomyces cerevisiae (Saccharomyces cerevisiae), for example, AH 2 2R— (leu2 his4 can 1 Cir + po80) C Proc. Natl. Acad Sci. USA 80, 1 ('1983)] or K 3 3-7 B (ptio80-AH22, ph. 8-2) or K 3 3-8 D (pho80- AH22, pho8 ~ 2 trpl) induced by AH 22 R ~ Is transformed by a known method C Hinnen, A. et al., Proc. NatL Acad. Sci. USA, 75, 1927 (1978):] or a method analogous thereto. The host yeast is not limited to these, but Saccharomyces-replacement Serepice is preferred.
得られた酵母の形質転換体は、 それ自体公知の培地で培養する。 培地 としては、 たとえば Burkholder 最 /j、培地〔: Bostian, K. L. ら, ¾ Proc。 Natl. Aca Sci。 U SA , , 4505( 1980)〕 カ挙げられる。 , 酵母の形質転換体の培養は通常 1 5 ¾〜 4ひ ,好ましくは 2 4 !〜 The obtained yeast transformant is cultured in a medium known per se. As a medium, for example, Burkholder top / j, medium [: Bostian, KL, et al., ¾ Proc. Natl. Aca Sci. U SA,, 4505 (1980)]. The culture of yeast transformants is usually 15 to 4 hours, preferably 24! ~
3 7 ¾で 1 0〜9 6時間,好ましくは 2 4:〜 7 2時間行い、 必要によ!) 通気や攪拌を加えることもできる。 Perform at 37¾ for 10 to 96 hours, preferably 24: to 72 hours, if necessary! Aeration and agitation can also be added.
培養後、 公知の方法で菌体を集め、 緩衝液に懸濁させたのち、 大腸菌 の形質転換体の場合にはリゾチームあるいは超音波処理によって、 また 酵母の形質転換体の場合にはザィモリエース 〔 キ リ ンビール (梯製〕ある いはガラスビースなどによる機械的破壊によって菌体を破壊する。 ここ へ、 ト リ ト ン X— 1 0 0 , デォキシコ一レー トなどの界面活性剤,ある いは塩酸グァニジンなどの蛋白変性剤を加えることによって P 3 1をよ ]9有利に抽出することができる。 遠心分離によつて得られた上澄液から の P 3 1の単離は、 通常知られている疎水性蛋白質の精製方法にしたが えばよい。 After culturing, the cells are collected by a known method, suspended in a buffer, and then treated with lysozyme or sonication in the case of a transformant of Escherichia coli, or with Zymolyase (in the case of a transformant of yeast). The cells are destroyed by mechanical destruction using green beer or glass beads, etc. Here, surfactants such as Triton X-100, deoxycolate, or hydrochloric acid By adding a protein denaturant such as guanidine, P31 can be advantageously extracted.9 Isolation of P31 from the supernatant obtained by centrifugation is generally known. The purification method of the hydrophobic protein may be used.
生成物の P 3 1活性は、 たとえば試料をブロム シアンで活性化された セノレロース . ペーパーに結合させたのち、 オース リ ア] I— 1 2 5 (ダイ ナボット社製)の1251 -抗 HBsAg抗体と反応させる direct The P31 activity of the product can be determined, for example, by binding the sample to bromocyan-activated senorelose.paper, and then to the Auslia] I- 125 (Dynabot) 1251-anti-HBsAg antibody. React with direct
immunoassay法し F jisa a, Y.ら, Nucleic Acids Res" 11, Immunoassay method, F jisa a, Y. et al., Nucleic Acids Res "11,
3581 ( 1983) 〕によって測定することカできる。 4 宿主として、 たとえば枯草菌,動物細胞を使用する場合においては枯 , 草菌,動物細胞で機能しうるプロモーター領域の 3, 末端に P 3 1をコ 3581 (1983)]. (4) When using Bacillus subtilis or animal cells as the host, for example, P31 should be used at the end and 3 of the promoter region that can function in Bacillus subtilis and Bacillus subtilis and animal cells.
一ドする D N Aを揷入し、 自体公知の方法によ]?、 該組み換え D N Aで 宿主を形質転換させ、 形質転換体を培養することによ])、 P 3 1を製造 By introducing a DNA fragment to be introduced, and transforming a host with the recombinant DNA and culturing the transformant]) to produce P31.
全^ All ^
¾換え
することができる力 宿主としては大腸菌,酵母がよ ]9好ましい。 Exchange Escherichia coli and yeast are preferred as a host that can be used.] 9
生成される P 3 1はダリコ シル化されていても、 また、 グリコ シル化 されてい くてもよい。 The generated P31 may be dalycosylated or may be glycosylated.
一般に、 H B s A g D N Aを舍有する形質転換体は表面抗原遺伝子産物 の産生によ]?、 形質転換体自体の生育が阻害されることが知られている が、 本発明によれば P 3 1をコードする D N Aを用いると生育阻害が解 除され、 P 3 1の産生量が増大する。 s In general, it is known that a transformant having HBsAg DNA inhibits the production of a surface antigen gene product], but the growth of the transformant itself is inhibited. The use of DNA encoding 1 eliminates growth inhibition and increases P31 production. s
明細書,請求の範囲,図面および要約書で用いる記号の意義は第 1表 に示すとお である。 Table 1 shows the meaning of symbols used in the description, claims, drawings and abstracts.
第 1 表 Table 1
D N A デォキシリボ核酸 D N A Deoxyribonucleic acid
R N A リボ核酸 R N A Ribonucleic acid
m R N A メ ッセ ンジャ一 R N A m R N A Messager R N A
A アデニン A adenine
T チ ミ ン T Timmin
G グァニ ン G Guanin
C シ ト シン C cytosine
d A T P デォキシアデノ シン三リ ン酸 d ATP Deoxyadenosine triphosphate
d T T P デォキシチミ ジン三リ ン酸 d T T P Deoxythymidine triphosphate
d G T P デ才キシグァノ シ ン三リ ン酸 d GTP Dessic xyguanosine triphosphate
d C T P デ才キシ シチジン三リ ン酸 d C T P Deoxyxy cytidine triphosphate
A T P アデノ シン三リ ン酸 ATP Adenosine triphosphate
E D T A エチ レンジァ ミ ン四酢酸 E D T A Ethylenediaminetetraacetic acid
S D S ドデシル硫酸ナト リ ウム S D S Sodium dodecyl sulfate
G 1 7 グリ シン G 17 Glycine
OMPI OMPI
差換え
A l a ァラニン Replacement A la Alanin
V a 1 ノ リ ン V a 1 Norrin
L e u ロ イ シン L e u Loisin
l i e イ ソ ロイ シン S e r セ リ ン l i e Isoleucine S Er Serine
T h r スレ才ニン T h r
C y s システィ ン Cys Sistine
M e t メチ才ニン G 1 u グルタミ ン酸 M e t Met gin G 1 u Glutamate
A s p ァスパラギン酸 L s リジン Asp Aspartic acid Ls Lysine
A r g ァノレギ- ン H i s ヒスチジン A r g Anoregine H His Histidine
P h e フェニノレアラニ ン P he Phenolinoleanine
T y r チロ シン T r p ト リ プト ファ ン T y r Tyrosine T r p Tryptophan
P r o プロ リ ン Pro proline
A s n ァスノ ラギン G i n ク"ノレタ ミ ン Asn Asg Lagin Gin
Ap r ア ンピシリ ン耐性遺伝子 Ap r ampicillin resistance gene
Tc r テ ト ラサイク リ ン耐性遺伝子 Tc r te door Rasaiku Li down resistance gene
PR λ PR フ。口モータ一 PR λ P R Mouth motor
ars ] オー ト ノマス ' レフ。リ ケ一シヨ ン ' シー -クエ ンス 1 ars] Auto Nomas' Lev. Riecation 'Sea -Quest 1
^.autonomous replication sequence 1 ) ^ .autonomous replication sequence 1)
I R ィ ンバ一テツ ド · リ ピー ト inverted repeat ) _ 箬撖ぇ f OMPI ,IR inverted repeat) _ 箬 撖 ぇ f OMPI,
^^
図面の簡単 説明 ^^ Brief description of drawings
第 1図は adr型 HBsAg P 3 1をコードする D N A配列(上段)およ び対応するァミノ酸配列(下段)を示す。 FIG. 1 shows the DNA sequence encoding adr-type HBsAgP31 (upper row) and the corresponding amino acid sequence (lower row).
第 2図は adw型 HBsAg P 3 1をコードする D N A配列(上段)およ び対応するアミノ酸配列(下段)を示す。 FIG. 2 shows the DNA sequence encoding adw-type HBsAgP31 (upper) and the corresponding amino acid sequence (lower).
第 3図はプラス ミ ド PPH017— 1の構築図を示し、 記号 E , S , B , Hおよび Xはそれぞれ Ec oRI, Sail , BamHェ, Hindi!および X hoiを表わす。 Figure 3 shows the construction diagram of plasmid PPH017-1, where the symbols E, S, B, H and X represent EcoRI, Sail, BamH, Hindi! And X hoi, respectively.
第 4図はプラス ミ ド PPKT700— 1の構築図を示し、 記号 E , S , B , Hおよび Xはそれぞれ E e oRI, Sail, BamHI, H i ndlE および X hoiを表わす。 FIG. 4 shows a construction diagram of the plasmid PPKT700-1, where the symbols E, S, B, H, and X represent EeoRI, Sail, BamHI, HindlE, and Xhoi, respectively.
第 5図はプラス ミ ド pGLD 906—1の構築図を示し、 記 , S , B , Hおよび Xはそれぞれ EcoRI . Sall , BamHI , Η ΐ ηάΠΓ および ho Iを表わす。 FIG. 5 shows a construction diagram of plasmid pGLD906-1, where S, B, H and X represent EcoRI. Sall, BamHI, Η άΠΓηάΠΓ and ho I, respectively.
第 6図は大腸菌用 adr型 HBsAg P 3 1の発現プラス ミ ド pTRP Figure 6 shows the expression plasmid pTRP for adr-type HBsAg P31 for E. coli.
P 3 1 — Rの構築図を示し、 記号 E , B , Cおよび Pはそれぞれ Eco RI, BamHI, Clalおよび Pstlを表わす。 The construction diagram of P31-R is shown, where the symbols E, B, C and P represent EcoRI, BamHI, Clal and Pstl, respectively.
第 7図は大腸菌用 adw型 HBsAg P 3 1の発現プラスミ ド pTRP P 3 1 - W 2の構築図を示し、 記号 E , B , Cおよび Pはそれぞれ Eco RI , BamH I, C lalおよび Ps t Iを表わす。 FIG. 7 shows a construction diagram of the expression plasmid pTRP P31 -W2 for adw-type HBsAg P31 for Escherichia coli, where the symbols E, B, C and P are EcoRI, BamHI, Clal and Pst, respectively. Represents I.
第 8図は酵母用 adr型 HBsAg P 3 1の発現プラスミド pGLD P31 -R , pPHO 1> 31-1 ぉょび?1^ P 3 1 -R の構築図を示し、 記 号 E , B , S , H , Xおよび Cはそれぞれ Ec oRI, BamHI, Sal I, HindlT, Xiioェおよび Cla I を表わす。 Fig. 8 shows an expression plasmid for adr-type HBsAg P31 for yeast pGLD P31 -R, pPHO 1> 31-1 The construction diagram of 1 ^ P31-R is shown, where the symbols E, B, S, H, X and C represent EcoRI, BamHI, SalI, HindlT, Xiio and ClaI, respectively.
第 9図は酵母用 adw型 HBsHg P 3 1の発現プラスミ ド pPHO P 31 差換え
一 Wの構築図を示し、 記号 E , P , B , C , Sおよび Hはそれぞれ Fig. 9 shows the expression plasmid of adw-type HBsHg P31 for yeast pPHO P31 1 shows a construction diagram of W, where symbols E, P, B, C, S and H are respectively
EcoRェ , PstI , BamHェ , Claェ , Sail および Hindi! を表わす。 EcoR, PstI, BamH, Cla, Sail and Hindi!
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
参考例 1 酵母抑制性酸性ホスファタ一ゼ · プロモーター ( PHQ5—: P) , を含有する発現用べクタ—の作製 Reference Example 1 Construction of Expression Vector Containing Yeast-Suppressing Acid Phosphatase Promoter (PHQ5—: P)
酵母 Saccharomyces cerevisiae S 288C 株由来の抑制性酸性ホ スアァターゼ遺伝子( PH05 )と構成性酸性ホスファタ一ゼ遺伝子( P The suppressive acid phosphatase gene (PH05) and the constitutive acid phosphatase gene (P) derived from the yeast Saccharomyces cerevisiae S288C strain
H 0 3 )を含む 7. 9 kb D N A断片を含む大腸菌プラスミ ド(pJAl ) E. coli plasmid (pJAl) containing a 7.9 kb DNA fragment containing H03)
L. Kramer ,R. A. and Anderson, N., Proc. Natl. Acad. Soi. USA , L. Kramer, R.A. and Anderson, N., Proc. Natl. Acad. Soi. USA,
77, 6541 (1980) , 5 0 に 2 0ュ-ッ トの制限酵素 BamHI 〔宝酒造㈱製〕と 2 0ュニッ トの制限酵素 Sail〔宝酒造㈱製〕を 77, 6541 (1980), 50-unit restriction enzyme BamHI (Takara Shuzo) and 50-unit restriction enzyme Sail (Takara Shuzo)
1 0 0 の反応液!: 1 0 mM Tris-HCl(pH 8.0 ) , 7 m M Mg 100 reaction solution! : 10 mM Tris-HCl (pH 8.0), 7 mM Mg
Cl2 , 1 0 0 m M N C 1 , 2 inM 2—メノレ力プトエタノール〕中で 3 7 Cl 2 , 100 m MNC 1,2 inM 2
。C , 3時間作用させた後、 1.0%ァガ口—ス ( Sigma 社製) ·スラブ ゲルを用いて緩衝液〔 1 0 0 mM Tris— HC1, 1 00 mM ホウ酸, 2 mM E D T A ( pH 8.3 ) 〕中, 1 4 0 V , 2時間電気泳動にかけた。 . C, after acting for 3 hours, using a buffer solution [100 mM Tris-HC1, 100 mM boric acid, 2 mM EDTA (pH 8.3) using 1.0% agarose (Sigma) • slab gel. )], Electrophoresed at 140 V for 2 hours.
泳動後、 0.6 3 D ίί A断片を含むゲル片を透析チュ'—ブ内に封入し、 泳動用緩衝液内に沈め、 該 D N A断片をゲ から電気的に溶出した After the electrophoresis, the gel fragment containing the 0.63 DίίA fragment was sealed in a dialysis tube, submerged in a buffer for electrophoresis, and the DNA fragment was eluted from the gel.
DcDonell , M. W.ら, J. Mol. BioL, 110 , 119( 1977)〕。 透析チ ュ-ブ内液をフエノール抽出さらにエーテル抽出した後、 NaClを 0.2 DcDonell, M.W. et al., J. Mol. BioL, 110, 119 (1977)]. After the dialysis tube solution was extracted with phenol and ether, NaCl was
^1に¾るように加え、 つづいて 2倍量の冷エタノールを加えて一 2 0 °C f で D N Aを沈殿させた。 f ^ 1 followed by 2 volumes of cold ethanol to precipitate the DNA at 120 ° C f. f
1 μ9 のプラス ミ ド pSH 19 に 2ユニッ トの制限酵素 BamHI と 2 ュニッ トの制限酵素 Sailを 2 0 μ-Ά の反応液〔 1 0 mM Tris-HCl 1 μ9 of plasmid pSH19 and 2 units of restriction enzyme BamHI and 2 units of restriction enzyme Sail were added to 20 μ-Ά reaction mixture (10 mM Tris-HCl
( pH 8.0 ) , 7 mM gCl? , 1 0 0 m M NaCl , 2 m M 2ーメノレ力フ。 差 .
トエタノール〕中で 3 7 °C , 2時間作用させた後、 該反応液を 0.8%ァ ガロース . スラブゲノレを用いて上述の条件下で電気泳動にかけた。 泳動 後、 8.0 kb D N A断片を上述の方法によってゲルから分取し、 フエノ —ルで除蛋白し、 冷エタノールで D N Aを沈殿させた(第 3図参照)。 該 8. O kb D N A断片 4 0 0 ng と前記 0.6 3 kb D N A断片 2 0 0 ng とを混合し、 2 μ の反応液〔 6 6 mM Tris-HCl(pH 7. 6 ) , 6.6 mM MgCl2 , 1 0 mM ジチォスレイ トール , 1 m M A T P , 2ュニ ッ トの T 4 D N Aリガーゼ(宝酒造㈱製) 〕中、 1 4 ¾で一夜作用させ て D N Aを結合させた。 この反応液を用いて大腸菌 2 9 4株を前記 (pH 8.0), 7 mM gCl ?, 100 mM NaCl, 2 mM 2-menole force. Difference. After reacting at 37 ° C for 2 hours in ethanol, the reaction solution was subjected to electrophoresis using 0.8% agarose slab genole under the above-mentioned conditions. After the electrophoresis, the 8.0 kb DNA fragment was separated from the gel by the above-mentioned method, deproteinized with phenol, and precipitated with cold ethanol (see Fig. 3). 400 ng of the 8.0 kb DNA fragment and 200 ng of the 0.63 kb DNA fragment were mixed, and 2 μl of a reaction solution [66 mM Tris-HCl (pH 7.6), 6.6 mM MgCl 2 , 10 mM dithiothreitol, 1 mM MATP, 2 units of T4 DNA ligase (Takara Shuzo Co., Ltd.)] and allowed to act overnight with 14% to bind DNA. Using this reaction solution, E. coli 294
Cohen らの方法に従つて形質転換した。 ァンピシリン耐性を指標とし て選択された形質転換体の中から、 プラスミ ド D N Aを前記アル力リ抽 出法によつて単離し、 分子量と制限酵素による分解パターンを調べ、 pSH 19の BamHI— Sal I部位に、 p J A 1 から単離された 0.6 3 k t> D N A断片が揷入されたブラスミ ド pPHO 12を分離した(第 3図参照)0 3 ? のプラス ミ ド pPH〇 12 D N Aに 2ユニッ トの制限酵素 Sail を 2 0 の反応液〔 1 0 mM Tris-HCl (pH 7. 5 ) , 7 mM MgCl2 , 1 7 5 mM NaCl , 0.2 M E D T A , 7 m 2—メノレカプトェタノ一 ル〕中で 3 7 °C , 2時間作用させた後、 フエノーノレで除蛋白し、 冷エタ. ノールで D N Aを沈殿させた。 この!) N A , 3 μ 9 に 1 2ュニッ トの B A L 3 1ヌクレア一ゼ ( Bethesda Research Laboratories社製) を 5 0 ^ の反応液〔 2 0 mM Tris-HCl (pH 8. 1 ) , 1 2 m Μ Ca Cl2 , 1 2 mM MgCl2 , 1 m M E D A 〕中で 3 0 °C , 2分間'作用さ せた後、 フエノーノレで除蛋白し、 冷エタノールで D N Aを沈殿させた (第 3図参照)。 Transformation was performed according to the method of Cohen et al. Plasmid DNA was isolated from the transformants selected using ampicillin resistance as an indicator by the above-mentioned extraction method, and the molecular weight and the degradation pattern by restriction enzymes were examined. the site, 0.6 3 kt> DNA fragments were separated Burasumi de PPHO 12 which is揷入(see FIG. 3) 0 3? 2 units in the positive Mi de PPH_〇 12 DNA of the p EN 1 isolated Reaction solution [10 mM Tris-HCl (pH 7.5), 7 mM MgCl 2 , 175 mM NaCl, 0.2 MEDTA, 7 m 2-Menolecaptoethanol] After working at 37 ° C for 2 hours in phenol, the protein was removed with phenol and the DNA was precipitated with cold ethanol. this! ) NA, 3 units of BAL31 nuclease (manufactured by Bethesda Research Laboratories) in 3 μ9 was added to a 50 ^ reaction solution [20 mM Tris-HCl (pH 8.1), 12 ml). In CaCl 2 , 12 mM MgCl 2 , 1 mM MEDA] for 30 minutes at 30 ° C, the proteins were removed with phenol and the DNA was precipitated with cold ethanol (see Fig. 3). .
2 0 0 ng の Xhol リ ンカ一 d ( CC TC GAGG ) 〔 New England 差換え Ο ΡΙ 200 ng of Xhol linker d (CC TC GAGG) [New England
に - Wm1PpOl
BioLabs 社製〕に 3ユニットの T 4ポリヌク レオチド ' キナーゼ〔宝 酒造㈱製〕を 5 0 μ& の反応液!: 5 0 mM Tris-HCl (pH7.6 ) , 1 0 mM MgClg , 1 0 mM 2—メルカプトエタノーノレ , 1 0 0 iM A T P〕中で 3 7 °C , 1時間作用させて、 5'末端をリン酸化した。 To-W m 1P p O l BioLabs) with 3 units of T4 polynucleotide 'kinase (Takara Shuzo) in 50 µl reaction mixture: 50 mM Tris-HCl (pH7.6), 10 mM MgClg, 10 mM 2 - mercaptoethanol Honoré and 1 0 0 iM aT P] 3 7 ° C, 1 hour allowed to act in the 5 'ends were phosphorylated.
4 ng の 5'末端がリ ン酸化された Xhol リ ンカ一 〔 5'— P— d ( C C 4 ng of 5'-phosphorylated Xhol linker [5'-P-d (CC
TCGAGG) 〕と 4 0 0 ngの前述の B A L— 31で処理された pPH〇 12 D N Aとを混合し、 前述の条件下で T 4 D N Aリガーゼの作用で結 合させた。 この反応液を用いて大腸菌 2 9 4株を Cohen らの方法に従 つて形質転換した。 アンピシリ ン耐性を指標として選択された形質転換 体の中から、 プラス ミ ド D N Aを前記アルカ リ抽出法によって単離し、 BamHI と Xholによる 2重消化物の大きさが 0.5 5 k bであるプラス ミ ド pPHO 17を選択した。 BAL— 31ヌク レア—ゼ処理によつて、 PH05 の開始コドン A T Gの上流 2 0 bpが除去されたことが、 Dideoxynucleo ide 法〔 Sanger , F. ら, Proc. Natl. Acad Sci. USA , XJ, 5463( 1977)〕による D N A塩基配列の分析によつて明 らかにるつた(第 3図参照)。 TCGAGG)] was mixed with 400 ng of the above-described BPH-31-treated pPH〇12 DNA, and ligated under the conditions described above by the action of T4DNA ligase. Using this reaction solution, E. coli 294 was transformed according to the method of Cohen et al. Plasmid DNA was isolated from the transformants selected using ampicillin resistance as an index by the alkaline extraction method described above, and the plasmid digested with BamHI and Xhol was 0.55 kb in size. pPHO 17 was selected. The removal of 20 bp upstream of the initiation codon ATG of PH05 by BAL-31 nuclease treatment was confirmed by the Dideoxynucleotide method [Sanger, F. et al., Proc. Natl. Acad Sci. USA, XJ. 5463 (1977)], which revealed the DNA sequence (see FIG. 3).
次に、 該プラスミド pPHO 17 , 2 に 4ュニットの制限酵素 Xho I〔宝酒造膀製〕を 2 0 の反応液〔 6 mM Tris-HCl ( pH 7.9 ) , 1 5 0 mM NaCl , 6 mM MgClゥ . 6 mM 2—メノレ力フ。トェタノ一ノレ 〕中で 3 7 °C , 2時間作用させた後、 フエノールで除蛋白し、 冷ェタノ —ルで D N Aを沈殿させた。 Next, 4-unit restriction enzyme XhoI (Takara Shuzo) was added to the plasmid pPHO17,2 in 20 reaction solution (6 mM Tris-HCl (pH 7.9), 150 mM NaCl, 6 mM MgCl2). 6 mM 2-menole force. After working at 37 ° C for 2 hours in ethanol, the proteins were deproteinized with phenol and the DNA was precipitated with cold ethanol.
該 D N A に 5ユニッ トの D N Aポリメ ラーゼ I ラージ - フ ラグメ ン ト ( New England BioLabs社製 ) を 3 0 の反応、液〔40 mM リン酸カリゥム緩衝液( p H 7. 5 ) , 6.6 m M MgClo , 1 mM 2—メノレカフ。トエタノール , 3 3 MM dATP , 3 3 μΜ dGTP , 3 3 The DNA was treated with 5 units of DNA Polymerase I Large-Fragment (New England BioLabs) in 30 reactions and a solution [40 mM potassium phosphate buffer (pH 7.5), 6.6 mM). MgClo, 1 mM 2-menolecuff. Triethanol, 33 MM dATP, 33 μΜ dGTP, 33
: i換え
μΜ dTTP , 3 3 dCTP〕中で 1 2 °C , 3 0分間作用させて、 接 着末端を平滑末端にした後、 フエノーノレで除蛋白し、 冷エタノールで D N Aを沈殿させた。 該 D N A断片 5 0 0 ng と、 前述の条件下でリ ン酸 ィ匕された Sail リンカー〔 5'—; P — i ( G GT C G AC C ) 〕 ( New England BioLabs社製) , 5 0 ng とを混合し、 前述の条件下で T 4 D N Aリガーゼの作用で結合させた。 この反応液を用いて大腸菌 2 9 4 株を Cohen らの方法に従って形質転換させ、 アンピシリ ン耐性の形質 転換体の中から、 フ。ラスミ ド pPHO 12の Xhol部位が Sail部位に変 換したプラスミ ド pPHO 12-1 を取得した(第 3図参照)。 : I change After working at 12 ° C for 30 minutes in μΜdTTP, 33 dCTP] to make the bonding end blunt, the protein was removed with phenol and the DNA was precipitated with cold ethanol. 500 ng of the DNA fragment and 500 ng of a Sail linker [5′—; P—i (GGTCGACC)] (New England BioLabs), which had been phosphorylated under the conditions described above, And ligated by the action of T4 DNA ligase under the conditions described above. This reaction solution was used to transform Escherichia coli 294 strain according to the method of Cohen et al. Plasmid pPHO12-1 in which the Xhol site of rasmid pPHO12 was converted to a Sail site was obtained (see Fig. 3).
参考例 2 酵母ホスホグリセ リ ン酸キナーゼ ' プロモーター ( P G K— Reference Example 2 Yeast phosphoglycerate kinase 'promoter (PGK-
P )を含有する発現用ベクターの作製 Preparation of Expression Vector Containing P)
① ホスホグリセ リ ン酸キナーゼ遺伝子( P G K )のクローユング ① Cloning of the phosphoglycerate kinase gene (PGK)
Cryer.D. R. らの方法〔 ethods in Cell Biology, Vol. XII, P. 39〜 44 ( 1975 ) 〕によつて調製された Saccharomyces cere- visiae協会 3号株( I F 0から入手できる)の染色体 D N A , 3 5 0 gに 2 0 0ュニッ トの制限酵素 Hindi! 〔宝酒造㈱製〕を 1 の反応 液 C l O mM Tris-HCl (pH 7. 5 ) , 7 m Μ MgCl?, , 6 0 m Cryer.DR et al. [Ethods in Cell Biology, Vol. XII, p. 39-44 (1975)], chromosomal DNA of Saccharomyces cerevisiae Society No. 3 strain (available from IF0), 200 units of restriction enzyme Hindi! (Manufactured by Takara Shuzo) in 350 g of 1 reaction solution Cl O mM Tris-HCl (pH 7.5), 7 m Μ MgCl ? ,, 60 m
NaCl〕中 3 7 °C , 3時間作用させた後、 1 %ァガロース . スラブゲノレ を用いて参考例 1に記載の条件下で電気泳動にかけた。 泳動後、 ァガロ —スゲルを分割することによ N A断片を大きさの順に 1から 1 0の 画分に分けた。 各画分のァガロースゲル片をそれぞれ透析チュ―ブに封 入し、 参考例 1に記載の条件下でゲル片から D N Aを電気的に溶出した c 溶出液をフエノーノレ処理した後、 冷ェタノ—ノレを加えて D N Aを沈殿さ せた。 各画分からの D N A 0.5 を 1 %ァガロース · スラブゲルを 用いて参考例 1に記載の条件下で電気泳動を行った後、 ニトロセル口 After working for 3 hours at 37 ° C in NaCl], the mixture was subjected to electrophoresis using 1% agarose slab genole under the conditions described in Reference Example 1. After the electrophoresis, the NA fragments were separated into 1 to 10 fractions in the order of size by dividing the agarose gel. Each agarose gel piece of each fraction was sealed in a dialysis tube, and the c- eluate obtained by electrically eluting DNA from the gel piece under the conditions described in Reference Example 1 was subjected to phenolic treatment, and then cold ethanol was added. In addition, the DNA was precipitated. After electrophoresis of DNA 0.5 from each fraction using 1% agarose slab gel under the conditions described in Reference Example 1, the nitrocell
:換え
スフィノレタ一 ( Schleicher and Schull 社製 )に Southernの方法 C Southern, E. M., J. Mol. Biol., 98 , 503(1975)〕に従って D N Aを吸着させた。 P G C Dobson.M. J. ら, Nucleic Acids Res., 1_0 , 2625 ( 1982) :)の IT末端側からの 5個のァミ ノ酸をコードする オリゴヌク レオチドに,相補な 5し TGAAGAT AAAG ACAT— 3'を Crea, R. ら〔: Proc. Natl. Acad. Sci. USA , 75 , 5765 (1978)〕の方法 によつて合成し、該ォリゴヌクレオチド 1 に 1 0 Ciの r—t32P〕 A T P ( Amers am社製) と 1 0ュニッ トので 4ポリ ヌク レ才チド · キナーゼとを 30 μ& の反応液〔 5 0 mM Tris-HCl (pH 7.6 ) , 1 0 mM MgCl? , 1 0 m M 2—メルカプトエタノール〕中で 3 7。C , 3 0分間作用させ、 5'末端を 32 Pで標識した。 該反応液に 2 0 0 m M EDTA ( ρΗ 8· 0 )を 1 0 添加し、 1容量のフエノーノレで除蛋白 した後、 E N緩衝液〔 1 0 mM Tris-HCl (pH 8.0 ) , 2 0 0 m M NaCl , 1 mM ED A 〕で平衝化したセファロ一ス 4 B ( Pharmacia 社製 ) ' カラム ( 0.25 x 2 5 cm )にかけて void volume付近に溶出 される標識された該ォリゴヌクレ才チドを集め、 P G K遺伝子をスクリ 一ユングするためのプローブとして用いた。 上記の二 ト ロセル口—スフ ィノレタ一と該プロ―ブを用いて前記 Southernの方法でブロッティ ング を行ったところ、 プローブは、 2.6 〜2.9 D N A断片が含まれ る分画番号 3の試料と強くハイブリダィズした。 - 次に、 クローニ ング'ベクター pTR 262 C Roberts, T. M. ら, Gene, 12 , 123( 1980)〕 , 1 0 μ に 1 0ュニッ トの制限酵素 Hindi:を 5 0 の反応液〔 1 0 m M Tris-HCl (pH 7.5 ) , 7 mM MgCl2 , 6 0 mM NaCl 〕中で 3 7 °C , 2時間作用させた後、 フ エノ一ルで除蛋白し、冷エタノーノレで D N Aを沈殿させた( Hindffi消 差挾ん ,' 。謂
化 pTR262 )o Hind]E消化 pTH262 0. 1 β 9 と分画番号 3の D N A 0.2 μ? とを混合し、 参考例 1に記載の条件下で Τ 4 D Ν Αリガ —ゼの作用によって結合させた。 該反応液を用いて大腸菌 D H 1 〔 Maniatis , . ら , Molecular Cloning , Cold Spring Harbor Laboratory, 254〜255 ( 1982 ) 〕を形質転換させ、 テ トラサイク リン耐性を示す組み換え体約 1 3 0 0個を得た。 この中から P G K遺伝 子を含有する形質転換体を、 上述の32: P標識合成プローブを用いるコロ ニー ' ノヽイブリダイゼ—シヨ ン 〔 Suggs , S. V· ら, Proc. Natl. Acad. Sci. U S A , 78 , 6613 ( 1981 ) 〕によって選択した。 オー トラジオ ダラフィ—で強いシグナノレが認められた形質転換体から、 前述のアル力 リ抽出法によってプラスミド PPKT 3を単離し、 Hind]I [で分解したと ころ 2.9 5 kb D N Aのイ ンサートが検出され、 Southernの方法で調 ベると該ィンサートは該プローブとハイブリナることが確認された。 ② P G Kプロモ—ター断片の単離 : Change DNA was adsorbed to Sphinoleta (Schleicher and Schull) according to Southern method C Southern, EM, J. Mol. Biol., 98, 503 (1975)]. PGC Dobson.MJ et al., Nucleic Acids Res., 1_0, 2625 (1982) :) Complementary 5 TGAAGAT AAAG ACAT—3 'to oligonucleotides encoding 5 amino acids from the IT terminal side Acad. Sci. USA, 75, 5765 (1978)], and the oligonucleotide 1 has 10 Ci r-t 32 P] ATP ( Amers am) and 4 units of 4 nucleotide kinases in a 30 μl reaction mixture [50 mM Tris-HCl (pH 7.6), 10 mM MgCl, 10 mM M2- 3 in mercaptoethanol]. C, acted for 30 minutes and labeled the 5 'end with 32P . After adding 100 mM MDTA (ρΗ80) to the reaction solution and removing the protein with 1 volume of phenol, EN buffer [10 mM Tris-HCl (pH 8.0), 200 mM The labeled oligonucletide eluted near the void volume was collected on a Sepharose 4B (Pharmacia) 'column (0.25 x 25 cm) equilibrated with [M M NaCl, 1 mM EDA]. The PGK gene was used as a probe for screening. When the blotting was performed by the Southern method using the above two-toro cell mouth-finolole and the probe, the probe was strongly compared to the sample of fraction No. 3 containing 2.6 to 2.9 DNA fragments. Hybridized. -Next, the cloning 'vector pTR 262 C Roberts, TM et al., Gene, 12, 123 (1980)], 10 μl of the restriction enzyme Hindi: in 50 μl of a 50 μl reaction mixture [10 mM After working at 37 ° C for 2 hours in Tris-HCl (pH 7.5), 7 mM MgCl 2 , 60 mM NaCl], the protein was removed with phenol, and the DNA was precipitated with cold ethanol ( Hindffi disappearing, 'so-called PTR262) o Hind] E digestion pTH262 0.1 β9 and DNA of fraction no. And mixed under the conditions described in Reference Example 1 by the action of Τ 4 D Ν Α ligase. Using the reaction solution, Escherichia coli DH1 [Maniatis, et al., Molecular Cloning, Cold Spring Harbor Laboratory, 254-255 (1982)] was transformed, and about 130 recombinants showing tetracycline resistance were obtained. Obtained. A transformant containing the PGK gene was selected from the above by using the above-mentioned 32 : Colony 'Neubridase-Sion using a P-labeled synthetic probe [Suggs, S.V., et al., Proc. Natl. Acad. Sci. USA , 78, 6613 (1981)]. Plasmid PPKT3 was isolated from the transformants in which strong radioactivity was observed in the autoradiography, and the plasmid PPKT3 was isolated by the above-mentioned extraction method. According to the Southern method, it was confirmed that the insert was hybridized with the probe. ② Isolation of PGK promoter fragment
プラス ミ ド pPKT 3 D N A 5 0 μ 9 に 5 0ユニッ トの制限酵素 50 units of restriction enzyme in plasmid pPKT3DNA50μ9
Hindlllを 1 0 0 ^の反応液〔 1 0 m M Tris-HCl ( pH 7. 5 ) , 7 mM MgCl2, 6 0 mM NaCl 〕中で 3 7 °C , 2時間作用させた後、 1 %ァガロース · スラブゲノレを用いて参考例 1に記載の条件下で電気泳動 にかけた。 泳動後、 2.9 5 kb D N A断片を参考例 1に記載の方法によ つてゲルから分取した(第 4図参照)。 After reacting Hindlll in a 100 ^ reaction solution (10 mM Tris-HCl (pH 7.5), 7 mM MgCl 2 , 60 mM NaCl) at 37 ° C for 2 hours, 1% The sample was subjected to electrophoresis using agarose slab genole under the conditions described in Reference Example 1. After the electrophoresis, a 2.95 kb DNA fragment was separated from the gel by the method described in Reference Example 1 (see FIG. 4).
該 2.9 5 kb D N A断片 5 f 9 に 5ュニットの制限酵素 Sailを 2 0 ^ の反応液〔 1 0 mM Tris-HCl (pH 7. 5 ) , 7 mM MgCl2, 1 7 5 mM NaCl, 7 m M 2 —メルカプトェタノ一ノレ 〕中で 3 7。C , 3 時間作用させた後、 1.2%ァガロース · スラブゲルを用いて参考例 1に 記載の条件下で電気泳動にかけた。 泳動後、 2.1 kb D N A断片を参考 差換え
例 1に記載の方法によってゲルから分取した。 該 2. l kb D N A断片 0.5 9 と、 プラスミ ド pBR 322の Hind!E— Sail 消化によって得 られた 3.7 4 kb D N A 0.5 / ? とを混合し、 参考例 1に記載の条件 下で T 4 D N Aリガーゼの作用によって結合させた。 該反応液を用いて 大腸菌 D H 1を形質 させ、 ァンピシリン耐性の形質転換体から所望 するプラスミ ド pPKT 101 を取得した(第 4図参照)。 To the 2.95 kb DNA fragment 5f9, 5 units of a restriction enzyme Sail were added to a 20 ^ reaction solution [10 mM Tris-HCl (pH 7.5), 7 mM MgCl 2 , 175 mM NaCl, 7 m M 2 —Mercaptoetano) in 37. C, after 3 hours of action, electrophoresed using 1.2% agarose slab gel under the conditions described in Reference Example 1. After electrophoresis, refer to 2.1 kb DNA fragment. The gel was fractionated by the method described in Example 1. The 2. 1 kb DNA fragment 0.59 was mixed with 3.74 kb DNA 0.5 /? Obtained by Hind! E-Sail digestion of plasmid pBR322, and T4 DNA was mixed under the conditions described in Reference Example 1. It was bound by the action of ligase. Escherichia coli DH1 was transformed using the reaction solution to obtain a desired plasmid pPKT101 from a transformant resistant to ampicillin (see FIG. 4).
次に、 P G K遺伝子の構造遺伝子領域を取]?除くために、 まず該プラ スミ ド pPKTlO l D N A 1 0 9 に 1 0ユニットの制限酵素 Sail を 3 0 の反応液〔 1 0 mM Tris— HCl(pH 7. 5 ) , 7 m M Mg Cl2, 1 7 5 mM NaCl , 0. 2 M E D T A , 7 mM 2—メノレ力プトエタ ノーノレ〕中で 3 7 ¾ , 3時間作用させ、 フエノ一ルで除蛋白し、 冷エタ ノールで D N Aを沈殿させた( Sail消化 ρΡΤΚΙΟΙ )。 つづ て、 Sail消化 pPTK 101 に 1 0ュニットの BAL31 クレアーゼ を 2 0 の反応液〔 2 0 mM Tris-HCl (pH 8.1 ) , 1 2 m Μ Ca Cl2 , 1 2 mM MgCl2 , 1 mM EDT A :]中で室温, 5分間作用させ た後、 直ちに 1容量のフエノールを加えて反応を停止させ、 冷エタノー ノレで D N Aを沈殿させた( B A L消化 ρΡΤΚ Ι ΟΙ :)。 参考例 1に記載 されたリン酸化 Xiiol リン力一 5 0 ng と B A L消化 pPTKlO l 0.2 μ-9 とを混合し、 参考例 1に記載の条件下で Τ 4 D Ν Αリガーゼの作用 によつて結合させた。 その後、 該反応液で大腸菌! H 1を形質転換させ、 ア ンピシリ ン耐性を示す形質転換体の中から、 pP T lO l OSal I サ ィトからプロモータ一領域の方向へ 0.6 9 k が除かれたプラスミ ド pPKT 567 を得た。 Dideoxy画 leotide法によって D Ν Α塩基配列 を調べたところ、 pPKT567 では BAL 31 の作用によって P G K搆 造遺伝子と 5'-近傍領域- 2 4までが除かれたことが証明された(第 4 差換 i し PI wiPO
③ 発現用ベクターの構築 Next, in order to remove the structural gene region of the PGK gene, first, 10 units of the restriction enzyme Sail was added to the plasmid pPKTlOlDNA109 in a 30 reaction solution [10 mM Tris-HCl ( pH 7. 5), 7 m M Mg Cl 2, 1 7 5 mM NaCl, 0. 2 MEDTA, 7 mM 2- Menore force Putoeta Nonore] 3 7 ¾ in, allowed to act for 3 hours, deproteinization with Fueno Ichiru Then, the DNA was precipitated with cold ethanol (Sail digestion ρΡΤΚΙΟΙ). Tsuzuic Te, the reaction solution [2 0 mM Tris-HCl (pH 8.1) of 2 0 the BAL31 Kureaze 1 0 Yunitto to Sail digestion pPTK 101, 1 2 m Μ Ca Cl 2, 1 2 mM MgCl 2, 1 mM EDT A :], At room temperature for 5 minutes, immediately stopped the reaction by adding 1 volume of phenol, and precipitated the DNA with cold ethanol (BAL digestion ρΡΤΚ ΟΙ : :). A mixture of 50 ng of phosphorylated Xiiol phosphorylase described in Reference Example 1 and 0.2 μ-9 of BAL-digested pPTKlOl was prepared by the action of Τ4DΝ ligase under the conditions described in Reference Example 1. Combined. Then, the reaction solution was used for E. coli! H1 was transformed to obtain a plasmid pPKT567 from the transformant showing ampicillin resistance, in which 0.69 k was removed from the pPTIO OSal I site in the direction of the promoter region. . Examination of the D Ν に よ っ て nucleotide sequence by the Dideoxy-leotide method demonstrated that the action of BAL31 in pPKT567 eliminated the PGK gene and the 5'-neighboring region-24 (p. 4). i-shi PI wiPO ③ Construction of expression vector
大腸菌—酵母シャ トル ' ベクタ— pSH 19 に 6ュニッ トの制 限酵素 Sailを 2 0 の反応液〔 1 0 mM Tris-HCl ( pH 7.5 ) , 7 mM MgCl2 , 1 7 5 mM NaCl , 0.2 mM EDTA , 7 mM 2—メ ノレカプトエタノール〕中で 3 7 °C , 2時間作用させた後、 フエノ―ルで 除蛋白し、 冷エタノールで沈殿させた。 該 D N A 1 に D N Aポリ メラ—ゼ I ラージ ' フラグメ ン トを参考例 1に記載の条件下で作用さ せ、 Sailの接着末端を平滑末端に変えた。 該 D N A断片 5 0 0 と 参考例 1に記載されたリ ン酸ィヒ Xhol リ ンカ— 5 0 ng とを混合し、 参 考例 1に記載の条件下で T 4 D N Aリガーゼの作用によって結合させた。 該反応液で大腸菌 D H 1を形質転換させ、 アンピシリン耐性の形質転換 体の中から、 pSH 19の Sail部位が Xhol部位に転換したプラスミ ド PSH 19-1 を保持する形質転換体を得た (第 4図参照) .、 Escherichia coli—Yeast shuttle 'vector—A 6-unit restriction enzyme Sail was added to pSH19 in a reaction mixture of 20 [10 mM Tris-HCl (pH 7.5), 7 mM MgCl 2 , 175 mM NaCl, 0.2 mM After acting for 2 hours at 37 ° C in 7 mM EDTA, 7 mM 2-menolecaptoethanol, the proteins were deproteinized with phenol and precipitated with cold ethanol. The DNA 1 was treated with DNA polymerase I large 'fragment under the conditions described in Reference Example 1 to change the cohesive end of Sail to a blunt end. The DNA fragment 500 was mixed with 50 ng of the Xyl phosphate Xhol linker described in Reference Example 1 and bound by the action of T4 DNA ligase under the conditions described in Reference Example 1. Was. Escherichia coli DH1 was transformed with the reaction solution, and a transformant having plasmid PSH19-1 in which the Sail site of pSH19 was converted to an Xhol site was obtained from ampicillin-resistant transformants. (See Fig. 4)
該プラスミ ド pSH 19— 1 D N A 1 5 μ9 に 2 4ュニッ トの制限酵 素 Hindffiを 1 0 0 の反応液〔 1 0 mM Tris-HCl ( pH 7.5 ) , 7 mM gCl2 , 6 0 mM NaCl 〕中で 3 7 C , 1 0分間作用させた後、 直ちに 0.2 M EDTA を 1 0 μ 添加し反応を停止させた。 反応液を 0.7%ァガロ ース · スラブゲノレを用いて参考例 1に記載の条件下で電気 泳動にかけ、 Hind Πで 1箇所切断された 8.3 kb A断片を参考例 1に記載の方法でゲルから分取した。 該 8.3 kb D N A断片 3 μ9 に 1 0ュニッ トの制限酵素 Xiiol〔宝酒造㈱製〕を 3 0 の反応液〔 1 0 mM Tris-HCl ( pH 7.5 ) , 7 m M Mg.Cl2, 1 0 0 m M NaCl , 7 mM 2—メルカプトエタノーノレ 〕中で 37 °C , 2時間作用させた後、 0.7%ァガロース · スラブゲルを用いて参考例 1に記載の条件下で電気 差換 QMPI
泳動を行った。 泳動後、 7.7 D N A断片を参考例 1に記載の方法に よつてゲルから分取した(第 4図参照)。 A reaction solution (10 mM Tris-HCl (pH 7.5), 7 mM gCl 2 , 60 mM NaCl) was added to the plasmid pSH 19-1 DNA (15 μ9) in a mixture of 24 units of Hindffi (10 mM) in 15 μ9. Immediately after the mixture was allowed to act at 37 C for 10 minutes, the reaction was stopped by adding 10 μM of 0.2 M EDTA. The reaction mixture was subjected to electrophoresis using 0.7% agarose slab genole under the conditions described in Reference Example 1, and the 8.3 kb A fragment cut at one site with HindIII was separated from the gel by the method described in Reference Example 1. I took it. To 3 μ9 of the 8.3 kb DNA fragment was added 10 units of the restriction enzyme Xiiol (Takara Shuzo) to a reaction solution of 30 [10 mM Tris-HCl (pH 7.5), 7 mM Mg.Cl 2 , 100 mM mM NaCl, 7 mM 2-mercaptoethanol) at 37 ° C for 2 hours, and then, using 0.7% agarose-slab gel under the conditions described in Reference Example 1, QMPI Electrophoresis was performed. After the electrophoresis, the 7.7 DNA fragment was separated from the gel by the method described in Reference Example 1 (see FIG. 4).
参考例 2の②に記載のプラスミド pPKT 567D N A 1 0 μ 9 ヽ 各 1 0ュ-ットの制限酵素 Hindiと Xholとを 5 0 μ βの反応液!: 5 0 mM Tris-HCl ( pH 7.6 ) , 5 0 mM NaCl , 1 mM ジチオスレィ トーノレ , 1 0 m M MgCl2 〕中で 3 7。C , 2時間作用させた^、 1.2% ァガロース · スラブゲノレを用いて参考例 1に記載の条件下で電気泳動を 行い、 1. 0 kb D N A断片をゲルから分取した(第 4図参照)。 Plasmid pPKT 567D NA 10 μ9 described in ② of Reference Example 2 反 応 A reaction solution of 50 μβ with each of the 10 cut restriction enzymes Hindi and Xhol !: 50 mM Tris-HCl (pH 7.6) ), 50 mM NaCl, 1 mM dithiothreitole, 10 mM MgCl 2 ]. C, electrophoresis was performed under the conditions described in Reference Example 1 using ^, 1.2% agarose slab genole that was allowed to act for 2 hours, and a 1.0 kb DNA fragment was separated from the gel (see FIG. 4).
該 1.4 0 kb D N A断片 μ 9 と上述の 7.7 kb D N A断片 0· 5 The 1.40 kb DNA fragment μ9 and the 7.7 kb DNA fragment
μ 9 とを混合し、 参考例 1に記載の条件下で Τ 4 D Ν Αリガーゼの作用 によって結合させた。 該反応液で大腸菌 D H 1を形質転換させ、 ア ンピ シリ ン耐性の形質転換体の中から、 所望するプラスミド PPKT700 を 保持する形質転換体を取得した。 次に、 参考例 1に記載した方法に従つ て、 該プラスミ ド PPKT 700 の Xhol部位が Sail部位に変換された プラスミ ド pPKT 700— 1を作製した(第 4図参照)。 μ9 and mixed with each other under the conditions described in Reference Example 1 by the action of {4D} ligase. Escherichia coli DH1 was transformed with the reaction solution, and a transformant having the desired plasmid PPKT700 was obtained from ampicillin-resistant transformants. Next, a plasmid pPKT700-1 in which the Xhol site of the plasmid PPKT700 was converted to a Sail site was prepared according to the method described in Reference Example 1 (see FIG. 4).
参考例 3 酵母グリセルァルデヒド 3—リ ン酸脱水素酵素 ·プロモー Reference Example 3 Yeast glyceraldehyde 3-phosphate dehydrogenase
タ—( G L D— Ρ )を含有する発現用ベクターの作製 Of expression vector containing DNA (GLD-Ρ)
① グリセフレアルデヒ ド 3—リ ン酸脱水素酵素遺伝子( G L D )のク ① Glycephalealdehyde 3-phosphate dehydrogenase gene (GLD)
口一ニ ング Mouthing
G L Dのうちの pgap491 〔 Holland , J. P. ら, J. Biol. ClienL, Pgap491 of GLD [Holland, J.P. et al., J. Biol. ClienL,
258, 5291 (1983) 〕の N末端側からの 5個のアミノ酸をコ一ドす るォリゴヌクレオチドに相補な 5'-AGC AACTCTAACC AT— 3'を前述 の Crea, R. らの方法によつて合成し、 参考例 2の①に記載の方法に従 つて32 Pで標識し、 プローブとして用いた。 参考例 2の①に記載した二 トロセノレ口一スフィルタ一と該プロ一ブを用いて Southernブロッティ 258, 5291 (1983)] and 5'-AGC AACTCTAACC AT-3 ', which is complementary to an oligonucleotide encoding the five amino acids from the N-terminal side, was obtained by the method of Crea, R. et al. The resultant was synthesized, labeled with 32 P according to the method described in (2) of Reference Example 2, and used as a probe. Using the two filters and the probe described in ① of Reference Example 2
0MP! - ん ( ipo %
ングを行ったところ、 プローブは 2.0〜2.3 kb D N A断片が含まれる 分画番号 7の試料と強くハイブリダイズした。 0MP! -H (ipo% As a result, the probe strongly hybridized with the sample of fraction No. 7 containing the 2.0 to 2.3 kb DNA fragment.
参考例 2の①に記載された Hindi消化 pTR262 0. 1 μ 9 と分画番 号 7の とを混合し、 参考例 1に記載の条件下で T 4 D N Aリガーゼの作用によって結合させた。 該反応液を用いて、 参考例 2の 0.1 μ9 of Hindi digested pTR262 described in ① of Reference Example 2 and Fraction No. 7 were mixed, and bound by the action of T4DNA ligase under the conditions described in Reference Example 1. Using the reaction solution,
①に記載した方法で大腸菌 D H 1を形質転換させ、 テ ト ラサイ ク リ ン耐 性形質転換体約 1 2 0 0個を取得し、 コロニー 'ハイブリダィゼーショ ンによって32 識プローブと強くハイブリする形質転換体を分離した。 この形質転換体から前述のアルカリ抽出法によつてプラスミ ド pGLD 9 を単離し、 Hindi [で分解したところ、 2.2 kb イ ンサート D N Aが検 出され、 Southernの方法で調べるとこのィ ンサ一 ト D N Aは該プロ一 ブとハイブリすることが確認された(第 5図参照)。 Escherichia coli DH1 was transformed by the method described in ①, and about 1200 tetracycline-resistant transformants were obtained, and were strongly hybridized with a 32- sense probe by colony hybridization. Transformants were isolated. Plasmid pGLD9 was isolated from this transformant by the alkali extraction method described above, and digested with Hindi [.], And a 2.2 kb insert DNA was detected. Hybridized with the probe (see FIG. 5).
② G L Dプロモータ—断片の単離 ② GLD promoter-fragment isolation
プラス ミ ド pGLD 9 D N A 1 0 0 ^ に 5 0ユニットの制限酵素 HindEを 2 0 0 μ β の反応液〔 1 0 m M ris-HCl ( pH 7. 5 ) , 7 mM MgCl2 , 6 0 mMNaCl 〕中で 3 7 °C , 3時間作用させた後、 1.0%ァガロース · スラブゲルを用いて参考例 1に記載の条件下で電気 泳動にかけた。 泳動後、 2.2 D N A断片を参考例 1に記載の方法に よつてゲルから分取した。 該 2.2 D N A断片 1 Q μ 9 に 1 0ュニッ トの制限酵素 Hinf ェ〔宝酒造 '㈱製〕を 5 0 の反応液〔 1 0 mM Tri s-HCl (pH 7. 5 ) , 7 mM gCl2, 1 0 0 m M NaCl , 7 m M 2—メルカプトエタノール〕中で 3 7 °C , 2時間作用させた後、 G L D 用プロ一ブを用いて Southernの方法によつてハイブリダイジーシヨ ン を行ったところ、 該プローブは 0.5 k D N A断片と結合した(第 5図 参照)。 差換え に ~ pl
該 0.5 D N A断片 5 に、 各 1 0ュニットの制限酵素 HhalReaction mixture of plasmid pGLD9 DNA 100 ^ with 50 units of restriction enzyme HindE at 200 μβ (10 mM ris-HCl (pH 7.5), 7 mM MgCl 2 , 60 mM NaCl ] At 37 ° C. for 3 hours, followed by electrophoresis using 1.0% agarose-slab gel under the conditions described in Reference Example 1. After the electrophoresis, 2.2 DNA fragments were separated from the gel by the method described in Reference Example 1. To the 2.2 DNA fragment 1 Q μ9, 10 units of the restriction enzyme Hinf (Takara Shuzo '〕) was added to a 50 reaction mixture [10 mM Tris-HCl (pH 7.5), 7 mM gCl 2 , After operating at 37 ° C for 2 hours in 100 mM NaCl, 7 mM 2-mercaptoethanol], hybridization was carried out using a GLD probe according to the Southern method. As a result, the probe bound to the 0.5 k DNA fragment (see FIG. 5). For replacement ~ pl The 0.5 DNA fragment 5 was added with 10 units of the restriction enzyme Hhal.
〔宝酒造 製〕と Taql ( New England BioLabs社製 )とを 3 0/^ の反応液〔 1 0 mM Tris-HCl(pH 7. 5 ) , 5 0 mM NaCl , 1 0 mM MgCl2, 1 mM ジチオスレィ トール〕中で 3 7 °C, 3時間作用さ せた後、 1. 5 %ァガロース ' スラブゲルを用いて参考例 1に記載された 条件下で電気泳動にかけた。 泳動後、 0. 3 6 D N A断片を参考例 1 に記載の方法によってゲ から分取した(第 5図参照)。 [Takara Shuzo] and Taql (New England BioLabs) were mixed with a 30 / ^ reaction solution (10 mM Tris-HCl (pH 7.5), 50 mM NaCl, 10 mM MgCl 2 , 1 mM dithiolase). After that, the mixture was allowed to act at 37 ° C. for 3 hours in a torr], and then subjected to electrophoresis using 1.5% agarose 'slab gel under the conditions described in Reference Example 1. After the electrophoresis, the 0.36 DNA fragment was separated from the gel by the method described in Reference Example 1 (see FIG. 5).
該 0. 3 6 kt> D N A断片 に D N Aポリ メ ラーゼ I ラージ ' フ ラグメ ントを参考例 1に記載の条件下で作用させ、 aqlの接着末端を 平滑末端に変えた。 次に、 この断片 1 と参考例 1に記載されたリン 酸化 Xhol リ ンカ一 5 0 ng とを混合し、 参考例 1に記載の条件下で T 4 D N Aリガーゼを作用させて結合させた。 反応後、 過剰 ftの Xholを 加え 3 7 °C, 4時間作用させ、 次に参考例 2の①に記載した条件下でセ ブァローズ 4 B · カラムを用いてリ ンカーの結合した 0. 3 6 k D N A 断片を分離した。 The 0.336 kt> DNA fragment was reacted with DNA polymerase I large 'fragment under the conditions described in Reference Example 1 to change the cohesive end of aql to a blunt end. Next, this fragment 1 and 50 ng of the phosphorylated Xhol linker described in Reference Example 1 were mixed and allowed to bind by the action of T4DNA ligase under the conditions described in Reference Example 1. After the reaction, excess ft of Xhol was added and the mixture was allowed to work at 37 ° C for 4 hours. Then, under the conditions described in Reference Example 2 (2), the linker was bound using a Separose 4B column. k DNA fragment was isolated.
一方、 上述の 2.2 k b D N A断片 1 β 9 に D N Aボリ メ ラ一ゼ I ラージ . フラグメ ン トを参考例 1に記載の条件下で作用させ、 接着末端 を平滑末端に変えた後、 参考例 1に記載された条件下でリン酸化された BaniHI リ ンカー 〔 5し: P一 d ( CGC GGAT C CGC G )〕 ( New On the other hand, the above-mentioned 2.2 kb DNA fragment 1β9 was reacted with DNA polymerase I large fragment under the conditions described in Reference Example 1 to change the cohesive ends to blunt ends. BaniHI linker phosphorylated under the conditions described in (5: P-d (CGC GGAT C CGC G)) (New
England BioLabs社製)5 0 ng を参考例 1に記載の条件下で T 4 D N Aリガーゼの作用によ j9結合させた。 反応後、 2 0ュ-ッ卜の BamH ェを加えて、 3 7 ¾ , 3時間作用させ、 次に参考例 2の①に記載した条 件下でセファローズ 4 B ' カラムを用いてリンカ一の結合した 2.2 k b D N A断片を分離した。 該 D N A断片 6 μ 9 に 2ュニットの制限酵素 Hlialを 5 0 の反応液〔 1 0 mM Tris-HCl (pH 7. 5 ) , 50 mM 50 ng (England BioLabs) were bound to j9 by the action of T4DNA ligase under the conditions described in Reference Example 1. After the reaction, add 20 cuts of BamHel, and allow it to act for 37 3 for 3 hours. Then, under the conditions described in ② of Reference Example 2, use a Sepharose 4B 'column to remove the linker. Was separated. To the DNA fragment 6 μ9, 2 units of the restriction enzyme Hlial were added to a 50 reaction mixture [10 mM Tris-HCl (pH 7.5), 50 mM
O PI
NaCl , 1 0 mM MgCl2 , 1 m M ジチオスレィ トーノレ〕中で 3 7。C , 2時間作用させた後、 1.0%ァガロース ' スラブゲルを用いて参考例 1 に記載の条件下で電気泳動にかけた。 泳動後、 0.7 5 D N A断片を 参考例 1に記載の方法によってゲノから分取した(第 5図参照)。 O PI NaCl, 1 0 mM MgCl 2, 1 m M Jichiosurei Tonore] 3 in 7. C. After allowing to act for 2 hours, the mixture was subjected to electrophoresis using 1.0% agarose 'slab gel under the conditions described in Reference Example 1. After the electrophoresis, a 0.75 DNA fragment was separated from geno by the method described in Reference Example 1 (see FIG. 5).
⑤ 発現用ベクターの構築 の Construction of expression vector
参考例 2の③に記載のブラスミ ド pSH 19— 1 Ώ Ή A 1 μ 9 に各 1 0ュニットの制限酵素 BamHI と Xliolとを 5 0 μ& の反応液〔 1 0 mM Tri s-HCl (pH 7. 5 ) , 7 mM gCl?,, 1 0 0 m NaCl , 7 mM 2—メルカプトエタノール〕中で 3 7 °C , 2時間作用させた後、 1.0%ァガロース · スラブゲルを用いて参考例 1に記載の条件下で電気 泳動にかけた。 泳動後、 8.0 の D Ν A断片を参考例 1に記載の方法 によってゲノレから分取した。 A reaction solution (10 mM Tris-HCl (pH 7) containing 50 units of the restriction enzyme BamHI and Xliol in each 1 μ9 of the plasmid pSH 19—1 Ώ Ή A described in ③ of Reference Example 2 .5), 7 mM gCl ? ,, 100 mM NaCl, 7 mM 2-mercaptoethanol] at 37 ° C for 2 hours and described in Reference Example 1 using 1.0% agarose-slab gel. Electrophoresis was performed under the following conditions. After the electrophoresis, the 8.0 DNA fragment was separated from Genore by the method described in Reference Example 1.
該 8. O kb D N A断片 5 0 0 ng ,参考例 3の②に記載の 0, 3 6 k b D N A断片 2 0 0 ngおよび 0.7 5 k b D N A断片 2 0 0 ng とを混合 し、 参考例 1に記載の条件下で T 4 D Ν Αリガーゼの作用によ ]9結合さ せた。 該反応液を用いて大腸菌 D H 1を形質転換させ、 ア ンピシリ ン耐 性形質転換体の中から 3種の D N A断片が結合したブラスミ ド pGLD 906 を保持する組み換え体を分離した。 次に、 参考例 1に記載した方 法に従って、 該フ。ラスミド PGLD906 の: h ol部位^ Sail部位に変 換されたプラスミ ド PGLD906— 1を作製した(第 5図参照)。 The 8.0 kb DNA fragment (500 ng), the 0,36 kb DNA fragment (200 ng) described in Reference Example 3, and the 0.75 kb DNA fragment (200 ng) were mixed. 9] under the conditions described, due to the action of T 4 D Ν ligase. The reaction solution was used to transform Escherichia coli DH1, and a recombinant carrying the plasmid pGLD906 to which three DNA fragments were bound was isolated from the ampicillin-resistant transformants. Next, according to the method described in Reference Example 1, the filter was used. A plasmid PGLD906-1 converted into a hol site ^ Sail site of the rasmid PGLD906 was produced (see FIG. 5).
実施例 1 adr型 B型肝炎ウィルス表面抗原 P 3 1遺伝子を発現ォる組 み換え D N A分子の構築および該 D N A分子による大腸菌の 特開昭 5 9— 7 4 98 5号公報および Nucleic Acids Res., 1 747 ( 1983) に記載されているプラスミ ド pBR 322— BamHI/ 差换ん
HBr 330 D N A ( pHBr330 とも略す)は、 特開昭 5 8— 2 0 1 7 9 6号公報に記載されている参考例 1の方法によって調製した。 該プラ スミド pHBr330 5 0 に各 2 0ユニッ トの制限酵素 E c oR I〔宝 酒造 (梯製〕と BamHI とを 1 0 0 /" の反応液!: 1 0 0 mM Tris— HC1 (pH 7.5 ) , 7 m M MgClゥ . 5 0 mM NaCl, 7 m M 2—メル カプトエタノーノレ 〕中で 3 7 °C , 3時間反応させ 後、 1.0 %ァガロー ス · スラブゲルを用いて参考例 1に記載の条件下で電気泳動にかけた。 泳動後、 1.4 kb D N A断片を参考例 1に記載の方法によってゲノレから 分取した(第 6図参照)。 Example 1 Construction of a recombinant DNA molecule expressing the adr-type hepatitis B virus surface antigen P31 gene and Escherichia coli of E. coli using the DNA molecule disclosed in JP-A-59-74985 and Nucleic Acids Res. , 1 747 (1983), plasmid pBR 322—BamHI / HBr330 DNA (abbreviated as pHBr330) was prepared by the method of Reference Example 1 described in JP-A-58-210796. The plasmid pHBr33050 was mixed with 20 units of restriction enzyme EcoRI (Takara Shuzo (ladder)) and BamHI at a reaction ratio of 100 / "!: 100 mM Tris-HC1 (pH 7.5 ), 7 mM MgCl ゥ. 50 mM NaCl, 7 mM 2-mercaptoethanol), and then react at 37 ° C for 3 hours, and then described in Reference Example 1 using 1.0% agarose-slab gel. After the electrophoresis, a 1.4 kb DNA fragment was separated from Genore by the method described in Reference Example 1 (see FIG. 6).
2 のプラスミ ド PBR322 D N Aに各 2ュニッ トの制限酵素 Bam 2 plasmids PBR322 DNA to 2 units of restriction enzyme Bam
HI と Clal ( New England BioLabs社製)とを 2 0 β β の反応液 1 0 mM Tris-HCl (pH 8.0 ) , 7 mM MgClゥ , 1 0 0 mM NaCl , 2 mM 2—メルカプトエタノ一ノレ 〕中で 3 7 °C , 2時間反応させた後、 0.8%ァガロース · スラブゲノレを用いて参考例 1に記載の条件下で電気 泳動にかけた。 泳動後、 4.0 1 D N A断片を参考例 1に記載の方法 によってゲルから分取した。 HI and Clal (New England BioLabs) in a 20 ββ reaction solution of 10 mM Tris-HCl (pH 8.0), 7 mM MgCl ゥ, 100 mM NaCl, 2 mM 2-mercaptoethanol After the reaction at 37 ° C. for 2 hours in the inside, the mixture was subjected to electrophoresis using 0.8% agarose slab genole under the conditions described in Reference Example 1. After the electrophoresis, the 4.01 DNA fragment was separated from the gel by the method described in Reference Example 1.
5 0 0 ng の前記 4.0 1 k b D N A断片, 5 0 0 ng の前記 1.4 k b 500 ng of the 4.0 1 kb DNA fragment, 500 ng of the 1.4 kb
D N A断片および参考例 1で記載の方法によって 5'末端がリン酸化され ム ー 'マタ , c ° CGAT AC AATGCAGTGG3 . The DNA fragment and the 5 ′ end were phosphorylated by the method described in Reference Example 1, and the mouse was c ° CGAT AC AATGCAGTGG 3 .
7 口 7ノフ タ d 3, TATGTTACGTCACCTTAA c/ 5 υ nb とを参考例 1に記載の条件下で T 4 D Ν Αリガーゼの作用によって結合 させた。 ¾お、上記アダプタ一はトリエステノレ法〔 Crea, R. ら, Proc. NatL Acad. Sci. USA , 75 , 5765 ( 1978 ) ^ を用いて化学合成さ れた。 この反応液を用いて大腸菌 2 9 4株を形質転換させ、 アンピシリ ン耐性の形質転換体から前記 3種の D N Aが結合したプラスミ ド pHB r P 3 1 D N Aが得られた (第 6図参照)。 差換え
1 9 のプラス ミ ド pHBrP 31 D N Aに 2ュ-ッ トの制限酵翁 1317 necked 7 Nof data d 3, and a TATGTTACGTCACCTTAA c / 5 υ n b is bound by the action of T 4 D New Alpha ligase under the conditions described in Reference Example 1. The adapter was chemically synthesized using the Triestenol method [Crea, R. et al., Proc. NatL Acad. Sci. USA, 75, 5765 (1978) ^]. Using this reaction solution, Escherichia coli 294 was transformed, and a plasmid pHBrP31 DNA to which the above three types of DNA were bound was obtained from an ampicillin-resistant transformant (see FIG. 6). . Replacement 19 plasmid pHBrP 31 DNA 2 fold restriction enzyme 131
HI を 2 0 Af の反応液〔 1 0 mM Tris-HCl ( H 8.0 ) , 7 m M MgCl2 , 1 0 0 m M NaCl, 2 m M 2—メルカプトェタノ一ノレ〕中で 3 7 ¾ , 2時間作用させた後、 フエノールで除蛋白し、 冷エタノールを 加えて D N Aを沈殿させた( BamHI消化 pHBr P 3 1 )。 HI was placed in a 20 Af reaction solution [10 mM Tris-HCl (H 8.0), 7 mM MgCl 2 , 100 mM NaCl, 2 mM 2 -mercaptoethanol] for 37¾, After 2 hours of action, the proteins were deproteinized with phenol, and cold ethanol was added to precipitate the DNA (BamHI digested pHBr P31).
を沈殿させた。 該 D N A断片 3 0 0 n と、 参考例 1に記載の方法で^ 末端がリ ン酸化された P st Iリ ンカー〔 5し!5— d ( GCTGCAGC )〕Was precipitated. The DNA fragment 300 n and a Pst I linker [5! 5 — d (GCTGCAGC)]
( New England BioLabs 社製) 5 0 ng とを参考例 1で記載の条件 下で T 4 D N Aリガーゼの作用によ!)結合させた。 該反応液を用いて大 腸菌 2 9 4株を形質転換させ、 形質転換体を参考例 1に記載の方法によ つて調べ、 プラスミ ド pHBr P 31の BamHI 部位が Pstl部位に変換 したプラスミ ド ρΗΒι· P 31— 17を分離した(第 6図参照 。 (New England BioLabs) 50 ng was used under the conditions described in Reference Example 1 due to the action of T4DNA ligase! ) Coupled. The reaction solution was used to transform E. coli 294 strain, and the transformant was examined by the method described in Reference Example 1, and the plasmid in which the BamHI site of the plasmid pHBr P31 was converted to a Pstl site was obtained. ρΗΒι · P 31-17 was isolated (see Fig. 6).
該 PHBr P31— 17 5 0 μ9 に各 2 0ュニッ トの制限酵素 Clalと Pstl 〔宝酒造㈱製〕とを 1 0 0 の反応液〔 2 0 mM Tris-HCl ( pH 7. 5 ) , 1 0 mM MgCl2 , 5 0 mM (NH4)2S04 中で 3 7 °C , 3時間作用させた後、 反応液を 1.0%ァガ口—ス · スラブゲノレを用い て参考例 1に記載の条件下で電気泳動にかけた。 泳動後、 1.4 2 kb D N A断片を参考例 1に記載の方法でゲノレから分取した。 The P HBr P31- 17 5 0 μ9 each 2 0 Yuni' preparative restriction enzymes Clal and Pstl [Takara Shuzo Co., Ltd.] and a 1 0 0 of the reaction solution [2 0 mM Tris-HCl (pH 7. 5), 1 0 after mM MgCl 2, 5 0 mM ( NH 4) reacted 3 7 ° C, 3 hours in 2 S0 4, the reaction solution 1.0% § gas port - the conditions described in reference example 1 using a scan-Surabugenore Electrophoresed underneath. After the electrophoresis, a 1.42 kb DNA fragment was separated from Genore by the method described in Reference Example 1.
特開昭 5 8— 2 0 1 7 9 6号公報および Nucleic Acids Res., 11, 3581 ( 1983 ) に記載の発現用ベクター p TR P 771 5 0 β9 に制限 薛素 Clalと Pstlとを前記 1 0 0 の反応液中で同一条件下で反応 させた後、 反応液を 1.0 %ァガロ ース · スラブゲノレを用いて参考例 1に 差換え
記載の条件下で電気泳動にかけた。 泳動後、 3.3 k¾ D N A断片を参考 例 1に記載の方法でゲルから分取した。 Japanese Patent Application Laid-Open No. 58-2107697 and Nucleic Acids Res., 11, 3581 (1983). Restriction to the expression vector pTRP 771 50 β9. After reacting under the same conditions in the reaction mixture of No. 0, the reaction mixture was replaced with Reference Example 1 using 1.0% agarose-slab genole. Electrophoresis was performed under the conditions described. After the electrophoresis, the 3.3 k¾ DNA fragment was separated from the gel by the method described in Reference Example 1.
2 0 0 n の該 1.4 2 kb D N A ( P 3 1をコードする D N A )と 5 0 0 ngの 3.3 kb D M Aとを参考例 1に記載の条件下で T 4 D N A リガーゼの作用によって結合させた。 該反応液を用いて大腸菌 2 9 4株 を形質転換させ、 参考例 1の方法に従って該 P 3 1をコードする: D N A が発現用ベクターに揷入されたプラスミ ド pTRP P 3 1一 Rを保持する 大腸菌株( 294ZpTRP P 31-R ) を分離した(第 6図参照)。 200 n of the 1.42 kb DNA (DNA encoding P31) and 500 ng of 3.3 kb DNA were bound by the action of T4 DNA ligase under the conditions described in Reference Example 1. The reaction solution is used to transform Escherichia coli 294 and encodes the P31 according to the method of Reference Example 1. Retains plasmid pTRP P31R in which DNA has been inserted into an expression vector An E. coli strain (294ZpTRP P 31-R) was isolated (see FIG. 6).
なお、 当該菌株( Escherichia coli 294/pTRP P 31 -R ) は 財団法人発酵研究所に I F 0— 1 4 3 5 5として寄託され、 また、 昭和 5 9年 7月 1 0日から工業技術院微生物工業技術研究所( F R I )に受 託番号 F E R M P — 7 7 0 9として寄託されている。 The strain (Escherichia coli 294 / pTRP P31-R) was deposited with the Fermentation Research Institute as IF 0-144 355, and from July 10, 1980 Deposited with the National Institute of Advanced Industrial Science and Technology (FRI) under the accession number FERMP — 7709.
実施例 2 adw型 B型肝炎ウィルス表面抗原 P 3 ί遺伝子を発現する組 み換え D N A分子の構築および該 D N A分子による大腸菌の 特開昭 5 8— 1 9 48 9 7号公報,特開昭 5 8 - 2 0 1 7 9 6号公報 および Nucleic Acids Res" 11, 1747 ( 1983 )に記載されている フ。ラスミド pBR— E CORI/HBV933 D N A ( pHBV 933と略す ) は、 特開昭 5 8 - 2 0 1 7 9 6号公報に記載されている参考例 1の方法 によって調製した。 2 μ· 9 の該プラスミドに 2ュニッ卜の制限酵素 Hpa I 宝酒造㈱製〕を 2 0 μβ の反応液 1 0 mM Tri s-HC 1 ( pH 7.5 ) , 7 mM gCl2, 1 0 0 m M C1 , 2—メルカプトエタノーノレ〕中で 3 7 °C , 2時間作用させた後、 フエノールで除蛋白し、 冷エタノールで D N Aを沈殿させた。 該 D N A 3 0 0 ng とリン酸化された Pstl リン カー〔 5'— P—(GCTGCAGC: )〕 5 0 ng とを、 実施例 1で記載され 差換え
た条件下で結合させた後、 該反応液を用いて大腸菌 2 9 4株を形質転換 させ、 形質転換体を参考例 1に記載の方法によつて調べ、 プラスミド pHBY 933 の Hpal サイ トが Pstl サイ トに変換したプラスミド pHBV 933 - 5を得た(第 7図参照)。 Example 2 Construction of recombinant DNA molecule expressing adw-type hepatitis B virus surface antigen P3 P gene and Escherichia coli using the DNA molecule JP-A-58-94897, JP-A-5-94897 No. 8,210,796 and Nucleic Acids Res "11, 11, 747 (1983). Rasmid pBR—E CORI / HBV933 DNA (abbreviated as pHBV933) is disclosed in Prepared according to the method of Reference Example 1 described in Japanese Patent Publication No. 201 796. 2 μ · of the plasmid was added with 2 units of restriction enzyme Hpa I manufactured by Takara Shuzo Co., Ltd. 0 mM Tri s-HC 1 ( pH 7.5), 7 mM gCl 2, 1 0 0 m M C1, after action 3 7 ° C, 2 hours in 2-mercaptoethanol Honoré], deproteinized with phenol, The DNA was precipitated with cold ethanol, and 300 ng of the DNA was replaced with 50 ng of a phosphorylated Pstl linker [5′-P— (GCTGCAGC:)] as described in Example 1. After binding under the conditions described above, the reaction mixture was used to transform Escherichia coli 294, and the transformant was examined by the method described in Reference Example 1. The Hpal site of plasmid pHBY933 was transformed into Pstl The site-converted plasmid pHBV 933-5 was obtained (see FIG. 7).
5 0 0 β 9の該プラスミ ド pHBV 933— 5 D N Αに 5 0 0ュニッ トの 制限酵素 Pstlを 8 0 0 の反応液〔 2 0 mM T r i s-HC 1 ( pH 7.5 ) , 1 0 mM MgCl2 , 5 0 mM (NH4 ) 2S〇4〕中で 3 7 °C , 2 0分間作 用させた後、 直ちにフエノールで除蛋白した。 該反応液を 1.0 %ァガロ ース ' スラブゲルを用いて参考例 1に記載の条件下で電気泳動にかけた。 泳動後、 Pstlによる部分分解物 1.7 kb D N A断片を参考例 1に記載 の方法によってゲルから分取した(第 7図参照)。 The plasmid pHBV 933 of 500 β9 was mixed with 500 units of restriction enzyme Pstl in 5 DN DN of a reaction solution of 800 (20 mM Tris-HC1 (pH 7.5), 10 mM after MgCl 2, 5 0 mM (NH 4) 2 S_〇 4] 3 7 ° C in, 2 for 0 min work, and it deproteinized immediately phenol. The reaction solution was subjected to electrophoresis using 1.0% agarose 'slab gel under the conditions described in Reference Example 1. After electrophoresis, a 1.7 kb DNA fragment partially degraded by Pstl was fractionated from the gel by the method described in Reference Example 1 (see FIG. 7).
β の該 1.7 kb D を 6ュニットの制限酵素 Ec oRIと 20 ^ の反応液 1 0 0 mM Tris-HCl (pH 7. 5 ) , 7 m Μ gCl2 , 5 0 mM NaCl , 7 mM 2—メノレカプトエタノーノレ 〕中で 3 7 °C , 1時間反 応させた後、 1.0 %ァガ口 -ス ' スラブゲルを用いて参考例 1に記載の 条件下で電 泳動にかけた。 泳動後、 0.9 7 kb D N A断片を参考例 1 に記載の方法によつてゲルから分取した(第 7図参照)。 The 1.7 kb D of β was ligated to a reaction mixture of 6 units of restriction enzyme EcoRI and 20 ^ with 100 mM Tris-HCl (pH 7.5), 7 m mgCl 2 , 50 mM NaCl, 7 mM 2 The reaction was carried out at 37 ° C for 1 hour in an aqueous solution of lactoethanol, followed by electrophoresis using a 1.0% agarose-slab slab gel under the conditions described in Reference Example 1. After the electrophoresis, a 0.97 kb DNA fragment was fractionated from the gel by the method described in Reference Example 1 (see FIG. 7).
5 0 0 ngの該 0.9 7 kb D N A断片, 5 0 0 ngの実施例 1に記載 C 3.3 kb D N A ( pTRP 771の C la I— P s tェ消ィヒ物)および 5 0 ng の実施例 1に記載のリン酸化ァダプタ一 d 500 ng of the 0.97 kb DNA fragment, 500 ng as described in Example 1 C 3.3 kb DNA (ClaI-Pst quenched product of pTRP 771) and 50 ng of Example 1 The phosphorylated adapter described in 1d
f CGATACAATGCAGTGG"3 、 , mf コ 々 / —f CGATACAATGCAGTGG " 3 ,, mf
( ' TATGTTACGTCACCTTAAs^ )とを参 例 1に己載の条件下 で T 4 D N Aリガーゼの作用によつて結合させた。 該反応液を用いて大 腸菌 2 9 4株と形質転換させ、 テ トラ.サイクリン耐性の形質転換体から 参考例 1に記載された方法を用いて前記 3種の D N Aが結合したプラス ミ ド pTRP P 31 -W を分離した。 該プラスミ ドの Clal部位に、 特開 差換え
昭 5 8 - 2 0 1 7 9 6号公報に記載のプラスミ ド pTR P 601を Clal ('TATGTTACGTCACCTTAAs ^)' and were ligated by the action of T4 DNA ligase under the conditions described in Reference Example 1. The reaction solution was used to transform the Escherichia coli 294 strain, and a plasmid containing the three types of DNA bound thereto was obtained from the tetracycline-resistant transformant using the method described in Reference Example 1. pTRP P 31 -W was isolated. Japanese Patent Laid-Open Plasmid pTR P 601 described in Japanese Patent Publication No.
と HpaH〔宝酒造㈱製〕で消化して得られた約 3 3 0 bpの trpプロモ —ターを含む断片を揷入して、 プラス ミ ド pTRP P 31— W 2(第 7図参 1 照)を完成した。 - ¾お、該プラスミド pTRP P 3 1 -W 2を保持する大腸菌株(Ssclie~ ri c ia coli 294/pTRP P 31 - W 2 )は財団法人発酵研究所に I About 3 3 0 bp of the trp promoter obtained by digesting HpaH [Takara Shuzo Co., Ltd.] and - by揷入a fragment containing terpolymers, plus Mi de pTRP P 31- W 2 (7 sloppy 1 irradiation) Was completed. -The strain of Escherichia coli (Ssclie ~ ricia coli 294 / pTRP P31-W2) carrying the plasmid pTRP P31-W2 was
F 0— 1 43 5 6として寄託され、 また、 昭和 5 9年 7月 1 0日からェ 業技術院微生物工業技術研究所( F Rェ )に受託番号 F E R M P - 7 Deposited as F0-143356, and from July 10, 1980, received a deposit number FERMP-7 from the Research Institute of Microorganisms and Technology (FRe) of the National Institute of Advanced Industrial Science and Technology.
7 1 0として寄託されている。 Deposited as 110.
実施例 3 adr型 B型肝炎ゥィ スの表面抗原 P 3 1遺伝子を発現する Example 3 Adr-type Hepatitis B virus expressing surface antigen P31 gene
酵母用組み換え D N A分子の構築および該 D N A分子による 酵母の形質転換 Construction of recombinant DNA molecule for yeast and transformation of yeast with said DNA molecule
① 実施例 1に記載されたプラスミ ド pHBrP 31 D N A , 5 0 に各 ① Each of the plasmids pHBrP 31 DNA and 50 described in Example 1
2 0ュニッ トの制限酵素 Clalと BamHI とを 1 Q 0 μ g の^応液 (: Add 20 uL of the restriction enzymes Clal and BamHI to 1 μg of 1 Q
1 0 0 mM Tris-HCl ( pH 8.0 ) , 7 m M MgClp , 1 (J 0 m M 100 mM Tris-HCl (pH 8.0), 7 mM MgClp, 1 (J 0 mM
NaCl , 2 mM 2—メノレ力プトエタノール〕中で 3 7 じ , 3時間作用さ せた後、 反応液を 1.0%ァガロース ' スラブゲルを用いて参考例 1に記 載の条件下で電気泳動にかける。 泳動後、 1.4 2 k b D N A断片を参考 例 1に記載の方法でゲルから分取する。 After reacting for 3 hours in NaCl, 2 mM 2-methylene glycol, the reaction solution is subjected to electrophoresis using 1.0% agarose 'slab gel under the conditions described in Reference Example 1. . After the electrophoresis, the 1.42 kb DNA fragment is separated from the gel by the method described in Reference Example 1.
2 μ 9 の該 1.4 2 k¾ D N A断片に D N Aポリ メ ラーゼ I ラージ ' フラグメ ン トを参考例 1に記載の条件下で作用させて接着末端を平滑末 端にした後、 フエノールで除蛋白し、 冷ヱタノ—ノレで D IT Aを沈殿させ t る。 該 D N A 1.5 ? と参考例 1に記載のリ ン酸化 Sail リ ンカ一, The DNA polymerase I large 'fragment was allowed to act on 2 μ9 of the 1.42 k¾ DNA fragment under the conditions described in Reference Example 1 to make the cohesive end blunt, and then deproteinized with phenol. cold Wetano - Ru t to precipitate the D IT a in Norre. The DNA 1.5? And the phosphorylated Sail linker described in Reference Example 1.
5 0 g とを参考例 1に記載の条件下で T 4 D N Aリガーゼの作用によ 50 g was subjected to the action of T 4 DNA ligase under the conditions described in Reference Example 1.
結合させる。 該反応液に 1 0ュ-ッ トの制限酵素 Sailを添加し、 Join. To the reaction mixture was added 10 cut of the restriction enzyme Sail,
( _O PI 差換え
3 7 , 3時間作用させて接着末端を生成させる。 反応後、 フヱノール で除蛋白し、 試料を参考例 2の①に記載された条件下でセファローズ 4 B · カラムにかけ、 oid volume付近に溶出されてくる 1.4 3 k b D N A断片( adr型 P 3 1をコ—ドする D N A )を含む画分を集め、 冷ェ タノ一ノレで該 D N Aを沈殿させる(第 8図参照)。 (_O PI replacement 3. Operate for 3 to 3 hours to produce cohesive ends. After the reaction, the protein was removed with phenol, and the sample was applied to a Sepharose 4 B column under the conditions described in (1) of Reference Example 2. The 1.43 kb DNA fragment (adr-type P31) eluted near the oid volume The fractions containing DNA) are collected and precipitated with cold ethanol (see FIG. 8).
1 μ 9 の参考例 1に記載された発現用ベクター ρΡΗΟ 17— 1 D N A に 2ュニッ トの制限酵素 Sailを 2 0 の反応液〔 6 mM Tris— HC1 ( pH 7. 5 ) , 6 mM MgClo . 1 5 0 mM NaCl, 6 m M 2—メ ノレカプトエタノーノレ 〕中で 3 7 °C , 2時間作用させ、 次に 0. 1ュニッ ト のァノレ力リ性ホスファターゼを添加して 6 5 °C , 3 0分間反応を続ける。 反応後、 フエノーノレで除蛋白し、 冷エタノールを加えて D N Aを沈殿さ せる( Sail消化 pPHO 17-1 )。 1 μ9 of the expression vector ρΡΗΟ17-1 DNA described in Reference Example 1 and 2 units of the restriction enzyme Sail were added to a reaction mixture of 20 [6 mM Tris-HC1 (pH 7.5), 6 mM MgClo. Activated at 37 ° C for 2 hours in 150 mM NaCl, 6 mM 2-methylenecaptoethanol, and then added 0.1 unit of phenolic phosphatase at 65 ° C. Continue the reaction for 30 minutes. After the reaction, the protein is deproteinized with phenol and cold ethanol is added to precipitate DNA (Sail digestion pPHO 17-1).
次に、 2 0 0 ng の前記 1.4 3 D N 断片と 2 0 0 ng の Sail . 消化 pPHO 17- 1 とを、 参考例 1に記載の条件下で T 4 D N Aリガ— ゼの作用によ 結合させる。 該反応液を用いて大,暘菌 2 9 4株を形質転 換させ、 形質転換体を参考例 1に記載された方法によって調べ、 _adr型 P 3 1をコ一ドする D N Aを含む 1.4 3 k b D N A断片が PHO 5プロ モーターと順方向に揷入されたプラスミ ド pPHO 17-P31-R を保持 する菌株( 294ZpPHO P 31—i :)を分離する。 この形質転換体よ ] アルカ リ抽出法によって分離された該プラスミ ド pPHO P 31—R を用 いて酵母宿主 AH22R一を前述の Hinnen らの方法で形質転換させ、該 プラスミドを保持する酵母形質転換体( AH 22R~/pPH0 P 31-R ) を分離する(第 8図参照)。 Next, 200 ng of the 1.43 DN fragment and 200 ng of Sail.digested pPHO17-1 were ligated under the conditions described in Reference Example 1 by the action of T4 DNA ligase. . The reaction solution was used to transform Y. cerevisiae strain 294, and the transformant was examined by the method described in Reference Example 1. The transformant containing DNA coding for _adr-type P31 was obtained. Isolate a strain (294ZpPHOP31-i :) containing the plasmid pPHO17-P31-R in which the kb DNA fragment has been inserted in the forward direction with the PHO5 promoter. The yeast host AH22R-1 is transformed by the method of Hinnen et al. Using the plasmid pPHOP31-R isolated by the alkaline extraction method, and the yeast transformant carrying the plasmid (AH 22R ~ / pPH0 P 31-R) is separated (see Fig. 8).
② 参考例 2の⑤に記載された発現用ベクター pPKT 700-1 D N A , 1 μ 9 に 2ュニッ トの制限酵素 Sailを 3 7 ¾で 2時間作用させ、 つ:^ (2) The expression vector pPKT700-1 DNA, described in (1) of Reference Example 2, (1), and 1 μ9 were reacted with 2 units of restriction enzyme Sail for 2 hours at 37 ° for 2 hours.
OMPI OMPI
差換え
いて 0. 1ユニッ トのアルカ リ性ホスファターゼを実施例 3の①に記載さ れた条件下で作用させた後、 冷エタノールで!) N Aを沈殿させる(SalReplacement Then, 0.1 unit of alkaline phosphatase was allowed to act under the conditions described in (1) of Example 3, and then with cold ethanol!) NA was precipitated (Sal
I消化 pPKT 700-1 ) ο I digested pPKT 700-1) ο
次に、 実施例 3の①に記載の 1.4 3 kb D Ν A断片 2 0 0 ngと Sal ェ消化 pPKT 700 - 1 2 0 0 ngとを参考例 1に記載の条件下で T 4 D N Aリガ—ゼの作用によ 結合させる。 該反応液を用いて、 実施例 3の ①に記載した方法によって、 adr型 P31 をコードする D N Aを含む Next, 200 ng of the 1.43 kb DNA fragment described in (1) of Example 3 and 200 ng of pPKT700-1200 digested with Salle were digested with T4 DNA ligase under the conditions described in Reference Example 1. It is bound by the action of ze. Using the reaction solution, DNA encoding adr-type P31 is contained by the method described in ① of Example 3.
1. 3 k b D N A断片が P G プロモータ一と順方向に揷入されたプラ スミ ド ρΡΚΤ Ρ 31 -R を保持する菌株( 29 P 31-R )を分 離し、 該プラスミドで酵母宿主 Κ 3 3 - 8 Dを形質転換し、 酵母形質転 換体( Κ33— 8DZpPKT P31-R )を取得する(第8図参照)。 A strain (29P31-R) containing a plasmid ρΡΚΤ31-R in which a 1.3 kb DNA fragment was inserted in the forward direction with the PG promoter was isolated, and the yeast host で 33- Transform 8D to obtain a yeast transformant (# 33-8DZpPKT P31-R) (see Fig. 8).
⑤ 参考例 3の⑤に記載された発現用ベクター pGLD 906— 1 D N A , 1 μ 9 に 2ュニッ トの制限酵素 Sailを 3 7 °Cで 2時間作用させ、 つづ いて 0. 1ュニットのアル力リ性ホスファタ一ゼ¾実施例 3の①に記載の 条件下で作用させた後、 冷エタノールで D N Aを沈殿させる( Xliol消 ィ匕 pGLD 906-1 ) さ せ Two units of the restriction enzyme Sail are allowed to act at 37 ° C for 2 hours on the expression vector pGLD906-1 DNA, 1 μ9 described in ⑤ of Reference Example 3 at 37 ° C, followed by a 0.1 unit force. After reacting under the conditions described in Example 3 (4), the DNA is precipitated with cold ethanol (Xliol plasmid pGLD 906-1).
次に、 実施例 3の①に記載の 1.4 3 kb D N A断片 2 0 0 ng と Sal I消化 pGLD 906-1 とを参考例 1に記載の条件下で T 4 D N Aリガ ーゼの作用によ!?結合させる。 該反応液を用いて、 実施^ 3の①に記載 した方法によって、 adr型: P 3 1をコードする D N Aを含む 1.4 3 k Next, 200 ng of the 1.43 kb DNA fragment described in (1) of Example 3 and pGLD 906-1 digested with Sal I were subjected to the action of T4 DNA ligase under the conditions described in Reference Example 1! ? The reaction solution was used and subjected to the method described in ^ of Example 3 to obtain adr type: DNA encoding P31 1.43 k
D N A断片が G A P プロモーターと順方向に揷入されたプラス ミ ド A plasmid in which the DNA fragment is inserted in the forward direction with the CAP promoter.
pGLD P 31— Rを保持する菌株( 294ZpGLD P 31— R ) を分離し、 該プラスミ ドで酵母宿主 K 33 - 7 Bを形質転換し、 酵母 質転換体 A strain carrying pGLD P31-R (294ZpGLD P31-R) was isolated, and the plasmid was used to transform a yeast host K33-7B.
( K33-7B/pGLD P 3 1一 R :)を取得する(第 8図参照:)。 (K33-7B / pGLD P31 1 R :) is obtained (see Fig. 8).
これら形質転換体を通常の方法で培養して、 目的とする P 3 1を得る ん WIPO"
ことができる。 Culture these transformants in the usual way to obtain the desired P31. be able to.
実施例 4 adw型 B型肝炎ウイノレス表面抗原 P 3 1遺伝子を発現する酵 Example 4 Enzyme which expresses adw-type hepatitis B winnowless surface antigen P31 gene
母組み換え D N Aの構築および該 D N Aによる酵母の形質転 換. Construction of parent recombinant DNA and transformation of yeast with said DNA.
5 0 の前記プラスミ ド pTRP P31— W2に 2 0ュニッ トの制限酵 素 Pstlを 1 0 0 の反応液〔 1 0 mM Tris-HCl (pH 7. 5 ) , 1 0 mM MgCl , 5 0 mM NaCl, 1 m M ジチオスレイ ト一レ〕中で 3 7 °C , 2 0分間作用させ、 部分分解した後、 反応液を 0.8 %ァガ口— ス . スラブゲルを用いて参考例 1に記載の条件下で電気泳動にかける。 Add 50 units of the restriction enzyme Pstl to 100 reaction mixture (100 mM Tris-HCl (pH 7.5), 10 mM MgCl, 50 mM NaCl , 1 mM dithiothreate] at 37 ° C for 20 minutes to partially decompose, and then use 0.8% agarose slab gel to prepare the reaction mixture under the conditions described in Reference Example 1. And electrophoresis.
泳動後、 Pstlでただ 1か所切断された 4.6 の線状 D N A分子を参 考例 1に記載の方法でゲルから分取する(第 9図参照)。 After the electrophoresis, the 4.6 linear DNA molecules cut at only one site with Pstl are separated from the gel by the method described in Reference Example 1 (see Fig. 9).
5 μ 9 の該 4.6 kb D Ν A分子に 5ュニッ トの制限酵素 Clalを、 30 μ& の反応液〔 1 0 mM Tris-HCl ( pH 7. 5 ) , 7 m MgCl2', 10 mM NaCl〕中で、 3 7 °C , 3時間作用させた後、 反応液を 1. 0 %ァガ ロース ' スラブゲノレを用いて参考例 1に記載の条件下で電気泳動にかけ る。 泳動後、 0.9 8 D N A断片を参考例 1に記載の方法でゲノレから 分取する。 5 μl of the 4.6 kb DA molecule and 5 units of the restriction enzyme Clal, 30 μl of a reaction solution (10 mM Tris-HCl (pH 7.5), 7 mM MgCl 2 ', 10 mM NaCl) After the reaction at 37 ° C for 3 hours in the medium, the reaction solution is subjected to electrophoresis using 1.0% agarose 'slab genole under the conditions described in Reference Example 1. After the electrophoresis, the 0.98 DNA fragment is fractionated from Genore by the method described in Reference Example 1.
該 0.9 8 kt) D Ii A断片 0.8 At 9 を 2.5ュニッ トの T 4 D N. Aポリ メ ラ―ゼ〔宝酒造㈱製〕を用いて、 2 0 - の反応液〔 3 3 mM Tris— acetate ( pH 7.9 ) , 6 6 mM酢酸力 リ ウム , 1 0 m M酢酸マグネシ ゥム , 5 mM ジチオスレィ ト—ノレ〕中、 3 7 °Cで 1 5分間処理し、 接着 末端を平滑末端にした後、 フエノールで除蛋白し、 冷ヱタノ—ノレで D N Aを沈澱させる。 実施例 3の①に記載の方法によって、 該 0.9 8 kb D N A断片に Sail リンカ—を結合させ、 Sail処理によって接着末端を 生成させ、 セファローズ 4 Bカラムを用いて、 0.9 9 D N A断片 The 0.98 kt) D Ii A fragment 0.8 At 9 was reacted with a 20-unit reaction solution [33 mM Tris-acetate] using 2.5 units of T4DNA polymerase (Takara Shuzo). (pH 7.9), 66 mM acetate acetate, 10 mM magnesium acetate, 5 mM dithiolate in water] at 37 ° C for 15 minutes to make the cohesive ends blunt Deproteinize with phenol and precipitate the DNA with cold ethanol. According to the method described in (3) of Example 3, a Sail linker was bound to the 0.98 kb DNA fragment, a cohesive end was generated by Sail treatment, and the 0.99 DNA fragment was separated using a Sepharose 4B column.
( 0 PI一 w '
( adw型 P 3 1をコードする D N A )を含む画分を集め、 冷ェタノ—ル で該 D N Aを沈澱させる。 (0 PI one w ' The fraction containing (DNA encoding adw-type P31) is collected, and the DNA is precipitated with cold ethanol.
実施例 3の①に記載の Sail消ィヒ pPHO 17— 1 2 0 0 ng と上記 0.9 9 k b D N A断片 2 0 0 ng とを参考例 1に記載の条件下で T 4 D N Aリガ—ゼの作用によ J)結合させる。 該反応液を用いて大腸菌 29 4 株を形質転換させ、 形質転換体を参考例 1に記載された方法によって調 ベ、 adw型 P 3 1をコードする D N Aを含む 0.9 9 k b D N A断片が PHO 5 プロモーターと順方向に揷入されたプラスミ ド pPHO P31— W を保持する菌株( 294ZpPH0 P31 - W)を分離する。 該形質転換体よ アルカリ抽出法によって分離された該プラスミ ド PPH0 P31— Wを用 いて酵母宿主 AH22R—を前述の Hinnenらの方法で形質転換させ、該 プラス ミ ドを保持する酵母形質転換体( AH22R一 ZpPHO P31— W ) を分離する(第 9図参照)。 . Effect of T4 DNA ligase under the conditions described in Reference Example 1 by combining Sail-deleted pPHO 17-1200 ng described in Example 3① with 200 ng of the 0.99 kb DNA fragment described above. J). Using the reaction solution, Escherichia coli 294 strain was transformed. The transformant was prepared by the method described in Reference Example 1, and a 0.99 kb DNA fragment containing the DNA encoding adw-type P31 was transformed into PHO5. Isolate the strain (294ZpPH0P31-W) that harbors the plasmid pPHO P31-W inserted in the forward direction with the promoter. The yeast host AH22R- is transformed by the method of Hinnen et al. Using the plasmid PPH0 P31-W isolated from the transformant by an alkali extraction method, and the yeast transformant ( AH22R-ZpPHO P31—W) is separated (see Fig. 9). .
この形質転換体を通常の方法で培養して、 目的とする P 3 1を得るこ とができる。 This transformant can be cultured by a usual method to obtain the desired P31.
実施例 5 P 3 1遺伝子の大腸菌における発現 Example 5 Expression of P31 Gene in E. coli
実施例 1と 2で得られた P 3 1遺伝子発現プラスミ ドを含む各形質転 換体を、 1.0%グルコース , 1.0 %カザミ ノ酸を含む M— 9培地で、 37 ¾ , 6時間培養した後、 菌体を集め、 緩衝液〔 30 niM Tris— HC1 ( pH 8.0 ) , 50 mM NaCl , 5 mM Ε DT A 〕で洗浄した。 菌 体を 1 0 Tris-HCl ( pH 8.0 ) , 5 m Μ Ε D Τ A , I mM フエ ニルメ チノレスノレホ- フルオラィ ド , 5 ノ Wリ ゾチームからなる溶菌 液に懸濁し、 溶菌した。 該溶菌液に最終濃度 5 Mになるように塩酸グァ 二ジンを添加し、 3 7°Cで 2時間イ ンキュベーションした。 溶菌液を室 温で 15, 000 rpm,' 1 5分間遠心分離にかけて上澄液を得 τ¾ο この 差換え -OMPj^
上澄液の P 3 1活性を、 前述の direct inmmnoas sayによって測定し た。 その結果を第 2表に示すが、 P 3 1の生成量はブロス l M あた]?と して計算された。 また、 この生成量は特開昭 5 8 - 2 0 1 7 9 6号公報 記載の表面抗原の産生量よ])高 ことがわかつた。 Each of the transformants containing the P31 gene expression plasmid obtained in Examples 1 and 2 was cultured in M-9 medium containing 1.0% glucose and 1.0% casamino acid at 37 ° C. for 6 hours. The cells were collected and washed with a buffer [30 niM Tris-HC1 (pH 8.0), 50 mM NaCl, 5 mM ΕDTA]. The cells were suspended and lysed in a lysate consisting of 10 Tris-HCl (pH 8.0), 5 mM ΕDAΤA, ImM phenylmethinoresorephore-fluoride, and 5 W lysozyme. Guanidine hydrochloride was added to the lysate to a final concentration of 5 M, and the mixture was incubated at 37 ° C for 2 hours. The lysate was centrifuged at room temperature at 15,000 rpm for '15 minutes to obtain a supernatant. Τ¾ο This replacement -OMPj ^ The P31 activity of the supernatant was measured by direct inmmnoas say as described above. The results are shown in Table 2, and the amount of P31 produced was calculated as broth l M]. Further, the production amount was higher than the production amount of the surface antigen described in JP-A-58-210796.
第 2 表 Table 2
形 質 転 換 体 HBsAg (単^^^ロス) Transformant HBsAg (single ^^^ loss)
Escherichia coli 29 /pTRP P 31-R 220 Escherichia coli 29 / pTRP P 31-R 220
Escherichia coli 294/pTRP P31- 2 300 HBsAg 1単位は 1 ngの HB s 小型粒子に結合するオースリア H 一 1 2 5キット添付の1251—抗 HBsAg抗体の力ゥント数の暄である c 産業上の利用可能性 Escherichia coli 294 / pTRP P31- 2 300 HBsAg 1 unit on c industry is暄force Unto number of 1 ng Osuria H one 1 2 5 attached to the kit of the 125 1-HBsAg antibodies which bind to the HB s small particles Availability
本発明で提供される組み換え D N A ,該組み換え D N Aを含有する形 質転換体は HBsAg P31 の製造に有用であり、 本発明で提供される The recombinant DNA and the transformant containing the recombinant DNA provided by the present invention are useful for producing HBsAg P31 and provided by the present invention.
HBsAg P 31は H Bゾ の感染防止に有用なワクチンとして有用である c HBsAg P 31 is useful as a useful vaccine to prevent infection of HB zone c
^^え ':み W1PO ^
^^ E ': see W1PO ^
Claims
(1) B型肝炎ウィルス表面抗原 P 3 1をコ—ドする D N Aをプロモータ 一領域の 3, 末端に揷入してるる組み換え D N A。 (1) Recombinant DNA in which DNA coding for the hepatitis B virus surface antigen P31 is inserted at the 3 'end of the promoter region.
(2) B型肝炎ウイノレス表面抗原 P 3 1をコ—ドする D N Aをプロモータ —領域の 3, 末端に揷入してなる組み換え D N Aを含有する形質転換体。 (2) A transformant containing recombinant DNA in which DNA encoding hepatitis B winnowless surface antigen P31 is inserted at the 3 'end of the promoter region.
(3) B型肝炎ウイノレス表面抗原 P 3 1をコードする D N Aをプロモータ 一領域の 3 ' 末端に揷入してなる組み換え D N Aを含有する形質転換体 を培養し、 培養物中に B型肝炎ウィルス表面抗原 P 3 1を生成蓄積させ、 それを採取することを特徴とする B型肝炎ゥィルス表面抗原 P 3 1の製 造法。 (3) A transformant containing recombinant DNA obtained by inserting DNA encoding hepatitis B winnowless surface antigen P31 into the 3 'end of one region of the promoter is cultured, and the hepatitis B virus is contained in the culture. A method for producing hepatitis B virus surface antigen P31, comprising producing and accumulating surface antigen P31 and collecting the antigen.
£Α Γ 笋換 ΟΜΡΙ 忘^ん -,. IPO
£ Α 笋 換 ΟΜΡΙ 忘 ΟΜΡΙ--. IPO
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1984/000356 WO1986000640A1 (en) | 1984-07-11 | 1984-07-11 | Recombinant dna and its use |
EP19900202097 EP0401941A3 (en) | 1984-07-11 | 1985-07-03 | Hepatitis b virus surface antigen and production thereof |
EP85304735A EP0171908A3 (en) | 1984-07-11 | 1985-07-03 | Hepatitis b virus surface antigen and production thereof |
JP60153238A JPH082306B2 (en) | 1984-07-11 | 1985-07-10 | Hepatitis B virus surface antigen and method for producing the same |
CN85106190A CN85106190A (en) | 1984-07-11 | 1985-07-12 | The production of hepatitis B virus surface antigen |
KR1019850004912A KR860001188A (en) | 1984-07-11 | 1985-09-10 | Hepatitis B virus surface antigen and preparation method thereof |
JP5113354A JPH0690781A (en) | 1984-07-11 | 1993-05-14 | Production of surface antigen of hepatitis b virus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1984/000356 WO1986000640A1 (en) | 1984-07-11 | 1984-07-11 | Recombinant dna and its use |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1986000640A1 true WO1986000640A1 (en) | 1986-01-30 |
Family
ID=13818368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1984/000356 WO1986000640A1 (en) | 1984-07-11 | 1984-07-11 | Recombinant dna and its use |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR860001188A (en) |
WO (1) | WO1986000640A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5980615A (en) * | 1982-10-29 | 1984-05-10 | Takeda Chem Ind Ltd | Dna and its use |
-
1984
- 1984-07-11 WO PCT/JP1984/000356 patent/WO1986000640A1/en unknown
-
1985
- 1985-09-10 KR KR1019850004912A patent/KR860001188A/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5980615A (en) * | 1982-10-29 | 1984-05-10 | Takeda Chem Ind Ltd | Dna and its use |
Also Published As
Publication number | Publication date |
---|---|
KR860001188A (en) | 1986-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2511394B2 (en) | Production of hepatitis B surface antigen in yeast | |
US5133961A (en) | Vaccines comprising yeast-derived hepatits b virus polypeptides | |
Hitzeman et al. | Expression of hepatitis B virus surface antigen in yeast | |
CA1263618A (en) | Hybrid particle immunogens | |
EP0171908A2 (en) | Hepatitis B virus surface antigen and production thereof | |
JPS6362198B2 (en) | ||
KR100193701B1 (en) | Methods for expressing antigenic particles consisting of hepatitis B S and PreS2 proteins in methyl demanding yeast and novel DNA molecules and novel yeast strains transformed with them | |
EP0155007B1 (en) | Method for purification of hbs antigen | |
JPH06172393A (en) | Hbs ag escape variant vaccine with decreased host carbohydrate content | |
JPS5974985A (en) | Novel dna, its preparation and transformant having the same | |
WO1986000640A1 (en) | Recombinant dna and its use | |
AU650530B2 (en) | Hepatitis B virus surface proteins with reduced host carbohydrate content | |
JPH06172392A (en) | Multiple hepatitis virus b surface protein that forms particle | |
KR940010866B1 (en) | Novel protein and production thereof | |
EP0218474A2 (en) | Novel DNA and polypeptide | |
JPS5980615A (en) | Dna and its use | |
JPS6170989A (en) | Recombinant dna and its use | |
JP2648122B2 (en) | Novel polypeptide and method for producing the same | |
US5164485A (en) | Modified hepatitis B virus surface antigen P31 and production thereof | |
Borchani-Chabchoub et al. | Glucose dependant negative translational control of the heterologous expression of the preS2 HBV antigen in yeast | |
WO1986003411A1 (en) | Process for preparing novel protein | |
WO1986001534A1 (en) | Recombinant dna and its use | |
WO1994001132A1 (en) | VACCINE COMPRISING MIXED preS1+preS2+S AND CORE PARTICLE | |
CA2078358A1 (en) | Multivalent hepatitis b virus vaccine | |
JPS5890517A (en) | Novel recombinant for synthesis of surface antigen of hepatitis virus b and its preparation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Designated state(s): MC |